if_sk.c revision 1.93 1 /* $NetBSD: if_sk.c,v 1.93 2019/01/22 03:42:27 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
30
31 /*
32 * Copyright (c) 1997, 1998, 1999, 2000
33 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by Bill Paul.
46 * 4. Neither the name of the author nor the names of any co-contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60 * THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63 */
64
65 /*
66 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
67 *
68 * Permission to use, copy, modify, and distribute this software for any
69 * purpose with or without fee is hereby granted, provided that the above
70 * copyright notice and this permission notice appear in all copies.
71 *
72 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79 */
80
81 /*
82 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83 * the SK-984x series adapters, both single port and dual port.
84 * References:
85 * The XaQti XMAC II datasheet,
86 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87 * The SysKonnect GEnesis manual, http://www.syskonnect.com
88 *
89 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91 * convenience to others until Vitesse corrects this problem:
92 *
93 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 *
95 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
96 * Department of Electrical Engineering
97 * Columbia University, New York City
98 */
99
100 /*
101 * The SysKonnect gigabit ethernet adapters consist of two main
102 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104 * components and a PHY while the GEnesis controller provides a PCI
105 * interface with DMA support. Each card may have between 512K and
106 * 2MB of SRAM on board depending on the configuration.
107 *
108 * The SysKonnect GEnesis controller can have either one or two XMAC
109 * chips connected to it, allowing single or dual port NIC configurations.
110 * SysKonnect has the distinction of being the only vendor on the market
111 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113 * XMAC registers. This driver takes advantage of these features to allow
114 * both XMACs to operate as independent interfaces.
115 */
116
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.93 2019/01/22 03:42:27 msaitoh Exp $");
119
120 #include <sys/param.h>
121 #include <sys/systm.h>
122 #include <sys/sockio.h>
123 #include <sys/mbuf.h>
124 #include <sys/malloc.h>
125 #include <sys/mutex.h>
126 #include <sys/kernel.h>
127 #include <sys/socket.h>
128 #include <sys/device.h>
129 #include <sys/queue.h>
130 #include <sys/callout.h>
131 #include <sys/sysctl.h>
132 #include <sys/endian.h>
133
134 #include <net/if.h>
135 #include <net/if_dl.h>
136 #include <net/if_types.h>
137
138 #include <net/if_media.h>
139
140 #include <net/bpf.h>
141 #include <sys/rndsource.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145 #include <dev/mii/brgphyreg.h>
146
147 #include <dev/pci/pcireg.h>
148 #include <dev/pci/pcivar.h>
149 #include <dev/pci/pcidevs.h>
150
151 /* #define SK_USEIOSPACE */
152
153 #include <dev/pci/if_skreg.h>
154 #include <dev/pci/if_skvar.h>
155
156 int skc_probe(device_t, cfdata_t, void *);
157 void skc_attach(device_t, device_t, void *aux);
158 int sk_probe(device_t, cfdata_t, void *);
159 void sk_attach(device_t, device_t, void *aux);
160 int skcprint(void *, const char *);
161 int sk_intr(void *);
162 void sk_intr_bcom(struct sk_if_softc *);
163 void sk_intr_xmac(struct sk_if_softc *);
164 void sk_intr_yukon(struct sk_if_softc *);
165 void sk_rxeof(struct sk_if_softc *);
166 void sk_txeof(struct sk_if_softc *);
167 int sk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
168 void sk_start(struct ifnet *);
169 int sk_ioctl(struct ifnet *, u_long, void *);
170 int sk_init(struct ifnet *);
171 void sk_init_xmac(struct sk_if_softc *);
172 void sk_init_yukon(struct sk_if_softc *);
173 void sk_stop(struct ifnet *, int);
174 void sk_watchdog(struct ifnet *);
175 void sk_shutdown(void *);
176 int sk_ifmedia_upd(struct ifnet *);
177 void sk_reset(struct sk_softc *);
178 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
179 int sk_alloc_jumbo_mem(struct sk_if_softc *);
180 void sk_free_jumbo_mem(struct sk_if_softc *);
181 void *sk_jalloc(struct sk_if_softc *);
182 void sk_jfree(struct mbuf *, void *, size_t, void *);
183 int sk_init_rx_ring(struct sk_if_softc *);
184 int sk_init_tx_ring(struct sk_if_softc *);
185 uint8_t sk_vpd_readbyte(struct sk_softc *, int);
186 void sk_vpd_read_res(struct sk_softc *,
187 struct vpd_res *, int);
188 void sk_vpd_read(struct sk_softc *);
189
190 void sk_update_int_mod(struct sk_softc *);
191
192 int sk_xmac_miibus_readreg(device_t, int, int, uint16_t *);
193 int sk_xmac_miibus_writereg(device_t, int, int, uint16_t);
194 void sk_xmac_miibus_statchg(struct ifnet *);
195
196 int sk_marv_miibus_readreg(device_t, int, int, uint16_t *);
197 int sk_marv_miibus_writereg(device_t, int, int, uint16_t);
198 void sk_marv_miibus_statchg(struct ifnet *);
199
200 uint32_t sk_xmac_hash(void *);
201 uint32_t sk_yukon_hash(void *);
202 void sk_setfilt(struct sk_if_softc *, void *, int);
203 void sk_setmulti(struct sk_if_softc *);
204 void sk_tick(void *);
205
206 static bool skc_suspend(device_t, const pmf_qual_t *);
207 static bool skc_resume(device_t, const pmf_qual_t *);
208 static bool sk_resume(device_t dv, const pmf_qual_t *);
209
210 /* #define SK_DEBUG 2 */
211 #ifdef SK_DEBUG
212 #define DPRINTF(x) if (skdebug) printf x
213 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
214 int skdebug = SK_DEBUG;
215
216 void sk_dump_txdesc(struct sk_tx_desc *, int);
217 void sk_dump_mbuf(struct mbuf *);
218 void sk_dump_bytes(const char *, int);
219 #else
220 #define DPRINTF(x)
221 #define DPRINTFN(n,x)
222 #endif
223
224 static int sk_sysctl_handler(SYSCTLFN_PROTO);
225 static int sk_root_num;
226
227 /* supported device vendors */
228 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
229 static const struct sk_product {
230 pci_vendor_id_t sk_vendor;
231 pci_product_id_t sk_product;
232 } sk_products[] = {
233 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
234 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
235 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
236 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
237 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
238 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
239 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
240 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
241 { 0, 0, }
242 };
243
244 #define SK_LINKSYS_EG1032_SUBID 0x00151737
245
246 static inline uint32_t
247 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
248 {
249 #ifdef SK_USEIOSPACE
250 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
251 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
252 #else
253 return CSR_READ_4(sc, reg);
254 #endif
255 }
256
257 static inline uint16_t
258 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
259 {
260 #ifdef SK_USEIOSPACE
261 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
262 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
263 #else
264 return CSR_READ_2(sc, reg);
265 #endif
266 }
267
268 static inline uint8_t
269 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
270 {
271 #ifdef SK_USEIOSPACE
272 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
273 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
274 #else
275 return CSR_READ_1(sc, reg);
276 #endif
277 }
278
279 static inline void
280 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
281 {
282 #ifdef SK_USEIOSPACE
283 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
284 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
285 #else
286 CSR_WRITE_4(sc, reg, x);
287 #endif
288 }
289
290 static inline void
291 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
292 {
293 #ifdef SK_USEIOSPACE
294 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
295 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
296 #else
297 CSR_WRITE_2(sc, reg, x);
298 #endif
299 }
300
301 static inline void
302 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
303 {
304 #ifdef SK_USEIOSPACE
305 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
306 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
307 #else
308 CSR_WRITE_1(sc, reg, x);
309 #endif
310 }
311
312 /*
313 * The VPD EEPROM contains Vital Product Data, as suggested in
314 * the PCI 2.1 specification. The VPD data is separared into areas
315 * denoted by resource IDs. The SysKonnect VPD contains an ID string
316 * resource (the name of the adapter), a read-only area resource
317 * containing various key/data fields and a read/write area which
318 * can be used to store asset management information or log messages.
319 * We read the ID string and read-only into buffers attached to
320 * the controller softc structure for later use. At the moment,
321 * we only use the ID string during sk_attach().
322 */
323 uint8_t
324 sk_vpd_readbyte(struct sk_softc *sc, int addr)
325 {
326 int i;
327
328 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
329 for (i = 0; i < SK_TIMEOUT; i++) {
330 DELAY(1);
331 if (sk_win_read_2(sc,
332 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
333 break;
334 }
335
336 if (i == SK_TIMEOUT)
337 return 0;
338
339 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
340 }
341
342 void
343 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
344 {
345 int i;
346 uint8_t *ptr;
347
348 ptr = (uint8_t *)res;
349 for (i = 0; i < sizeof(struct vpd_res); i++)
350 ptr[i] = sk_vpd_readbyte(sc, i + addr);
351 }
352
353 void
354 sk_vpd_read(struct sk_softc *sc)
355 {
356 int pos = 0, i;
357 struct vpd_res res;
358
359 if (sc->sk_vpd_prodname != NULL)
360 free(sc->sk_vpd_prodname, M_DEVBUF);
361 if (sc->sk_vpd_readonly != NULL)
362 free(sc->sk_vpd_readonly, M_DEVBUF);
363 sc->sk_vpd_prodname = NULL;
364 sc->sk_vpd_readonly = NULL;
365
366 sk_vpd_read_res(sc, &res, pos);
367
368 if (res.vr_id != VPD_RES_ID) {
369 aprint_error_dev(sc->sk_dev,
370 "bad VPD resource id: expected %x got %x\n",
371 VPD_RES_ID, res.vr_id);
372 return;
373 }
374
375 pos += sizeof(res);
376 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
377 if (sc->sk_vpd_prodname == NULL)
378 panic("sk_vpd_read");
379 for (i = 0; i < res.vr_len; i++)
380 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
381 sc->sk_vpd_prodname[i] = '\0';
382 pos += i;
383
384 sk_vpd_read_res(sc, &res, pos);
385
386 if (res.vr_id != VPD_RES_READ) {
387 aprint_error_dev(sc->sk_dev,
388 "bad VPD resource id: expected %x got %x\n",
389 VPD_RES_READ, res.vr_id);
390 return;
391 }
392
393 pos += sizeof(res);
394 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
395 if (sc->sk_vpd_readonly == NULL)
396 panic("sk_vpd_read");
397 for (i = 0; i < res.vr_len ; i++)
398 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
399 }
400
401 int
402 sk_xmac_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
403 {
404 struct sk_if_softc *sc_if = device_private(dev);
405 int i;
406
407 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
408
409 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
410 return -1;
411
412 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
413 SK_XM_READ_2(sc_if, XM_PHY_DATA);
414 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
415 for (i = 0; i < SK_TIMEOUT; i++) {
416 DELAY(1);
417 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
418 XM_MMUCMD_PHYDATARDY)
419 break;
420 }
421
422 if (i == SK_TIMEOUT) {
423 aprint_error_dev(sc_if->sk_dev,
424 "phy failed to come ready\n");
425 return ETIMEDOUT;
426 }
427 }
428 DELAY(1);
429 *val = SK_XM_READ_2(sc_if, XM_PHY_DATA);
430 return 0;
431 }
432
433 int
434 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
435 {
436 struct sk_if_softc *sc_if = device_private(dev);
437 int i;
438
439 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
440
441 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
442 for (i = 0; i < SK_TIMEOUT; i++) {
443 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
444 break;
445 }
446
447 if (i == SK_TIMEOUT) {
448 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
449 return ETIMEDOUT;
450 }
451
452 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
453 for (i = 0; i < SK_TIMEOUT; i++) {
454 DELAY(1);
455 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
456 break;
457 }
458
459 if (i == SK_TIMEOUT) {
460 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
461 return ETIMEDOUT;
462 }
463
464 return 0;
465 }
466
467 void
468 sk_xmac_miibus_statchg(struct ifnet *ifp)
469 {
470 struct sk_if_softc *sc_if = ifp->if_softc;
471 struct mii_data *mii = &sc_if->sk_mii;
472
473 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
474
475 /*
476 * If this is a GMII PHY, manually set the XMAC's
477 * duplex mode accordingly.
478 */
479 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
480 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
481 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
482 else
483 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
484 }
485 }
486
487 int
488 sk_marv_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
489 {
490 struct sk_if_softc *sc_if = device_private(dev);
491 uint16_t data;
492 int i;
493
494 if (phy != 0 ||
495 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
496 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
497 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
498 phy, reg));
499 return -1;
500 }
501
502 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
503 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
504
505 for (i = 0; i < SK_TIMEOUT; i++) {
506 DELAY(1);
507 data = SK_YU_READ_2(sc_if, YUKON_SMICR);
508 if (data & YU_SMICR_READ_VALID)
509 break;
510 }
511
512 if (i == SK_TIMEOUT) {
513 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
514 return ETIMEDOUT;
515 }
516
517 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
518 SK_TIMEOUT));
519
520 *val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
521
522 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
523 phy, reg, *val));
524
525 return 0;
526 }
527
528 int
529 sk_marv_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
530 {
531 struct sk_if_softc *sc_if = device_private(dev);
532 int i;
533
534 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#hx\n",
535 phy, reg, val));
536
537 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
538 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
539 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
540
541 for (i = 0; i < SK_TIMEOUT; i++) {
542 DELAY(1);
543 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
544 break;
545 }
546
547 if (i == SK_TIMEOUT) {
548 printf("%s: phy write timed out\n",
549 device_xname(sc_if->sk_dev));
550 return ETIMEDOUT;
551 }
552
553 return 0;
554 }
555
556 void
557 sk_marv_miibus_statchg(struct ifnet *ifp)
558 {
559 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
560 SK_YU_READ_2(((struct sk_if_softc *)ifp->if_softc),
561 YUKON_GPCR)));
562 }
563
564 uint32_t
565 sk_xmac_hash(void *addr)
566 {
567 uint32_t crc;
568
569 crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
570 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
571 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
572 return crc;
573 }
574
575 uint32_t
576 sk_yukon_hash(void *addr)
577 {
578 uint32_t crc;
579
580 crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
581 crc &= ((1 << SK_HASH_BITS) - 1);
582 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
583 return crc;
584 }
585
586 void
587 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
588 {
589 char *addr = addrv;
590 int base = XM_RXFILT_ENTRY(slot);
591
592 SK_XM_WRITE_2(sc_if, base, *(uint16_t *)(&addr[0]));
593 SK_XM_WRITE_2(sc_if, base + 2, *(uint16_t *)(&addr[2]));
594 SK_XM_WRITE_2(sc_if, base + 4, *(uint16_t *)(&addr[4]));
595 }
596
597 void
598 sk_setmulti(struct sk_if_softc *sc_if)
599 {
600 struct sk_softc *sc = sc_if->sk_softc;
601 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
602 uint32_t hashes[2] = { 0, 0 };
603 int h = 0, i;
604 struct ethercom *ec = &sc_if->sk_ethercom;
605 struct ether_multi *enm;
606 struct ether_multistep step;
607 uint8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
608
609 /* First, zot all the existing filters. */
610 switch (sc->sk_type) {
611 case SK_GENESIS:
612 for (i = 1; i < XM_RXFILT_MAX; i++)
613 sk_setfilt(sc_if, (void *)&dummy, i);
614
615 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
616 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
617 break;
618 case SK_YUKON:
619 case SK_YUKON_LITE:
620 case SK_YUKON_LP:
621 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
622 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
623 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
624 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
625 break;
626 }
627
628 /* Now program new ones. */
629 allmulti:
630 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
631 hashes[0] = 0xFFFFFFFF;
632 hashes[1] = 0xFFFFFFFF;
633 } else {
634 i = 1;
635 /* First find the tail of the list. */
636 ETHER_FIRST_MULTI(step, ec, enm);
637 while (enm != NULL) {
638 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
639 ETHER_ADDR_LEN)) {
640 ifp->if_flags |= IFF_ALLMULTI;
641 goto allmulti;
642 }
643 DPRINTFN(2,("multicast address %s\n",
644 ether_sprintf(enm->enm_addrlo)));
645 /*
646 * Program the first XM_RXFILT_MAX multicast groups
647 * into the perfect filter. For all others,
648 * use the hash table.
649 */
650 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
651 sk_setfilt(sc_if, enm->enm_addrlo, i);
652 i++;
653 }
654 else {
655 switch (sc->sk_type) {
656 case SK_GENESIS:
657 h = sk_xmac_hash(enm->enm_addrlo);
658 break;
659 case SK_YUKON:
660 case SK_YUKON_LITE:
661 case SK_YUKON_LP:
662 h = sk_yukon_hash(enm->enm_addrlo);
663 break;
664 }
665 if (h < 32)
666 hashes[0] |= (1 << h);
667 else
668 hashes[1] |= (1 << (h - 32));
669 }
670
671 ETHER_NEXT_MULTI(step, enm);
672 }
673 }
674
675 switch (sc->sk_type) {
676 case SK_GENESIS:
677 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
678 XM_MODE_RX_USE_PERFECT);
679 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
680 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
681 break;
682 case SK_YUKON:
683 case SK_YUKON_LITE:
684 case SK_YUKON_LP:
685 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
686 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
687 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
688 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
689 break;
690 }
691 }
692
693 int
694 sk_init_rx_ring(struct sk_if_softc *sc_if)
695 {
696 struct sk_chain_data *cd = &sc_if->sk_cdata;
697 struct sk_ring_data *rd = sc_if->sk_rdata;
698 int i;
699
700 memset((char *)rd->sk_rx_ring, 0,
701 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
702
703 for (i = 0; i < SK_RX_RING_CNT; i++) {
704 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
705 if (i == (SK_RX_RING_CNT - 1)) {
706 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
707 rd->sk_rx_ring[i].sk_next =
708 htole32(SK_RX_RING_ADDR(sc_if, 0));
709 } else {
710 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
711 rd->sk_rx_ring[i].sk_next =
712 htole32(SK_RX_RING_ADDR(sc_if,i+1));
713 }
714 }
715
716 for (i = 0; i < SK_RX_RING_CNT; i++) {
717 if (sk_newbuf(sc_if, i, NULL,
718 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
719 aprint_error_dev(sc_if->sk_dev,
720 "failed alloc of %dth mbuf\n", i);
721 return ENOBUFS;
722 }
723 }
724 sc_if->sk_cdata.sk_rx_prod = 0;
725 sc_if->sk_cdata.sk_rx_cons = 0;
726
727 return 0;
728 }
729
730 int
731 sk_init_tx_ring(struct sk_if_softc *sc_if)
732 {
733 struct sk_chain_data *cd = &sc_if->sk_cdata;
734 struct sk_ring_data *rd = sc_if->sk_rdata;
735 int i;
736
737 memset(sc_if->sk_rdata->sk_tx_ring, 0,
738 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
739
740 for (i = 0; i < SK_TX_RING_CNT; i++) {
741 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
742 if (i == (SK_TX_RING_CNT - 1)) {
743 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
744 rd->sk_tx_ring[i].sk_next =
745 htole32(SK_TX_RING_ADDR(sc_if, 0));
746 } else {
747 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
748 rd->sk_tx_ring[i].sk_next =
749 htole32(SK_TX_RING_ADDR(sc_if,i+1));
750 }
751 }
752
753 sc_if->sk_cdata.sk_tx_prod = 0;
754 sc_if->sk_cdata.sk_tx_cons = 0;
755 sc_if->sk_cdata.sk_tx_cnt = 0;
756
757 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
758 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
759
760 return 0;
761 }
762
763 int
764 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
765 bus_dmamap_t dmamap)
766 {
767 struct mbuf *m_new = NULL;
768 struct sk_chain *c;
769 struct sk_rx_desc *r;
770
771 if (m == NULL) {
772 void *buf = NULL;
773
774 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
775 if (m_new == NULL) {
776 aprint_error_dev(sc_if->sk_dev,
777 "no memory for rx list -- packet dropped!\n");
778 return ENOBUFS;
779 }
780
781 /* Allocate the jumbo buffer */
782 buf = sk_jalloc(sc_if);
783 if (buf == NULL) {
784 m_freem(m_new);
785 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
786 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
787 return ENOBUFS;
788 }
789
790 /* Attach the buffer to the mbuf */
791 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
792 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
793
794 } else {
795 /*
796 * We're re-using a previously allocated mbuf;
797 * be sure to re-init pointers and lengths to
798 * default values.
799 */
800 m_new = m;
801 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
802 m_new->m_data = m_new->m_ext.ext_buf;
803 }
804 m_adj(m_new, ETHER_ALIGN);
805
806 c = &sc_if->sk_cdata.sk_rx_chain[i];
807 r = c->sk_desc;
808 c->sk_mbuf = m_new;
809 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
810 (((vaddr_t)m_new->m_data
811 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
812 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
813
814 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
815
816 return 0;
817 }
818
819 /*
820 * Memory management for jumbo frames.
821 */
822
823 int
824 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
825 {
826 struct sk_softc *sc = sc_if->sk_softc;
827 char *ptr, *kva;
828 bus_dma_segment_t seg;
829 int i, rseg, state, error;
830 struct sk_jpool_entry *entry;
831
832 state = error = 0;
833
834 /* Grab a big chunk o' storage. */
835 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
836 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
837 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
838 return ENOBUFS;
839 }
840
841 state = 1;
842 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
843 BUS_DMA_NOWAIT)) {
844 aprint_error_dev(sc->sk_dev,
845 "can't map dma buffers (%d bytes)\n",
846 SK_JMEM);
847 error = ENOBUFS;
848 goto out;
849 }
850
851 state = 2;
852 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
853 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
854 aprint_error_dev(sc->sk_dev, "can't create dma map\n");
855 error = ENOBUFS;
856 goto out;
857 }
858
859 state = 3;
860 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
861 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
862 aprint_error_dev(sc->sk_dev, "can't load dma map\n");
863 error = ENOBUFS;
864 goto out;
865 }
866
867 state = 4;
868 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
869 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
870
871 LIST_INIT(&sc_if->sk_jfree_listhead);
872 LIST_INIT(&sc_if->sk_jinuse_listhead);
873 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
874
875 /*
876 * Now divide it up into 9K pieces and save the addresses
877 * in an array.
878 */
879 ptr = sc_if->sk_cdata.sk_jumbo_buf;
880 for (i = 0; i < SK_JSLOTS; i++) {
881 sc_if->sk_cdata.sk_jslots[i] = ptr;
882 ptr += SK_JLEN;
883 entry = malloc(sizeof(struct sk_jpool_entry),
884 M_DEVBUF, M_NOWAIT);
885 if (entry == NULL) {
886 aprint_error_dev(sc->sk_dev,
887 "no memory for jumbo buffer queue!\n");
888 error = ENOBUFS;
889 goto out;
890 }
891 entry->slot = i;
892 if (i)
893 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
894 entry, jpool_entries);
895 else
896 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
897 entry, jpool_entries);
898 }
899 out:
900 if (error != 0) {
901 switch (state) {
902 case 4:
903 bus_dmamap_unload(sc->sc_dmatag,
904 sc_if->sk_cdata.sk_rx_jumbo_map);
905 case 3:
906 bus_dmamap_destroy(sc->sc_dmatag,
907 sc_if->sk_cdata.sk_rx_jumbo_map);
908 case 2:
909 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
910 case 1:
911 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
912 break;
913 default:
914 break;
915 }
916 }
917
918 return error;
919 }
920
921 /*
922 * Allocate a jumbo buffer.
923 */
924 void *
925 sk_jalloc(struct sk_if_softc *sc_if)
926 {
927 struct sk_jpool_entry *entry;
928
929 mutex_enter(&sc_if->sk_jpool_mtx);
930 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
931
932 if (entry == NULL) {
933 mutex_exit(&sc_if->sk_jpool_mtx);
934 return NULL;
935 }
936
937 LIST_REMOVE(entry, jpool_entries);
938 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
939 mutex_exit(&sc_if->sk_jpool_mtx);
940 return sc_if->sk_cdata.sk_jslots[entry->slot];
941 }
942
943 /*
944 * Release a jumbo buffer.
945 */
946 void
947 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
948 {
949 struct sk_jpool_entry *entry;
950 struct sk_if_softc *sc;
951 int i;
952
953 /* Extract the softc struct pointer. */
954 sc = (struct sk_if_softc *)arg;
955
956 if (sc == NULL)
957 panic("sk_jfree: can't find softc pointer!");
958
959 /* calculate the slot this buffer belongs to */
960
961 i = ((vaddr_t)buf
962 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
963
964 if ((i < 0) || (i >= SK_JSLOTS))
965 panic("sk_jfree: asked to free buffer that we don't manage!");
966
967 mutex_enter(&sc->sk_jpool_mtx);
968 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
969 if (entry == NULL)
970 panic("sk_jfree: buffer not in use!");
971 entry->slot = i;
972 LIST_REMOVE(entry, jpool_entries);
973 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
974 mutex_exit(&sc->sk_jpool_mtx);
975
976 if (__predict_true(m != NULL))
977 pool_cache_put(mb_cache, m);
978 }
979
980 /*
981 * Set media options.
982 */
983 int
984 sk_ifmedia_upd(struct ifnet *ifp)
985 {
986 struct sk_if_softc *sc_if = ifp->if_softc;
987 int rc;
988
989 (void) sk_init(ifp);
990 if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
991 return 0;
992 return rc;
993 }
994
995 static void
996 sk_promisc(struct sk_if_softc *sc_if, int on)
997 {
998 struct sk_softc *sc = sc_if->sk_softc;
999 switch (sc->sk_type) {
1000 case SK_GENESIS:
1001 if (on)
1002 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1003 else
1004 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1005 break;
1006 case SK_YUKON:
1007 case SK_YUKON_LITE:
1008 case SK_YUKON_LP:
1009 if (on)
1010 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1011 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1012 else
1013 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1014 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1015 break;
1016 default:
1017 aprint_error_dev(sc_if->sk_dev, "Can't set promisc for %d\n",
1018 sc->sk_type);
1019 break;
1020 }
1021 }
1022
1023 int
1024 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
1025 {
1026 struct sk_if_softc *sc_if = ifp->if_softc;
1027 int s, error = 0;
1028
1029 /* DPRINTFN(2, ("sk_ioctl\n")); */
1030
1031 s = splnet();
1032
1033 switch (command) {
1034
1035 case SIOCSIFFLAGS:
1036 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1037 if ((error = ifioctl_common(ifp, command, data)) != 0)
1038 break;
1039 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1040 case IFF_RUNNING:
1041 sk_stop(ifp, 1);
1042 break;
1043 case IFF_UP:
1044 sk_init(ifp);
1045 break;
1046 case IFF_UP | IFF_RUNNING:
1047 if ((ifp->if_flags ^ sc_if->sk_if_flags) == IFF_PROMISC) {
1048 sk_promisc(sc_if, ifp->if_flags & IFF_PROMISC);
1049 sk_setmulti(sc_if);
1050 } else
1051 sk_init(ifp);
1052 break;
1053 }
1054 sc_if->sk_if_flags = ifp->if_flags;
1055 error = 0;
1056 break;
1057
1058 default:
1059 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1060 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1061 break;
1062
1063 error = 0;
1064
1065 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1066 ;
1067 else if (ifp->if_flags & IFF_RUNNING) {
1068 sk_setmulti(sc_if);
1069 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1070 }
1071 break;
1072 }
1073
1074 splx(s);
1075 return error;
1076 }
1077
1078 void
1079 sk_update_int_mod(struct sk_softc *sc)
1080 {
1081 uint32_t imtimer_ticks;
1082
1083 /*
1084 * Configure interrupt moderation. The moderation timer
1085 * defers interrupts specified in the interrupt moderation
1086 * timer mask based on the timeout specified in the interrupt
1087 * moderation timer init register. Each bit in the timer
1088 * register represents one tick, so to specify a timeout in
1089 * microseconds, we have to multiply by the correct number of
1090 * ticks-per-microsecond.
1091 */
1092 switch (sc->sk_type) {
1093 case SK_GENESIS:
1094 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1095 break;
1096 case SK_YUKON_EC:
1097 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1098 break;
1099 default:
1100 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1101 }
1102 aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
1103 sc->sk_int_mod);
1104 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1105 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1106 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1107 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1108 sc->sk_int_mod_pending = 0;
1109 }
1110
1111 /*
1112 * Lookup: Check the PCI vendor and device, and return a pointer to
1113 * The structure if the IDs match against our list.
1114 */
1115
1116 static const struct sk_product *
1117 sk_lookup(const struct pci_attach_args *pa)
1118 {
1119 const struct sk_product *psk;
1120
1121 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1122 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1123 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1124 return psk;
1125 }
1126 return NULL;
1127 }
1128
1129 /*
1130 * Probe for a SysKonnect GEnesis chip.
1131 */
1132
1133 int
1134 skc_probe(device_t parent, cfdata_t match, void *aux)
1135 {
1136 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1137 const struct sk_product *psk;
1138 pcireg_t subid;
1139
1140 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1141
1142 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1143 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1144 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1145 subid == SK_LINKSYS_EG1032_SUBID)
1146 return 1;
1147
1148 if ((psk = sk_lookup(pa))) {
1149 return 1;
1150 }
1151 return 0;
1152 }
1153
1154 /*
1155 * Force the GEnesis into reset, then bring it out of reset.
1156 */
1157 void sk_reset(struct sk_softc *sc)
1158 {
1159 DPRINTFN(2, ("sk_reset\n"));
1160
1161 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1162 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1163 if (SK_YUKON_FAMILY(sc->sk_type))
1164 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1165
1166 DELAY(1000);
1167 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1168 DELAY(2);
1169 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1170 if (SK_YUKON_FAMILY(sc->sk_type))
1171 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1172
1173 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1174 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1175 CSR_READ_2(sc, SK_LINK_CTRL)));
1176
1177 if (sc->sk_type == SK_GENESIS) {
1178 /* Configure packet arbiter */
1179 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1180 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1181 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1182 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1183 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1184 }
1185
1186 /* Enable RAM interface */
1187 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1188
1189 sk_update_int_mod(sc);
1190 }
1191
1192 int
1193 sk_probe(device_t parent, cfdata_t match, void *aux)
1194 {
1195 struct skc_attach_args *sa = aux;
1196
1197 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1198 return 0;
1199
1200 return 1;
1201 }
1202
1203 /*
1204 * Each XMAC chip is attached as a separate logical IP interface.
1205 * Single port cards will have only one logical interface of course.
1206 */
1207 void
1208 sk_attach(device_t parent, device_t self, void *aux)
1209 {
1210 struct sk_if_softc *sc_if = device_private(self);
1211 struct sk_softc *sc = device_private(parent);
1212 struct skc_attach_args *sa = aux;
1213 struct sk_txmap_entry *entry;
1214 struct ifnet *ifp;
1215 bus_dma_segment_t seg;
1216 bus_dmamap_t dmamap;
1217 prop_data_t data;
1218 void *kva;
1219 int i, rseg;
1220 int mii_flags = 0;
1221
1222 aprint_naive("\n");
1223
1224 sc_if->sk_dev = self;
1225 sc_if->sk_port = sa->skc_port;
1226 sc_if->sk_softc = sc;
1227 sc->sk_if[sa->skc_port] = sc_if;
1228
1229 if (sa->skc_port == SK_PORT_A)
1230 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1231 if (sa->skc_port == SK_PORT_B)
1232 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1233
1234 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1235
1236 /*
1237 * Get station address for this interface. Note that
1238 * dual port cards actually come with three station
1239 * addresses: one for each port, plus an extra. The
1240 * extra one is used by the SysKonnect driver software
1241 * as a 'virtual' station address for when both ports
1242 * are operating in failover mode. Currently we don't
1243 * use this extra address.
1244 */
1245 data = prop_dictionary_get(device_properties(self), "mac-address");
1246 if (data != NULL) {
1247 /*
1248 * Try to get the station address from device properties
1249 * first, in case the ROM is missing.
1250 */
1251 KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
1252 KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
1253 memcpy(sc_if->sk_enaddr, prop_data_data_nocopy(data),
1254 ETHER_ADDR_LEN);
1255 } else
1256 for (i = 0; i < ETHER_ADDR_LEN; i++)
1257 sc_if->sk_enaddr[i] = sk_win_read_1(sc,
1258 SK_MAC0_0 + (sa->skc_port * 8) + i);
1259
1260 aprint_normal(": Ethernet address %s\n",
1261 ether_sprintf(sc_if->sk_enaddr));
1262
1263 /*
1264 * Set up RAM buffer addresses. The NIC will have a certain
1265 * amount of SRAM on it, somewhere between 512K and 2MB. We
1266 * need to divide this up a) between the transmitter and
1267 * receiver and b) between the two XMACs, if this is a
1268 * dual port NIC. Our algorithm is to divide up the memory
1269 * evenly so that everyone gets a fair share.
1270 */
1271 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1272 uint32_t chunk, val;
1273
1274 chunk = sc->sk_ramsize / 2;
1275 val = sc->sk_rboff / sizeof(uint64_t);
1276 sc_if->sk_rx_ramstart = val;
1277 val += (chunk / sizeof(uint64_t));
1278 sc_if->sk_rx_ramend = val - 1;
1279 sc_if->sk_tx_ramstart = val;
1280 val += (chunk / sizeof(uint64_t));
1281 sc_if->sk_tx_ramend = val - 1;
1282 } else {
1283 uint32_t chunk, val;
1284
1285 chunk = sc->sk_ramsize / 4;
1286 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1287 sizeof(uint64_t);
1288 sc_if->sk_rx_ramstart = val;
1289 val += (chunk / sizeof(uint64_t));
1290 sc_if->sk_rx_ramend = val - 1;
1291 sc_if->sk_tx_ramstart = val;
1292 val += (chunk / sizeof(uint64_t));
1293 sc_if->sk_tx_ramend = val - 1;
1294 }
1295
1296 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1297 " tx_ramstart=%#x tx_ramend=%#x\n",
1298 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1299 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1300
1301 /* Read and save PHY type and set PHY address */
1302 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1303 switch (sc_if->sk_phytype) {
1304 case SK_PHYTYPE_XMAC:
1305 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1306 break;
1307 case SK_PHYTYPE_BCOM:
1308 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1309 break;
1310 case SK_PHYTYPE_MARV_COPPER:
1311 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1312 break;
1313 default:
1314 aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
1315 sc_if->sk_phytype);
1316 return;
1317 }
1318
1319 /* Allocate the descriptor queues. */
1320 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1321 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1322 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
1323 goto fail;
1324 }
1325 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1326 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1327 aprint_error_dev(sc_if->sk_dev,
1328 "can't map dma buffers (%lu bytes)\n",
1329 (u_long) sizeof(struct sk_ring_data));
1330 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1331 goto fail;
1332 }
1333 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1334 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1335 &sc_if->sk_ring_map)) {
1336 aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
1337 bus_dmamem_unmap(sc->sc_dmatag, kva,
1338 sizeof(struct sk_ring_data));
1339 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1340 goto fail;
1341 }
1342 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1343 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1344 aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
1345 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1346 bus_dmamem_unmap(sc->sc_dmatag, kva,
1347 sizeof(struct sk_ring_data));
1348 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1349 goto fail;
1350 }
1351
1352 for (i = 0; i < SK_RX_RING_CNT; i++)
1353 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1354
1355 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1356 for (i = 0; i < SK_TX_RING_CNT; i++) {
1357 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1358
1359 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1360 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1361 aprint_error_dev(sc_if->sk_dev,
1362 "Can't create TX dmamap\n");
1363 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1364 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1365 bus_dmamem_unmap(sc->sc_dmatag, kva,
1366 sizeof(struct sk_ring_data));
1367 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1368 goto fail;
1369 }
1370
1371 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1372 if (!entry) {
1373 aprint_error_dev(sc_if->sk_dev,
1374 "Can't alloc txmap entry\n");
1375 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1376 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1377 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1378 bus_dmamem_unmap(sc->sc_dmatag, kva,
1379 sizeof(struct sk_ring_data));
1380 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1381 goto fail;
1382 }
1383 entry->dmamap = dmamap;
1384 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1385 }
1386
1387 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1388 memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
1389
1390 ifp = &sc_if->sk_ethercom.ec_if;
1391 /* Try to allocate memory for jumbo buffers. */
1392 if (sk_alloc_jumbo_mem(sc_if)) {
1393 aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1394 goto fail;
1395 }
1396 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1397 | ETHERCAP_JUMBO_MTU;
1398
1399 ifp->if_softc = sc_if;
1400 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1401 ifp->if_ioctl = sk_ioctl;
1402 ifp->if_start = sk_start;
1403 ifp->if_stop = sk_stop;
1404 ifp->if_init = sk_init;
1405 ifp->if_watchdog = sk_watchdog;
1406 ifp->if_capabilities = 0;
1407 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1408 IFQ_SET_READY(&ifp->if_snd);
1409 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1410
1411 /*
1412 * Do miibus setup.
1413 */
1414 switch (sc->sk_type) {
1415 case SK_GENESIS:
1416 sk_init_xmac(sc_if);
1417 break;
1418 case SK_YUKON:
1419 case SK_YUKON_LITE:
1420 case SK_YUKON_LP:
1421 sk_init_yukon(sc_if);
1422 break;
1423 default:
1424 aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
1425 sc->sk_type);
1426 goto fail;
1427 }
1428
1429 DPRINTFN(2, ("sk_attach: 1\n"));
1430
1431 sc_if->sk_mii.mii_ifp = ifp;
1432 switch (sc->sk_type) {
1433 case SK_GENESIS:
1434 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1435 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1436 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1437 break;
1438 case SK_YUKON:
1439 case SK_YUKON_LITE:
1440 case SK_YUKON_LP:
1441 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1442 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1443 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1444 mii_flags = MIIF_DOPAUSE;
1445 break;
1446 }
1447
1448 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1449 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1450 sk_ifmedia_upd, ether_mediastatus);
1451 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1452 MII_OFFSET_ANY, mii_flags);
1453 if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
1454 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1455 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1456 0, NULL);
1457 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1458 } else
1459 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1460
1461 callout_init(&sc_if->sk_tick_ch, 0);
1462 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1463
1464 DPRINTFN(2, ("sk_attach: 1\n"));
1465
1466 /*
1467 * Call MI attach routines.
1468 */
1469 if_attach(ifp);
1470 if_deferred_start_init(ifp, NULL);
1471
1472 ether_ifattach(ifp, sc_if->sk_enaddr);
1473
1474 if (sc->rnd_attached++ == 0) {
1475 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1476 RND_TYPE_NET, RND_FLAG_DEFAULT);
1477 }
1478
1479 if (pmf_device_register(self, NULL, sk_resume))
1480 pmf_class_network_register(self, ifp);
1481 else
1482 aprint_error_dev(self, "couldn't establish power handler\n");
1483
1484 DPRINTFN(2, ("sk_attach: end\n"));
1485
1486 return;
1487
1488 fail:
1489 sc->sk_if[sa->skc_port] = NULL;
1490 }
1491
1492 int
1493 skcprint(void *aux, const char *pnp)
1494 {
1495 struct skc_attach_args *sa = aux;
1496
1497 if (pnp)
1498 aprint_normal("sk port %c at %s",
1499 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1500 else
1501 aprint_normal(" port %c",
1502 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1503 return UNCONF;
1504 }
1505
1506 /*
1507 * Attach the interface. Allocate softc structures, do ifmedia
1508 * setup and ethernet/BPF attach.
1509 */
1510 void
1511 skc_attach(device_t parent, device_t self, void *aux)
1512 {
1513 struct sk_softc *sc = device_private(self);
1514 struct pci_attach_args *pa = aux;
1515 struct skc_attach_args skca;
1516 pci_chipset_tag_t pc = pa->pa_pc;
1517 #ifndef SK_USEIOSPACE
1518 pcireg_t memtype;
1519 #endif
1520 pci_intr_handle_t ih;
1521 const char *intrstr = NULL;
1522 bus_addr_t iobase;
1523 bus_size_t iosize;
1524 int rc, sk_nodenum;
1525 uint32_t command;
1526 const char *revstr;
1527 const struct sysctlnode *node;
1528 char intrbuf[PCI_INTRSTR_LEN];
1529
1530 sc->sk_dev = self;
1531 aprint_naive("\n");
1532
1533 DPRINTFN(2, ("begin skc_attach\n"));
1534
1535 /*
1536 * Handle power management nonsense.
1537 */
1538 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1539
1540 if (command == 0x01) {
1541 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1542 if (command & SK_PSTATE_MASK) {
1543 uint32_t xiobase, membase, irq;
1544
1545 /* Save important PCI config data. */
1546 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1547 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1548 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1549
1550 /* Reset the power state. */
1551 aprint_normal_dev(sc->sk_dev,
1552 "chip is in D%d power mode -- setting to D0\n",
1553 command & SK_PSTATE_MASK);
1554 command &= 0xFFFFFFFC;
1555 pci_conf_write(pc, pa->pa_tag,
1556 SK_PCI_PWRMGMTCTRL, command);
1557
1558 /* Restore PCI config data. */
1559 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1560 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1561 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1562 }
1563 }
1564
1565 /*
1566 * The firmware might have configured the interface to revert the
1567 * byte order in all descriptors. Make that undone.
1568 */
1569 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_OURREG2);
1570 if (command & SK_REG2_REV_DESC)
1571 pci_conf_write(pc, pa->pa_tag, SK_PCI_OURREG2,
1572 command & ~SK_REG2_REV_DESC);
1573
1574 /*
1575 * Map control/status registers.
1576 */
1577 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1578 command |= PCI_COMMAND_IO_ENABLE |
1579 PCI_COMMAND_MEM_ENABLE |
1580 PCI_COMMAND_MASTER_ENABLE;
1581 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1582 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1583
1584 #ifdef SK_USEIOSPACE
1585 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1586 aprint_error(": failed to enable I/O ports!\n");
1587 return;
1588 }
1589 /*
1590 * Map control/status registers.
1591 */
1592 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1593 &sc->sk_btag, &sc->sk_bhandle,
1594 &iobase, &iosize)) {
1595 aprint_error(": can't find i/o space\n");
1596 return;
1597 }
1598 #else
1599 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1600 aprint_error(": failed to enable memory mapping!\n");
1601 return;
1602 }
1603 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1604 switch (memtype) {
1605 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1606 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1607 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1608 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1609 &iobase, &iosize) == 0)
1610 break;
1611 default:
1612 aprint_error_dev(sc->sk_dev, "can't find mem space\n");
1613 return;
1614 }
1615
1616 DPRINTFN(2, ("skc_attach: iobase=%#" PRIxPADDR ", iosize=%zx\n",
1617 iobase, iosize));
1618 #endif
1619 sc->sc_dmatag = pa->pa_dmat;
1620
1621 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1622 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1623
1624 /* bail out here if chip is not recognized */
1625 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1626 aprint_error_dev(sc->sk_dev, "unknown chip type\n");
1627 goto fail;
1628 }
1629 if (SK_IS_YUKON2(sc)) {
1630 aprint_error_dev(sc->sk_dev,
1631 "Does not support Yukon2--try msk(4).\n");
1632 goto fail;
1633 }
1634 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1635
1636 /* Allocate interrupt */
1637 if (pci_intr_map(pa, &ih)) {
1638 aprint_error(": couldn't map interrupt\n");
1639 goto fail;
1640 }
1641
1642 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1643 sc->sk_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, sk_intr, sc,
1644 device_xname(sc->sk_dev));
1645 if (sc->sk_intrhand == NULL) {
1646 aprint_error(": couldn't establish interrupt");
1647 if (intrstr != NULL)
1648 aprint_error(" at %s", intrstr);
1649 aprint_error("\n");
1650 goto fail;
1651 }
1652 aprint_normal(": %s\n", intrstr);
1653
1654 /* Reset the adapter. */
1655 sk_reset(sc);
1656
1657 /* Read and save vital product data from EEPROM. */
1658 sk_vpd_read(sc);
1659
1660 if (sc->sk_type == SK_GENESIS) {
1661 uint8_t val = sk_win_read_1(sc, SK_EPROM0);
1662 /* Read and save RAM size and RAMbuffer offset */
1663 switch (val) {
1664 case SK_RAMSIZE_512K_64:
1665 sc->sk_ramsize = 0x80000;
1666 sc->sk_rboff = SK_RBOFF_0;
1667 break;
1668 case SK_RAMSIZE_1024K_64:
1669 sc->sk_ramsize = 0x100000;
1670 sc->sk_rboff = SK_RBOFF_80000;
1671 break;
1672 case SK_RAMSIZE_1024K_128:
1673 sc->sk_ramsize = 0x100000;
1674 sc->sk_rboff = SK_RBOFF_0;
1675 break;
1676 case SK_RAMSIZE_2048K_128:
1677 sc->sk_ramsize = 0x200000;
1678 sc->sk_rboff = SK_RBOFF_0;
1679 break;
1680 default:
1681 aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
1682 val);
1683 goto fail_1;
1684 break;
1685 }
1686
1687 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1688 sc->sk_ramsize, sc->sk_ramsize / 1024,
1689 sc->sk_rboff));
1690 } else {
1691 uint8_t val = sk_win_read_1(sc, SK_EPROM0);
1692 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1693 sc->sk_rboff = SK_RBOFF_0;
1694
1695 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1696 sc->sk_ramsize / 1024, sc->sk_ramsize,
1697 sc->sk_rboff));
1698 }
1699
1700 /* Read and save physical media type */
1701 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1702 case SK_PMD_1000BASESX:
1703 sc->sk_pmd = IFM_1000_SX;
1704 break;
1705 case SK_PMD_1000BASELX:
1706 sc->sk_pmd = IFM_1000_LX;
1707 break;
1708 case SK_PMD_1000BASECX:
1709 sc->sk_pmd = IFM_1000_CX;
1710 break;
1711 case SK_PMD_1000BASETX:
1712 case SK_PMD_1000BASETX_ALT:
1713 sc->sk_pmd = IFM_1000_T;
1714 break;
1715 default:
1716 aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
1717 sk_win_read_1(sc, SK_PMDTYPE));
1718 goto fail_1;
1719 }
1720
1721 /* determine whether to name it with vpd or just make it up */
1722 /* Marvell Yukon VPD's can freqently be bogus */
1723
1724 switch (pa->pa_id) {
1725 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1726 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1727 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1728 case PCI_PRODUCT_3COM_3C940:
1729 case PCI_PRODUCT_DLINK_DGE530T:
1730 case PCI_PRODUCT_DLINK_DGE560T:
1731 case PCI_PRODUCT_DLINK_DGE560T_2:
1732 case PCI_PRODUCT_LINKSYS_EG1032:
1733 case PCI_PRODUCT_LINKSYS_EG1064:
1734 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1735 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1736 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1737 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1738 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1739 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1740 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1741 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1742 sc->sk_name = sc->sk_vpd_prodname;
1743 break;
1744 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1745 /* whoops yukon vpd prodname bears no resemblance to reality */
1746 switch (sc->sk_type) {
1747 case SK_GENESIS:
1748 sc->sk_name = sc->sk_vpd_prodname;
1749 break;
1750 case SK_YUKON:
1751 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1752 break;
1753 case SK_YUKON_LITE:
1754 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1755 break;
1756 case SK_YUKON_LP:
1757 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1758 break;
1759 default:
1760 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1761 }
1762
1763 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1764
1765 if ( sc->sk_type == SK_YUKON ) {
1766 uint32_t flashaddr;
1767 uint8_t testbyte;
1768
1769 flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1770
1771 /* test Flash-Address Register */
1772 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1773 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1774
1775 if (testbyte != 0) {
1776 /* this is yukon lite Rev. A0 */
1777 sc->sk_type = SK_YUKON_LITE;
1778 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1779 /* restore Flash-Address Register */
1780 sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1781 }
1782 }
1783 break;
1784 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1785 sc->sk_name = sc->sk_vpd_prodname;
1786 break;
1787 default:
1788 sc->sk_name = "Unknown Marvell";
1789 }
1790
1791
1792 if ( sc->sk_type == SK_YUKON_LITE ) {
1793 switch (sc->sk_rev) {
1794 case SK_YUKON_LITE_REV_A0:
1795 revstr = "A0";
1796 break;
1797 case SK_YUKON_LITE_REV_A1:
1798 revstr = "A1";
1799 break;
1800 case SK_YUKON_LITE_REV_A3:
1801 revstr = "A3";
1802 break;
1803 default:
1804 revstr = "";
1805 }
1806 } else {
1807 revstr = "";
1808 }
1809
1810 /* Announce the product name. */
1811 aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
1812 sc->sk_name, revstr, sc->sk_rev);
1813
1814 skca.skc_port = SK_PORT_A;
1815 (void)config_found(sc->sk_dev, &skca, skcprint);
1816
1817 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1818 skca.skc_port = SK_PORT_B;
1819 (void)config_found(sc->sk_dev, &skca, skcprint);
1820 }
1821
1822 /* Turn on the 'driver is loaded' LED. */
1823 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1824
1825 /* skc sysctl setup */
1826
1827 sc->sk_int_mod = SK_IM_DEFAULT;
1828 sc->sk_int_mod_pending = 0;
1829
1830 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1831 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1832 SYSCTL_DESCR("skc per-controller controls"),
1833 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1834 CTL_EOL)) != 0) {
1835 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1836 goto fail_1;
1837 }
1838
1839 sk_nodenum = node->sysctl_num;
1840
1841 /* interrupt moderation time in usecs */
1842 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1843 CTLFLAG_READWRITE,
1844 CTLTYPE_INT, "int_mod",
1845 SYSCTL_DESCR("sk interrupt moderation timer"),
1846 sk_sysctl_handler, 0, (void *)sc,
1847 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1848 CTL_EOL)) != 0) {
1849 aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1850 goto fail_1;
1851 }
1852
1853 if (!pmf_device_register(self, skc_suspend, skc_resume))
1854 aprint_error_dev(self, "couldn't establish power handler\n");
1855
1856 return;
1857
1858 fail_1:
1859 pci_intr_disestablish(pc, sc->sk_intrhand);
1860 fail:
1861 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1862 }
1863
1864 int
1865 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1866 {
1867 struct sk_softc *sc = sc_if->sk_softc;
1868 struct sk_tx_desc *f = NULL;
1869 uint32_t frag, cur, cnt = 0, sk_ctl;
1870 int i;
1871 struct sk_txmap_entry *entry;
1872 bus_dmamap_t txmap;
1873
1874 DPRINTFN(3, ("sk_encap\n"));
1875
1876 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1877 if (entry == NULL) {
1878 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1879 return ENOBUFS;
1880 }
1881 txmap = entry->dmamap;
1882
1883 cur = frag = *txidx;
1884
1885 #ifdef SK_DEBUG
1886 if (skdebug >= 3)
1887 sk_dump_mbuf(m_head);
1888 #endif
1889
1890 /*
1891 * Start packing the mbufs in this chain into
1892 * the fragment pointers. Stop when we run out
1893 * of fragments or hit the end of the mbuf chain.
1894 */
1895 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1896 BUS_DMA_NOWAIT)) {
1897 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1898 return ENOBUFS;
1899 }
1900
1901 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1902
1903 /* Sync the DMA map. */
1904 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1905 BUS_DMASYNC_PREWRITE);
1906
1907 for (i = 0; i < txmap->dm_nsegs; i++) {
1908 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1909 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1910 return ENOBUFS;
1911 }
1912 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1913 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1914 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1915 if (cnt == 0)
1916 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1917 else
1918 sk_ctl |= SK_TXCTL_OWN;
1919 f->sk_ctl = htole32(sk_ctl);
1920 cur = frag;
1921 SK_INC(frag, SK_TX_RING_CNT);
1922 cnt++;
1923 }
1924
1925 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1926 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1927
1928 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1929 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1930 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1931
1932 /* Sync descriptors before handing to chip */
1933 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1934 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1935
1936 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1937 htole32(SK_TXCTL_OWN);
1938
1939 /* Sync first descriptor to hand it off */
1940 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1941
1942 sc_if->sk_cdata.sk_tx_cnt += cnt;
1943
1944 #ifdef SK_DEBUG
1945 if (skdebug >= 3) {
1946 struct sk_tx_desc *desc;
1947 uint32_t idx;
1948 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1949 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1950 sk_dump_txdesc(desc, idx);
1951 }
1952 }
1953 #endif
1954
1955 *txidx = frag;
1956
1957 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1958
1959 return 0;
1960 }
1961
1962 void
1963 sk_start(struct ifnet *ifp)
1964 {
1965 struct sk_if_softc *sc_if = ifp->if_softc;
1966 struct sk_softc *sc = sc_if->sk_softc;
1967 struct mbuf *m_head = NULL;
1968 uint32_t idx = sc_if->sk_cdata.sk_tx_prod;
1969 int pkts = 0;
1970
1971 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1972 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1973
1974 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1975 IFQ_POLL(&ifp->if_snd, m_head);
1976 if (m_head == NULL)
1977 break;
1978
1979 /*
1980 * Pack the data into the transmit ring. If we
1981 * don't have room, set the OACTIVE flag and wait
1982 * for the NIC to drain the ring.
1983 */
1984 if (sk_encap(sc_if, m_head, &idx)) {
1985 ifp->if_flags |= IFF_OACTIVE;
1986 break;
1987 }
1988
1989 /* now we are committed to transmit the packet */
1990 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1991 pkts++;
1992
1993 /*
1994 * If there's a BPF listener, bounce a copy of this frame
1995 * to him.
1996 */
1997 bpf_mtap(ifp, m_head, BPF_D_OUT);
1998 }
1999 if (pkts == 0)
2000 return;
2001
2002 /* Transmit */
2003 if (idx != sc_if->sk_cdata.sk_tx_prod) {
2004 sc_if->sk_cdata.sk_tx_prod = idx;
2005 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2006
2007 /* Set a timeout in case the chip goes out to lunch. */
2008 ifp->if_timer = 5;
2009 }
2010 }
2011
2012
2013 void
2014 sk_watchdog(struct ifnet *ifp)
2015 {
2016 struct sk_if_softc *sc_if = ifp->if_softc;
2017
2018 /*
2019 * Reclaim first as there is a possibility of losing Tx completion
2020 * interrupts.
2021 */
2022 sk_txeof(sc_if);
2023 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2024 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
2025
2026 ifp->if_oerrors++;
2027
2028 sk_init(ifp);
2029 }
2030 }
2031
2032 void
2033 sk_shutdown(void *v)
2034 {
2035 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
2036 struct sk_softc *sc = sc_if->sk_softc;
2037 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2038
2039 DPRINTFN(2, ("sk_shutdown\n"));
2040 sk_stop(ifp,1);
2041
2042 /* Turn off the 'driver is loaded' LED. */
2043 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2044
2045 /*
2046 * Reset the GEnesis controller. Doing this should also
2047 * assert the resets on the attached XMAC(s).
2048 */
2049 sk_reset(sc);
2050 }
2051
2052 void
2053 sk_rxeof(struct sk_if_softc *sc_if)
2054 {
2055 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2056 struct mbuf *m;
2057 struct sk_chain *cur_rx;
2058 struct sk_rx_desc *cur_desc;
2059 int i, cur, total_len = 0;
2060 uint32_t rxstat, sk_ctl;
2061 bus_dmamap_t dmamap;
2062
2063 i = sc_if->sk_cdata.sk_rx_prod;
2064
2065 DPRINTFN(3, ("sk_rxeof %d\n", i));
2066
2067 for (;;) {
2068 cur = i;
2069
2070 /* Sync the descriptor */
2071 SK_CDRXSYNC(sc_if, cur,
2072 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2073
2074 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2075 if (sk_ctl & SK_RXCTL_OWN) {
2076 /* Invalidate the descriptor -- it's not ready yet */
2077 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2078 sc_if->sk_cdata.sk_rx_prod = i;
2079 break;
2080 }
2081
2082 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2083 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2084 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2085
2086 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2087 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2088
2089 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2090 m = cur_rx->sk_mbuf;
2091 cur_rx->sk_mbuf = NULL;
2092 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2093
2094 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2095
2096 SK_INC(i, SK_RX_RING_CNT);
2097
2098 if (rxstat & XM_RXSTAT_ERRFRAME) {
2099 ifp->if_ierrors++;
2100 sk_newbuf(sc_if, cur, m, dmamap);
2101 continue;
2102 }
2103
2104 /*
2105 * Try to allocate a new jumbo buffer. If that
2106 * fails, copy the packet to mbufs and put the
2107 * jumbo buffer back in the ring so it can be
2108 * re-used. If allocating mbufs fails, then we
2109 * have to drop the packet.
2110 */
2111 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2112 struct mbuf *m0;
2113 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2114 total_len + ETHER_ALIGN, 0, ifp);
2115 sk_newbuf(sc_if, cur, m, dmamap);
2116 if (m0 == NULL) {
2117 aprint_error_dev(sc_if->sk_dev, "no receive "
2118 "buffers available -- packet dropped!\n");
2119 ifp->if_ierrors++;
2120 continue;
2121 }
2122 m_adj(m0, ETHER_ALIGN);
2123 m = m0;
2124 } else {
2125 m_set_rcvif(m, ifp);
2126 m->m_pkthdr.len = m->m_len = total_len;
2127 }
2128
2129 /* pass it on. */
2130 if_percpuq_enqueue(ifp->if_percpuq, m);
2131 }
2132 }
2133
2134 void
2135 sk_txeof(struct sk_if_softc *sc_if)
2136 {
2137 struct sk_softc *sc = sc_if->sk_softc;
2138 struct sk_tx_desc *cur_tx;
2139 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2140 uint32_t idx, sk_ctl;
2141 struct sk_txmap_entry *entry;
2142
2143 DPRINTFN(3, ("sk_txeof\n"));
2144
2145 /*
2146 * Go through our tx ring and free mbufs for those
2147 * frames that have been sent.
2148 */
2149 idx = sc_if->sk_cdata.sk_tx_cons;
2150 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2151 SK_CDTXSYNC(sc_if, idx, 1,
2152 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2153
2154 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2155 sk_ctl = le32toh(cur_tx->sk_ctl);
2156 #ifdef SK_DEBUG
2157 if (skdebug >= 3)
2158 sk_dump_txdesc(cur_tx, idx);
2159 #endif
2160 if (sk_ctl & SK_TXCTL_OWN) {
2161 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2162 break;
2163 }
2164 if (sk_ctl & SK_TXCTL_LASTFRAG)
2165 ifp->if_opackets++;
2166 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2167 entry = sc_if->sk_cdata.sk_tx_map[idx];
2168
2169 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2170 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2171
2172 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2173 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2174
2175 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2176 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2177 link);
2178 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2179 }
2180 sc_if->sk_cdata.sk_tx_cnt--;
2181 SK_INC(idx, SK_TX_RING_CNT);
2182 }
2183 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2184 ifp->if_timer = 0;
2185 else /* nudge chip to keep tx ring moving */
2186 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2187
2188 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2189 ifp->if_flags &= ~IFF_OACTIVE;
2190
2191 sc_if->sk_cdata.sk_tx_cons = idx;
2192 }
2193
2194 void
2195 sk_tick(void *xsc_if)
2196 {
2197 struct sk_if_softc *sc_if = xsc_if;
2198 struct mii_data *mii = &sc_if->sk_mii;
2199 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2200 int i;
2201
2202 DPRINTFN(3, ("sk_tick\n"));
2203
2204 if (!(ifp->if_flags & IFF_UP))
2205 return;
2206
2207 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2208 sk_intr_bcom(sc_if);
2209 return;
2210 }
2211
2212 /*
2213 * According to SysKonnect, the correct way to verify that
2214 * the link has come back up is to poll bit 0 of the GPIO
2215 * register three times. This pin has the signal from the
2216 * link sync pin connected to it; if we read the same link
2217 * state 3 times in a row, we know the link is up.
2218 */
2219 for (i = 0; i < 3; i++) {
2220 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2221 break;
2222 }
2223
2224 if (i != 3) {
2225 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2226 return;
2227 }
2228
2229 /* Turn the GP0 interrupt back on. */
2230 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2231 SK_XM_READ_2(sc_if, XM_ISR);
2232 mii_tick(mii);
2233 if (ifp->if_link_state != LINK_STATE_UP)
2234 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2235 else
2236 callout_stop(&sc_if->sk_tick_ch);
2237 }
2238
2239 void
2240 sk_intr_bcom(struct sk_if_softc *sc_if)
2241 {
2242 struct mii_data *mii = &sc_if->sk_mii;
2243 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2244 uint16_t status;
2245
2246
2247 DPRINTFN(3, ("sk_intr_bcom\n"));
2248
2249 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2250
2251 /*
2252 * Read the PHY interrupt register to make sure
2253 * we clear any pending interrupts.
2254 */
2255 sk_xmac_miibus_readreg(sc_if->sk_dev,
2256 SK_PHYADDR_BCOM, BRGPHY_MII_ISR, &status);
2257
2258 if (!(ifp->if_flags & IFF_RUNNING)) {
2259 sk_init_xmac(sc_if);
2260 return;
2261 }
2262
2263 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2264 uint16_t lstat;
2265 sk_xmac_miibus_readreg(sc_if->sk_dev,
2266 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS, &lstat);
2267
2268 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2269 (void)mii_mediachg(mii);
2270 /* Turn off the link LED. */
2271 SK_IF_WRITE_1(sc_if, 0,
2272 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2273 sc_if->sk_link = 0;
2274 } else if (status & BRGPHY_ISR_LNK_CHG) {
2275 sk_xmac_miibus_writereg(sc_if->sk_dev,
2276 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2277 mii_tick(mii);
2278 sc_if->sk_link = 1;
2279 /* Turn on the link LED. */
2280 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2281 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2282 SK_LINKLED_BLINK_OFF);
2283 mii_pollstat(mii);
2284 } else {
2285 mii_tick(mii);
2286 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2287 }
2288 }
2289
2290 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2291 }
2292
2293 void
2294 sk_intr_xmac(struct sk_if_softc *sc_if)
2295 {
2296 uint16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2297
2298 DPRINTFN(3, ("sk_intr_xmac\n"));
2299
2300 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2301 if (status & XM_ISR_GP0_SET) {
2302 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2303 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2304 }
2305
2306 if (status & XM_ISR_AUTONEG_DONE) {
2307 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2308 }
2309 }
2310
2311 if (status & XM_IMR_TX_UNDERRUN)
2312 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2313
2314 if (status & XM_IMR_RX_OVERRUN)
2315 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2316 }
2317
2318 void
2319 sk_intr_yukon(struct sk_if_softc *sc_if)
2320 {
2321 #ifdef SK_DEBUG
2322 int status;
2323
2324 status =
2325 #endif
2326 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2327
2328 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2329 }
2330
2331 int
2332 sk_intr(void *xsc)
2333 {
2334 struct sk_softc *sc = xsc;
2335 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2336 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2337 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2338 uint32_t status;
2339 int claimed = 0;
2340
2341 if (sc_if0 != NULL)
2342 ifp0 = &sc_if0->sk_ethercom.ec_if;
2343 if (sc_if1 != NULL)
2344 ifp1 = &sc_if1->sk_ethercom.ec_if;
2345
2346 for (;;) {
2347 status = CSR_READ_4(sc, SK_ISSR);
2348 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2349
2350 if (!(status & sc->sk_intrmask))
2351 break;
2352
2353 claimed = 1;
2354
2355 /* Handle receive interrupts first. */
2356 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2357 sk_rxeof(sc_if0);
2358 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2359 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2360 }
2361 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2362 sk_rxeof(sc_if1);
2363 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2364 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2365 }
2366
2367 /* Then transmit interrupts. */
2368 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2369 sk_txeof(sc_if0);
2370 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2371 SK_TXBMU_CLR_IRQ_EOF);
2372 }
2373 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2374 sk_txeof(sc_if1);
2375 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2376 SK_TXBMU_CLR_IRQ_EOF);
2377 }
2378
2379 /* Then MAC interrupts. */
2380 if (sc_if0 && (status & SK_ISR_MAC1) &&
2381 (ifp0->if_flags & IFF_RUNNING)) {
2382 if (sc->sk_type == SK_GENESIS)
2383 sk_intr_xmac(sc_if0);
2384 else
2385 sk_intr_yukon(sc_if0);
2386 }
2387
2388 if (sc_if1 && (status & SK_ISR_MAC2) &&
2389 (ifp1->if_flags & IFF_RUNNING)) {
2390 if (sc->sk_type == SK_GENESIS)
2391 sk_intr_xmac(sc_if1);
2392 else
2393 sk_intr_yukon(sc_if1);
2394
2395 }
2396
2397 if (status & SK_ISR_EXTERNAL_REG) {
2398 if (sc_if0 != NULL &&
2399 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2400 sk_intr_bcom(sc_if0);
2401
2402 if (sc_if1 != NULL &&
2403 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2404 sk_intr_bcom(sc_if1);
2405 }
2406 }
2407
2408 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2409
2410 if (ifp0 != NULL)
2411 if_schedule_deferred_start(ifp0);
2412 if (ifp1 != NULL)
2413 if_schedule_deferred_start(ifp1);
2414
2415 KASSERT(sc->rnd_attached > 0);
2416 rnd_add_uint32(&sc->rnd_source, status);
2417
2418 if (sc->sk_int_mod_pending)
2419 sk_update_int_mod(sc);
2420
2421 return claimed;
2422 }
2423
2424 void
2425 sk_init_xmac(struct sk_if_softc *sc_if)
2426 {
2427 struct sk_softc *sc = sc_if->sk_softc;
2428 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2429 static const struct sk_bcom_hack bhack[] = {
2430 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2431 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2432 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2433 { 0, 0 } };
2434
2435 DPRINTFN(1, ("sk_init_xmac\n"));
2436
2437 /* Unreset the XMAC. */
2438 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2439 DELAY(1000);
2440
2441 /* Reset the XMAC's internal state. */
2442 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2443
2444 /* Save the XMAC II revision */
2445 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2446
2447 /*
2448 * Perform additional initialization for external PHYs,
2449 * namely for the 1000baseTX cards that use the XMAC's
2450 * GMII mode.
2451 */
2452 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2453 int i = 0;
2454 uint32_t val;
2455 uint16_t phyval;
2456
2457 /* Take PHY out of reset. */
2458 val = sk_win_read_4(sc, SK_GPIO);
2459 if (sc_if->sk_port == SK_PORT_A)
2460 val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2461 else
2462 val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2463 sk_win_write_4(sc, SK_GPIO, val);
2464
2465 /* Enable GMII mode on the XMAC. */
2466 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2467
2468 sk_xmac_miibus_writereg(sc_if->sk_dev,
2469 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2470 DELAY(10000);
2471 sk_xmac_miibus_writereg(sc_if->sk_dev,
2472 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2473
2474 /*
2475 * Early versions of the BCM5400 apparently have
2476 * a bug that requires them to have their reserved
2477 * registers initialized to some magic values. I don't
2478 * know what the numbers do, I'm just the messenger.
2479 */
2480 sk_xmac_miibus_readreg(sc_if->sk_dev,
2481 SK_PHYADDR_BCOM, 0x03, &phyval);
2482 if (phyval == 0x6041) {
2483 while (bhack[i].reg) {
2484 sk_xmac_miibus_writereg(sc_if->sk_dev,
2485 SK_PHYADDR_BCOM, bhack[i].reg,
2486 bhack[i].val);
2487 i++;
2488 }
2489 }
2490 }
2491
2492 /* Set station address */
2493 SK_XM_WRITE_2(sc_if, XM_PAR0,
2494 *(uint16_t *)(&sc_if->sk_enaddr[0]));
2495 SK_XM_WRITE_2(sc_if, XM_PAR1,
2496 *(uint16_t *)(&sc_if->sk_enaddr[2]));
2497 SK_XM_WRITE_2(sc_if, XM_PAR2,
2498 *(uint16_t *)(&sc_if->sk_enaddr[4]));
2499 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2500
2501 if (ifp->if_flags & IFF_PROMISC)
2502 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2503 else
2504 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2505
2506 if (ifp->if_flags & IFF_BROADCAST)
2507 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2508 else
2509 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2510
2511 /* We don't need the FCS appended to the packet. */
2512 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2513
2514 /* We want short frames padded to 60 bytes. */
2515 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2516
2517 /*
2518 * Enable the reception of all error frames. This is is
2519 * a necessary evil due to the design of the XMAC. The
2520 * XMAC's receive FIFO is only 8K in size, however jumbo
2521 * frames can be up to 9000 bytes in length. When bad
2522 * frame filtering is enabled, the XMAC's RX FIFO operates
2523 * in 'store and forward' mode. For this to work, the
2524 * entire frame has to fit into the FIFO, but that means
2525 * that jumbo frames larger than 8192 bytes will be
2526 * truncated. Disabling all bad frame filtering causes
2527 * the RX FIFO to operate in streaming mode, in which
2528 * case the XMAC will start transfering frames out of the
2529 * RX FIFO as soon as the FIFO threshold is reached.
2530 */
2531 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2532 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2533 XM_MODE_RX_INRANGELEN);
2534
2535 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2536 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2537 else
2538 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2539
2540 /*
2541 * Bump up the transmit threshold. This helps hold off transmit
2542 * underruns when we're blasting traffic from both ports at once.
2543 */
2544 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2545
2546 /* Set multicast filter */
2547 sk_setmulti(sc_if);
2548
2549 /* Clear and enable interrupts */
2550 SK_XM_READ_2(sc_if, XM_ISR);
2551 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2552 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2553 else
2554 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2555
2556 /* Configure MAC arbiter */
2557 switch (sc_if->sk_xmac_rev) {
2558 case XM_XMAC_REV_B2:
2559 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2560 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2561 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2562 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2563 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2564 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2565 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2566 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2567 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2568 break;
2569 case XM_XMAC_REV_C1:
2570 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2571 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2572 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2573 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2574 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2575 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2576 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2577 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2578 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2579 break;
2580 default:
2581 break;
2582 }
2583 sk_win_write_2(sc, SK_MACARB_CTL,
2584 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2585
2586 sc_if->sk_link = 1;
2587 }
2588
2589 void sk_init_yukon(struct sk_if_softc *sc_if)
2590 {
2591 uint32_t /*mac, */phy;
2592 uint16_t reg;
2593 struct sk_softc *sc;
2594 int i;
2595
2596 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2597 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2598
2599 sc = sc_if->sk_softc;
2600 if (sc->sk_type == SK_YUKON_LITE &&
2601 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2602 /* Take PHY out of reset. */
2603 sk_win_write_4(sc, SK_GPIO,
2604 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2605 }
2606
2607
2608 /* GMAC and GPHY Reset */
2609 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2610
2611 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2612
2613 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2614 DELAY(1000);
2615 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2616 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2617 DELAY(1000);
2618
2619
2620 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2621
2622 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2623 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2624
2625 switch (sc_if->sk_softc->sk_pmd) {
2626 case IFM_1000_SX:
2627 case IFM_1000_LX:
2628 phy |= SK_GPHY_FIBER;
2629 break;
2630
2631 case IFM_1000_CX:
2632 case IFM_1000_T:
2633 phy |= SK_GPHY_COPPER;
2634 break;
2635 }
2636
2637 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2638
2639 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2640 DELAY(1000);
2641 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2642 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2643 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2644
2645 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2646 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2647
2648 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2649
2650 /* unused read of the interrupt source register */
2651 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2652 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2653
2654 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2655 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2656 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2657
2658 /* MIB Counter Clear Mode set */
2659 reg |= YU_PAR_MIB_CLR;
2660 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2661 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2662 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2663
2664 /* MIB Counter Clear Mode clear */
2665 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2666 reg &= ~YU_PAR_MIB_CLR;
2667 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2668
2669 /* receive control reg */
2670 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2671 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2672 YU_RCR_CRCR);
2673
2674 /* transmit parameter register */
2675 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2676 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2677 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2678
2679 /* serial mode register */
2680 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2681 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2682 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2683 YU_SMR_IPG_DATA(0x1e));
2684
2685 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2686 /* Setup Yukon's address */
2687 for (i = 0; i < 3; i++) {
2688 /* Write Source Address 1 (unicast filter) */
2689 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2690 sc_if->sk_enaddr[i * 2] |
2691 sc_if->sk_enaddr[i * 2 + 1] << 8);
2692 }
2693
2694 for (i = 0; i < 3; i++) {
2695 reg = sk_win_read_2(sc_if->sk_softc,
2696 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2697 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2698 }
2699
2700 /* Set multicast filter */
2701 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2702 sk_setmulti(sc_if);
2703
2704 /* enable interrupt mask for counter overflows */
2705 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2706 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2707 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2708 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2709
2710 /* Configure RX MAC FIFO */
2711 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2712 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2713
2714 /* Configure TX MAC FIFO */
2715 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2716 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2717
2718 DPRINTFN(6, ("sk_init_yukon: end\n"));
2719 }
2720
2721 /*
2722 * Note that to properly initialize any part of the GEnesis chip,
2723 * you first have to take it out of reset mode.
2724 */
2725 int
2726 sk_init(struct ifnet *ifp)
2727 {
2728 struct sk_if_softc *sc_if = ifp->if_softc;
2729 struct sk_softc *sc = sc_if->sk_softc;
2730 struct mii_data *mii = &sc_if->sk_mii;
2731 int rc = 0, s;
2732 uint32_t imr, imtimer_ticks;
2733
2734 DPRINTFN(1, ("sk_init\n"));
2735
2736 s = splnet();
2737
2738 if (ifp->if_flags & IFF_RUNNING) {
2739 splx(s);
2740 return 0;
2741 }
2742
2743 /* Cancel pending I/O and free all RX/TX buffers. */
2744 sk_stop(ifp,0);
2745
2746 if (sc->sk_type == SK_GENESIS) {
2747 /* Configure LINK_SYNC LED */
2748 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2749 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2750 SK_LINKLED_LINKSYNC_ON);
2751
2752 /* Configure RX LED */
2753 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2754 SK_RXLEDCTL_COUNTER_START);
2755
2756 /* Configure TX LED */
2757 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2758 SK_TXLEDCTL_COUNTER_START);
2759 }
2760
2761 /* Configure I2C registers */
2762
2763 /* Configure XMAC(s) */
2764 switch (sc->sk_type) {
2765 case SK_GENESIS:
2766 sk_init_xmac(sc_if);
2767 break;
2768 case SK_YUKON:
2769 case SK_YUKON_LITE:
2770 case SK_YUKON_LP:
2771 sk_init_yukon(sc_if);
2772 break;
2773 }
2774 if ((rc = mii_mediachg(mii)) == ENXIO)
2775 rc = 0;
2776 else if (rc != 0)
2777 goto out;
2778
2779 if (sc->sk_type == SK_GENESIS) {
2780 /* Configure MAC FIFOs */
2781 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2782 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2783 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2784
2785 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2786 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2787 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2788 }
2789
2790 /* Configure transmit arbiter(s) */
2791 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2792 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2793
2794 /* Configure RAMbuffers */
2795 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2796 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2797 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2798 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2799 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2800 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2801
2802 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2803 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2804 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2805 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2806 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2807 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2808 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2809
2810 /* Configure BMUs */
2811 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2812 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2813 SK_RX_RING_ADDR(sc_if, 0));
2814 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2815
2816 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2817 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2818 SK_TX_RING_ADDR(sc_if, 0));
2819 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2820
2821 /* Init descriptors */
2822 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2823 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2824 "memory for rx buffers\n");
2825 sk_stop(ifp,0);
2826 splx(s);
2827 return ENOBUFS;
2828 }
2829
2830 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2831 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2832 "memory for tx buffers\n");
2833 sk_stop(ifp,0);
2834 splx(s);
2835 return ENOBUFS;
2836 }
2837
2838 /* Set interrupt moderation if changed via sysctl. */
2839 switch (sc->sk_type) {
2840 case SK_GENESIS:
2841 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2842 break;
2843 case SK_YUKON_EC:
2844 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2845 break;
2846 default:
2847 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2848 }
2849 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2850 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2851 sk_win_write_4(sc, SK_IMTIMERINIT,
2852 SK_IM_USECS(sc->sk_int_mod));
2853 aprint_verbose_dev(sc->sk_dev,
2854 "interrupt moderation is %d us\n", sc->sk_int_mod);
2855 }
2856
2857 /* Configure interrupt handling */
2858 CSR_READ_4(sc, SK_ISSR);
2859 if (sc_if->sk_port == SK_PORT_A)
2860 sc->sk_intrmask |= SK_INTRS1;
2861 else
2862 sc->sk_intrmask |= SK_INTRS2;
2863
2864 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2865
2866 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2867
2868 /* Start BMUs. */
2869 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2870
2871 if (sc->sk_type == SK_GENESIS) {
2872 /* Enable XMACs TX and RX state machines */
2873 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2874 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2875 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2876 }
2877
2878 if (SK_YUKON_FAMILY(sc->sk_type)) {
2879 uint16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2880 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2881 #if 0
2882 /* XXX disable 100Mbps and full duplex mode? */
2883 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2884 #endif
2885 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2886 }
2887
2888
2889 ifp->if_flags |= IFF_RUNNING;
2890 ifp->if_flags &= ~IFF_OACTIVE;
2891 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2892
2893 out:
2894 splx(s);
2895 return rc;
2896 }
2897
2898 void
2899 sk_stop(struct ifnet *ifp, int disable)
2900 {
2901 struct sk_if_softc *sc_if = ifp->if_softc;
2902 struct sk_softc *sc = sc_if->sk_softc;
2903 int i;
2904
2905 DPRINTFN(1, ("sk_stop\n"));
2906
2907 callout_stop(&sc_if->sk_tick_ch);
2908
2909 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2910 uint32_t val;
2911
2912 /* Put PHY back into reset. */
2913 val = sk_win_read_4(sc, SK_GPIO);
2914 if (sc_if->sk_port == SK_PORT_A) {
2915 val |= SK_GPIO_DIR0;
2916 val &= ~SK_GPIO_DAT0;
2917 } else {
2918 val |= SK_GPIO_DIR2;
2919 val &= ~SK_GPIO_DAT2;
2920 }
2921 sk_win_write_4(sc, SK_GPIO, val);
2922 }
2923
2924 /* Turn off various components of this interface. */
2925 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2926 switch (sc->sk_type) {
2927 case SK_GENESIS:
2928 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2929 SK_TXMACCTL_XMAC_RESET);
2930 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2931 break;
2932 case SK_YUKON:
2933 case SK_YUKON_LITE:
2934 case SK_YUKON_LP:
2935 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2936 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2937 break;
2938 }
2939 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2940 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2941 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2942 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2943 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2944 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2945 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2946 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2947 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2948
2949 /* Disable interrupts */
2950 if (sc_if->sk_port == SK_PORT_A)
2951 sc->sk_intrmask &= ~SK_INTRS1;
2952 else
2953 sc->sk_intrmask &= ~SK_INTRS2;
2954 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2955
2956 SK_XM_READ_2(sc_if, XM_ISR);
2957 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2958
2959 /* Free RX and TX mbufs still in the queues. */
2960 for (i = 0; i < SK_RX_RING_CNT; i++) {
2961 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2962 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2963 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2964 }
2965 }
2966
2967 for (i = 0; i < SK_TX_RING_CNT; i++) {
2968 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2969 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2970 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2971 }
2972 }
2973
2974 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2975 }
2976
2977 /* Power Management Framework */
2978
2979 static bool
2980 skc_suspend(device_t dv, const pmf_qual_t *qual)
2981 {
2982 struct sk_softc *sc = device_private(dv);
2983
2984 DPRINTFN(2, ("skc_suspend\n"));
2985
2986 /* Turn off the driver is loaded LED */
2987 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2988
2989 return true;
2990 }
2991
2992 static bool
2993 skc_resume(device_t dv, const pmf_qual_t *qual)
2994 {
2995 struct sk_softc *sc = device_private(dv);
2996
2997 DPRINTFN(2, ("skc_resume\n"));
2998
2999 sk_reset(sc);
3000 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
3001
3002 return true;
3003 }
3004
3005 static bool
3006 sk_resume(device_t dv, const pmf_qual_t *qual)
3007 {
3008 struct sk_if_softc *sc_if = device_private(dv);
3009
3010 sk_init_yukon(sc_if);
3011 return true;
3012 }
3013
3014 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
3015 skc_probe, skc_attach, NULL, NULL);
3016
3017 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
3018 sk_probe, sk_attach, NULL, NULL);
3019
3020 #ifdef SK_DEBUG
3021 void
3022 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
3023 {
3024 #define DESC_PRINT(X) \
3025 if (X) \
3026 printf("txdesc[%d]." #X "=%#x\n", \
3027 idx, X);
3028
3029 DESC_PRINT(le32toh(desc->sk_ctl));
3030 DESC_PRINT(le32toh(desc->sk_next));
3031 DESC_PRINT(le32toh(desc->sk_data_lo));
3032 DESC_PRINT(le32toh(desc->sk_data_hi));
3033 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
3034 DESC_PRINT(le16toh(desc->sk_rsvd0));
3035 DESC_PRINT(le16toh(desc->sk_csum_startval));
3036 DESC_PRINT(le16toh(desc->sk_csum_startpos));
3037 DESC_PRINT(le16toh(desc->sk_csum_writepos));
3038 DESC_PRINT(le16toh(desc->sk_rsvd1));
3039 #undef PRINT
3040 }
3041
3042 void
3043 sk_dump_bytes(const char *data, int len)
3044 {
3045 int c, i, j;
3046
3047 for (i = 0; i < len; i += 16) {
3048 printf("%08x ", i);
3049 c = len - i;
3050 if (c > 16) c = 16;
3051
3052 for (j = 0; j < c; j++) {
3053 printf("%02x ", data[i + j] & 0xff);
3054 if ((j & 0xf) == 7 && j > 0)
3055 printf(" ");
3056 }
3057
3058 for (; j < 16; j++)
3059 printf(" ");
3060 printf(" ");
3061
3062 for (j = 0; j < c; j++) {
3063 int ch = data[i + j] & 0xff;
3064 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
3065 }
3066
3067 printf("\n");
3068
3069 if (c < 16)
3070 break;
3071 }
3072 }
3073
3074 void
3075 sk_dump_mbuf(struct mbuf *m)
3076 {
3077 int count = m->m_pkthdr.len;
3078
3079 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3080
3081 while (count > 0 && m) {
3082 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3083 m, m->m_data, m->m_len);
3084 sk_dump_bytes(mtod(m, char *), m->m_len);
3085
3086 count -= m->m_len;
3087 m = m->m_next;
3088 }
3089 }
3090 #endif
3091
3092 static int
3093 sk_sysctl_handler(SYSCTLFN_ARGS)
3094 {
3095 int error, t;
3096 struct sysctlnode node;
3097 struct sk_softc *sc;
3098
3099 node = *rnode;
3100 sc = node.sysctl_data;
3101 t = sc->sk_int_mod;
3102 node.sysctl_data = &t;
3103 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3104 if (error || newp == NULL)
3105 return error;
3106
3107 if (t < SK_IM_MIN || t > SK_IM_MAX)
3108 return EINVAL;
3109
3110 /* update the softc with sysctl-changed value, and mark
3111 for hardware update */
3112 sc->sk_int_mod = t;
3113 sc->sk_int_mod_pending = 1;
3114 return 0;
3115 }
3116
3117 /*
3118 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3119 * set up in skc_attach()
3120 */
3121 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3122 {
3123 int rc;
3124 const struct sysctlnode *node;
3125
3126 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3127 0, CTLTYPE_NODE, "sk",
3128 SYSCTL_DESCR("sk interface controls"),
3129 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3130 goto err;
3131 }
3132
3133 sk_root_num = node->sysctl_num;
3134 return;
3135
3136 err:
3137 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3138 }
3139