Home | History | Annotate | Line # | Download | only in pci
if_sk.c revision 1.94
      1 /*	$NetBSD: if_sk.c,v 1.94 2019/02/03 03:19:27 mrg Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
     30 
     31 /*
     32  * Copyright (c) 1997, 1998, 1999, 2000
     33  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *	This product includes software developed by Bill Paul.
     46  * 4. Neither the name of the author nor the names of any co-contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     60  * THE POSSIBILITY OF SUCH DAMAGE.
     61  *
     62  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
     63  */
     64 
     65 /*
     66  * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
     67  *
     68  * Permission to use, copy, modify, and distribute this software for any
     69  * purpose with or without fee is hereby granted, provided that the above
     70  * copyright notice and this permission notice appear in all copies.
     71  *
     72  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     73  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     74  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     75  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     76  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     77  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     78  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     79  */
     80 
     81 /*
     82  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
     83  * the SK-984x series adapters, both single port and dual port.
     84  * References:
     85  *	The XaQti XMAC II datasheet,
     86  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     87  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
     88  *
     89  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
     90  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
     91  * convenience to others until Vitesse corrects this problem:
     92  *
     93  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     94  *
     95  * Written by Bill Paul <wpaul (at) ee.columbia.edu>
     96  * Department of Electrical Engineering
     97  * Columbia University, New York City
     98  */
     99 
    100 /*
    101  * The SysKonnect gigabit ethernet adapters consist of two main
    102  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
    103  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
    104  * components and a PHY while the GEnesis controller provides a PCI
    105  * interface with DMA support. Each card may have between 512K and
    106  * 2MB of SRAM on board depending on the configuration.
    107  *
    108  * The SysKonnect GEnesis controller can have either one or two XMAC
    109  * chips connected to it, allowing single or dual port NIC configurations.
    110  * SysKonnect has the distinction of being the only vendor on the market
    111  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
    112  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
    113  * XMAC registers. This driver takes advantage of these features to allow
    114  * both XMACs to operate as independent interfaces.
    115  */
    116 
    117 #include <sys/cdefs.h>
    118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.94 2019/02/03 03:19:27 mrg Exp $");
    119 
    120 #include <sys/param.h>
    121 #include <sys/systm.h>
    122 #include <sys/sockio.h>
    123 #include <sys/mbuf.h>
    124 #include <sys/malloc.h>
    125 #include <sys/mutex.h>
    126 #include <sys/kernel.h>
    127 #include <sys/socket.h>
    128 #include <sys/device.h>
    129 #include <sys/queue.h>
    130 #include <sys/callout.h>
    131 #include <sys/sysctl.h>
    132 #include <sys/endian.h>
    133 
    134 #include <net/if.h>
    135 #include <net/if_dl.h>
    136 #include <net/if_types.h>
    137 
    138 #include <net/if_media.h>
    139 
    140 #include <net/bpf.h>
    141 #include <sys/rndsource.h>
    142 
    143 #include <dev/mii/mii.h>
    144 #include <dev/mii/miivar.h>
    145 #include <dev/mii/brgphyreg.h>
    146 
    147 #include <dev/pci/pcireg.h>
    148 #include <dev/pci/pcivar.h>
    149 #include <dev/pci/pcidevs.h>
    150 
    151 /* #define SK_USEIOSPACE */
    152 
    153 #include <dev/pci/if_skreg.h>
    154 #include <dev/pci/if_skvar.h>
    155 
    156 int skc_probe(device_t, cfdata_t, void *);
    157 void skc_attach(device_t, device_t, void *aux);
    158 int sk_probe(device_t, cfdata_t, void *);
    159 void sk_attach(device_t, device_t, void *aux);
    160 int skcprint(void *, const char *);
    161 int sk_intr(void *);
    162 void sk_intr_bcom(struct sk_if_softc *);
    163 void sk_intr_xmac(struct sk_if_softc *);
    164 void sk_intr_yukon(struct sk_if_softc *);
    165 void sk_rxeof(struct sk_if_softc *);
    166 void sk_txeof(struct sk_if_softc *);
    167 int sk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
    168 void sk_start(struct ifnet *);
    169 int sk_ioctl(struct ifnet *, u_long, void *);
    170 int sk_init(struct ifnet *);
    171 void sk_init_xmac(struct sk_if_softc *);
    172 void sk_init_yukon(struct sk_if_softc *);
    173 void sk_stop(struct ifnet *, int);
    174 void sk_watchdog(struct ifnet *);
    175 void sk_shutdown(void *);
    176 int sk_ifmedia_upd(struct ifnet *);
    177 void sk_reset(struct sk_softc *);
    178 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
    179 int sk_alloc_jumbo_mem(struct sk_if_softc *);
    180 void sk_free_jumbo_mem(struct sk_if_softc *);
    181 void *sk_jalloc(struct sk_if_softc *);
    182 void sk_jfree(struct mbuf *, void *, size_t, void *);
    183 int sk_init_rx_ring(struct sk_if_softc *);
    184 int sk_init_tx_ring(struct sk_if_softc *);
    185 uint8_t sk_vpd_readbyte(struct sk_softc *, int);
    186 void sk_vpd_read_res(struct sk_softc *,
    187 					struct vpd_res *, int);
    188 void sk_vpd_read(struct sk_softc *);
    189 
    190 void sk_update_int_mod(struct sk_softc *);
    191 
    192 int sk_xmac_miibus_readreg(device_t, int, int, uint16_t *);
    193 int sk_xmac_miibus_writereg(device_t, int, int, uint16_t);
    194 void sk_xmac_miibus_statchg(struct ifnet *);
    195 
    196 int sk_marv_miibus_readreg(device_t, int, int, uint16_t *);
    197 int sk_marv_miibus_writereg(device_t, int, int, uint16_t);
    198 void sk_marv_miibus_statchg(struct ifnet *);
    199 
    200 uint32_t sk_xmac_hash(void *);
    201 uint32_t sk_yukon_hash(void *);
    202 void sk_setfilt(struct sk_if_softc *, void *, int);
    203 void sk_setmulti(struct sk_if_softc *);
    204 void sk_tick(void *);
    205 
    206 static bool skc_suspend(device_t, const pmf_qual_t *);
    207 static bool skc_resume(device_t, const pmf_qual_t *);
    208 static bool sk_resume(device_t dv, const pmf_qual_t *);
    209 
    210 /* #define SK_DEBUG 2 */
    211 #ifdef SK_DEBUG
    212 #define DPRINTF(x)	if (skdebug) printf x
    213 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
    214 int	skdebug = SK_DEBUG;
    215 
    216 void sk_dump_txdesc(struct sk_tx_desc *, int);
    217 void sk_dump_mbuf(struct mbuf *);
    218 void sk_dump_bytes(const char *, int);
    219 #else
    220 #define DPRINTF(x)
    221 #define DPRINTFN(n,x)
    222 #endif
    223 
    224 static int sk_sysctl_handler(SYSCTLFN_PROTO);
    225 static int sk_root_num;
    226 
    227 /* supported device vendors */
    228 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
    229 static const struct sk_product {
    230 	pci_vendor_id_t		sk_vendor;
    231 	pci_product_id_t	sk_product;
    232 } sk_products[] = {
    233 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
    234 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
    235 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
    236 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
    237 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
    238 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
    239 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
    240 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
    241 	{ 0, 0, }
    242 };
    243 
    244 #define SK_LINKSYS_EG1032_SUBID	0x00151737
    245 
    246 static inline uint32_t
    247 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
    248 {
    249 #ifdef SK_USEIOSPACE
    250 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    251 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
    252 #else
    253 	return CSR_READ_4(sc, reg);
    254 #endif
    255 }
    256 
    257 static inline uint16_t
    258 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
    259 {
    260 #ifdef SK_USEIOSPACE
    261 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    262 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
    263 #else
    264 	return CSR_READ_2(sc, reg);
    265 #endif
    266 }
    267 
    268 static inline uint8_t
    269 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
    270 {
    271 #ifdef SK_USEIOSPACE
    272 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    273 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
    274 #else
    275 	return CSR_READ_1(sc, reg);
    276 #endif
    277 }
    278 
    279 static inline void
    280 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
    281 {
    282 #ifdef SK_USEIOSPACE
    283 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    284 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
    285 #else
    286 	CSR_WRITE_4(sc, reg, x);
    287 #endif
    288 }
    289 
    290 static inline void
    291 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
    292 {
    293 #ifdef SK_USEIOSPACE
    294 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    295 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
    296 #else
    297 	CSR_WRITE_2(sc, reg, x);
    298 #endif
    299 }
    300 
    301 static inline void
    302 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
    303 {
    304 #ifdef SK_USEIOSPACE
    305 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    306 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
    307 #else
    308 	CSR_WRITE_1(sc, reg, x);
    309 #endif
    310 }
    311 
    312 /*
    313  * The VPD EEPROM contains Vital Product Data, as suggested in
    314  * the PCI 2.1 specification. The VPD data is separared into areas
    315  * denoted by resource IDs. The SysKonnect VPD contains an ID string
    316  * resource (the name of the adapter), a read-only area resource
    317  * containing various key/data fields and a read/write area which
    318  * can be used to store asset management information or log messages.
    319  * We read the ID string and read-only into buffers attached to
    320  * the controller softc structure for later use. At the moment,
    321  * we only use the ID string during sk_attach().
    322  */
    323 uint8_t
    324 sk_vpd_readbyte(struct sk_softc *sc, int addr)
    325 {
    326 	int			i;
    327 
    328 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
    329 	for (i = 0; i < SK_TIMEOUT; i++) {
    330 		DELAY(1);
    331 		if (sk_win_read_2(sc,
    332 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
    333 			break;
    334 	}
    335 
    336 	if (i == SK_TIMEOUT)
    337 		return 0;
    338 
    339 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
    340 }
    341 
    342 void
    343 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
    344 {
    345 	int			i;
    346 	uint8_t		*ptr;
    347 
    348 	ptr = (uint8_t *)res;
    349 	for (i = 0; i < sizeof(struct vpd_res); i++)
    350 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
    351 }
    352 
    353 void
    354 sk_vpd_read(struct sk_softc *sc)
    355 {
    356 	int			pos = 0, i;
    357 	struct vpd_res		res;
    358 
    359 	if (sc->sk_vpd_prodname != NULL)
    360 		free(sc->sk_vpd_prodname, M_DEVBUF);
    361 	if (sc->sk_vpd_readonly != NULL)
    362 		free(sc->sk_vpd_readonly, M_DEVBUF);
    363 	sc->sk_vpd_prodname = NULL;
    364 	sc->sk_vpd_readonly = NULL;
    365 
    366 	sk_vpd_read_res(sc, &res, pos);
    367 
    368 	if (res.vr_id != VPD_RES_ID) {
    369 		aprint_error_dev(sc->sk_dev,
    370 		    "bad VPD resource id: expected %x got %x\n",
    371 		    VPD_RES_ID, res.vr_id);
    372 		return;
    373 	}
    374 
    375 	pos += sizeof(res);
    376 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    377 	if (sc->sk_vpd_prodname == NULL)
    378 		panic("sk_vpd_read");
    379 	for (i = 0; i < res.vr_len; i++)
    380 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
    381 	sc->sk_vpd_prodname[i] = '\0';
    382 	pos += i;
    383 
    384 	sk_vpd_read_res(sc, &res, pos);
    385 
    386 	if (res.vr_id != VPD_RES_READ) {
    387 		aprint_error_dev(sc->sk_dev,
    388 		    "bad VPD resource id: expected %x got %x\n",
    389 		    VPD_RES_READ, res.vr_id);
    390 		return;
    391 	}
    392 
    393 	pos += sizeof(res);
    394 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    395 	if (sc->sk_vpd_readonly == NULL)
    396 		panic("sk_vpd_read");
    397 	for (i = 0; i < res.vr_len ; i++)
    398 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
    399 }
    400 
    401 int
    402 sk_xmac_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
    403 {
    404 	struct sk_if_softc *sc_if = device_private(dev);
    405 	int i;
    406 
    407 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
    408 
    409 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
    410 		return -1;
    411 
    412 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    413 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
    414 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    415 		for (i = 0; i < SK_TIMEOUT; i++) {
    416 			DELAY(1);
    417 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
    418 			    XM_MMUCMD_PHYDATARDY)
    419 				break;
    420 		}
    421 
    422 		if (i == SK_TIMEOUT) {
    423 			aprint_error_dev(sc_if->sk_dev,
    424 			    "phy failed to come ready\n");
    425 			return ETIMEDOUT;
    426 		}
    427 	}
    428 	DELAY(1);
    429 	*val = SK_XM_READ_2(sc_if, XM_PHY_DATA);
    430 	return 0;
    431 }
    432 
    433 int
    434 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
    435 {
    436 	struct sk_if_softc *sc_if = device_private(dev);
    437 	int i;
    438 
    439 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
    440 
    441 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    442 	for (i = 0; i < SK_TIMEOUT; i++) {
    443 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    444 			break;
    445 	}
    446 
    447 	if (i == SK_TIMEOUT) {
    448 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
    449 		return ETIMEDOUT;
    450 	}
    451 
    452 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
    453 	for (i = 0; i < SK_TIMEOUT; i++) {
    454 		DELAY(1);
    455 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    456 			break;
    457 	}
    458 
    459 	if (i == SK_TIMEOUT) {
    460 		aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
    461 		return ETIMEDOUT;
    462 	}
    463 
    464 	return 0;
    465 }
    466 
    467 void
    468 sk_xmac_miibus_statchg(struct ifnet *ifp)
    469 {
    470 	struct sk_if_softc *sc_if = ifp->if_softc;
    471 	struct mii_data *mii = &sc_if->sk_mii;
    472 
    473 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
    474 
    475 	/*
    476 	 * If this is a GMII PHY, manually set the XMAC's
    477 	 * duplex mode accordingly.
    478 	 */
    479 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    480 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
    481 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    482 		else
    483 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    484 	}
    485 }
    486 
    487 int
    488 sk_marv_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
    489 {
    490 	struct sk_if_softc *sc_if = device_private(dev);
    491 	uint16_t data;
    492 	int i;
    493 
    494 	if (phy != 0 ||
    495 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
    496 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
    497 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
    498 			     phy, reg));
    499 		return -1;
    500 	}
    501 
    502 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    503 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
    504 
    505 	for (i = 0; i < SK_TIMEOUT; i++) {
    506 		DELAY(1);
    507 		data = SK_YU_READ_2(sc_if, YUKON_SMICR);
    508 		if (data & YU_SMICR_READ_VALID)
    509 			break;
    510 	}
    511 
    512 	if (i == SK_TIMEOUT) {
    513 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
    514 		return ETIMEDOUT;
    515 	}
    516 
    517 	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
    518 		     SK_TIMEOUT));
    519 
    520 	*val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
    521 
    522 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
    523 		     phy, reg, *val));
    524 
    525 	return 0;
    526 }
    527 
    528 int
    529 sk_marv_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
    530 {
    531 	struct sk_if_softc *sc_if = device_private(dev);
    532 	int i;
    533 
    534 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#hx\n",
    535 		     phy, reg, val));
    536 
    537 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
    538 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    539 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
    540 
    541 	for (i = 0; i < SK_TIMEOUT; i++) {
    542 		DELAY(1);
    543 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
    544 			break;
    545 	}
    546 
    547 	if (i == SK_TIMEOUT) {
    548 		printf("%s: phy write timed out\n",
    549 		    device_xname(sc_if->sk_dev));
    550 		return ETIMEDOUT;
    551 	}
    552 
    553 	return 0;
    554 }
    555 
    556 void
    557 sk_marv_miibus_statchg(struct ifnet *ifp)
    558 {
    559 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
    560 		     SK_YU_READ_2(((struct sk_if_softc *)ifp->if_softc),
    561 		     YUKON_GPCR)));
    562 }
    563 
    564 uint32_t
    565 sk_xmac_hash(void *addr)
    566 {
    567 	uint32_t		crc;
    568 
    569 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
    570 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
    571 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    572 	return crc;
    573 }
    574 
    575 uint32_t
    576 sk_yukon_hash(void *addr)
    577 {
    578 	uint32_t		crc;
    579 
    580 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
    581 	crc &= ((1 << SK_HASH_BITS) - 1);
    582 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
    583 	return crc;
    584 }
    585 
    586 void
    587 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
    588 {
    589 	char *addr = addrv;
    590 	int base = XM_RXFILT_ENTRY(slot);
    591 
    592 	SK_XM_WRITE_2(sc_if, base, *(uint16_t *)(&addr[0]));
    593 	SK_XM_WRITE_2(sc_if, base + 2, *(uint16_t *)(&addr[2]));
    594 	SK_XM_WRITE_2(sc_if, base + 4, *(uint16_t *)(&addr[4]));
    595 }
    596 
    597 void
    598 sk_setmulti(struct sk_if_softc *sc_if)
    599 {
    600 	struct sk_softc *sc = sc_if->sk_softc;
    601 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
    602 	uint32_t hashes[2] = { 0, 0 };
    603 	int h = 0, i;
    604 	struct ethercom *ec = &sc_if->sk_ethercom;
    605 	struct ether_multi *enm;
    606 	struct ether_multistep step;
    607 	uint8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
    608 
    609 	/* First, zot all the existing filters. */
    610 	switch (sc->sk_type) {
    611 	case SK_GENESIS:
    612 		for (i = 1; i < XM_RXFILT_MAX; i++)
    613 			sk_setfilt(sc_if, (void *)&dummy, i);
    614 
    615 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
    616 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
    617 		break;
    618 	case SK_YUKON:
    619 	case SK_YUKON_LITE:
    620 	case SK_YUKON_LP:
    621 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
    622 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
    623 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
    624 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
    625 		break;
    626 	}
    627 
    628 	/* Now program new ones. */
    629 allmulti:
    630 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    631 		hashes[0] = 0xFFFFFFFF;
    632 		hashes[1] = 0xFFFFFFFF;
    633 	} else {
    634 		i = 1;
    635 		/* First find the tail of the list. */
    636 		ETHER_FIRST_MULTI(step, ec, enm);
    637 		while (enm != NULL) {
    638 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    639 				 ETHER_ADDR_LEN)) {
    640 				ifp->if_flags |= IFF_ALLMULTI;
    641 				goto allmulti;
    642 			}
    643 			DPRINTFN(2,("multicast address %s\n",
    644 				ether_sprintf(enm->enm_addrlo)));
    645 			/*
    646 			 * Program the first XM_RXFILT_MAX multicast groups
    647 			 * into the perfect filter. For all others,
    648 			 * use the hash table.
    649 			 */
    650 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
    651 				sk_setfilt(sc_if, enm->enm_addrlo, i);
    652 				i++;
    653 			}
    654 			else {
    655 				switch (sc->sk_type) {
    656 				case SK_GENESIS:
    657 					h = sk_xmac_hash(enm->enm_addrlo);
    658 					break;
    659 				case SK_YUKON:
    660 				case SK_YUKON_LITE:
    661 				case SK_YUKON_LP:
    662 					h = sk_yukon_hash(enm->enm_addrlo);
    663 					break;
    664 				}
    665 				if (h < 32)
    666 					hashes[0] |= (1 << h);
    667 				else
    668 					hashes[1] |= (1 << (h - 32));
    669 			}
    670 
    671 			ETHER_NEXT_MULTI(step, enm);
    672 		}
    673 	}
    674 
    675 	switch (sc->sk_type) {
    676 	case SK_GENESIS:
    677 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
    678 			       XM_MODE_RX_USE_PERFECT);
    679 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
    680 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
    681 		break;
    682 	case SK_YUKON:
    683 	case SK_YUKON_LITE:
    684 	case SK_YUKON_LP:
    685 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
    686 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
    687 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
    688 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
    689 		break;
    690 	}
    691 }
    692 
    693 int
    694 sk_init_rx_ring(struct sk_if_softc *sc_if)
    695 {
    696 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    697 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    698 	int			i;
    699 
    700 	memset((char *)rd->sk_rx_ring, 0,
    701 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
    702 
    703 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    704 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
    705 		if (i == (SK_RX_RING_CNT - 1)) {
    706 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
    707 			rd->sk_rx_ring[i].sk_next =
    708 				htole32(SK_RX_RING_ADDR(sc_if, 0));
    709 		} else {
    710 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
    711 			rd->sk_rx_ring[i].sk_next =
    712 				htole32(SK_RX_RING_ADDR(sc_if,i+1));
    713 		}
    714 	}
    715 
    716 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    717 		if (sk_newbuf(sc_if, i, NULL,
    718 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
    719 			aprint_error_dev(sc_if->sk_dev,
    720 			    "failed alloc of %dth mbuf\n", i);
    721 			return ENOBUFS;
    722 		}
    723 	}
    724 	sc_if->sk_cdata.sk_rx_prod = 0;
    725 	sc_if->sk_cdata.sk_rx_cons = 0;
    726 
    727 	return 0;
    728 }
    729 
    730 int
    731 sk_init_tx_ring(struct sk_if_softc *sc_if)
    732 {
    733 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    734 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    735 	int			i;
    736 
    737 	memset(sc_if->sk_rdata->sk_tx_ring, 0,
    738 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
    739 
    740 	for (i = 0; i < SK_TX_RING_CNT; i++) {
    741 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
    742 		if (i == (SK_TX_RING_CNT - 1)) {
    743 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
    744 			rd->sk_tx_ring[i].sk_next =
    745 				htole32(SK_TX_RING_ADDR(sc_if, 0));
    746 		} else {
    747 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
    748 			rd->sk_tx_ring[i].sk_next =
    749 				htole32(SK_TX_RING_ADDR(sc_if,i+1));
    750 		}
    751 	}
    752 
    753 	sc_if->sk_cdata.sk_tx_prod = 0;
    754 	sc_if->sk_cdata.sk_tx_cons = 0;
    755 	sc_if->sk_cdata.sk_tx_cnt = 0;
    756 
    757 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
    758 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    759 
    760 	return 0;
    761 }
    762 
    763 int
    764 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
    765 	  bus_dmamap_t dmamap)
    766 {
    767 	struct mbuf		*m_new = NULL;
    768 	struct sk_chain		*c;
    769 	struct sk_rx_desc	*r;
    770 
    771 	if (m == NULL) {
    772 		void *buf = NULL;
    773 
    774 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    775 		if (m_new == NULL) {
    776 			aprint_error_dev(sc_if->sk_dev,
    777 			    "no memory for rx list -- packet dropped!\n");
    778 			return ENOBUFS;
    779 		}
    780 
    781 		/* Allocate the jumbo buffer */
    782 		buf = sk_jalloc(sc_if);
    783 		if (buf == NULL) {
    784 			m_freem(m_new);
    785 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
    786 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
    787 			return ENOBUFS;
    788 		}
    789 
    790 		/* Attach the buffer to the mbuf */
    791 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    792 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
    793 
    794 	} else {
    795 		/*
    796 		 * We're re-using a previously allocated mbuf;
    797 		 * be sure to re-init pointers and lengths to
    798 		 * default values.
    799 		 */
    800 		m_new = m;
    801 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    802 		m_new->m_data = m_new->m_ext.ext_buf;
    803 	}
    804 	m_adj(m_new, ETHER_ALIGN);
    805 
    806 	c = &sc_if->sk_cdata.sk_rx_chain[i];
    807 	r = c->sk_desc;
    808 	c->sk_mbuf = m_new;
    809 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
    810 	    (((vaddr_t)m_new->m_data
    811 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
    812 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
    813 
    814 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    815 
    816 	return 0;
    817 }
    818 
    819 /*
    820  * Memory management for jumbo frames.
    821  */
    822 
    823 int
    824 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
    825 {
    826 	struct sk_softc		*sc = sc_if->sk_softc;
    827 	char *ptr, *kva;
    828 	bus_dma_segment_t	seg;
    829 	int		i, rseg, state, error;
    830 	struct sk_jpool_entry	*entry;
    831 
    832 	state = error = 0;
    833 
    834 	/* Grab a big chunk o' storage. */
    835 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
    836 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    837 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
    838 		return ENOBUFS;
    839 	}
    840 
    841 	state = 1;
    842 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
    843 			   BUS_DMA_NOWAIT)) {
    844 		aprint_error_dev(sc->sk_dev,
    845 		    "can't map dma buffers (%d bytes)\n",
    846 		    SK_JMEM);
    847 		error = ENOBUFS;
    848 		goto out;
    849 	}
    850 
    851 	state = 2;
    852 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
    853 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
    854 		aprint_error_dev(sc->sk_dev, "can't create dma map\n");
    855 		error = ENOBUFS;
    856 		goto out;
    857 	}
    858 
    859 	state = 3;
    860 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
    861 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
    862 		aprint_error_dev(sc->sk_dev, "can't load dma map\n");
    863 		error = ENOBUFS;
    864 		goto out;
    865 	}
    866 
    867 	state = 4;
    868 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
    869 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
    870 
    871 	LIST_INIT(&sc_if->sk_jfree_listhead);
    872 	LIST_INIT(&sc_if->sk_jinuse_listhead);
    873 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
    874 
    875 	/*
    876 	 * Now divide it up into 9K pieces and save the addresses
    877 	 * in an array.
    878 	 */
    879 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
    880 	for (i = 0; i < SK_JSLOTS; i++) {
    881 		sc_if->sk_cdata.sk_jslots[i] = ptr;
    882 		ptr += SK_JLEN;
    883 		entry = malloc(sizeof(struct sk_jpool_entry),
    884 		    M_DEVBUF, M_NOWAIT);
    885 		if (entry == NULL) {
    886 			aprint_error_dev(sc->sk_dev,
    887 			    "no memory for jumbo buffer queue!\n");
    888 			error = ENOBUFS;
    889 			goto out;
    890 		}
    891 		entry->slot = i;
    892 		if (i)
    893 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
    894 				 entry, jpool_entries);
    895 		else
    896 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
    897 				 entry, jpool_entries);
    898 	}
    899 out:
    900 	if (error != 0) {
    901 		switch (state) {
    902 		case 4:
    903 			bus_dmamap_unload(sc->sc_dmatag,
    904 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    905 			/* FALLTHROUGH */
    906 		case 3:
    907 			bus_dmamap_destroy(sc->sc_dmatag,
    908 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    909 			/* FALLTHROUGH */
    910 		case 2:
    911 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
    912 			/* FALLTHROUGH */
    913 		case 1:
    914 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
    915 			break;
    916 		default:
    917 			break;
    918 		}
    919 	}
    920 
    921 	return error;
    922 }
    923 
    924 /*
    925  * Allocate a jumbo buffer.
    926  */
    927 void *
    928 sk_jalloc(struct sk_if_softc *sc_if)
    929 {
    930 	struct sk_jpool_entry	*entry;
    931 
    932 	mutex_enter(&sc_if->sk_jpool_mtx);
    933 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
    934 
    935 	if (entry == NULL) {
    936 		mutex_exit(&sc_if->sk_jpool_mtx);
    937 		return NULL;
    938 	}
    939 
    940 	LIST_REMOVE(entry, jpool_entries);
    941 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
    942 	mutex_exit(&sc_if->sk_jpool_mtx);
    943 	return sc_if->sk_cdata.sk_jslots[entry->slot];
    944 }
    945 
    946 /*
    947  * Release a jumbo buffer.
    948  */
    949 void
    950 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
    951 {
    952 	struct sk_jpool_entry *entry;
    953 	struct sk_if_softc *sc;
    954 	int i;
    955 
    956 	/* Extract the softc struct pointer. */
    957 	sc = (struct sk_if_softc *)arg;
    958 
    959 	if (sc == NULL)
    960 		panic("sk_jfree: can't find softc pointer!");
    961 
    962 	/* calculate the slot this buffer belongs to */
    963 
    964 	i = ((vaddr_t)buf
    965 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
    966 
    967 	if ((i < 0) || (i >= SK_JSLOTS))
    968 		panic("sk_jfree: asked to free buffer that we don't manage!");
    969 
    970 	mutex_enter(&sc->sk_jpool_mtx);
    971 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
    972 	if (entry == NULL)
    973 		panic("sk_jfree: buffer not in use!");
    974 	entry->slot = i;
    975 	LIST_REMOVE(entry, jpool_entries);
    976 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
    977 	mutex_exit(&sc->sk_jpool_mtx);
    978 
    979 	if (__predict_true(m != NULL))
    980 		pool_cache_put(mb_cache, m);
    981 }
    982 
    983 /*
    984  * Set media options.
    985  */
    986 int
    987 sk_ifmedia_upd(struct ifnet *ifp)
    988 {
    989 	struct sk_if_softc *sc_if = ifp->if_softc;
    990 	int rc;
    991 
    992 	(void) sk_init(ifp);
    993 	if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
    994 		return 0;
    995 	return rc;
    996 }
    997 
    998 static void
    999 sk_promisc(struct sk_if_softc *sc_if, int on)
   1000 {
   1001 	struct sk_softc *sc = sc_if->sk_softc;
   1002 	switch (sc->sk_type) {
   1003 	case SK_GENESIS:
   1004 		if (on)
   1005 			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   1006 		else
   1007 			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   1008 		break;
   1009 	case SK_YUKON:
   1010 	case SK_YUKON_LITE:
   1011 	case SK_YUKON_LP:
   1012 		if (on)
   1013 			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
   1014 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1015 		else
   1016 			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
   1017 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1018 		break;
   1019 	default:
   1020 		aprint_error_dev(sc_if->sk_dev, "Can't set promisc for %d\n",
   1021 			sc->sk_type);
   1022 		break;
   1023 	}
   1024 }
   1025 
   1026 int
   1027 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
   1028 {
   1029 	struct sk_if_softc *sc_if = ifp->if_softc;
   1030 	int s, error = 0;
   1031 
   1032 	/* DPRINTFN(2, ("sk_ioctl\n")); */
   1033 
   1034 	s = splnet();
   1035 
   1036 	switch (command) {
   1037 
   1038 	case SIOCSIFFLAGS:
   1039 		DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
   1040 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   1041 			break;
   1042 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
   1043 		case IFF_RUNNING:
   1044 			sk_stop(ifp, 1);
   1045 			break;
   1046 		case IFF_UP:
   1047 			sk_init(ifp);
   1048 			break;
   1049 		case IFF_UP | IFF_RUNNING:
   1050 			if ((ifp->if_flags ^ sc_if->sk_if_flags) == IFF_PROMISC)			{
   1051 				sk_promisc(sc_if, ifp->if_flags & IFF_PROMISC);
   1052 				sk_setmulti(sc_if);
   1053 			} else
   1054 				sk_init(ifp);
   1055 			break;
   1056 		}
   1057 		sc_if->sk_if_flags = ifp->if_flags;
   1058 		error = 0;
   1059 		break;
   1060 
   1061 	default:
   1062 		DPRINTFN(2, ("sk_ioctl ETHER\n"));
   1063 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   1064 			break;
   1065 
   1066 		error = 0;
   1067 
   1068 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   1069 			;
   1070 		else if (ifp->if_flags & IFF_RUNNING) {
   1071 			sk_setmulti(sc_if);
   1072 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
   1073 		}
   1074 		break;
   1075 	}
   1076 
   1077 	splx(s);
   1078 	return error;
   1079 }
   1080 
   1081 void
   1082 sk_update_int_mod(struct sk_softc *sc)
   1083 {
   1084 	uint32_t imtimer_ticks;
   1085 
   1086 	/*
   1087 	 * Configure interrupt moderation. The moderation timer
   1088 	 * defers interrupts specified in the interrupt moderation
   1089 	 * timer mask based on the timeout specified in the interrupt
   1090 	 * moderation timer init register. Each bit in the timer
   1091 	 * register represents one tick, so to specify a timeout in
   1092 	 * microseconds, we have to multiply by the correct number of
   1093 	 * ticks-per-microsecond.
   1094 	 */
   1095 	switch (sc->sk_type) {
   1096 	case SK_GENESIS:
   1097 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   1098 		break;
   1099 	case SK_YUKON_EC:
   1100 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   1101 		break;
   1102 	default:
   1103 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   1104 	}
   1105 	aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
   1106 	    sc->sk_int_mod);
   1107 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
   1108 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
   1109 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
   1110 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
   1111 	sc->sk_int_mod_pending = 0;
   1112 }
   1113 
   1114 /*
   1115  * Lookup: Check the PCI vendor and device, and return a pointer to
   1116  * The structure if the IDs match against our list.
   1117  */
   1118 
   1119 static const struct sk_product *
   1120 sk_lookup(const struct pci_attach_args *pa)
   1121 {
   1122 	const struct sk_product *psk;
   1123 
   1124 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
   1125 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
   1126 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
   1127 			return psk;
   1128 	}
   1129 	return NULL;
   1130 }
   1131 
   1132 /*
   1133  * Probe for a SysKonnect GEnesis chip.
   1134  */
   1135 
   1136 int
   1137 skc_probe(device_t parent, cfdata_t match, void *aux)
   1138 {
   1139 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1140 	const struct sk_product *psk;
   1141 	pcireg_t subid;
   1142 
   1143 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
   1144 
   1145 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
   1146 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
   1147 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
   1148 	    subid == SK_LINKSYS_EG1032_SUBID)
   1149 		return 1;
   1150 
   1151 	if ((psk = sk_lookup(pa))) {
   1152 		return 1;
   1153 	}
   1154 	return 0;
   1155 }
   1156 
   1157 /*
   1158  * Force the GEnesis into reset, then bring it out of reset.
   1159  */
   1160 void sk_reset(struct sk_softc *sc)
   1161 {
   1162 	DPRINTFN(2, ("sk_reset\n"));
   1163 
   1164 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
   1165 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
   1166 	if (SK_YUKON_FAMILY(sc->sk_type))
   1167 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
   1168 
   1169 	DELAY(1000);
   1170 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
   1171 	DELAY(2);
   1172 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
   1173 	if (SK_YUKON_FAMILY(sc->sk_type))
   1174 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
   1175 
   1176 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
   1177 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
   1178 		     CSR_READ_2(sc, SK_LINK_CTRL)));
   1179 
   1180 	if (sc->sk_type == SK_GENESIS) {
   1181 		/* Configure packet arbiter */
   1182 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
   1183 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1184 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1185 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1186 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1187 	}
   1188 
   1189 	/* Enable RAM interface */
   1190 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
   1191 
   1192 	sk_update_int_mod(sc);
   1193 }
   1194 
   1195 int
   1196 sk_probe(device_t parent, cfdata_t match, void *aux)
   1197 {
   1198 	struct skc_attach_args *sa = aux;
   1199 
   1200 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
   1201 		return 0;
   1202 
   1203 	return 1;
   1204 }
   1205 
   1206 /*
   1207  * Each XMAC chip is attached as a separate logical IP interface.
   1208  * Single port cards will have only one logical interface of course.
   1209  */
   1210 void
   1211 sk_attach(device_t parent, device_t self, void *aux)
   1212 {
   1213 	struct sk_if_softc *sc_if = device_private(self);
   1214 	struct sk_softc *sc = device_private(parent);
   1215 	struct skc_attach_args *sa = aux;
   1216 	struct sk_txmap_entry	*entry;
   1217 	struct ifnet *ifp;
   1218 	bus_dma_segment_t seg;
   1219 	bus_dmamap_t dmamap;
   1220 	prop_data_t data;
   1221 	void *kva;
   1222 	int i, rseg;
   1223 	int mii_flags = 0;
   1224 
   1225 	aprint_naive("\n");
   1226 
   1227 	sc_if->sk_dev = self;
   1228 	sc_if->sk_port = sa->skc_port;
   1229 	sc_if->sk_softc = sc;
   1230 	sc->sk_if[sa->skc_port] = sc_if;
   1231 
   1232 	if (sa->skc_port == SK_PORT_A)
   1233 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
   1234 	if (sa->skc_port == SK_PORT_B)
   1235 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
   1236 
   1237 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
   1238 
   1239 	/*
   1240 	 * Get station address for this interface. Note that
   1241 	 * dual port cards actually come with three station
   1242 	 * addresses: one for each port, plus an extra. The
   1243 	 * extra one is used by the SysKonnect driver software
   1244 	 * as a 'virtual' station address for when both ports
   1245 	 * are operating in failover mode. Currently we don't
   1246 	 * use this extra address.
   1247 	 */
   1248 	data = prop_dictionary_get(device_properties(self), "mac-address");
   1249 	if (data != NULL) {
   1250 		/*
   1251 		 * Try to get the station address from device properties
   1252 		 * first, in case the ROM is missing.
   1253 		 */
   1254 		KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
   1255 		KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
   1256 		memcpy(sc_if->sk_enaddr, prop_data_data_nocopy(data),
   1257 		    ETHER_ADDR_LEN);
   1258 	} else
   1259 		for (i = 0; i < ETHER_ADDR_LEN; i++)
   1260 			sc_if->sk_enaddr[i] = sk_win_read_1(sc,
   1261 			    SK_MAC0_0 + (sa->skc_port * 8) + i);
   1262 
   1263 	aprint_normal(": Ethernet address %s\n",
   1264 	    ether_sprintf(sc_if->sk_enaddr));
   1265 
   1266 	/*
   1267 	 * Set up RAM buffer addresses. The NIC will have a certain
   1268 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
   1269 	 * need to divide this up a) between the transmitter and
   1270 	 * receiver and b) between the two XMACs, if this is a
   1271 	 * dual port NIC. Our algorithm is to divide up the memory
   1272 	 * evenly so that everyone gets a fair share.
   1273 	 */
   1274 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
   1275 		uint32_t		chunk, val;
   1276 
   1277 		chunk = sc->sk_ramsize / 2;
   1278 		val = sc->sk_rboff / sizeof(uint64_t);
   1279 		sc_if->sk_rx_ramstart = val;
   1280 		val += (chunk / sizeof(uint64_t));
   1281 		sc_if->sk_rx_ramend = val - 1;
   1282 		sc_if->sk_tx_ramstart = val;
   1283 		val += (chunk / sizeof(uint64_t));
   1284 		sc_if->sk_tx_ramend = val - 1;
   1285 	} else {
   1286 		uint32_t		chunk, val;
   1287 
   1288 		chunk = sc->sk_ramsize / 4;
   1289 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
   1290 		    sizeof(uint64_t);
   1291 		sc_if->sk_rx_ramstart = val;
   1292 		val += (chunk / sizeof(uint64_t));
   1293 		sc_if->sk_rx_ramend = val - 1;
   1294 		sc_if->sk_tx_ramstart = val;
   1295 		val += (chunk / sizeof(uint64_t));
   1296 		sc_if->sk_tx_ramend = val - 1;
   1297 	}
   1298 
   1299 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
   1300 		     "		 tx_ramstart=%#x tx_ramend=%#x\n",
   1301 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
   1302 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
   1303 
   1304 	/* Read and save PHY type and set PHY address */
   1305 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
   1306 	switch (sc_if->sk_phytype) {
   1307 	case SK_PHYTYPE_XMAC:
   1308 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
   1309 		break;
   1310 	case SK_PHYTYPE_BCOM:
   1311 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
   1312 		break;
   1313 	case SK_PHYTYPE_MARV_COPPER:
   1314 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
   1315 		break;
   1316 	default:
   1317 		aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
   1318 		    sc_if->sk_phytype);
   1319 		return;
   1320 	}
   1321 
   1322 	/* Allocate the descriptor queues. */
   1323 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
   1324 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1325 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
   1326 		goto fail;
   1327 	}
   1328 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
   1329 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
   1330 		aprint_error_dev(sc_if->sk_dev,
   1331 		    "can't map dma buffers (%lu bytes)\n",
   1332 		    (u_long) sizeof(struct sk_ring_data));
   1333 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1334 		goto fail;
   1335 	}
   1336 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
   1337 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
   1338 	    &sc_if->sk_ring_map)) {
   1339 		aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
   1340 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1341 		    sizeof(struct sk_ring_data));
   1342 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1343 		goto fail;
   1344 	}
   1345 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
   1346 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
   1347 		aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
   1348 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1349 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1350 		    sizeof(struct sk_ring_data));
   1351 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1352 		goto fail;
   1353 	}
   1354 
   1355 	for (i = 0; i < SK_RX_RING_CNT; i++)
   1356 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   1357 
   1358 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
   1359 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   1360 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   1361 
   1362 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
   1363 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
   1364 			aprint_error_dev(sc_if->sk_dev,
   1365 			    "Can't create TX dmamap\n");
   1366 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1367 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1368 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1369 			    sizeof(struct sk_ring_data));
   1370 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1371 			goto fail;
   1372 		}
   1373 
   1374 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
   1375 		if (!entry) {
   1376 			aprint_error_dev(sc_if->sk_dev,
   1377 			    "Can't alloc txmap entry\n");
   1378 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
   1379 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1380 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1381 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1382 			    sizeof(struct sk_ring_data));
   1383 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1384 			goto fail;
   1385 		}
   1386 		entry->dmamap = dmamap;
   1387 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
   1388 	}
   1389 
   1390 	sc_if->sk_rdata = (struct sk_ring_data *)kva;
   1391 	memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
   1392 
   1393 	ifp = &sc_if->sk_ethercom.ec_if;
   1394 	/* Try to allocate memory for jumbo buffers. */
   1395 	if (sk_alloc_jumbo_mem(sc_if)) {
   1396 		aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
   1397 		goto fail;
   1398 	}
   1399 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
   1400 		| ETHERCAP_JUMBO_MTU;
   1401 
   1402 	ifp->if_softc = sc_if;
   1403 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1404 	ifp->if_ioctl = sk_ioctl;
   1405 	ifp->if_start = sk_start;
   1406 	ifp->if_stop = sk_stop;
   1407 	ifp->if_init = sk_init;
   1408 	ifp->if_watchdog = sk_watchdog;
   1409 	ifp->if_capabilities = 0;
   1410 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
   1411 	IFQ_SET_READY(&ifp->if_snd);
   1412 	strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
   1413 
   1414 	/*
   1415 	 * Do miibus setup.
   1416 	 */
   1417 	switch (sc->sk_type) {
   1418 	case SK_GENESIS:
   1419 		sk_init_xmac(sc_if);
   1420 		break;
   1421 	case SK_YUKON:
   1422 	case SK_YUKON_LITE:
   1423 	case SK_YUKON_LP:
   1424 		sk_init_yukon(sc_if);
   1425 		break;
   1426 	default:
   1427 		aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
   1428 			sc->sk_type);
   1429 		goto fail;
   1430 	}
   1431 
   1432 	DPRINTFN(2, ("sk_attach: 1\n"));
   1433 
   1434 	sc_if->sk_mii.mii_ifp = ifp;
   1435 	switch (sc->sk_type) {
   1436 	case SK_GENESIS:
   1437 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
   1438 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
   1439 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
   1440 		break;
   1441 	case SK_YUKON:
   1442 	case SK_YUKON_LITE:
   1443 	case SK_YUKON_LP:
   1444 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
   1445 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
   1446 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
   1447 		mii_flags = MIIF_DOPAUSE;
   1448 		break;
   1449 	}
   1450 
   1451 	sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
   1452 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
   1453 	    sk_ifmedia_upd, ether_mediastatus);
   1454 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
   1455 	    MII_OFFSET_ANY, mii_flags);
   1456 	if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
   1457 		aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
   1458 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
   1459 			    0, NULL);
   1460 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
   1461 	} else
   1462 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1463 
   1464 	callout_init(&sc_if->sk_tick_ch, 0);
   1465 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
   1466 
   1467 	DPRINTFN(2, ("sk_attach: 1\n"));
   1468 
   1469 	/*
   1470 	 * Call MI attach routines.
   1471 	 */
   1472 	if_attach(ifp);
   1473 	if_deferred_start_init(ifp, NULL);
   1474 
   1475 	ether_ifattach(ifp, sc_if->sk_enaddr);
   1476 
   1477 	if (sc->rnd_attached++ == 0) {
   1478 		rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
   1479 		    RND_TYPE_NET, RND_FLAG_DEFAULT);
   1480 	}
   1481 
   1482 	if (pmf_device_register(self, NULL, sk_resume))
   1483 		pmf_class_network_register(self, ifp);
   1484 	else
   1485 		aprint_error_dev(self, "couldn't establish power handler\n");
   1486 
   1487 	DPRINTFN(2, ("sk_attach: end\n"));
   1488 
   1489 	return;
   1490 
   1491 fail:
   1492 	sc->sk_if[sa->skc_port] = NULL;
   1493 }
   1494 
   1495 int
   1496 skcprint(void *aux, const char *pnp)
   1497 {
   1498 	struct skc_attach_args *sa = aux;
   1499 
   1500 	if (pnp)
   1501 		aprint_normal("sk port %c at %s",
   1502 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
   1503 	else
   1504 		aprint_normal(" port %c",
   1505 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
   1506 	return UNCONF;
   1507 }
   1508 
   1509 /*
   1510  * Attach the interface. Allocate softc structures, do ifmedia
   1511  * setup and ethernet/BPF attach.
   1512  */
   1513 void
   1514 skc_attach(device_t parent, device_t self, void *aux)
   1515 {
   1516 	struct sk_softc *sc = device_private(self);
   1517 	struct pci_attach_args *pa = aux;
   1518 	struct skc_attach_args skca;
   1519 	pci_chipset_tag_t pc = pa->pa_pc;
   1520 #ifndef SK_USEIOSPACE
   1521 	pcireg_t memtype;
   1522 #endif
   1523 	pci_intr_handle_t ih;
   1524 	const char *intrstr = NULL;
   1525 	bus_addr_t iobase;
   1526 	bus_size_t iosize;
   1527 	int rc, sk_nodenum;
   1528 	uint32_t command;
   1529 	const char *revstr;
   1530 	const struct sysctlnode *node;
   1531 	char intrbuf[PCI_INTRSTR_LEN];
   1532 
   1533 	sc->sk_dev = self;
   1534 	aprint_naive("\n");
   1535 
   1536 	DPRINTFN(2, ("begin skc_attach\n"));
   1537 
   1538 	/*
   1539 	 * Handle power management nonsense.
   1540 	 */
   1541 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
   1542 
   1543 	if (command == 0x01) {
   1544 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
   1545 		if (command & SK_PSTATE_MASK) {
   1546 			uint32_t		xiobase, membase, irq;
   1547 
   1548 			/* Save important PCI config data. */
   1549 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
   1550 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
   1551 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
   1552 
   1553 			/* Reset the power state. */
   1554 			aprint_normal_dev(sc->sk_dev,
   1555 			    "chip is in D%d power mode -- setting to D0\n",
   1556 			    command & SK_PSTATE_MASK);
   1557 			command &= 0xFFFFFFFC;
   1558 			pci_conf_write(pc, pa->pa_tag,
   1559 			    SK_PCI_PWRMGMTCTRL, command);
   1560 
   1561 			/* Restore PCI config data. */
   1562 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
   1563 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
   1564 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
   1565 		}
   1566 	}
   1567 
   1568 	/*
   1569 	 * The firmware might have configured the interface to revert the
   1570 	 * byte order in all descriptors. Make that undone.
   1571 	 */
   1572 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_OURREG2);
   1573 	if (command & SK_REG2_REV_DESC)
   1574 		pci_conf_write(pc, pa->pa_tag, SK_PCI_OURREG2,
   1575 		    command & ~SK_REG2_REV_DESC);
   1576 
   1577 	/*
   1578 	 * Map control/status registers.
   1579 	 */
   1580 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1581 	command |= PCI_COMMAND_IO_ENABLE |
   1582 	    PCI_COMMAND_MEM_ENABLE |
   1583 	    PCI_COMMAND_MASTER_ENABLE;
   1584 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1585 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1586 
   1587 #ifdef SK_USEIOSPACE
   1588 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
   1589 		aprint_error(": failed to enable I/O ports!\n");
   1590 		return;
   1591 	}
   1592 	/*
   1593 	 * Map control/status registers.
   1594 	 */
   1595 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
   1596 			&sc->sk_btag, &sc->sk_bhandle,
   1597 			&iobase, &iosize)) {
   1598 		aprint_error(": can't find i/o space\n");
   1599 		return;
   1600 	}
   1601 #else
   1602 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1603 		aprint_error(": failed to enable memory mapping!\n");
   1604 		return;
   1605 	}
   1606 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
   1607 	switch (memtype) {
   1608 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1609 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1610 		if (pci_mapreg_map(pa, SK_PCI_LOMEM,
   1611 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
   1612 				   &iobase, &iosize) == 0)
   1613 			break;
   1614 		/* FALLTHROUGH */
   1615 	default:
   1616 		aprint_error_dev(sc->sk_dev, "can't find mem space\n");
   1617 		return;
   1618 	}
   1619 
   1620 	DPRINTFN(2, ("skc_attach: iobase=%#" PRIxPADDR ", iosize=%zx\n",
   1621 	    iobase, iosize));
   1622 #endif
   1623 	sc->sc_dmatag = pa->pa_dmat;
   1624 
   1625 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
   1626 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
   1627 
   1628 	/* bail out here if chip is not recognized */
   1629 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
   1630 		aprint_error_dev(sc->sk_dev, "unknown chip type\n");
   1631 		goto fail;
   1632 	}
   1633 	if (SK_IS_YUKON2(sc)) {
   1634 		aprint_error_dev(sc->sk_dev,
   1635 		    "Does not support Yukon2--try msk(4).\n");
   1636 		goto fail;
   1637 	}
   1638 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
   1639 
   1640 	/* Allocate interrupt */
   1641 	if (pci_intr_map(pa, &ih)) {
   1642 		aprint_error(": couldn't map interrupt\n");
   1643 		goto fail;
   1644 	}
   1645 
   1646 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
   1647 	sc->sk_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, sk_intr, sc,
   1648 	    device_xname(sc->sk_dev));
   1649 	if (sc->sk_intrhand == NULL) {
   1650 		aprint_error(": couldn't establish interrupt");
   1651 		if (intrstr != NULL)
   1652 			aprint_error(" at %s", intrstr);
   1653 		aprint_error("\n");
   1654 		goto fail;
   1655 	}
   1656 	aprint_normal(": %s\n", intrstr);
   1657 
   1658 	/* Reset the adapter. */
   1659 	sk_reset(sc);
   1660 
   1661 	/* Read and save vital product data from EEPROM. */
   1662 	sk_vpd_read(sc);
   1663 
   1664 	if (sc->sk_type == SK_GENESIS) {
   1665 		uint8_t val = sk_win_read_1(sc, SK_EPROM0);
   1666 		/* Read and save RAM size and RAMbuffer offset */
   1667 		switch (val) {
   1668 		case SK_RAMSIZE_512K_64:
   1669 			sc->sk_ramsize = 0x80000;
   1670 			sc->sk_rboff = SK_RBOFF_0;
   1671 			break;
   1672 		case SK_RAMSIZE_1024K_64:
   1673 			sc->sk_ramsize = 0x100000;
   1674 			sc->sk_rboff = SK_RBOFF_80000;
   1675 			break;
   1676 		case SK_RAMSIZE_1024K_128:
   1677 			sc->sk_ramsize = 0x100000;
   1678 			sc->sk_rboff = SK_RBOFF_0;
   1679 			break;
   1680 		case SK_RAMSIZE_2048K_128:
   1681 			sc->sk_ramsize = 0x200000;
   1682 			sc->sk_rboff = SK_RBOFF_0;
   1683 			break;
   1684 		default:
   1685 			aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
   1686 			       val);
   1687 			goto fail_1;
   1688 			break;
   1689 		}
   1690 
   1691 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
   1692 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
   1693 			     sc->sk_rboff));
   1694 	} else {
   1695 		uint8_t val = sk_win_read_1(sc, SK_EPROM0);
   1696 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
   1697 		sc->sk_rboff = SK_RBOFF_0;
   1698 
   1699 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
   1700 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
   1701 			     sc->sk_rboff));
   1702 	}
   1703 
   1704 	/* Read and save physical media type */
   1705 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
   1706 	case SK_PMD_1000BASESX:
   1707 		sc->sk_pmd = IFM_1000_SX;
   1708 		break;
   1709 	case SK_PMD_1000BASELX:
   1710 		sc->sk_pmd = IFM_1000_LX;
   1711 		break;
   1712 	case SK_PMD_1000BASECX:
   1713 		sc->sk_pmd = IFM_1000_CX;
   1714 		break;
   1715 	case SK_PMD_1000BASETX:
   1716 	case SK_PMD_1000BASETX_ALT:
   1717 		sc->sk_pmd = IFM_1000_T;
   1718 		break;
   1719 	default:
   1720 		aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
   1721 		    sk_win_read_1(sc, SK_PMDTYPE));
   1722 		goto fail_1;
   1723 	}
   1724 
   1725 	/* determine whether to name it with vpd or just make it up */
   1726 	/* Marvell Yukon VPD's can freqently be bogus */
   1727 
   1728 	switch (pa->pa_id) {
   1729 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1730 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
   1731 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
   1732 	case PCI_PRODUCT_3COM_3C940:
   1733 	case PCI_PRODUCT_DLINK_DGE530T:
   1734 	case PCI_PRODUCT_DLINK_DGE560T:
   1735 	case PCI_PRODUCT_DLINK_DGE560T_2:
   1736 	case PCI_PRODUCT_LINKSYS_EG1032:
   1737 	case PCI_PRODUCT_LINKSYS_EG1064:
   1738 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1739 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
   1740 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
   1741 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
   1742 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
   1743 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
   1744 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
   1745 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
   1746 		sc->sk_name = sc->sk_vpd_prodname;
   1747 		break;
   1748 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
   1749 	/* whoops yukon vpd prodname bears no resemblance to reality */
   1750 		switch (sc->sk_type) {
   1751 		case SK_GENESIS:
   1752 			sc->sk_name = sc->sk_vpd_prodname;
   1753 			break;
   1754 		case SK_YUKON:
   1755 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
   1756 			break;
   1757 		case SK_YUKON_LITE:
   1758 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
   1759 			break;
   1760 		case SK_YUKON_LP:
   1761 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
   1762 			break;
   1763 		default:
   1764 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
   1765 		}
   1766 
   1767 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
   1768 
   1769 		if ( sc->sk_type == SK_YUKON ) {
   1770 			uint32_t flashaddr;
   1771 			uint8_t testbyte;
   1772 
   1773 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
   1774 
   1775 			/* test Flash-Address Register */
   1776 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
   1777 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
   1778 
   1779 			if (testbyte != 0) {
   1780 				/* this is yukon lite Rev. A0 */
   1781 				sc->sk_type = SK_YUKON_LITE;
   1782 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
   1783 				/* restore Flash-Address Register */
   1784 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
   1785 			}
   1786 		}
   1787 		break;
   1788 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
   1789 		sc->sk_name = sc->sk_vpd_prodname;
   1790 		break;
   1791 	default:
   1792 		sc->sk_name = "Unknown Marvell";
   1793 	}
   1794 
   1795 
   1796 	if ( sc->sk_type == SK_YUKON_LITE ) {
   1797 		switch (sc->sk_rev) {
   1798 		case SK_YUKON_LITE_REV_A0:
   1799 			revstr = "A0";
   1800 			break;
   1801 		case SK_YUKON_LITE_REV_A1:
   1802 			revstr = "A1";
   1803 			break;
   1804 		case SK_YUKON_LITE_REV_A3:
   1805 			revstr = "A3";
   1806 			break;
   1807 		default:
   1808 			revstr = "";
   1809 		}
   1810 	} else {
   1811 		revstr = "";
   1812 	}
   1813 
   1814 	/* Announce the product name. */
   1815 	aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
   1816 			      sc->sk_name, revstr, sc->sk_rev);
   1817 
   1818 	skca.skc_port = SK_PORT_A;
   1819 	(void)config_found(sc->sk_dev, &skca, skcprint);
   1820 
   1821 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
   1822 		skca.skc_port = SK_PORT_B;
   1823 		(void)config_found(sc->sk_dev, &skca, skcprint);
   1824 	}
   1825 
   1826 	/* Turn on the 'driver is loaded' LED. */
   1827 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   1828 
   1829 	/* skc sysctl setup */
   1830 
   1831 	sc->sk_int_mod = SK_IM_DEFAULT;
   1832 	sc->sk_int_mod_pending = 0;
   1833 
   1834 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1835 	    0, CTLTYPE_NODE, device_xname(sc->sk_dev),
   1836 	    SYSCTL_DESCR("skc per-controller controls"),
   1837 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
   1838 	    CTL_EOL)) != 0) {
   1839 		aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
   1840 		goto fail_1;
   1841 	}
   1842 
   1843 	sk_nodenum = node->sysctl_num;
   1844 
   1845 	/* interrupt moderation time in usecs */
   1846 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1847 	    CTLFLAG_READWRITE,
   1848 	    CTLTYPE_INT, "int_mod",
   1849 	    SYSCTL_DESCR("sk interrupt moderation timer"),
   1850 	    sk_sysctl_handler, 0, (void *)sc,
   1851 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
   1852 	    CTL_EOL)) != 0) {
   1853 		aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
   1854 		goto fail_1;
   1855 	}
   1856 
   1857 	if (!pmf_device_register(self, skc_suspend, skc_resume))
   1858 		aprint_error_dev(self, "couldn't establish power handler\n");
   1859 
   1860 	return;
   1861 
   1862 fail_1:
   1863 	pci_intr_disestablish(pc, sc->sk_intrhand);
   1864 fail:
   1865 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
   1866 }
   1867 
   1868 int
   1869 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
   1870 {
   1871 	struct sk_softc		*sc = sc_if->sk_softc;
   1872 	struct sk_tx_desc	*f = NULL;
   1873 	uint32_t		frag, cur, cnt = 0, sk_ctl;
   1874 	int			i;
   1875 	struct sk_txmap_entry	*entry;
   1876 	bus_dmamap_t		txmap;
   1877 
   1878 	DPRINTFN(3, ("sk_encap\n"));
   1879 
   1880 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
   1881 	if (entry == NULL) {
   1882 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
   1883 		return ENOBUFS;
   1884 	}
   1885 	txmap = entry->dmamap;
   1886 
   1887 	cur = frag = *txidx;
   1888 
   1889 #ifdef SK_DEBUG
   1890 	if (skdebug >= 3)
   1891 		sk_dump_mbuf(m_head);
   1892 #endif
   1893 
   1894 	/*
   1895 	 * Start packing the mbufs in this chain into
   1896 	 * the fragment pointers. Stop when we run out
   1897 	 * of fragments or hit the end of the mbuf chain.
   1898 	 */
   1899 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
   1900 	    BUS_DMA_NOWAIT)) {
   1901 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
   1902 		return ENOBUFS;
   1903 	}
   1904 
   1905 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
   1906 
   1907 	/* Sync the DMA map. */
   1908 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
   1909 	    BUS_DMASYNC_PREWRITE);
   1910 
   1911 	for (i = 0; i < txmap->dm_nsegs; i++) {
   1912 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
   1913 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
   1914 			return ENOBUFS;
   1915 		}
   1916 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
   1917 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
   1918 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
   1919 		if (cnt == 0)
   1920 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
   1921 		else
   1922 			sk_ctl |= SK_TXCTL_OWN;
   1923 		f->sk_ctl = htole32(sk_ctl);
   1924 		cur = frag;
   1925 		SK_INC(frag, SK_TX_RING_CNT);
   1926 		cnt++;
   1927 	}
   1928 
   1929 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
   1930 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
   1931 
   1932 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
   1933 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
   1934 		htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
   1935 
   1936 	/* Sync descriptors before handing to chip */
   1937 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
   1938 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1939 
   1940 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
   1941 		htole32(SK_TXCTL_OWN);
   1942 
   1943 	/* Sync first descriptor to hand it off */
   1944 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1945 
   1946 	sc_if->sk_cdata.sk_tx_cnt += cnt;
   1947 
   1948 #ifdef SK_DEBUG
   1949 	if (skdebug >= 3) {
   1950 		struct sk_tx_desc *desc;
   1951 		uint32_t idx;
   1952 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
   1953 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
   1954 			sk_dump_txdesc(desc, idx);
   1955 		}
   1956 	}
   1957 #endif
   1958 
   1959 	*txidx = frag;
   1960 
   1961 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
   1962 
   1963 	return 0;
   1964 }
   1965 
   1966 void
   1967 sk_start(struct ifnet *ifp)
   1968 {
   1969 	struct sk_if_softc	*sc_if = ifp->if_softc;
   1970 	struct sk_softc		*sc = sc_if->sk_softc;
   1971 	struct mbuf		*m_head = NULL;
   1972 	uint32_t		idx = sc_if->sk_cdata.sk_tx_prod;
   1973 	int			pkts = 0;
   1974 
   1975 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
   1976 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
   1977 
   1978 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
   1979 		IFQ_POLL(&ifp->if_snd, m_head);
   1980 		if (m_head == NULL)
   1981 			break;
   1982 
   1983 		/*
   1984 		 * Pack the data into the transmit ring. If we
   1985 		 * don't have room, set the OACTIVE flag and wait
   1986 		 * for the NIC to drain the ring.
   1987 		 */
   1988 		if (sk_encap(sc_if, m_head, &idx)) {
   1989 			ifp->if_flags |= IFF_OACTIVE;
   1990 			break;
   1991 		}
   1992 
   1993 		/* now we are committed to transmit the packet */
   1994 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1995 		pkts++;
   1996 
   1997 		/*
   1998 		 * If there's a BPF listener, bounce a copy of this frame
   1999 		 * to him.
   2000 		 */
   2001 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   2002 	}
   2003 	if (pkts == 0)
   2004 		return;
   2005 
   2006 	/* Transmit */
   2007 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
   2008 		sc_if->sk_cdata.sk_tx_prod = idx;
   2009 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   2010 
   2011 		/* Set a timeout in case the chip goes out to lunch. */
   2012 		ifp->if_timer = 5;
   2013 	}
   2014 }
   2015 
   2016 
   2017 void
   2018 sk_watchdog(struct ifnet *ifp)
   2019 {
   2020 	struct sk_if_softc *sc_if = ifp->if_softc;
   2021 
   2022 	/*
   2023 	 * Reclaim first as there is a possibility of losing Tx completion
   2024 	 * interrupts.
   2025 	 */
   2026 	sk_txeof(sc_if);
   2027 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
   2028 		aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
   2029 
   2030 		ifp->if_oerrors++;
   2031 
   2032 		sk_init(ifp);
   2033 	}
   2034 }
   2035 
   2036 void
   2037 sk_shutdown(void *v)
   2038 {
   2039 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
   2040 	struct sk_softc		*sc = sc_if->sk_softc;
   2041 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2042 
   2043 	DPRINTFN(2, ("sk_shutdown\n"));
   2044 	sk_stop(ifp,1);
   2045 
   2046 	/* Turn off the 'driver is loaded' LED. */
   2047 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   2048 
   2049 	/*
   2050 	 * Reset the GEnesis controller. Doing this should also
   2051 	 * assert the resets on the attached XMAC(s).
   2052 	 */
   2053 	sk_reset(sc);
   2054 }
   2055 
   2056 void
   2057 sk_rxeof(struct sk_if_softc *sc_if)
   2058 {
   2059 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2060 	struct mbuf		*m;
   2061 	struct sk_chain		*cur_rx;
   2062 	struct sk_rx_desc	*cur_desc;
   2063 	int			i, cur, total_len = 0;
   2064 	uint32_t		rxstat, sk_ctl;
   2065 	bus_dmamap_t		dmamap;
   2066 
   2067 	i = sc_if->sk_cdata.sk_rx_prod;
   2068 
   2069 	DPRINTFN(3, ("sk_rxeof %d\n", i));
   2070 
   2071 	for (;;) {
   2072 		cur = i;
   2073 
   2074 		/* Sync the descriptor */
   2075 		SK_CDRXSYNC(sc_if, cur,
   2076 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2077 
   2078 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
   2079 		if (sk_ctl & SK_RXCTL_OWN) {
   2080 			/* Invalidate the descriptor -- it's not ready yet */
   2081 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
   2082 			sc_if->sk_cdata.sk_rx_prod = i;
   2083 			break;
   2084 		}
   2085 
   2086 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
   2087 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
   2088 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
   2089 
   2090 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
   2091 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2092 
   2093 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
   2094 		m = cur_rx->sk_mbuf;
   2095 		cur_rx->sk_mbuf = NULL;
   2096 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
   2097 
   2098 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
   2099 
   2100 		SK_INC(i, SK_RX_RING_CNT);
   2101 
   2102 		if (rxstat & XM_RXSTAT_ERRFRAME) {
   2103 			ifp->if_ierrors++;
   2104 			sk_newbuf(sc_if, cur, m, dmamap);
   2105 			continue;
   2106 		}
   2107 
   2108 		/*
   2109 		 * Try to allocate a new jumbo buffer. If that
   2110 		 * fails, copy the packet to mbufs and put the
   2111 		 * jumbo buffer back in the ring so it can be
   2112 		 * re-used. If allocating mbufs fails, then we
   2113 		 * have to drop the packet.
   2114 		 */
   2115 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
   2116 			struct mbuf		*m0;
   2117 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
   2118 			    total_len + ETHER_ALIGN, 0, ifp);
   2119 			sk_newbuf(sc_if, cur, m, dmamap);
   2120 			if (m0 == NULL) {
   2121 				aprint_error_dev(sc_if->sk_dev, "no receive "
   2122 				    "buffers available -- packet dropped!\n");
   2123 				ifp->if_ierrors++;
   2124 				continue;
   2125 			}
   2126 			m_adj(m0, ETHER_ALIGN);
   2127 			m = m0;
   2128 		} else {
   2129 			m_set_rcvif(m, ifp);
   2130 			m->m_pkthdr.len = m->m_len = total_len;
   2131 		}
   2132 
   2133 		/* pass it on. */
   2134 		if_percpuq_enqueue(ifp->if_percpuq, m);
   2135 	}
   2136 }
   2137 
   2138 void
   2139 sk_txeof(struct sk_if_softc *sc_if)
   2140 {
   2141 	struct sk_softc		*sc = sc_if->sk_softc;
   2142 	struct sk_tx_desc	*cur_tx;
   2143 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2144 	uint32_t		idx, sk_ctl;
   2145 	struct sk_txmap_entry	*entry;
   2146 
   2147 	DPRINTFN(3, ("sk_txeof\n"));
   2148 
   2149 	/*
   2150 	 * Go through our tx ring and free mbufs for those
   2151 	 * frames that have been sent.
   2152 	 */
   2153 	idx = sc_if->sk_cdata.sk_tx_cons;
   2154 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
   2155 		SK_CDTXSYNC(sc_if, idx, 1,
   2156 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2157 
   2158 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
   2159 		sk_ctl = le32toh(cur_tx->sk_ctl);
   2160 #ifdef SK_DEBUG
   2161 		if (skdebug >= 3)
   2162 			sk_dump_txdesc(cur_tx, idx);
   2163 #endif
   2164 		if (sk_ctl & SK_TXCTL_OWN) {
   2165 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
   2166 			break;
   2167 		}
   2168 		if (sk_ctl & SK_TXCTL_LASTFRAG)
   2169 			ifp->if_opackets++;
   2170 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
   2171 			entry = sc_if->sk_cdata.sk_tx_map[idx];
   2172 
   2173 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
   2174 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
   2175 
   2176 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
   2177 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2178 
   2179 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
   2180 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
   2181 					  link);
   2182 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
   2183 		}
   2184 		sc_if->sk_cdata.sk_tx_cnt--;
   2185 		SK_INC(idx, SK_TX_RING_CNT);
   2186 	}
   2187 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
   2188 		ifp->if_timer = 0;
   2189 	else /* nudge chip to keep tx ring moving */
   2190 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   2191 
   2192 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
   2193 		ifp->if_flags &= ~IFF_OACTIVE;
   2194 
   2195 	sc_if->sk_cdata.sk_tx_cons = idx;
   2196 }
   2197 
   2198 void
   2199 sk_tick(void *xsc_if)
   2200 {
   2201 	struct sk_if_softc *sc_if = xsc_if;
   2202 	struct mii_data *mii = &sc_if->sk_mii;
   2203 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2204 	int i;
   2205 
   2206 	DPRINTFN(3, ("sk_tick\n"));
   2207 
   2208 	if (!(ifp->if_flags & IFF_UP))
   2209 		return;
   2210 
   2211 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2212 		sk_intr_bcom(sc_if);
   2213 		return;
   2214 	}
   2215 
   2216 	/*
   2217 	 * According to SysKonnect, the correct way to verify that
   2218 	 * the link has come back up is to poll bit 0 of the GPIO
   2219 	 * register three times. This pin has the signal from the
   2220 	 * link sync pin connected to it; if we read the same link
   2221 	 * state 3 times in a row, we know the link is up.
   2222 	 */
   2223 	for (i = 0; i < 3; i++) {
   2224 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
   2225 			break;
   2226 	}
   2227 
   2228 	if (i != 3) {
   2229 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2230 		return;
   2231 	}
   2232 
   2233 	/* Turn the GP0 interrupt back on. */
   2234 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2235 	SK_XM_READ_2(sc_if, XM_ISR);
   2236 	mii_tick(mii);
   2237 	if (ifp->if_link_state != LINK_STATE_UP)
   2238 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2239 	else
   2240 		callout_stop(&sc_if->sk_tick_ch);
   2241 }
   2242 
   2243 void
   2244 sk_intr_bcom(struct sk_if_softc *sc_if)
   2245 {
   2246 	struct mii_data *mii = &sc_if->sk_mii;
   2247 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2248 	uint16_t status;
   2249 
   2250 
   2251 	DPRINTFN(3, ("sk_intr_bcom\n"));
   2252 
   2253 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2254 
   2255 	/*
   2256 	 * Read the PHY interrupt register to make sure
   2257 	 * we clear any pending interrupts.
   2258 	 */
   2259 	sk_xmac_miibus_readreg(sc_if->sk_dev,
   2260 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR, &status);
   2261 
   2262 	if (!(ifp->if_flags & IFF_RUNNING)) {
   2263 		sk_init_xmac(sc_if);
   2264 		return;
   2265 	}
   2266 
   2267 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
   2268 		uint16_t lstat;
   2269 		sk_xmac_miibus_readreg(sc_if->sk_dev,
   2270 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS, &lstat);
   2271 
   2272 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
   2273 			(void)mii_mediachg(mii);
   2274 			/* Turn off the link LED. */
   2275 			SK_IF_WRITE_1(sc_if, 0,
   2276 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2277 			sc_if->sk_link = 0;
   2278 		} else if (status & BRGPHY_ISR_LNK_CHG) {
   2279 			sk_xmac_miibus_writereg(sc_if->sk_dev,
   2280 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
   2281 			mii_tick(mii);
   2282 			sc_if->sk_link = 1;
   2283 			/* Turn on the link LED. */
   2284 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2285 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
   2286 			    SK_LINKLED_BLINK_OFF);
   2287 			mii_pollstat(mii);
   2288 		} else {
   2289 			mii_tick(mii);
   2290 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
   2291 		}
   2292 	}
   2293 
   2294 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2295 }
   2296 
   2297 void
   2298 sk_intr_xmac(struct sk_if_softc	*sc_if)
   2299 {
   2300 	uint16_t status = SK_XM_READ_2(sc_if, XM_ISR);
   2301 
   2302 	DPRINTFN(3, ("sk_intr_xmac\n"));
   2303 
   2304 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
   2305 		if (status & XM_ISR_GP0_SET) {
   2306 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2307 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2308 		}
   2309 
   2310 		if (status & XM_ISR_AUTONEG_DONE) {
   2311 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2312 		}
   2313 	}
   2314 
   2315 	if (status & XM_IMR_TX_UNDERRUN)
   2316 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
   2317 
   2318 	if (status & XM_IMR_RX_OVERRUN)
   2319 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
   2320 }
   2321 
   2322 void
   2323 sk_intr_yukon(struct sk_if_softc *sc_if)
   2324 {
   2325 #ifdef SK_DEBUG
   2326 	int status;
   2327 
   2328 	status =
   2329 #endif
   2330 		SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2331 
   2332 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
   2333 }
   2334 
   2335 int
   2336 sk_intr(void *xsc)
   2337 {
   2338 	struct sk_softc		*sc = xsc;
   2339 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
   2340 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
   2341 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
   2342 	uint32_t		status;
   2343 	int			claimed = 0;
   2344 
   2345 	if (sc_if0 != NULL)
   2346 		ifp0 = &sc_if0->sk_ethercom.ec_if;
   2347 	if (sc_if1 != NULL)
   2348 		ifp1 = &sc_if1->sk_ethercom.ec_if;
   2349 
   2350 	for (;;) {
   2351 		status = CSR_READ_4(sc, SK_ISSR);
   2352 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
   2353 
   2354 		if (!(status & sc->sk_intrmask))
   2355 			break;
   2356 
   2357 		claimed = 1;
   2358 
   2359 		/* Handle receive interrupts first. */
   2360 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
   2361 			sk_rxeof(sc_if0);
   2362 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
   2363 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2364 		}
   2365 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
   2366 			sk_rxeof(sc_if1);
   2367 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
   2368 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
   2369 		}
   2370 
   2371 		/* Then transmit interrupts. */
   2372 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
   2373 			sk_txeof(sc_if0);
   2374 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
   2375 			    SK_TXBMU_CLR_IRQ_EOF);
   2376 		}
   2377 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
   2378 			sk_txeof(sc_if1);
   2379 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
   2380 			    SK_TXBMU_CLR_IRQ_EOF);
   2381 		}
   2382 
   2383 		/* Then MAC interrupts. */
   2384 		if (sc_if0 && (status & SK_ISR_MAC1) &&
   2385 		    (ifp0->if_flags & IFF_RUNNING)) {
   2386 			if (sc->sk_type == SK_GENESIS)
   2387 				sk_intr_xmac(sc_if0);
   2388 			else
   2389 				sk_intr_yukon(sc_if0);
   2390 		}
   2391 
   2392 		if (sc_if1 && (status & SK_ISR_MAC2) &&
   2393 		    (ifp1->if_flags & IFF_RUNNING)) {
   2394 			if (sc->sk_type == SK_GENESIS)
   2395 				sk_intr_xmac(sc_if1);
   2396 			else
   2397 				sk_intr_yukon(sc_if1);
   2398 
   2399 		}
   2400 
   2401 		if (status & SK_ISR_EXTERNAL_REG) {
   2402 			if (sc_if0 != NULL &&
   2403 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
   2404 				sk_intr_bcom(sc_if0);
   2405 
   2406 			if (sc_if1 != NULL &&
   2407 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
   2408 				sk_intr_bcom(sc_if1);
   2409 		}
   2410 	}
   2411 
   2412 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2413 
   2414 	if (ifp0 != NULL)
   2415 		if_schedule_deferred_start(ifp0);
   2416 	if (ifp1 != NULL)
   2417 		if_schedule_deferred_start(ifp1);
   2418 
   2419 	KASSERT(sc->rnd_attached > 0);
   2420 	rnd_add_uint32(&sc->rnd_source, status);
   2421 
   2422 	if (sc->sk_int_mod_pending)
   2423 		sk_update_int_mod(sc);
   2424 
   2425 	return claimed;
   2426 }
   2427 
   2428 void
   2429 sk_init_xmac(struct sk_if_softc	*sc_if)
   2430 {
   2431 	struct sk_softc		*sc = sc_if->sk_softc;
   2432 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2433 	static const struct sk_bcom_hack     bhack[] = {
   2434 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
   2435 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
   2436 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
   2437 	{ 0, 0 } };
   2438 
   2439 	DPRINTFN(1, ("sk_init_xmac\n"));
   2440 
   2441 	/* Unreset the XMAC. */
   2442 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
   2443 	DELAY(1000);
   2444 
   2445 	/* Reset the XMAC's internal state. */
   2446 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2447 
   2448 	/* Save the XMAC II revision */
   2449 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
   2450 
   2451 	/*
   2452 	 * Perform additional initialization for external PHYs,
   2453 	 * namely for the 1000baseTX cards that use the XMAC's
   2454 	 * GMII mode.
   2455 	 */
   2456 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2457 		int			i = 0;
   2458 		uint32_t		val;
   2459 		uint16_t		phyval;
   2460 
   2461 		/* Take PHY out of reset. */
   2462 		val = sk_win_read_4(sc, SK_GPIO);
   2463 		if (sc_if->sk_port == SK_PORT_A)
   2464 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
   2465 		else
   2466 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
   2467 		sk_win_write_4(sc, SK_GPIO, val);
   2468 
   2469 		/* Enable GMII mode on the XMAC. */
   2470 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
   2471 
   2472 		sk_xmac_miibus_writereg(sc_if->sk_dev,
   2473 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
   2474 		DELAY(10000);
   2475 		sk_xmac_miibus_writereg(sc_if->sk_dev,
   2476 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
   2477 
   2478 		/*
   2479 		 * Early versions of the BCM5400 apparently have
   2480 		 * a bug that requires them to have their reserved
   2481 		 * registers initialized to some magic values. I don't
   2482 		 * know what the numbers do, I'm just the messenger.
   2483 		 */
   2484 		sk_xmac_miibus_readreg(sc_if->sk_dev,
   2485 		    SK_PHYADDR_BCOM, 0x03, &phyval);
   2486 		if (phyval == 0x6041) {
   2487 			while (bhack[i].reg) {
   2488 				sk_xmac_miibus_writereg(sc_if->sk_dev,
   2489 				    SK_PHYADDR_BCOM, bhack[i].reg,
   2490 				    bhack[i].val);
   2491 				i++;
   2492 			}
   2493 		}
   2494 	}
   2495 
   2496 	/* Set station address */
   2497 	SK_XM_WRITE_2(sc_if, XM_PAR0,
   2498 		      *(uint16_t *)(&sc_if->sk_enaddr[0]));
   2499 	SK_XM_WRITE_2(sc_if, XM_PAR1,
   2500 		      *(uint16_t *)(&sc_if->sk_enaddr[2]));
   2501 	SK_XM_WRITE_2(sc_if, XM_PAR2,
   2502 		      *(uint16_t *)(&sc_if->sk_enaddr[4]));
   2503 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
   2504 
   2505 	if (ifp->if_flags & IFF_PROMISC)
   2506 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2507 	else
   2508 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2509 
   2510 	if (ifp->if_flags & IFF_BROADCAST)
   2511 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2512 	else
   2513 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2514 
   2515 	/* We don't need the FCS appended to the packet. */
   2516 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
   2517 
   2518 	/* We want short frames padded to 60 bytes. */
   2519 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
   2520 
   2521 	/*
   2522 	 * Enable the reception of all error frames. This is is
   2523 	 * a necessary evil due to the design of the XMAC. The
   2524 	 * XMAC's receive FIFO is only 8K in size, however jumbo
   2525 	 * frames can be up to 9000 bytes in length. When bad
   2526 	 * frame filtering is enabled, the XMAC's RX FIFO operates
   2527 	 * in 'store and forward' mode. For this to work, the
   2528 	 * entire frame has to fit into the FIFO, but that means
   2529 	 * that jumbo frames larger than 8192 bytes will be
   2530 	 * truncated. Disabling all bad frame filtering causes
   2531 	 * the RX FIFO to operate in streaming mode, in which
   2532 	 * case the XMAC will start transfering frames out of the
   2533 	 * RX FIFO as soon as the FIFO threshold is reached.
   2534 	 */
   2535 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
   2536 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
   2537 	    XM_MODE_RX_INRANGELEN);
   2538 
   2539 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2540 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2541 	else
   2542 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2543 
   2544 	/*
   2545 	 * Bump up the transmit threshold. This helps hold off transmit
   2546 	 * underruns when we're blasting traffic from both ports at once.
   2547 	 */
   2548 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
   2549 
   2550 	/* Set multicast filter */
   2551 	sk_setmulti(sc_if);
   2552 
   2553 	/* Clear and enable interrupts */
   2554 	SK_XM_READ_2(sc_if, XM_ISR);
   2555 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
   2556 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
   2557 	else
   2558 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2559 
   2560 	/* Configure MAC arbiter */
   2561 	switch (sc_if->sk_xmac_rev) {
   2562 	case XM_XMAC_REV_B2:
   2563 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
   2564 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
   2565 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
   2566 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
   2567 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
   2568 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
   2569 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
   2570 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
   2571 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2572 		break;
   2573 	case XM_XMAC_REV_C1:
   2574 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
   2575 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
   2576 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
   2577 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
   2578 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
   2579 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
   2580 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
   2581 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
   2582 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2583 		break;
   2584 	default:
   2585 		break;
   2586 	}
   2587 	sk_win_write_2(sc, SK_MACARB_CTL,
   2588 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
   2589 
   2590 	sc_if->sk_link = 1;
   2591 }
   2592 
   2593 void sk_init_yukon(struct sk_if_softc *sc_if)
   2594 {
   2595 	uint32_t		/*mac, */phy;
   2596 	uint16_t		reg;
   2597 	struct sk_softc		*sc;
   2598 	int			i;
   2599 
   2600 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
   2601 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
   2602 
   2603 	sc = sc_if->sk_softc;
   2604 	if (sc->sk_type == SK_YUKON_LITE &&
   2605 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
   2606 		/* Take PHY out of reset. */
   2607 		sk_win_write_4(sc, SK_GPIO,
   2608 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
   2609 	}
   2610 
   2611 
   2612 	/* GMAC and GPHY Reset */
   2613 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
   2614 
   2615 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
   2616 
   2617 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2618 	DELAY(1000);
   2619 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
   2620 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2621 	DELAY(1000);
   2622 
   2623 
   2624 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
   2625 
   2626 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
   2627 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
   2628 
   2629 	switch (sc_if->sk_softc->sk_pmd) {
   2630 	case IFM_1000_SX:
   2631 	case IFM_1000_LX:
   2632 		phy |= SK_GPHY_FIBER;
   2633 		break;
   2634 
   2635 	case IFM_1000_CX:
   2636 	case IFM_1000_T:
   2637 		phy |= SK_GPHY_COPPER;
   2638 		break;
   2639 	}
   2640 
   2641 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
   2642 
   2643 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
   2644 	DELAY(1000);
   2645 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
   2646 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
   2647 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
   2648 
   2649 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
   2650 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
   2651 
   2652 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
   2653 
   2654 	/* unused read of the interrupt source register */
   2655 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
   2656 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2657 
   2658 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
   2659 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
   2660 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2661 
   2662 	/* MIB Counter Clear Mode set */
   2663 	reg |= YU_PAR_MIB_CLR;
   2664 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2665 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
   2666 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2667 
   2668 	/* MIB Counter Clear Mode clear */
   2669 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
   2670 	reg &= ~YU_PAR_MIB_CLR;
   2671 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2672 
   2673 	/* receive control reg */
   2674 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
   2675 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
   2676 		      YU_RCR_CRCR);
   2677 
   2678 	/* transmit parameter register */
   2679 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
   2680 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
   2681 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
   2682 
   2683 	/* serial mode register */
   2684 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
   2685 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
   2686 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
   2687 		      YU_SMR_IPG_DATA(0x1e));
   2688 
   2689 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
   2690 	/* Setup Yukon's address */
   2691 	for (i = 0; i < 3; i++) {
   2692 		/* Write Source Address 1 (unicast filter) */
   2693 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
   2694 			      sc_if->sk_enaddr[i * 2] |
   2695 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
   2696 	}
   2697 
   2698 	for (i = 0; i < 3; i++) {
   2699 		reg = sk_win_read_2(sc_if->sk_softc,
   2700 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
   2701 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
   2702 	}
   2703 
   2704 	/* Set multicast filter */
   2705 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
   2706 	sk_setmulti(sc_if);
   2707 
   2708 	/* enable interrupt mask for counter overflows */
   2709 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
   2710 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
   2711 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
   2712 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
   2713 
   2714 	/* Configure RX MAC FIFO */
   2715 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
   2716 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
   2717 
   2718 	/* Configure TX MAC FIFO */
   2719 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
   2720 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
   2721 
   2722 	DPRINTFN(6, ("sk_init_yukon: end\n"));
   2723 }
   2724 
   2725 /*
   2726  * Note that to properly initialize any part of the GEnesis chip,
   2727  * you first have to take it out of reset mode.
   2728  */
   2729 int
   2730 sk_init(struct ifnet *ifp)
   2731 {
   2732 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2733 	struct sk_softc		*sc = sc_if->sk_softc;
   2734 	struct mii_data		*mii = &sc_if->sk_mii;
   2735 	int			rc = 0, s;
   2736 	uint32_t		imr, imtimer_ticks;
   2737 
   2738 	DPRINTFN(1, ("sk_init\n"));
   2739 
   2740 	s = splnet();
   2741 
   2742 	if (ifp->if_flags & IFF_RUNNING) {
   2743 		splx(s);
   2744 		return 0;
   2745 	}
   2746 
   2747 	/* Cancel pending I/O and free all RX/TX buffers. */
   2748 	sk_stop(ifp,0);
   2749 
   2750 	if (sc->sk_type == SK_GENESIS) {
   2751 		/* Configure LINK_SYNC LED */
   2752 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
   2753 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2754 			      SK_LINKLED_LINKSYNC_ON);
   2755 
   2756 		/* Configure RX LED */
   2757 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
   2758 			      SK_RXLEDCTL_COUNTER_START);
   2759 
   2760 		/* Configure TX LED */
   2761 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
   2762 			      SK_TXLEDCTL_COUNTER_START);
   2763 	}
   2764 
   2765 	/* Configure I2C registers */
   2766 
   2767 	/* Configure XMAC(s) */
   2768 	switch (sc->sk_type) {
   2769 	case SK_GENESIS:
   2770 		sk_init_xmac(sc_if);
   2771 		break;
   2772 	case SK_YUKON:
   2773 	case SK_YUKON_LITE:
   2774 	case SK_YUKON_LP:
   2775 		sk_init_yukon(sc_if);
   2776 		break;
   2777 	}
   2778 	if ((rc = mii_mediachg(mii)) == ENXIO)
   2779 		rc = 0;
   2780 	else if (rc != 0)
   2781 		goto out;
   2782 
   2783 	if (sc->sk_type == SK_GENESIS) {
   2784 		/* Configure MAC FIFOs */
   2785 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
   2786 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
   2787 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
   2788 
   2789 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
   2790 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
   2791 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
   2792 	}
   2793 
   2794 	/* Configure transmit arbiter(s) */
   2795 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
   2796 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
   2797 
   2798 	/* Configure RAMbuffers */
   2799 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
   2800 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
   2801 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
   2802 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
   2803 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
   2804 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
   2805 
   2806 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
   2807 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
   2808 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
   2809 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
   2810 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
   2811 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
   2812 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
   2813 
   2814 	/* Configure BMUs */
   2815 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
   2816 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
   2817 	    SK_RX_RING_ADDR(sc_if, 0));
   2818 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
   2819 
   2820 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
   2821 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
   2822 	    SK_TX_RING_ADDR(sc_if, 0));
   2823 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
   2824 
   2825 	/* Init descriptors */
   2826 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
   2827 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
   2828 		    "memory for rx buffers\n");
   2829 		sk_stop(ifp,0);
   2830 		splx(s);
   2831 		return ENOBUFS;
   2832 	}
   2833 
   2834 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
   2835 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
   2836 		    "memory for tx buffers\n");
   2837 		sk_stop(ifp,0);
   2838 		splx(s);
   2839 		return ENOBUFS;
   2840 	}
   2841 
   2842 	/* Set interrupt moderation if changed via sysctl. */
   2843 	switch (sc->sk_type) {
   2844 	case SK_GENESIS:
   2845 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   2846 		break;
   2847 	case SK_YUKON_EC:
   2848 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   2849 		break;
   2850 	default:
   2851 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   2852 	}
   2853 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
   2854 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
   2855 		sk_win_write_4(sc, SK_IMTIMERINIT,
   2856 		    SK_IM_USECS(sc->sk_int_mod));
   2857 		aprint_verbose_dev(sc->sk_dev,
   2858 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
   2859 	}
   2860 
   2861 	/* Configure interrupt handling */
   2862 	CSR_READ_4(sc, SK_ISSR);
   2863 	if (sc_if->sk_port == SK_PORT_A)
   2864 		sc->sk_intrmask |= SK_INTRS1;
   2865 	else
   2866 		sc->sk_intrmask |= SK_INTRS2;
   2867 
   2868 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
   2869 
   2870 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2871 
   2872 	/* Start BMUs. */
   2873 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
   2874 
   2875 	if (sc->sk_type == SK_GENESIS) {
   2876 		/* Enable XMACs TX and RX state machines */
   2877 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
   2878 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
   2879 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
   2880 	}
   2881 
   2882 	if (SK_YUKON_FAMILY(sc->sk_type)) {
   2883 		uint16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
   2884 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
   2885 #if 0
   2886 		/* XXX disable 100Mbps and full duplex mode? */
   2887 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
   2888 #endif
   2889 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
   2890 	}
   2891 
   2892 
   2893 	ifp->if_flags |= IFF_RUNNING;
   2894 	ifp->if_flags &= ~IFF_OACTIVE;
   2895 	callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2896 
   2897 out:
   2898 	splx(s);
   2899 	return rc;
   2900 }
   2901 
   2902 void
   2903 sk_stop(struct ifnet *ifp, int disable)
   2904 {
   2905 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2906 	struct sk_softc		*sc = sc_if->sk_softc;
   2907 	int			i;
   2908 
   2909 	DPRINTFN(1, ("sk_stop\n"));
   2910 
   2911 	callout_stop(&sc_if->sk_tick_ch);
   2912 
   2913 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2914 		uint32_t		val;
   2915 
   2916 		/* Put PHY back into reset. */
   2917 		val = sk_win_read_4(sc, SK_GPIO);
   2918 		if (sc_if->sk_port == SK_PORT_A) {
   2919 			val |= SK_GPIO_DIR0;
   2920 			val &= ~SK_GPIO_DAT0;
   2921 		} else {
   2922 			val |= SK_GPIO_DIR2;
   2923 			val &= ~SK_GPIO_DAT2;
   2924 		}
   2925 		sk_win_write_4(sc, SK_GPIO, val);
   2926 	}
   2927 
   2928 	/* Turn off various components of this interface. */
   2929 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2930 	switch (sc->sk_type) {
   2931 	case SK_GENESIS:
   2932 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
   2933 			      SK_TXMACCTL_XMAC_RESET);
   2934 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
   2935 		break;
   2936 	case SK_YUKON:
   2937 	case SK_YUKON_LITE:
   2938 	case SK_YUKON_LP:
   2939 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
   2940 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
   2941 		break;
   2942 	}
   2943 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
   2944 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2945 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
   2946 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2947 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
   2948 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2949 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2950 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2951 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
   2952 
   2953 	/* Disable interrupts */
   2954 	if (sc_if->sk_port == SK_PORT_A)
   2955 		sc->sk_intrmask &= ~SK_INTRS1;
   2956 	else
   2957 		sc->sk_intrmask &= ~SK_INTRS2;
   2958 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2959 
   2960 	SK_XM_READ_2(sc_if, XM_ISR);
   2961 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2962 
   2963 	/* Free RX and TX mbufs still in the queues. */
   2964 	for (i = 0; i < SK_RX_RING_CNT; i++) {
   2965 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
   2966 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
   2967 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   2968 		}
   2969 	}
   2970 
   2971 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   2972 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
   2973 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
   2974 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   2975 		}
   2976 	}
   2977 
   2978 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
   2979 }
   2980 
   2981 /* Power Management Framework */
   2982 
   2983 static bool
   2984 skc_suspend(device_t dv, const pmf_qual_t *qual)
   2985 {
   2986 	struct sk_softc *sc = device_private(dv);
   2987 
   2988 	DPRINTFN(2, ("skc_suspend\n"));
   2989 
   2990 	/* Turn off the driver is loaded LED */
   2991 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   2992 
   2993 	return true;
   2994 }
   2995 
   2996 static bool
   2997 skc_resume(device_t dv, const pmf_qual_t *qual)
   2998 {
   2999 	struct sk_softc *sc = device_private(dv);
   3000 
   3001 	DPRINTFN(2, ("skc_resume\n"));
   3002 
   3003 	sk_reset(sc);
   3004 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   3005 
   3006 	return true;
   3007 }
   3008 
   3009 static bool
   3010 sk_resume(device_t dv, const pmf_qual_t *qual)
   3011 {
   3012 	struct sk_if_softc *sc_if = device_private(dv);
   3013 
   3014 	sk_init_yukon(sc_if);
   3015 	return true;
   3016 }
   3017 
   3018 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
   3019     skc_probe, skc_attach, NULL, NULL);
   3020 
   3021 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
   3022     sk_probe, sk_attach, NULL, NULL);
   3023 
   3024 #ifdef SK_DEBUG
   3025 void
   3026 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
   3027 {
   3028 #define DESC_PRINT(X)					\
   3029 	if (X)					\
   3030 		printf("txdesc[%d]." #X "=%#x\n",	\
   3031 		       idx, X);
   3032 
   3033 	DESC_PRINT(le32toh(desc->sk_ctl));
   3034 	DESC_PRINT(le32toh(desc->sk_next));
   3035 	DESC_PRINT(le32toh(desc->sk_data_lo));
   3036 	DESC_PRINT(le32toh(desc->sk_data_hi));
   3037 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
   3038 	DESC_PRINT(le16toh(desc->sk_rsvd0));
   3039 	DESC_PRINT(le16toh(desc->sk_csum_startval));
   3040 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
   3041 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
   3042 	DESC_PRINT(le16toh(desc->sk_rsvd1));
   3043 #undef PRINT
   3044 }
   3045 
   3046 void
   3047 sk_dump_bytes(const char *data, int len)
   3048 {
   3049 	int c, i, j;
   3050 
   3051 	for (i = 0; i < len; i += 16) {
   3052 		printf("%08x  ", i);
   3053 		c = len - i;
   3054 		if (c > 16) c = 16;
   3055 
   3056 		for (j = 0; j < c; j++) {
   3057 			printf("%02x ", data[i + j] & 0xff);
   3058 			if ((j & 0xf) == 7 && j > 0)
   3059 				printf(" ");
   3060 		}
   3061 
   3062 		for (; j < 16; j++)
   3063 			printf("   ");
   3064 		printf("  ");
   3065 
   3066 		for (j = 0; j < c; j++) {
   3067 			int ch = data[i + j] & 0xff;
   3068 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
   3069 		}
   3070 
   3071 		printf("\n");
   3072 
   3073 		if (c < 16)
   3074 			break;
   3075 	}
   3076 }
   3077 
   3078 void
   3079 sk_dump_mbuf(struct mbuf *m)
   3080 {
   3081 	int count = m->m_pkthdr.len;
   3082 
   3083 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
   3084 
   3085 	while (count > 0 && m) {
   3086 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
   3087 		       m, m->m_data, m->m_len);
   3088 		sk_dump_bytes(mtod(m, char *), m->m_len);
   3089 
   3090 		count -= m->m_len;
   3091 		m = m->m_next;
   3092 	}
   3093 }
   3094 #endif
   3095 
   3096 static int
   3097 sk_sysctl_handler(SYSCTLFN_ARGS)
   3098 {
   3099 	int error, t;
   3100 	struct sysctlnode node;
   3101 	struct sk_softc *sc;
   3102 
   3103 	node = *rnode;
   3104 	sc = node.sysctl_data;
   3105 	t = sc->sk_int_mod;
   3106 	node.sysctl_data = &t;
   3107 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3108 	if (error || newp == NULL)
   3109 		return error;
   3110 
   3111 	if (t < SK_IM_MIN || t > SK_IM_MAX)
   3112 		return EINVAL;
   3113 
   3114 	/* update the softc with sysctl-changed value, and mark
   3115 	   for hardware update */
   3116 	sc->sk_int_mod = t;
   3117 	sc->sk_int_mod_pending = 1;
   3118 	return 0;
   3119 }
   3120 
   3121 /*
   3122  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
   3123  * set up in skc_attach()
   3124  */
   3125 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
   3126 {
   3127 	int rc;
   3128 	const struct sysctlnode *node;
   3129 
   3130 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   3131 	    0, CTLTYPE_NODE, "sk",
   3132 	    SYSCTL_DESCR("sk interface controls"),
   3133 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   3134 		goto err;
   3135 	}
   3136 
   3137 	sk_root_num = node->sysctl_num;
   3138 	return;
   3139 
   3140 err:
   3141 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
   3142 }
   3143