if_sk.c revision 1.96 1 /* $NetBSD: if_sk.c,v 1.96 2019/05/23 10:57:28 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
30
31 /*
32 * Copyright (c) 1997, 1998, 1999, 2000
33 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by Bill Paul.
46 * 4. Neither the name of the author nor the names of any co-contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60 * THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63 */
64
65 /*
66 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
67 *
68 * Permission to use, copy, modify, and distribute this software for any
69 * purpose with or without fee is hereby granted, provided that the above
70 * copyright notice and this permission notice appear in all copies.
71 *
72 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79 */
80
81 /*
82 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83 * the SK-984x series adapters, both single port and dual port.
84 * References:
85 * The XaQti XMAC II datasheet,
86 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87 * The SysKonnect GEnesis manual, http://www.syskonnect.com
88 *
89 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91 * convenience to others until Vitesse corrects this problem:
92 *
93 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 *
95 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
96 * Department of Electrical Engineering
97 * Columbia University, New York City
98 */
99
100 /*
101 * The SysKonnect gigabit ethernet adapters consist of two main
102 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104 * components and a PHY while the GEnesis controller provides a PCI
105 * interface with DMA support. Each card may have between 512K and
106 * 2MB of SRAM on board depending on the configuration.
107 *
108 * The SysKonnect GEnesis controller can have either one or two XMAC
109 * chips connected to it, allowing single or dual port NIC configurations.
110 * SysKonnect has the distinction of being the only vendor on the market
111 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113 * XMAC registers. This driver takes advantage of these features to allow
114 * both XMACs to operate as independent interfaces.
115 */
116
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.96 2019/05/23 10:57:28 msaitoh Exp $");
119
120 #include <sys/param.h>
121 #include <sys/systm.h>
122 #include <sys/sockio.h>
123 #include <sys/mbuf.h>
124 #include <sys/malloc.h>
125 #include <sys/mutex.h>
126 #include <sys/kernel.h>
127 #include <sys/socket.h>
128 #include <sys/device.h>
129 #include <sys/queue.h>
130 #include <sys/callout.h>
131 #include <sys/sysctl.h>
132 #include <sys/endian.h>
133
134 #include <net/if.h>
135 #include <net/if_dl.h>
136 #include <net/if_types.h>
137
138 #include <net/if_media.h>
139
140 #include <net/bpf.h>
141 #include <sys/rndsource.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145 #include <dev/mii/brgphyreg.h>
146
147 #include <dev/pci/pcireg.h>
148 #include <dev/pci/pcivar.h>
149 #include <dev/pci/pcidevs.h>
150
151 /* #define SK_USEIOSPACE */
152
153 #include <dev/pci/if_skreg.h>
154 #include <dev/pci/if_skvar.h>
155
156 int skc_probe(device_t, cfdata_t, void *);
157 void skc_attach(device_t, device_t, void *aux);
158 int sk_probe(device_t, cfdata_t, void *);
159 void sk_attach(device_t, device_t, void *aux);
160 int skcprint(void *, const char *);
161 int sk_intr(void *);
162 void sk_intr_bcom(struct sk_if_softc *);
163 void sk_intr_xmac(struct sk_if_softc *);
164 void sk_intr_yukon(struct sk_if_softc *);
165 void sk_rxeof(struct sk_if_softc *);
166 void sk_txeof(struct sk_if_softc *);
167 int sk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
168 void sk_start(struct ifnet *);
169 int sk_ioctl(struct ifnet *, u_long, void *);
170 int sk_init(struct ifnet *);
171 void sk_init_xmac(struct sk_if_softc *);
172 void sk_init_yukon(struct sk_if_softc *);
173 void sk_stop(struct ifnet *, int);
174 void sk_watchdog(struct ifnet *);
175 void sk_shutdown(void *);
176 int sk_ifmedia_upd(struct ifnet *);
177 void sk_reset(struct sk_softc *);
178 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
179 int sk_alloc_jumbo_mem(struct sk_if_softc *);
180 void sk_free_jumbo_mem(struct sk_if_softc *);
181 void *sk_jalloc(struct sk_if_softc *);
182 void sk_jfree(struct mbuf *, void *, size_t, void *);
183 int sk_init_rx_ring(struct sk_if_softc *);
184 int sk_init_tx_ring(struct sk_if_softc *);
185 uint8_t sk_vpd_readbyte(struct sk_softc *, int);
186 void sk_vpd_read_res(struct sk_softc *,
187 struct vpd_res *, int);
188 void sk_vpd_read(struct sk_softc *);
189
190 void sk_update_int_mod(struct sk_softc *);
191
192 int sk_xmac_miibus_readreg(device_t, int, int, uint16_t *);
193 int sk_xmac_miibus_writereg(device_t, int, int, uint16_t);
194 void sk_xmac_miibus_statchg(struct ifnet *);
195
196 int sk_marv_miibus_readreg(device_t, int, int, uint16_t *);
197 int sk_marv_miibus_writereg(device_t, int, int, uint16_t);
198 void sk_marv_miibus_statchg(struct ifnet *);
199
200 uint32_t sk_xmac_hash(void *);
201 uint32_t sk_yukon_hash(void *);
202 void sk_setfilt(struct sk_if_softc *, void *, int);
203 void sk_setmulti(struct sk_if_softc *);
204 void sk_tick(void *);
205
206 static bool skc_suspend(device_t, const pmf_qual_t *);
207 static bool skc_resume(device_t, const pmf_qual_t *);
208 static bool sk_resume(device_t dv, const pmf_qual_t *);
209
210 /* #define SK_DEBUG 2 */
211 #ifdef SK_DEBUG
212 #define DPRINTF(x) if (skdebug) printf x
213 #define DPRINTFN(n, x) if (skdebug >= (n)) printf x
214 int skdebug = SK_DEBUG;
215
216 void sk_dump_txdesc(struct sk_tx_desc *, int);
217 void sk_dump_mbuf(struct mbuf *);
218 void sk_dump_bytes(const char *, int);
219 #else
220 #define DPRINTF(x)
221 #define DPRINTFN(n, x)
222 #endif
223
224 static int sk_sysctl_handler(SYSCTLFN_PROTO);
225 static int sk_root_num;
226
227 /* supported device vendors */
228 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
229 static const struct sk_product {
230 pci_vendor_id_t sk_vendor;
231 pci_product_id_t sk_product;
232 } sk_products[] = {
233 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
234 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
235 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
236 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
237 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
238 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
239 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
240 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
241 { 0, 0, }
242 };
243
244 #define SK_LINKSYS_EG1032_SUBID 0x00151737
245
246 static inline uint32_t
247 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
248 {
249 #ifdef SK_USEIOSPACE
250 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
251 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
252 #else
253 return CSR_READ_4(sc, reg);
254 #endif
255 }
256
257 static inline uint16_t
258 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
259 {
260 #ifdef SK_USEIOSPACE
261 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
262 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
263 #else
264 return CSR_READ_2(sc, reg);
265 #endif
266 }
267
268 static inline uint8_t
269 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
270 {
271 #ifdef SK_USEIOSPACE
272 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
273 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
274 #else
275 return CSR_READ_1(sc, reg);
276 #endif
277 }
278
279 static inline void
280 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
281 {
282 #ifdef SK_USEIOSPACE
283 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
284 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
285 #else
286 CSR_WRITE_4(sc, reg, x);
287 #endif
288 }
289
290 static inline void
291 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
292 {
293 #ifdef SK_USEIOSPACE
294 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
295 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
296 #else
297 CSR_WRITE_2(sc, reg, x);
298 #endif
299 }
300
301 static inline void
302 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
303 {
304 #ifdef SK_USEIOSPACE
305 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
306 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
307 #else
308 CSR_WRITE_1(sc, reg, x);
309 #endif
310 }
311
312 /*
313 * The VPD EEPROM contains Vital Product Data, as suggested in
314 * the PCI 2.1 specification. The VPD data is separared into areas
315 * denoted by resource IDs. The SysKonnect VPD contains an ID string
316 * resource (the name of the adapter), a read-only area resource
317 * containing various key/data fields and a read/write area which
318 * can be used to store asset management information or log messages.
319 * We read the ID string and read-only into buffers attached to
320 * the controller softc structure for later use. At the moment,
321 * we only use the ID string during sk_attach().
322 */
323 uint8_t
324 sk_vpd_readbyte(struct sk_softc *sc, int addr)
325 {
326 int i;
327
328 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
329 for (i = 0; i < SK_TIMEOUT; i++) {
330 DELAY(1);
331 if (sk_win_read_2(sc,
332 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
333 break;
334 }
335
336 if (i == SK_TIMEOUT)
337 return 0;
338
339 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
340 }
341
342 void
343 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
344 {
345 int i;
346 uint8_t *ptr;
347
348 ptr = (uint8_t *)res;
349 for (i = 0; i < sizeof(struct vpd_res); i++)
350 ptr[i] = sk_vpd_readbyte(sc, i + addr);
351 }
352
353 void
354 sk_vpd_read(struct sk_softc *sc)
355 {
356 int pos = 0, i;
357 struct vpd_res res;
358
359 if (sc->sk_vpd_prodname != NULL)
360 free(sc->sk_vpd_prodname, M_DEVBUF);
361 if (sc->sk_vpd_readonly != NULL)
362 free(sc->sk_vpd_readonly, M_DEVBUF);
363 sc->sk_vpd_prodname = NULL;
364 sc->sk_vpd_readonly = NULL;
365
366 sk_vpd_read_res(sc, &res, pos);
367
368 if (res.vr_id != VPD_RES_ID) {
369 aprint_error_dev(sc->sk_dev,
370 "bad VPD resource id: expected %x got %x\n",
371 VPD_RES_ID, res.vr_id);
372 return;
373 }
374
375 pos += sizeof(res);
376 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
377 if (sc->sk_vpd_prodname == NULL)
378 panic("sk_vpd_read");
379 for (i = 0; i < res.vr_len; i++)
380 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
381 sc->sk_vpd_prodname[i] = '\0';
382 pos += i;
383
384 sk_vpd_read_res(sc, &res, pos);
385
386 if (res.vr_id != VPD_RES_READ) {
387 aprint_error_dev(sc->sk_dev,
388 "bad VPD resource id: expected %x got %x\n",
389 VPD_RES_READ, res.vr_id);
390 return;
391 }
392
393 pos += sizeof(res);
394 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
395 if (sc->sk_vpd_readonly == NULL)
396 panic("sk_vpd_read");
397 for (i = 0; i < res.vr_len ; i++)
398 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
399 }
400
401 int
402 sk_xmac_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
403 {
404 struct sk_if_softc *sc_if = device_private(dev);
405 int i;
406
407 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
408
409 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
410 return -1;
411
412 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
413 SK_XM_READ_2(sc_if, XM_PHY_DATA);
414 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
415 for (i = 0; i < SK_TIMEOUT; i++) {
416 DELAY(1);
417 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
418 XM_MMUCMD_PHYDATARDY)
419 break;
420 }
421
422 if (i == SK_TIMEOUT) {
423 aprint_error_dev(sc_if->sk_dev,
424 "phy failed to come ready\n");
425 return ETIMEDOUT;
426 }
427 }
428 DELAY(1);
429 *val = SK_XM_READ_2(sc_if, XM_PHY_DATA);
430 return 0;
431 }
432
433 int
434 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
435 {
436 struct sk_if_softc *sc_if = device_private(dev);
437 int i;
438
439 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
440
441 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
442 for (i = 0; i < SK_TIMEOUT; i++) {
443 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
444 break;
445 }
446
447 if (i == SK_TIMEOUT) {
448 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
449 return ETIMEDOUT;
450 }
451
452 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
453 for (i = 0; i < SK_TIMEOUT; i++) {
454 DELAY(1);
455 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
456 break;
457 }
458
459 if (i == SK_TIMEOUT) {
460 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
461 return ETIMEDOUT;
462 }
463
464 return 0;
465 }
466
467 void
468 sk_xmac_miibus_statchg(struct ifnet *ifp)
469 {
470 struct sk_if_softc *sc_if = ifp->if_softc;
471 struct mii_data *mii = &sc_if->sk_mii;
472
473 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
474
475 /*
476 * If this is a GMII PHY, manually set the XMAC's
477 * duplex mode accordingly.
478 */
479 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
480 if ((mii->mii_media_active & IFM_FDX) != 0)
481 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
482 else
483 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
484 }
485 }
486
487 int
488 sk_marv_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
489 {
490 struct sk_if_softc *sc_if = device_private(dev);
491 uint16_t data;
492 int i;
493
494 if (phy != 0 ||
495 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
496 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
497 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
498 phy, reg));
499 return -1;
500 }
501
502 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
503 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
504
505 for (i = 0; i < SK_TIMEOUT; i++) {
506 DELAY(1);
507 data = SK_YU_READ_2(sc_if, YUKON_SMICR);
508 if (data & YU_SMICR_READ_VALID)
509 break;
510 }
511
512 if (i == SK_TIMEOUT) {
513 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
514 return ETIMEDOUT;
515 }
516
517 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
518 SK_TIMEOUT));
519
520 *val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
521
522 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
523 phy, reg, *val));
524
525 return 0;
526 }
527
528 int
529 sk_marv_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
530 {
531 struct sk_if_softc *sc_if = device_private(dev);
532 int i;
533
534 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#hx\n",
535 phy, reg, val));
536
537 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
538 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
539 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
540
541 for (i = 0; i < SK_TIMEOUT; i++) {
542 DELAY(1);
543 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
544 break;
545 }
546
547 if (i == SK_TIMEOUT) {
548 printf("%s: phy write timed out\n",
549 device_xname(sc_if->sk_dev));
550 return ETIMEDOUT;
551 }
552
553 return 0;
554 }
555
556 void
557 sk_marv_miibus_statchg(struct ifnet *ifp)
558 {
559 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
560 SK_YU_READ_2(((struct sk_if_softc *)ifp->if_softc),
561 YUKON_GPCR)));
562 }
563
564 uint32_t
565 sk_xmac_hash(void *addr)
566 {
567 uint32_t crc;
568
569 crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
570 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
571 DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
572 return crc;
573 }
574
575 uint32_t
576 sk_yukon_hash(void *addr)
577 {
578 uint32_t crc;
579
580 crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
581 crc &= ((1 << SK_HASH_BITS) - 1);
582 DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
583 return crc;
584 }
585
586 void
587 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
588 {
589 char *addr = addrv;
590 int base = XM_RXFILT_ENTRY(slot);
591
592 SK_XM_WRITE_2(sc_if, base, *(uint16_t *)(&addr[0]));
593 SK_XM_WRITE_2(sc_if, base + 2, *(uint16_t *)(&addr[2]));
594 SK_XM_WRITE_2(sc_if, base + 4, *(uint16_t *)(&addr[4]));
595 }
596
597 void
598 sk_setmulti(struct sk_if_softc *sc_if)
599 {
600 struct sk_softc *sc = sc_if->sk_softc;
601 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
602 uint32_t hashes[2] = { 0, 0 };
603 int h = 0, i;
604 struct ethercom *ec = &sc_if->sk_ethercom;
605 struct ether_multi *enm;
606 struct ether_multistep step;
607 uint8_t dummy[] = { 0, 0, 0, 0, 0, 0 };
608
609 /* First, zot all the existing filters. */
610 switch (sc->sk_type) {
611 case SK_GENESIS:
612 for (i = 1; i < XM_RXFILT_MAX; i++)
613 sk_setfilt(sc_if, (void *)&dummy, i);
614
615 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
616 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
617 break;
618 case SK_YUKON:
619 case SK_YUKON_LITE:
620 case SK_YUKON_LP:
621 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
622 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
623 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
624 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
625 break;
626 }
627
628 /* Now program new ones. */
629 allmulti:
630 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
631 hashes[0] = 0xFFFFFFFF;
632 hashes[1] = 0xFFFFFFFF;
633 } else {
634 i = 1;
635 /* First find the tail of the list. */
636 ETHER_FIRST_MULTI(step, ec, enm);
637 while (enm != NULL) {
638 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
639 ETHER_ADDR_LEN)) {
640 ifp->if_flags |= IFF_ALLMULTI;
641 goto allmulti;
642 }
643 DPRINTFN(2,("multicast address %s\n",
644 ether_sprintf(enm->enm_addrlo)));
645 /*
646 * Program the first XM_RXFILT_MAX multicast groups
647 * into the perfect filter. For all others,
648 * use the hash table.
649 */
650 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
651 sk_setfilt(sc_if, enm->enm_addrlo, i);
652 i++;
653 }
654 else {
655 switch (sc->sk_type) {
656 case SK_GENESIS:
657 h = sk_xmac_hash(enm->enm_addrlo);
658 break;
659 case SK_YUKON:
660 case SK_YUKON_LITE:
661 case SK_YUKON_LP:
662 h = sk_yukon_hash(enm->enm_addrlo);
663 break;
664 }
665 if (h < 32)
666 hashes[0] |= (1 << h);
667 else
668 hashes[1] |= (1 << (h - 32));
669 }
670
671 ETHER_NEXT_MULTI(step, enm);
672 }
673 }
674
675 switch (sc->sk_type) {
676 case SK_GENESIS:
677 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH |
678 XM_MODE_RX_USE_PERFECT);
679 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
680 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
681 break;
682 case SK_YUKON:
683 case SK_YUKON_LITE:
684 case SK_YUKON_LP:
685 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
686 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
687 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
688 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
689 break;
690 }
691 }
692
693 int
694 sk_init_rx_ring(struct sk_if_softc *sc_if)
695 {
696 struct sk_chain_data *cd = &sc_if->sk_cdata;
697 struct sk_ring_data *rd = sc_if->sk_rdata;
698 int i;
699
700 memset((char *)rd->sk_rx_ring, 0,
701 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
702
703 for (i = 0; i < SK_RX_RING_CNT; i++) {
704 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
705 if (i == (SK_RX_RING_CNT - 1)) {
706 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
707 rd->sk_rx_ring[i].sk_next =
708 htole32(SK_RX_RING_ADDR(sc_if, 0));
709 } else {
710 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
711 rd->sk_rx_ring[i].sk_next =
712 htole32(SK_RX_RING_ADDR(sc_if, i+1));
713 }
714 }
715
716 for (i = 0; i < SK_RX_RING_CNT; i++) {
717 if (sk_newbuf(sc_if, i, NULL,
718 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
719 aprint_error_dev(sc_if->sk_dev,
720 "failed alloc of %dth mbuf\n", i);
721 return ENOBUFS;
722 }
723 }
724 sc_if->sk_cdata.sk_rx_prod = 0;
725 sc_if->sk_cdata.sk_rx_cons = 0;
726
727 return 0;
728 }
729
730 int
731 sk_init_tx_ring(struct sk_if_softc *sc_if)
732 {
733 struct sk_chain_data *cd = &sc_if->sk_cdata;
734 struct sk_ring_data *rd = sc_if->sk_rdata;
735 int i;
736
737 memset(sc_if->sk_rdata->sk_tx_ring, 0,
738 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
739
740 for (i = 0; i < SK_TX_RING_CNT; i++) {
741 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
742 if (i == (SK_TX_RING_CNT - 1)) {
743 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
744 rd->sk_tx_ring[i].sk_next =
745 htole32(SK_TX_RING_ADDR(sc_if, 0));
746 } else {
747 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
748 rd->sk_tx_ring[i].sk_next =
749 htole32(SK_TX_RING_ADDR(sc_if, i+1));
750 }
751 }
752
753 sc_if->sk_cdata.sk_tx_prod = 0;
754 sc_if->sk_cdata.sk_tx_cons = 0;
755 sc_if->sk_cdata.sk_tx_cnt = 0;
756
757 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
758 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
759
760 return 0;
761 }
762
763 int
764 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
765 bus_dmamap_t dmamap)
766 {
767 struct mbuf *m_new = NULL;
768 struct sk_chain *c;
769 struct sk_rx_desc *r;
770
771 if (m == NULL) {
772 void *buf = NULL;
773
774 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
775 if (m_new == NULL) {
776 aprint_error_dev(sc_if->sk_dev,
777 "no memory for rx list -- packet dropped!\n");
778 return ENOBUFS;
779 }
780
781 /* Allocate the jumbo buffer */
782 buf = sk_jalloc(sc_if);
783 if (buf == NULL) {
784 m_freem(m_new);
785 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
786 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
787 return ENOBUFS;
788 }
789
790 /* Attach the buffer to the mbuf */
791 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
792 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
793
794 } else {
795 /*
796 * We're re-using a previously allocated mbuf;
797 * be sure to re-init pointers and lengths to
798 * default values.
799 */
800 m_new = m;
801 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
802 m_new->m_data = m_new->m_ext.ext_buf;
803 }
804 m_adj(m_new, ETHER_ALIGN);
805
806 c = &sc_if->sk_cdata.sk_rx_chain[i];
807 r = c->sk_desc;
808 c->sk_mbuf = m_new;
809 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
810 (((vaddr_t)m_new->m_data
811 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
812 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
813
814 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
815
816 return 0;
817 }
818
819 /*
820 * Memory management for jumbo frames.
821 */
822
823 int
824 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
825 {
826 struct sk_softc *sc = sc_if->sk_softc;
827 char *ptr, *kva;
828 bus_dma_segment_t seg;
829 int i, rseg, state, error;
830 struct sk_jpool_entry *entry;
831
832 state = error = 0;
833
834 /* Grab a big chunk o' storage. */
835 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
836 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
837 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
838 return ENOBUFS;
839 }
840
841 state = 1;
842 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
843 BUS_DMA_NOWAIT)) {
844 aprint_error_dev(sc->sk_dev,
845 "can't map dma buffers (%d bytes)\n",
846 SK_JMEM);
847 error = ENOBUFS;
848 goto out;
849 }
850
851 state = 2;
852 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
853 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
854 aprint_error_dev(sc->sk_dev, "can't create dma map\n");
855 error = ENOBUFS;
856 goto out;
857 }
858
859 state = 3;
860 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
861 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
862 aprint_error_dev(sc->sk_dev, "can't load dma map\n");
863 error = ENOBUFS;
864 goto out;
865 }
866
867 state = 4;
868 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
869 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
870
871 LIST_INIT(&sc_if->sk_jfree_listhead);
872 LIST_INIT(&sc_if->sk_jinuse_listhead);
873 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
874
875 /*
876 * Now divide it up into 9K pieces and save the addresses
877 * in an array.
878 */
879 ptr = sc_if->sk_cdata.sk_jumbo_buf;
880 for (i = 0; i < SK_JSLOTS; i++) {
881 sc_if->sk_cdata.sk_jslots[i] = ptr;
882 ptr += SK_JLEN;
883 entry = malloc(sizeof(struct sk_jpool_entry),
884 M_DEVBUF, M_NOWAIT);
885 if (entry == NULL) {
886 aprint_error_dev(sc->sk_dev,
887 "no memory for jumbo buffer queue!\n");
888 error = ENOBUFS;
889 goto out;
890 }
891 entry->slot = i;
892 if (i)
893 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
894 entry, jpool_entries);
895 else
896 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
897 entry, jpool_entries);
898 }
899 out:
900 if (error != 0) {
901 switch (state) {
902 case 4:
903 bus_dmamap_unload(sc->sc_dmatag,
904 sc_if->sk_cdata.sk_rx_jumbo_map);
905 /* FALLTHROUGH */
906 case 3:
907 bus_dmamap_destroy(sc->sc_dmatag,
908 sc_if->sk_cdata.sk_rx_jumbo_map);
909 /* FALLTHROUGH */
910 case 2:
911 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
912 /* FALLTHROUGH */
913 case 1:
914 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
915 break;
916 default:
917 break;
918 }
919 }
920
921 return error;
922 }
923
924 /*
925 * Allocate a jumbo buffer.
926 */
927 void *
928 sk_jalloc(struct sk_if_softc *sc_if)
929 {
930 struct sk_jpool_entry *entry;
931
932 mutex_enter(&sc_if->sk_jpool_mtx);
933 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
934
935 if (entry == NULL) {
936 mutex_exit(&sc_if->sk_jpool_mtx);
937 return NULL;
938 }
939
940 LIST_REMOVE(entry, jpool_entries);
941 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
942 mutex_exit(&sc_if->sk_jpool_mtx);
943 return sc_if->sk_cdata.sk_jslots[entry->slot];
944 }
945
946 /*
947 * Release a jumbo buffer.
948 */
949 void
950 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
951 {
952 struct sk_jpool_entry *entry;
953 struct sk_if_softc *sc;
954 int i;
955
956 /* Extract the softc struct pointer. */
957 sc = (struct sk_if_softc *)arg;
958
959 if (sc == NULL)
960 panic("sk_jfree: can't find softc pointer!");
961
962 /* calculate the slot this buffer belongs to */
963
964 i = ((vaddr_t)buf
965 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
966
967 if ((i < 0) || (i >= SK_JSLOTS))
968 panic("sk_jfree: asked to free buffer that we don't manage!");
969
970 mutex_enter(&sc->sk_jpool_mtx);
971 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
972 if (entry == NULL)
973 panic("sk_jfree: buffer not in use!");
974 entry->slot = i;
975 LIST_REMOVE(entry, jpool_entries);
976 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
977 mutex_exit(&sc->sk_jpool_mtx);
978
979 if (__predict_true(m != NULL))
980 pool_cache_put(mb_cache, m);
981 }
982
983 /*
984 * Set media options.
985 */
986 int
987 sk_ifmedia_upd(struct ifnet *ifp)
988 {
989 struct sk_if_softc *sc_if = ifp->if_softc;
990 int rc;
991
992 (void) sk_init(ifp);
993 if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
994 return 0;
995 return rc;
996 }
997
998 static void
999 sk_promisc(struct sk_if_softc *sc_if, int on)
1000 {
1001 struct sk_softc *sc = sc_if->sk_softc;
1002 switch (sc->sk_type) {
1003 case SK_GENESIS:
1004 if (on)
1005 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1006 else
1007 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1008 break;
1009 case SK_YUKON:
1010 case SK_YUKON_LITE:
1011 case SK_YUKON_LP:
1012 if (on)
1013 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1014 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1015 else
1016 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1017 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1018 break;
1019 default:
1020 aprint_error_dev(sc_if->sk_dev, "Can't set promisc for %d\n",
1021 sc->sk_type);
1022 break;
1023 }
1024 }
1025
1026 int
1027 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
1028 {
1029 struct sk_if_softc *sc_if = ifp->if_softc;
1030 int s, error = 0;
1031
1032 /* DPRINTFN(2, ("sk_ioctl\n")); */
1033
1034 s = splnet();
1035
1036 switch (command) {
1037
1038 case SIOCSIFFLAGS:
1039 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1040 if ((error = ifioctl_common(ifp, command, data)) != 0)
1041 break;
1042 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1043 case IFF_RUNNING:
1044 sk_stop(ifp, 1);
1045 break;
1046 case IFF_UP:
1047 sk_init(ifp);
1048 break;
1049 case IFF_UP | IFF_RUNNING:
1050 if ((ifp->if_flags ^ sc_if->sk_if_flags) == IFF_PROMISC) {
1051 sk_promisc(sc_if, ifp->if_flags & IFF_PROMISC);
1052 sk_setmulti(sc_if);
1053 } else
1054 sk_init(ifp);
1055 break;
1056 }
1057 sc_if->sk_if_flags = ifp->if_flags;
1058 error = 0;
1059 break;
1060
1061 default:
1062 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1063 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1064 break;
1065
1066 error = 0;
1067
1068 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1069 ;
1070 else if (ifp->if_flags & IFF_RUNNING) {
1071 sk_setmulti(sc_if);
1072 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1073 }
1074 break;
1075 }
1076
1077 splx(s);
1078 return error;
1079 }
1080
1081 void
1082 sk_update_int_mod(struct sk_softc *sc)
1083 {
1084 uint32_t imtimer_ticks;
1085
1086 /*
1087 * Configure interrupt moderation. The moderation timer
1088 * defers interrupts specified in the interrupt moderation
1089 * timer mask based on the timeout specified in the interrupt
1090 * moderation timer init register. Each bit in the timer
1091 * register represents one tick, so to specify a timeout in
1092 * microseconds, we have to multiply by the correct number of
1093 * ticks-per-microsecond.
1094 */
1095 switch (sc->sk_type) {
1096 case SK_GENESIS:
1097 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1098 break;
1099 case SK_YUKON_EC:
1100 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1101 break;
1102 default:
1103 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1104 }
1105 aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
1106 sc->sk_int_mod);
1107 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1108 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF | SK_ISR_TX2_S_EOF |
1109 SK_ISR_RX1_EOF | SK_ISR_RX2_EOF);
1110 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1111 sc->sk_int_mod_pending = 0;
1112 }
1113
1114 /*
1115 * Lookup: Check the PCI vendor and device, and return a pointer to
1116 * The structure if the IDs match against our list.
1117 */
1118
1119 static const struct sk_product *
1120 sk_lookup(const struct pci_attach_args *pa)
1121 {
1122 const struct sk_product *psk;
1123
1124 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1125 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1126 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1127 return psk;
1128 }
1129 return NULL;
1130 }
1131
1132 /*
1133 * Probe for a SysKonnect GEnesis chip.
1134 */
1135
1136 int
1137 skc_probe(device_t parent, cfdata_t match, void *aux)
1138 {
1139 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1140 const struct sk_product *psk;
1141 pcireg_t subid;
1142
1143 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1144
1145 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1146 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1147 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1148 subid == SK_LINKSYS_EG1032_SUBID)
1149 return 1;
1150
1151 if ((psk = sk_lookup(pa))) {
1152 return 1;
1153 }
1154 return 0;
1155 }
1156
1157 /*
1158 * Force the GEnesis into reset, then bring it out of reset.
1159 */
1160 void sk_reset(struct sk_softc *sc)
1161 {
1162 DPRINTFN(2, ("sk_reset\n"));
1163
1164 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1165 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1166 if (SK_YUKON_FAMILY(sc->sk_type))
1167 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1168
1169 DELAY(1000);
1170 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1171 DELAY(2);
1172 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1173 if (SK_YUKON_FAMILY(sc->sk_type))
1174 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1175
1176 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1177 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1178 CSR_READ_2(sc, SK_LINK_CTRL)));
1179
1180 if (sc->sk_type == SK_GENESIS) {
1181 /* Configure packet arbiter */
1182 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1183 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1184 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1185 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1186 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1187 }
1188
1189 /* Enable RAM interface */
1190 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1191
1192 sk_update_int_mod(sc);
1193 }
1194
1195 int
1196 sk_probe(device_t parent, cfdata_t match, void *aux)
1197 {
1198 struct skc_attach_args *sa = aux;
1199
1200 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1201 return 0;
1202
1203 return 1;
1204 }
1205
1206 /*
1207 * Each XMAC chip is attached as a separate logical IP interface.
1208 * Single port cards will have only one logical interface of course.
1209 */
1210 void
1211 sk_attach(device_t parent, device_t self, void *aux)
1212 {
1213 struct sk_if_softc *sc_if = device_private(self);
1214 struct sk_softc *sc = device_private(parent);
1215 struct skc_attach_args *sa = aux;
1216 struct sk_txmap_entry *entry;
1217 struct ifnet *ifp;
1218 bus_dma_segment_t seg;
1219 bus_dmamap_t dmamap;
1220 prop_data_t data;
1221 void *kva;
1222 int i, rseg;
1223 int mii_flags = 0;
1224
1225 aprint_naive("\n");
1226
1227 sc_if->sk_dev = self;
1228 sc_if->sk_port = sa->skc_port;
1229 sc_if->sk_softc = sc;
1230 sc->sk_if[sa->skc_port] = sc_if;
1231
1232 if (sa->skc_port == SK_PORT_A)
1233 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1234 if (sa->skc_port == SK_PORT_B)
1235 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1236
1237 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1238
1239 /*
1240 * Get station address for this interface. Note that
1241 * dual port cards actually come with three station
1242 * addresses: one for each port, plus an extra. The
1243 * extra one is used by the SysKonnect driver software
1244 * as a 'virtual' station address for when both ports
1245 * are operating in failover mode. Currently we don't
1246 * use this extra address.
1247 */
1248 data = prop_dictionary_get(device_properties(self), "mac-address");
1249 if (data != NULL) {
1250 /*
1251 * Try to get the station address from device properties
1252 * first, in case the ROM is missing.
1253 */
1254 KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
1255 KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
1256 memcpy(sc_if->sk_enaddr, prop_data_data_nocopy(data),
1257 ETHER_ADDR_LEN);
1258 } else
1259 for (i = 0; i < ETHER_ADDR_LEN; i++)
1260 sc_if->sk_enaddr[i] = sk_win_read_1(sc,
1261 SK_MAC0_0 + (sa->skc_port * 8) + i);
1262
1263 aprint_normal(": Ethernet address %s\n",
1264 ether_sprintf(sc_if->sk_enaddr));
1265
1266 /*
1267 * Set up RAM buffer addresses. The NIC will have a certain
1268 * amount of SRAM on it, somewhere between 512K and 2MB. We
1269 * need to divide this up a) between the transmitter and
1270 * receiver and b) between the two XMACs, if this is a
1271 * dual port NIC. Our algorithm is to divide up the memory
1272 * evenly so that everyone gets a fair share.
1273 */
1274 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1275 uint32_t chunk, val;
1276
1277 chunk = sc->sk_ramsize / 2;
1278 val = sc->sk_rboff / sizeof(uint64_t);
1279 sc_if->sk_rx_ramstart = val;
1280 val += (chunk / sizeof(uint64_t));
1281 sc_if->sk_rx_ramend = val - 1;
1282 sc_if->sk_tx_ramstart = val;
1283 val += (chunk / sizeof(uint64_t));
1284 sc_if->sk_tx_ramend = val - 1;
1285 } else {
1286 uint32_t chunk, val;
1287
1288 chunk = sc->sk_ramsize / 4;
1289 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1290 sizeof(uint64_t);
1291 sc_if->sk_rx_ramstart = val;
1292 val += (chunk / sizeof(uint64_t));
1293 sc_if->sk_rx_ramend = val - 1;
1294 sc_if->sk_tx_ramstart = val;
1295 val += (chunk / sizeof(uint64_t));
1296 sc_if->sk_tx_ramend = val - 1;
1297 }
1298
1299 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1300 " tx_ramstart=%#x tx_ramend=%#x\n",
1301 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1302 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1303
1304 /* Read and save PHY type and set PHY address */
1305 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1306 switch (sc_if->sk_phytype) {
1307 case SK_PHYTYPE_XMAC:
1308 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1309 break;
1310 case SK_PHYTYPE_BCOM:
1311 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1312 break;
1313 case SK_PHYTYPE_MARV_COPPER:
1314 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1315 break;
1316 default:
1317 aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
1318 sc_if->sk_phytype);
1319 return;
1320 }
1321
1322 /* Allocate the descriptor queues. */
1323 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1324 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1325 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
1326 goto fail;
1327 }
1328 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1329 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1330 aprint_error_dev(sc_if->sk_dev,
1331 "can't map dma buffers (%lu bytes)\n",
1332 (u_long) sizeof(struct sk_ring_data));
1333 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1334 goto fail;
1335 }
1336 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1337 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1338 &sc_if->sk_ring_map)) {
1339 aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
1340 bus_dmamem_unmap(sc->sc_dmatag, kva,
1341 sizeof(struct sk_ring_data));
1342 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1343 goto fail;
1344 }
1345 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1346 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1347 aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
1348 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1349 bus_dmamem_unmap(sc->sc_dmatag, kva,
1350 sizeof(struct sk_ring_data));
1351 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1352 goto fail;
1353 }
1354
1355 for (i = 0; i < SK_RX_RING_CNT; i++)
1356 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1357
1358 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1359 for (i = 0; i < SK_TX_RING_CNT; i++) {
1360 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1361
1362 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1363 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1364 aprint_error_dev(sc_if->sk_dev,
1365 "Can't create TX dmamap\n");
1366 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1367 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1368 bus_dmamem_unmap(sc->sc_dmatag, kva,
1369 sizeof(struct sk_ring_data));
1370 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1371 goto fail;
1372 }
1373
1374 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1375 if (!entry) {
1376 aprint_error_dev(sc_if->sk_dev,
1377 "Can't alloc txmap entry\n");
1378 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1379 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1380 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1381 bus_dmamem_unmap(sc->sc_dmatag, kva,
1382 sizeof(struct sk_ring_data));
1383 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1384 goto fail;
1385 }
1386 entry->dmamap = dmamap;
1387 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1388 }
1389
1390 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1391 memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
1392
1393 ifp = &sc_if->sk_ethercom.ec_if;
1394 /* Try to allocate memory for jumbo buffers. */
1395 if (sk_alloc_jumbo_mem(sc_if)) {
1396 aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1397 goto fail;
1398 }
1399 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1400 | ETHERCAP_JUMBO_MTU;
1401
1402 ifp->if_softc = sc_if;
1403 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1404 ifp->if_ioctl = sk_ioctl;
1405 ifp->if_start = sk_start;
1406 ifp->if_stop = sk_stop;
1407 ifp->if_init = sk_init;
1408 ifp->if_watchdog = sk_watchdog;
1409 ifp->if_capabilities = 0;
1410 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1411 IFQ_SET_READY(&ifp->if_snd);
1412 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1413
1414 /*
1415 * Do miibus setup.
1416 */
1417 switch (sc->sk_type) {
1418 case SK_GENESIS:
1419 sk_init_xmac(sc_if);
1420 break;
1421 case SK_YUKON:
1422 case SK_YUKON_LITE:
1423 case SK_YUKON_LP:
1424 sk_init_yukon(sc_if);
1425 break;
1426 default:
1427 aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
1428 sc->sk_type);
1429 goto fail;
1430 }
1431
1432 DPRINTFN(2, ("sk_attach: 1\n"));
1433
1434 sc_if->sk_mii.mii_ifp = ifp;
1435 switch (sc->sk_type) {
1436 case SK_GENESIS:
1437 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1438 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1439 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1440 break;
1441 case SK_YUKON:
1442 case SK_YUKON_LITE:
1443 case SK_YUKON_LP:
1444 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1445 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1446 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1447 mii_flags = MIIF_DOPAUSE;
1448 break;
1449 }
1450
1451 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1452 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1453 sk_ifmedia_upd, ether_mediastatus);
1454 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1455 MII_OFFSET_ANY, mii_flags);
1456 if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
1457 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1458 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER | IFM_MANUAL,
1459 0, NULL);
1460 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER | IFM_MANUAL);
1461 } else
1462 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER | IFM_AUTO);
1463
1464 callout_init(&sc_if->sk_tick_ch, 0);
1465 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1466
1467 DPRINTFN(2, ("sk_attach: 1\n"));
1468
1469 /*
1470 * Call MI attach routines.
1471 */
1472 if_attach(ifp);
1473 if_deferred_start_init(ifp, NULL);
1474
1475 ether_ifattach(ifp, sc_if->sk_enaddr);
1476
1477 if (sc->rnd_attached++ == 0) {
1478 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1479 RND_TYPE_NET, RND_FLAG_DEFAULT);
1480 }
1481
1482 if (pmf_device_register(self, NULL, sk_resume))
1483 pmf_class_network_register(self, ifp);
1484 else
1485 aprint_error_dev(self, "couldn't establish power handler\n");
1486
1487 DPRINTFN(2, ("sk_attach: end\n"));
1488
1489 return;
1490
1491 fail:
1492 sc->sk_if[sa->skc_port] = NULL;
1493 }
1494
1495 int
1496 skcprint(void *aux, const char *pnp)
1497 {
1498 struct skc_attach_args *sa = aux;
1499
1500 if (pnp)
1501 aprint_normal("sk port %c at %s",
1502 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1503 else
1504 aprint_normal(" port %c",
1505 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1506 return UNCONF;
1507 }
1508
1509 /*
1510 * Attach the interface. Allocate softc structures, do ifmedia
1511 * setup and ethernet/BPF attach.
1512 */
1513 void
1514 skc_attach(device_t parent, device_t self, void *aux)
1515 {
1516 struct sk_softc *sc = device_private(self);
1517 struct pci_attach_args *pa = aux;
1518 struct skc_attach_args skca;
1519 pci_chipset_tag_t pc = pa->pa_pc;
1520 #ifndef SK_USEIOSPACE
1521 pcireg_t memtype;
1522 #endif
1523 pci_intr_handle_t ih;
1524 const char *intrstr = NULL;
1525 bus_addr_t iobase;
1526 bus_size_t iosize;
1527 int rc, sk_nodenum;
1528 uint32_t command;
1529 const char *revstr;
1530 const struct sysctlnode *node;
1531 char intrbuf[PCI_INTRSTR_LEN];
1532
1533 sc->sk_dev = self;
1534 aprint_naive("\n");
1535
1536 DPRINTFN(2, ("begin skc_attach\n"));
1537
1538 /*
1539 * Handle power management nonsense.
1540 */
1541 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1542
1543 if (command == 0x01) {
1544 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1545 if (command & SK_PSTATE_MASK) {
1546 uint32_t xiobase, membase, irq;
1547
1548 /* Save important PCI config data. */
1549 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1550 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1551 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1552
1553 /* Reset the power state. */
1554 aprint_normal_dev(sc->sk_dev,
1555 "chip is in D%d power mode -- setting to D0\n",
1556 command & SK_PSTATE_MASK);
1557 command &= 0xFFFFFFFC;
1558 pci_conf_write(pc, pa->pa_tag,
1559 SK_PCI_PWRMGMTCTRL, command);
1560
1561 /* Restore PCI config data. */
1562 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1563 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1564 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1565 }
1566 }
1567
1568 /*
1569 * The firmware might have configured the interface to revert the
1570 * byte order in all descriptors. Make that undone.
1571 */
1572 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_OURREG2);
1573 if (command & SK_REG2_REV_DESC)
1574 pci_conf_write(pc, pa->pa_tag, SK_PCI_OURREG2,
1575 command & ~SK_REG2_REV_DESC);
1576
1577 /*
1578 * Map control/status registers.
1579 */
1580 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1581 command |= PCI_COMMAND_IO_ENABLE |
1582 PCI_COMMAND_MEM_ENABLE |
1583 PCI_COMMAND_MASTER_ENABLE;
1584 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1585 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1586
1587 #ifdef SK_USEIOSPACE
1588 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1589 aprint_error(": failed to enable I/O ports!\n");
1590 return;
1591 }
1592 /*
1593 * Map control/status registers.
1594 */
1595 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1596 &sc->sk_btag, &sc->sk_bhandle,
1597 &iobase, &iosize)) {
1598 aprint_error(": can't find i/o space\n");
1599 return;
1600 }
1601 #else
1602 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1603 aprint_error(": failed to enable memory mapping!\n");
1604 return;
1605 }
1606 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1607 switch (memtype) {
1608 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1609 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1610 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1611 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1612 &iobase, &iosize) == 0)
1613 break;
1614 /* FALLTHROUGH */
1615 default:
1616 aprint_error_dev(sc->sk_dev, "can't find mem space\n");
1617 return;
1618 }
1619
1620 DPRINTFN(2, ("skc_attach: iobase=%#" PRIxPADDR ", iosize=%zx\n",
1621 iobase, iosize));
1622 #endif
1623 sc->sc_dmatag = pa->pa_dmat;
1624
1625 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1626 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1627
1628 /* bail out here if chip is not recognized */
1629 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1630 aprint_error_dev(sc->sk_dev, "unknown chip type\n");
1631 goto fail;
1632 }
1633 if (SK_IS_YUKON2(sc)) {
1634 aprint_error_dev(sc->sk_dev,
1635 "Does not support Yukon2--try msk(4).\n");
1636 goto fail;
1637 }
1638 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1639
1640 /* Allocate interrupt */
1641 if (pci_intr_map(pa, &ih)) {
1642 aprint_error(": couldn't map interrupt\n");
1643 goto fail;
1644 }
1645
1646 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1647 sc->sk_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, sk_intr, sc,
1648 device_xname(sc->sk_dev));
1649 if (sc->sk_intrhand == NULL) {
1650 aprint_error(": couldn't establish interrupt");
1651 if (intrstr != NULL)
1652 aprint_error(" at %s", intrstr);
1653 aprint_error("\n");
1654 goto fail;
1655 }
1656 aprint_normal(": %s\n", intrstr);
1657
1658 /* Reset the adapter. */
1659 sk_reset(sc);
1660
1661 /* Read and save vital product data from EEPROM. */
1662 sk_vpd_read(sc);
1663
1664 if (sc->sk_type == SK_GENESIS) {
1665 uint8_t val = sk_win_read_1(sc, SK_EPROM0);
1666 /* Read and save RAM size and RAMbuffer offset */
1667 switch (val) {
1668 case SK_RAMSIZE_512K_64:
1669 sc->sk_ramsize = 0x80000;
1670 sc->sk_rboff = SK_RBOFF_0;
1671 break;
1672 case SK_RAMSIZE_1024K_64:
1673 sc->sk_ramsize = 0x100000;
1674 sc->sk_rboff = SK_RBOFF_80000;
1675 break;
1676 case SK_RAMSIZE_1024K_128:
1677 sc->sk_ramsize = 0x100000;
1678 sc->sk_rboff = SK_RBOFF_0;
1679 break;
1680 case SK_RAMSIZE_2048K_128:
1681 sc->sk_ramsize = 0x200000;
1682 sc->sk_rboff = SK_RBOFF_0;
1683 break;
1684 default:
1685 aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
1686 val);
1687 goto fail_1;
1688 break;
1689 }
1690
1691 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1692 sc->sk_ramsize, sc->sk_ramsize / 1024,
1693 sc->sk_rboff));
1694 } else {
1695 uint8_t val = sk_win_read_1(sc, SK_EPROM0);
1696 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1697 sc->sk_rboff = SK_RBOFF_0;
1698
1699 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1700 sc->sk_ramsize / 1024, sc->sk_ramsize,
1701 sc->sk_rboff));
1702 }
1703
1704 /* Read and save physical media type */
1705 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1706 case SK_PMD_1000BASESX:
1707 sc->sk_pmd = IFM_1000_SX;
1708 break;
1709 case SK_PMD_1000BASELX:
1710 sc->sk_pmd = IFM_1000_LX;
1711 break;
1712 case SK_PMD_1000BASECX:
1713 sc->sk_pmd = IFM_1000_CX;
1714 break;
1715 case SK_PMD_1000BASETX:
1716 case SK_PMD_1000BASETX_ALT:
1717 sc->sk_pmd = IFM_1000_T;
1718 break;
1719 default:
1720 aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
1721 sk_win_read_1(sc, SK_PMDTYPE));
1722 goto fail_1;
1723 }
1724
1725 /* determine whether to name it with vpd or just make it up */
1726 /* Marvell Yukon VPD's can freqently be bogus */
1727
1728 switch (pa->pa_id) {
1729 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1730 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1731 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1732 case PCI_PRODUCT_3COM_3C940:
1733 case PCI_PRODUCT_DLINK_DGE530T:
1734 case PCI_PRODUCT_DLINK_DGE560T:
1735 case PCI_PRODUCT_DLINK_DGE560T_2:
1736 case PCI_PRODUCT_LINKSYS_EG1032:
1737 case PCI_PRODUCT_LINKSYS_EG1064:
1738 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1739 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1740 case PCI_ID_CODE(PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940):
1741 case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T):
1742 case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T):
1743 case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2):
1744 case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032):
1745 case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064):
1746 sc->sk_name = sc->sk_vpd_prodname;
1747 break;
1748 case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET):
1749 /* whoops yukon vpd prodname bears no resemblance to reality */
1750 switch (sc->sk_type) {
1751 case SK_GENESIS:
1752 sc->sk_name = sc->sk_vpd_prodname;
1753 break;
1754 case SK_YUKON:
1755 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1756 break;
1757 case SK_YUKON_LITE:
1758 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1759 break;
1760 case SK_YUKON_LP:
1761 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1762 break;
1763 default:
1764 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1765 }
1766
1767 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1768
1769 if ( sc->sk_type == SK_YUKON ) {
1770 uint32_t flashaddr;
1771 uint8_t testbyte;
1772
1773 flashaddr = sk_win_read_4(sc, SK_EP_ADDR);
1774
1775 /* test Flash-Address Register */
1776 sk_win_write_1(sc, SK_EP_ADDR+3, 0xff);
1777 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1778
1779 if (testbyte != 0) {
1780 /* this is yukon lite Rev. A0 */
1781 sc->sk_type = SK_YUKON_LITE;
1782 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1783 /* restore Flash-Address Register */
1784 sk_win_write_4(sc, SK_EP_ADDR, flashaddr);
1785 }
1786 }
1787 break;
1788 case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN):
1789 sc->sk_name = sc->sk_vpd_prodname;
1790 break;
1791 default:
1792 sc->sk_name = "Unknown Marvell";
1793 }
1794
1795
1796 if ( sc->sk_type == SK_YUKON_LITE ) {
1797 switch (sc->sk_rev) {
1798 case SK_YUKON_LITE_REV_A0:
1799 revstr = "A0";
1800 break;
1801 case SK_YUKON_LITE_REV_A1:
1802 revstr = "A1";
1803 break;
1804 case SK_YUKON_LITE_REV_A3:
1805 revstr = "A3";
1806 break;
1807 default:
1808 revstr = "";
1809 }
1810 } else {
1811 revstr = "";
1812 }
1813
1814 /* Announce the product name. */
1815 aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
1816 sc->sk_name, revstr, sc->sk_rev);
1817
1818 skca.skc_port = SK_PORT_A;
1819 (void)config_found(sc->sk_dev, &skca, skcprint);
1820
1821 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1822 skca.skc_port = SK_PORT_B;
1823 (void)config_found(sc->sk_dev, &skca, skcprint);
1824 }
1825
1826 /* Turn on the 'driver is loaded' LED. */
1827 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1828
1829 /* skc sysctl setup */
1830
1831 sc->sk_int_mod = SK_IM_DEFAULT;
1832 sc->sk_int_mod_pending = 0;
1833
1834 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1835 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1836 SYSCTL_DESCR("skc per-controller controls"),
1837 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1838 CTL_EOL)) != 0) {
1839 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1840 goto fail_1;
1841 }
1842
1843 sk_nodenum = node->sysctl_num;
1844
1845 /* interrupt moderation time in usecs */
1846 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1847 CTLFLAG_READWRITE,
1848 CTLTYPE_INT, "int_mod",
1849 SYSCTL_DESCR("sk interrupt moderation timer"),
1850 sk_sysctl_handler, 0, (void *)sc,
1851 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1852 CTL_EOL)) != 0) {
1853 aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1854 goto fail_1;
1855 }
1856
1857 if (!pmf_device_register(self, skc_suspend, skc_resume))
1858 aprint_error_dev(self, "couldn't establish power handler\n");
1859
1860 return;
1861
1862 fail_1:
1863 pci_intr_disestablish(pc, sc->sk_intrhand);
1864 fail:
1865 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1866 }
1867
1868 int
1869 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1870 {
1871 struct sk_softc *sc = sc_if->sk_softc;
1872 struct sk_tx_desc *f = NULL;
1873 uint32_t frag, cur, cnt = 0, sk_ctl;
1874 int i;
1875 struct sk_txmap_entry *entry;
1876 bus_dmamap_t txmap;
1877
1878 DPRINTFN(3, ("sk_encap\n"));
1879
1880 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1881 if (entry == NULL) {
1882 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1883 return ENOBUFS;
1884 }
1885 txmap = entry->dmamap;
1886
1887 cur = frag = *txidx;
1888
1889 #ifdef SK_DEBUG
1890 if (skdebug >= 3)
1891 sk_dump_mbuf(m_head);
1892 #endif
1893
1894 /*
1895 * Start packing the mbufs in this chain into
1896 * the fragment pointers. Stop when we run out
1897 * of fragments or hit the end of the mbuf chain.
1898 */
1899 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1900 BUS_DMA_NOWAIT)) {
1901 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1902 return ENOBUFS;
1903 }
1904
1905 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1906
1907 /* Sync the DMA map. */
1908 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1909 BUS_DMASYNC_PREWRITE);
1910
1911 for (i = 0; i < txmap->dm_nsegs; i++) {
1912 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1913 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1914 return ENOBUFS;
1915 }
1916 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1917 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1918 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1919 if (cnt == 0)
1920 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1921 else
1922 sk_ctl |= SK_TXCTL_OWN;
1923 f->sk_ctl = htole32(sk_ctl);
1924 cur = frag;
1925 SK_INC(frag, SK_TX_RING_CNT);
1926 cnt++;
1927 }
1928
1929 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1930 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1931
1932 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1933 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1934 htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
1935
1936 /* Sync descriptors before handing to chip */
1937 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1938 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1939
1940 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1941 htole32(SK_TXCTL_OWN);
1942
1943 /* Sync first descriptor to hand it off */
1944 SK_CDTXSYNC(sc_if, *txidx, 1,
1945 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1946
1947 sc_if->sk_cdata.sk_tx_cnt += cnt;
1948
1949 #ifdef SK_DEBUG
1950 if (skdebug >= 3) {
1951 struct sk_tx_desc *desc;
1952 uint32_t idx;
1953 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1954 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1955 sk_dump_txdesc(desc, idx);
1956 }
1957 }
1958 #endif
1959
1960 *txidx = frag;
1961
1962 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1963
1964 return 0;
1965 }
1966
1967 void
1968 sk_start(struct ifnet *ifp)
1969 {
1970 struct sk_if_softc *sc_if = ifp->if_softc;
1971 struct sk_softc *sc = sc_if->sk_softc;
1972 struct mbuf *m_head = NULL;
1973 uint32_t idx = sc_if->sk_cdata.sk_tx_prod;
1974 int pkts = 0;
1975
1976 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1977 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1978
1979 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1980 IFQ_POLL(&ifp->if_snd, m_head);
1981 if (m_head == NULL)
1982 break;
1983
1984 /*
1985 * Pack the data into the transmit ring. If we
1986 * don't have room, set the OACTIVE flag and wait
1987 * for the NIC to drain the ring.
1988 */
1989 if (sk_encap(sc_if, m_head, &idx)) {
1990 ifp->if_flags |= IFF_OACTIVE;
1991 break;
1992 }
1993
1994 /* now we are committed to transmit the packet */
1995 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1996 pkts++;
1997
1998 /*
1999 * If there's a BPF listener, bounce a copy of this frame
2000 * to him.
2001 */
2002 bpf_mtap(ifp, m_head, BPF_D_OUT);
2003 }
2004 if (pkts == 0)
2005 return;
2006
2007 /* Transmit */
2008 if (idx != sc_if->sk_cdata.sk_tx_prod) {
2009 sc_if->sk_cdata.sk_tx_prod = idx;
2010 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2011
2012 /* Set a timeout in case the chip goes out to lunch. */
2013 ifp->if_timer = 5;
2014 }
2015 }
2016
2017
2018 void
2019 sk_watchdog(struct ifnet *ifp)
2020 {
2021 struct sk_if_softc *sc_if = ifp->if_softc;
2022
2023 /*
2024 * Reclaim first as there is a possibility of losing Tx completion
2025 * interrupts.
2026 */
2027 sk_txeof(sc_if);
2028 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2029 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
2030
2031 ifp->if_oerrors++;
2032
2033 sk_init(ifp);
2034 }
2035 }
2036
2037 void
2038 sk_shutdown(void *v)
2039 {
2040 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
2041 struct sk_softc *sc = sc_if->sk_softc;
2042 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2043
2044 DPRINTFN(2, ("sk_shutdown\n"));
2045 sk_stop(ifp, 1);
2046
2047 /* Turn off the 'driver is loaded' LED. */
2048 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2049
2050 /*
2051 * Reset the GEnesis controller. Doing this should also
2052 * assert the resets on the attached XMAC(s).
2053 */
2054 sk_reset(sc);
2055 }
2056
2057 void
2058 sk_rxeof(struct sk_if_softc *sc_if)
2059 {
2060 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2061 struct mbuf *m;
2062 struct sk_chain *cur_rx;
2063 struct sk_rx_desc *cur_desc;
2064 int i, cur, total_len = 0;
2065 uint32_t rxstat, sk_ctl;
2066 bus_dmamap_t dmamap;
2067
2068 i = sc_if->sk_cdata.sk_rx_prod;
2069
2070 DPRINTFN(3, ("sk_rxeof %d\n", i));
2071
2072 for (;;) {
2073 cur = i;
2074
2075 /* Sync the descriptor */
2076 SK_CDRXSYNC(sc_if, cur,
2077 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2078
2079 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2080 if (sk_ctl & SK_RXCTL_OWN) {
2081 /* Invalidate the descriptor -- it's not ready yet */
2082 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2083 sc_if->sk_cdata.sk_rx_prod = i;
2084 break;
2085 }
2086
2087 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2088 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2089 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2090
2091 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2092 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2093
2094 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2095 m = cur_rx->sk_mbuf;
2096 cur_rx->sk_mbuf = NULL;
2097 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2098
2099 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2100
2101 SK_INC(i, SK_RX_RING_CNT);
2102
2103 if (rxstat & XM_RXSTAT_ERRFRAME) {
2104 ifp->if_ierrors++;
2105 sk_newbuf(sc_if, cur, m, dmamap);
2106 continue;
2107 }
2108
2109 /*
2110 * Try to allocate a new jumbo buffer. If that
2111 * fails, copy the packet to mbufs and put the
2112 * jumbo buffer back in the ring so it can be
2113 * re-used. If allocating mbufs fails, then we
2114 * have to drop the packet.
2115 */
2116 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2117 struct mbuf *m0;
2118 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2119 total_len + ETHER_ALIGN, 0, ifp);
2120 sk_newbuf(sc_if, cur, m, dmamap);
2121 if (m0 == NULL) {
2122 aprint_error_dev(sc_if->sk_dev, "no receive "
2123 "buffers available -- packet dropped!\n");
2124 ifp->if_ierrors++;
2125 continue;
2126 }
2127 m_adj(m0, ETHER_ALIGN);
2128 m = m0;
2129 } else {
2130 m_set_rcvif(m, ifp);
2131 m->m_pkthdr.len = m->m_len = total_len;
2132 }
2133
2134 /* pass it on. */
2135 if_percpuq_enqueue(ifp->if_percpuq, m);
2136 }
2137 }
2138
2139 void
2140 sk_txeof(struct sk_if_softc *sc_if)
2141 {
2142 struct sk_softc *sc = sc_if->sk_softc;
2143 struct sk_tx_desc *cur_tx;
2144 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2145 uint32_t idx, sk_ctl;
2146 struct sk_txmap_entry *entry;
2147
2148 DPRINTFN(3, ("sk_txeof\n"));
2149
2150 /*
2151 * Go through our tx ring and free mbufs for those
2152 * frames that have been sent.
2153 */
2154 idx = sc_if->sk_cdata.sk_tx_cons;
2155 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2156 SK_CDTXSYNC(sc_if, idx, 1,
2157 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2158
2159 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2160 sk_ctl = le32toh(cur_tx->sk_ctl);
2161 #ifdef SK_DEBUG
2162 if (skdebug >= 3)
2163 sk_dump_txdesc(cur_tx, idx);
2164 #endif
2165 if (sk_ctl & SK_TXCTL_OWN) {
2166 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2167 break;
2168 }
2169 if (sk_ctl & SK_TXCTL_LASTFRAG)
2170 ifp->if_opackets++;
2171 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2172 entry = sc_if->sk_cdata.sk_tx_map[idx];
2173
2174 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2175 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2176
2177 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2178 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2179
2180 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2181 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2182 link);
2183 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2184 }
2185 sc_if->sk_cdata.sk_tx_cnt--;
2186 SK_INC(idx, SK_TX_RING_CNT);
2187 }
2188 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2189 ifp->if_timer = 0;
2190 else /* nudge chip to keep tx ring moving */
2191 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2192
2193 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2194 ifp->if_flags &= ~IFF_OACTIVE;
2195
2196 sc_if->sk_cdata.sk_tx_cons = idx;
2197 }
2198
2199 void
2200 sk_tick(void *xsc_if)
2201 {
2202 struct sk_if_softc *sc_if = xsc_if;
2203 struct mii_data *mii = &sc_if->sk_mii;
2204 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2205 int i;
2206
2207 DPRINTFN(3, ("sk_tick\n"));
2208
2209 if (!(ifp->if_flags & IFF_UP))
2210 return;
2211
2212 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2213 sk_intr_bcom(sc_if);
2214 return;
2215 }
2216
2217 /*
2218 * According to SysKonnect, the correct way to verify that
2219 * the link has come back up is to poll bit 0 of the GPIO
2220 * register three times. This pin has the signal from the
2221 * link sync pin connected to it; if we read the same link
2222 * state 3 times in a row, we know the link is up.
2223 */
2224 for (i = 0; i < 3; i++) {
2225 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2226 break;
2227 }
2228
2229 if (i != 3) {
2230 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2231 return;
2232 }
2233
2234 /* Turn the GP0 interrupt back on. */
2235 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2236 SK_XM_READ_2(sc_if, XM_ISR);
2237 mii_tick(mii);
2238 if (ifp->if_link_state != LINK_STATE_UP)
2239 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2240 else
2241 callout_stop(&sc_if->sk_tick_ch);
2242 }
2243
2244 void
2245 sk_intr_bcom(struct sk_if_softc *sc_if)
2246 {
2247 struct mii_data *mii = &sc_if->sk_mii;
2248 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2249 uint16_t status;
2250
2251
2252 DPRINTFN(3, ("sk_intr_bcom\n"));
2253
2254 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2255
2256 /*
2257 * Read the PHY interrupt register to make sure
2258 * we clear any pending interrupts.
2259 */
2260 sk_xmac_miibus_readreg(sc_if->sk_dev,
2261 SK_PHYADDR_BCOM, BRGPHY_MII_ISR, &status);
2262
2263 if (!(ifp->if_flags & IFF_RUNNING)) {
2264 sk_init_xmac(sc_if);
2265 return;
2266 }
2267
2268 if (status & (BRGPHY_ISR_LNK_CHG | BRGPHY_ISR_AN_PR)) {
2269 uint16_t lstat;
2270 sk_xmac_miibus_readreg(sc_if->sk_dev,
2271 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS, &lstat);
2272
2273 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2274 (void)mii_mediachg(mii);
2275 /* Turn off the link LED. */
2276 SK_IF_WRITE_1(sc_if, 0,
2277 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2278 sc_if->sk_link = 0;
2279 } else if (status & BRGPHY_ISR_LNK_CHG) {
2280 sk_xmac_miibus_writereg(sc_if->sk_dev,
2281 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2282 mii_tick(mii);
2283 sc_if->sk_link = 1;
2284 /* Turn on the link LED. */
2285 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2286 SK_LINKLED_ON | SK_LINKLED_LINKSYNC_OFF |
2287 SK_LINKLED_BLINK_OFF);
2288 mii_pollstat(mii);
2289 } else {
2290 mii_tick(mii);
2291 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2292 }
2293 }
2294
2295 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2296 }
2297
2298 void
2299 sk_intr_xmac(struct sk_if_softc *sc_if)
2300 {
2301 uint16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2302
2303 DPRINTFN(3, ("sk_intr_xmac\n"));
2304
2305 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2306 if (status & XM_ISR_GP0_SET) {
2307 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2308 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2309 }
2310
2311 if (status & XM_ISR_AUTONEG_DONE) {
2312 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2313 }
2314 }
2315
2316 if (status & XM_IMR_TX_UNDERRUN)
2317 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2318
2319 if (status & XM_IMR_RX_OVERRUN)
2320 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2321 }
2322
2323 void
2324 sk_intr_yukon(struct sk_if_softc *sc_if)
2325 {
2326 #ifdef SK_DEBUG
2327 int status;
2328
2329 status =
2330 #endif
2331 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2332
2333 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2334 }
2335
2336 int
2337 sk_intr(void *xsc)
2338 {
2339 struct sk_softc *sc = xsc;
2340 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2341 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2342 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2343 uint32_t status;
2344 int claimed = 0;
2345
2346 if (sc_if0 != NULL)
2347 ifp0 = &sc_if0->sk_ethercom.ec_if;
2348 if (sc_if1 != NULL)
2349 ifp1 = &sc_if1->sk_ethercom.ec_if;
2350
2351 for (;;) {
2352 status = CSR_READ_4(sc, SK_ISSR);
2353 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2354
2355 if (!(status & sc->sk_intrmask))
2356 break;
2357
2358 claimed = 1;
2359
2360 /* Handle receive interrupts first. */
2361 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2362 sk_rxeof(sc_if0);
2363 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2364 SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
2365 }
2366 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2367 sk_rxeof(sc_if1);
2368 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2369 SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
2370 }
2371
2372 /* Then transmit interrupts. */
2373 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2374 sk_txeof(sc_if0);
2375 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2376 SK_TXBMU_CLR_IRQ_EOF);
2377 }
2378 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2379 sk_txeof(sc_if1);
2380 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2381 SK_TXBMU_CLR_IRQ_EOF);
2382 }
2383
2384 /* Then MAC interrupts. */
2385 if (sc_if0 && (status & SK_ISR_MAC1) &&
2386 (ifp0->if_flags & IFF_RUNNING)) {
2387 if (sc->sk_type == SK_GENESIS)
2388 sk_intr_xmac(sc_if0);
2389 else
2390 sk_intr_yukon(sc_if0);
2391 }
2392
2393 if (sc_if1 && (status & SK_ISR_MAC2) &&
2394 (ifp1->if_flags & IFF_RUNNING)) {
2395 if (sc->sk_type == SK_GENESIS)
2396 sk_intr_xmac(sc_if1);
2397 else
2398 sk_intr_yukon(sc_if1);
2399
2400 }
2401
2402 if (status & SK_ISR_EXTERNAL_REG) {
2403 if (sc_if0 != NULL &&
2404 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2405 sk_intr_bcom(sc_if0);
2406
2407 if (sc_if1 != NULL &&
2408 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2409 sk_intr_bcom(sc_if1);
2410 }
2411 }
2412
2413 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2414
2415 if (ifp0 != NULL)
2416 if_schedule_deferred_start(ifp0);
2417 if (ifp1 != NULL)
2418 if_schedule_deferred_start(ifp1);
2419
2420 KASSERT(sc->rnd_attached > 0);
2421 rnd_add_uint32(&sc->rnd_source, status);
2422
2423 if (sc->sk_int_mod_pending)
2424 sk_update_int_mod(sc);
2425
2426 return claimed;
2427 }
2428
2429 void
2430 sk_init_xmac(struct sk_if_softc *sc_if)
2431 {
2432 struct sk_softc *sc = sc_if->sk_softc;
2433 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2434 static const struct sk_bcom_hack bhack[] = {
2435 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2436 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2437 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2438 { 0, 0 } };
2439
2440 DPRINTFN(1, ("sk_init_xmac\n"));
2441
2442 /* Unreset the XMAC. */
2443 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2444 DELAY(1000);
2445
2446 /* Reset the XMAC's internal state. */
2447 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2448
2449 /* Save the XMAC II revision */
2450 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2451
2452 /*
2453 * Perform additional initialization for external PHYs,
2454 * namely for the 1000baseTX cards that use the XMAC's
2455 * GMII mode.
2456 */
2457 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2458 int i = 0;
2459 uint32_t val;
2460 uint16_t phyval;
2461
2462 /* Take PHY out of reset. */
2463 val = sk_win_read_4(sc, SK_GPIO);
2464 if (sc_if->sk_port == SK_PORT_A)
2465 val |= SK_GPIO_DIR0 | SK_GPIO_DAT0;
2466 else
2467 val |= SK_GPIO_DIR2 | SK_GPIO_DAT2;
2468 sk_win_write_4(sc, SK_GPIO, val);
2469
2470 /* Enable GMII mode on the XMAC. */
2471 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2472
2473 sk_xmac_miibus_writereg(sc_if->sk_dev,
2474 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2475 DELAY(10000);
2476 sk_xmac_miibus_writereg(sc_if->sk_dev,
2477 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2478
2479 /*
2480 * Early versions of the BCM5400 apparently have
2481 * a bug that requires them to have their reserved
2482 * registers initialized to some magic values. I don't
2483 * know what the numbers do, I'm just the messenger.
2484 */
2485 sk_xmac_miibus_readreg(sc_if->sk_dev,
2486 SK_PHYADDR_BCOM, 0x03, &phyval);
2487 if (phyval == 0x6041) {
2488 while (bhack[i].reg) {
2489 sk_xmac_miibus_writereg(sc_if->sk_dev,
2490 SK_PHYADDR_BCOM, bhack[i].reg,
2491 bhack[i].val);
2492 i++;
2493 }
2494 }
2495 }
2496
2497 /* Set station address */
2498 SK_XM_WRITE_2(sc_if, XM_PAR0,
2499 *(uint16_t *)(&sc_if->sk_enaddr[0]));
2500 SK_XM_WRITE_2(sc_if, XM_PAR1,
2501 *(uint16_t *)(&sc_if->sk_enaddr[2]));
2502 SK_XM_WRITE_2(sc_if, XM_PAR2,
2503 *(uint16_t *)(&sc_if->sk_enaddr[4]));
2504 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2505
2506 if (ifp->if_flags & IFF_PROMISC)
2507 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2508 else
2509 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2510
2511 if (ifp->if_flags & IFF_BROADCAST)
2512 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2513 else
2514 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2515
2516 /* We don't need the FCS appended to the packet. */
2517 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2518
2519 /* We want short frames padded to 60 bytes. */
2520 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2521
2522 /*
2523 * Enable the reception of all error frames. This is is
2524 * a necessary evil due to the design of the XMAC. The
2525 * XMAC's receive FIFO is only 8K in size, however jumbo
2526 * frames can be up to 9000 bytes in length. When bad
2527 * frame filtering is enabled, the XMAC's RX FIFO operates
2528 * in 'store and forward' mode. For this to work, the
2529 * entire frame has to fit into the FIFO, but that means
2530 * that jumbo frames larger than 8192 bytes will be
2531 * truncated. Disabling all bad frame filtering causes
2532 * the RX FIFO to operate in streaming mode, in which
2533 * case the XMAC will start transfering frames out of the
2534 * RX FIFO as soon as the FIFO threshold is reached.
2535 */
2536 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES |
2537 XM_MODE_RX_GIANTS | XM_MODE_RX_RUNTS | XM_MODE_RX_CRCERRS |
2538 XM_MODE_RX_INRANGELEN);
2539
2540 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2541 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2542 else
2543 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2544
2545 /*
2546 * Bump up the transmit threshold. This helps hold off transmit
2547 * underruns when we're blasting traffic from both ports at once.
2548 */
2549 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2550
2551 /* Set multicast filter */
2552 sk_setmulti(sc_if);
2553
2554 /* Clear and enable interrupts */
2555 SK_XM_READ_2(sc_if, XM_ISR);
2556 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2557 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2558 else
2559 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2560
2561 /* Configure MAC arbiter */
2562 switch (sc_if->sk_xmac_rev) {
2563 case XM_XMAC_REV_B2:
2564 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2565 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2566 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2567 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2568 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2569 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2570 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2571 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2572 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2573 break;
2574 case XM_XMAC_REV_C1:
2575 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2576 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2577 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2578 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2579 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2580 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2581 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2582 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2583 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2584 break;
2585 default:
2586 break;
2587 }
2588 sk_win_write_2(sc, SK_MACARB_CTL,
2589 SK_MACARBCTL_UNRESET | SK_MACARBCTL_FASTOE_OFF);
2590
2591 sc_if->sk_link = 1;
2592 }
2593
2594 void sk_init_yukon(struct sk_if_softc *sc_if)
2595 {
2596 uint32_t /*mac, */phy;
2597 uint16_t reg;
2598 struct sk_softc *sc;
2599 int i;
2600
2601 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2602 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2603
2604 sc = sc_if->sk_softc;
2605 if (sc->sk_type == SK_YUKON_LITE &&
2606 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2607 /* Take PHY out of reset. */
2608 sk_win_write_4(sc, SK_GPIO,
2609 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2610 }
2611
2612
2613 /* GMAC and GPHY Reset */
2614 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2615
2616 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2617
2618 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2619 DELAY(1000);
2620 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2621 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2622 DELAY(1000);
2623
2624
2625 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2626
2627 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2628 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2629
2630 switch (sc_if->sk_softc->sk_pmd) {
2631 case IFM_1000_SX:
2632 case IFM_1000_LX:
2633 phy |= SK_GPHY_FIBER;
2634 break;
2635
2636 case IFM_1000_CX:
2637 case IFM_1000_T:
2638 phy |= SK_GPHY_COPPER;
2639 break;
2640 }
2641
2642 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2643
2644 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2645 DELAY(1000);
2646 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2647 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2648 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2649
2650 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2651 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2652
2653 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2654
2655 /* unused read of the interrupt source register */
2656 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2657 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2658
2659 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2660 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2661 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2662
2663 /* MIB Counter Clear Mode set */
2664 reg |= YU_PAR_MIB_CLR;
2665 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2666 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2667 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2668
2669 /* MIB Counter Clear Mode clear */
2670 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2671 reg &= ~YU_PAR_MIB_CLR;
2672 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2673
2674 /* receive control reg */
2675 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2676 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2677 YU_RCR_CRCR);
2678
2679 /* transmit parameter register */
2680 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2681 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2682 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2683
2684 /* serial mode register */
2685 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2686 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2687 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2688 YU_SMR_IPG_DATA(0x1e));
2689
2690 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2691 /* Setup Yukon's address */
2692 for (i = 0; i < 3; i++) {
2693 /* Write Source Address 1 (unicast filter) */
2694 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2695 sc_if->sk_enaddr[i * 2] |
2696 sc_if->sk_enaddr[i * 2 + 1] << 8);
2697 }
2698
2699 for (i = 0; i < 3; i++) {
2700 reg = sk_win_read_2(sc_if->sk_softc,
2701 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2702 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2703 }
2704
2705 /* Set multicast filter */
2706 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2707 sk_setmulti(sc_if);
2708
2709 /* enable interrupt mask for counter overflows */
2710 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2711 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2712 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2713 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2714
2715 /* Configure RX MAC FIFO */
2716 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2717 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2718
2719 /* Configure TX MAC FIFO */
2720 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2721 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2722
2723 DPRINTFN(6, ("sk_init_yukon: end\n"));
2724 }
2725
2726 /*
2727 * Note that to properly initialize any part of the GEnesis chip,
2728 * you first have to take it out of reset mode.
2729 */
2730 int
2731 sk_init(struct ifnet *ifp)
2732 {
2733 struct sk_if_softc *sc_if = ifp->if_softc;
2734 struct sk_softc *sc = sc_if->sk_softc;
2735 struct mii_data *mii = &sc_if->sk_mii;
2736 int rc = 0, s;
2737 uint32_t imr, imtimer_ticks;
2738
2739 DPRINTFN(1, ("sk_init\n"));
2740
2741 s = splnet();
2742
2743 if (ifp->if_flags & IFF_RUNNING) {
2744 splx(s);
2745 return 0;
2746 }
2747
2748 /* Cancel pending I/O and free all RX/TX buffers. */
2749 sk_stop(ifp, 0);
2750
2751 if (sc->sk_type == SK_GENESIS) {
2752 /* Configure LINK_SYNC LED */
2753 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2754 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2755 SK_LINKLED_LINKSYNC_ON);
2756
2757 /* Configure RX LED */
2758 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2759 SK_RXLEDCTL_COUNTER_START);
2760
2761 /* Configure TX LED */
2762 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2763 SK_TXLEDCTL_COUNTER_START);
2764 }
2765
2766 /* Configure I2C registers */
2767
2768 /* Configure XMAC(s) */
2769 switch (sc->sk_type) {
2770 case SK_GENESIS:
2771 sk_init_xmac(sc_if);
2772 break;
2773 case SK_YUKON:
2774 case SK_YUKON_LITE:
2775 case SK_YUKON_LP:
2776 sk_init_yukon(sc_if);
2777 break;
2778 }
2779 if ((rc = mii_mediachg(mii)) == ENXIO)
2780 rc = 0;
2781 else if (rc != 0)
2782 goto out;
2783
2784 if (sc->sk_type == SK_GENESIS) {
2785 /* Configure MAC FIFOs */
2786 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2787 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2788 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2789
2790 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2791 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2792 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2793 }
2794
2795 /* Configure transmit arbiter(s) */
2796 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2797 SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON);
2798
2799 /* Configure RAMbuffers */
2800 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2801 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2802 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2803 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2804 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2805 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2806
2807 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2808 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2809 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2810 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2811 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2812 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2813 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2814
2815 /* Configure BMUs */
2816 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2817 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2818 SK_RX_RING_ADDR(sc_if, 0));
2819 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2820
2821 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2822 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2823 SK_TX_RING_ADDR(sc_if, 0));
2824 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2825
2826 /* Init descriptors */
2827 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2828 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2829 "memory for rx buffers\n");
2830 sk_stop(ifp, 0);
2831 splx(s);
2832 return ENOBUFS;
2833 }
2834
2835 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2836 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2837 "memory for tx buffers\n");
2838 sk_stop(ifp, 0);
2839 splx(s);
2840 return ENOBUFS;
2841 }
2842
2843 /* Set interrupt moderation if changed via sysctl. */
2844 switch (sc->sk_type) {
2845 case SK_GENESIS:
2846 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2847 break;
2848 case SK_YUKON_EC:
2849 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2850 break;
2851 default:
2852 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2853 }
2854 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2855 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2856 sk_win_write_4(sc, SK_IMTIMERINIT,
2857 SK_IM_USECS(sc->sk_int_mod));
2858 aprint_verbose_dev(sc->sk_dev,
2859 "interrupt moderation is %d us\n", sc->sk_int_mod);
2860 }
2861
2862 /* Configure interrupt handling */
2863 CSR_READ_4(sc, SK_ISSR);
2864 if (sc_if->sk_port == SK_PORT_A)
2865 sc->sk_intrmask |= SK_INTRS1;
2866 else
2867 sc->sk_intrmask |= SK_INTRS2;
2868
2869 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2870
2871 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2872
2873 /* Start BMUs. */
2874 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2875
2876 if (sc->sk_type == SK_GENESIS) {
2877 /* Enable XMACs TX and RX state machines */
2878 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2879 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2880 XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2881 }
2882
2883 if (SK_YUKON_FAMILY(sc->sk_type)) {
2884 uint16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2885 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2886 #if 0
2887 /* XXX disable 100Mbps and full duplex mode? */
2888 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2889 #endif
2890 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2891 }
2892
2893
2894 ifp->if_flags |= IFF_RUNNING;
2895 ifp->if_flags &= ~IFF_OACTIVE;
2896 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2897
2898 out:
2899 splx(s);
2900 return rc;
2901 }
2902
2903 void
2904 sk_stop(struct ifnet *ifp, int disable)
2905 {
2906 struct sk_if_softc *sc_if = ifp->if_softc;
2907 struct sk_softc *sc = sc_if->sk_softc;
2908 int i;
2909
2910 DPRINTFN(1, ("sk_stop\n"));
2911
2912 callout_stop(&sc_if->sk_tick_ch);
2913
2914 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2915 uint32_t val;
2916
2917 /* Put PHY back into reset. */
2918 val = sk_win_read_4(sc, SK_GPIO);
2919 if (sc_if->sk_port == SK_PORT_A) {
2920 val |= SK_GPIO_DIR0;
2921 val &= ~SK_GPIO_DAT0;
2922 } else {
2923 val |= SK_GPIO_DIR2;
2924 val &= ~SK_GPIO_DAT2;
2925 }
2926 sk_win_write_4(sc, SK_GPIO, val);
2927 }
2928
2929 /* Turn off various components of this interface. */
2930 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2931 switch (sc->sk_type) {
2932 case SK_GENESIS:
2933 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2934 SK_TXMACCTL_XMAC_RESET);
2935 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2936 break;
2937 case SK_YUKON:
2938 case SK_YUKON_LITE:
2939 case SK_YUKON_LP:
2940 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2941 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2942 break;
2943 }
2944 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2945 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET |SK_RBCTL_OFF);
2946 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2947 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2948 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2949 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2950 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2951 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2952 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2953
2954 /* Disable interrupts */
2955 if (sc_if->sk_port == SK_PORT_A)
2956 sc->sk_intrmask &= ~SK_INTRS1;
2957 else
2958 sc->sk_intrmask &= ~SK_INTRS2;
2959 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2960
2961 SK_XM_READ_2(sc_if, XM_ISR);
2962 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2963
2964 /* Free RX and TX mbufs still in the queues. */
2965 for (i = 0; i < SK_RX_RING_CNT; i++) {
2966 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2967 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2968 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2969 }
2970 }
2971
2972 for (i = 0; i < SK_TX_RING_CNT; i++) {
2973 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2974 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2975 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2976 }
2977 }
2978
2979 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2980 }
2981
2982 /* Power Management Framework */
2983
2984 static bool
2985 skc_suspend(device_t dv, const pmf_qual_t *qual)
2986 {
2987 struct sk_softc *sc = device_private(dv);
2988
2989 DPRINTFN(2, ("skc_suspend\n"));
2990
2991 /* Turn off the driver is loaded LED */
2992 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2993
2994 return true;
2995 }
2996
2997 static bool
2998 skc_resume(device_t dv, const pmf_qual_t *qual)
2999 {
3000 struct sk_softc *sc = device_private(dv);
3001
3002 DPRINTFN(2, ("skc_resume\n"));
3003
3004 sk_reset(sc);
3005 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
3006
3007 return true;
3008 }
3009
3010 static bool
3011 sk_resume(device_t dv, const pmf_qual_t *qual)
3012 {
3013 struct sk_if_softc *sc_if = device_private(dv);
3014
3015 sk_init_yukon(sc_if);
3016 return true;
3017 }
3018
3019 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
3020 skc_probe, skc_attach, NULL, NULL);
3021
3022 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
3023 sk_probe, sk_attach, NULL, NULL);
3024
3025 #ifdef SK_DEBUG
3026 void
3027 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
3028 {
3029 #define DESC_PRINT(X) \
3030 if (X) \
3031 printf("txdesc[%d]." #X "=%#x\n", \
3032 idx, X);
3033
3034 DESC_PRINT(le32toh(desc->sk_ctl));
3035 DESC_PRINT(le32toh(desc->sk_next));
3036 DESC_PRINT(le32toh(desc->sk_data_lo));
3037 DESC_PRINT(le32toh(desc->sk_data_hi));
3038 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
3039 DESC_PRINT(le16toh(desc->sk_rsvd0));
3040 DESC_PRINT(le16toh(desc->sk_csum_startval));
3041 DESC_PRINT(le16toh(desc->sk_csum_startpos));
3042 DESC_PRINT(le16toh(desc->sk_csum_writepos));
3043 DESC_PRINT(le16toh(desc->sk_rsvd1));
3044 #undef PRINT
3045 }
3046
3047 void
3048 sk_dump_bytes(const char *data, int len)
3049 {
3050 int c, i, j;
3051
3052 for (i = 0; i < len; i += 16) {
3053 printf("%08x ", i);
3054 c = len - i;
3055 if (c > 16) c = 16;
3056
3057 for (j = 0; j < c; j++) {
3058 printf("%02x ", data[i + j] & 0xff);
3059 if ((j & 0xf) == 7 && j > 0)
3060 printf(" ");
3061 }
3062
3063 for (; j < 16; j++)
3064 printf(" ");
3065 printf(" ");
3066
3067 for (j = 0; j < c; j++) {
3068 int ch = data[i + j] & 0xff;
3069 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
3070 }
3071
3072 printf("\n");
3073
3074 if (c < 16)
3075 break;
3076 }
3077 }
3078
3079 void
3080 sk_dump_mbuf(struct mbuf *m)
3081 {
3082 int count = m->m_pkthdr.len;
3083
3084 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3085
3086 while (count > 0 && m) {
3087 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3088 m, m->m_data, m->m_len);
3089 sk_dump_bytes(mtod(m, char *), m->m_len);
3090
3091 count -= m->m_len;
3092 m = m->m_next;
3093 }
3094 }
3095 #endif
3096
3097 static int
3098 sk_sysctl_handler(SYSCTLFN_ARGS)
3099 {
3100 int error, t;
3101 struct sysctlnode node;
3102 struct sk_softc *sc;
3103
3104 node = *rnode;
3105 sc = node.sysctl_data;
3106 t = sc->sk_int_mod;
3107 node.sysctl_data = &t;
3108 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3109 if (error || newp == NULL)
3110 return error;
3111
3112 if (t < SK_IM_MIN || t > SK_IM_MAX)
3113 return EINVAL;
3114
3115 /* update the softc with sysctl-changed value, and mark
3116 for hardware update */
3117 sc->sk_int_mod = t;
3118 sc->sk_int_mod_pending = 1;
3119 return 0;
3120 }
3121
3122 /*
3123 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3124 * set up in skc_attach()
3125 */
3126 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3127 {
3128 int rc;
3129 const struct sysctlnode *node;
3130
3131 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3132 0, CTLTYPE_NODE, "sk",
3133 SYSCTL_DESCR("sk interface controls"),
3134 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3135 goto err;
3136 }
3137
3138 sk_root_num = node->sysctl_num;
3139 return;
3140
3141 err:
3142 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3143 }
3144