if_sk.c revision 1.97 1 /* $NetBSD: if_sk.c,v 1.97 2019/05/28 07:41:49 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
30
31 /*
32 * Copyright (c) 1997, 1998, 1999, 2000
33 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by Bill Paul.
46 * 4. Neither the name of the author nor the names of any co-contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60 * THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63 */
64
65 /*
66 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
67 *
68 * Permission to use, copy, modify, and distribute this software for any
69 * purpose with or without fee is hereby granted, provided that the above
70 * copyright notice and this permission notice appear in all copies.
71 *
72 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79 */
80
81 /*
82 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83 * the SK-984x series adapters, both single port and dual port.
84 * References:
85 * The XaQti XMAC II datasheet,
86 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87 * The SysKonnect GEnesis manual, http://www.syskonnect.com
88 *
89 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91 * convenience to others until Vitesse corrects this problem:
92 *
93 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 *
95 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
96 * Department of Electrical Engineering
97 * Columbia University, New York City
98 */
99
100 /*
101 * The SysKonnect gigabit ethernet adapters consist of two main
102 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104 * components and a PHY while the GEnesis controller provides a PCI
105 * interface with DMA support. Each card may have between 512K and
106 * 2MB of SRAM on board depending on the configuration.
107 *
108 * The SysKonnect GEnesis controller can have either one or two XMAC
109 * chips connected to it, allowing single or dual port NIC configurations.
110 * SysKonnect has the distinction of being the only vendor on the market
111 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113 * XMAC registers. This driver takes advantage of these features to allow
114 * both XMACs to operate as independent interfaces.
115 */
116
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.97 2019/05/28 07:41:49 msaitoh Exp $");
119
120 #include <sys/param.h>
121 #include <sys/systm.h>
122 #include <sys/sockio.h>
123 #include <sys/mbuf.h>
124 #include <sys/malloc.h>
125 #include <sys/mutex.h>
126 #include <sys/kernel.h>
127 #include <sys/socket.h>
128 #include <sys/device.h>
129 #include <sys/queue.h>
130 #include <sys/callout.h>
131 #include <sys/sysctl.h>
132 #include <sys/endian.h>
133
134 #include <net/if.h>
135 #include <net/if_dl.h>
136 #include <net/if_types.h>
137
138 #include <net/if_media.h>
139
140 #include <net/bpf.h>
141 #include <sys/rndsource.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145 #include <dev/mii/brgphyreg.h>
146
147 #include <dev/pci/pcireg.h>
148 #include <dev/pci/pcivar.h>
149 #include <dev/pci/pcidevs.h>
150
151 /* #define SK_USEIOSPACE */
152
153 #include <dev/pci/if_skreg.h>
154 #include <dev/pci/if_skvar.h>
155
156 int skc_probe(device_t, cfdata_t, void *);
157 void skc_attach(device_t, device_t, void *aux);
158 int sk_probe(device_t, cfdata_t, void *);
159 void sk_attach(device_t, device_t, void *aux);
160 int skcprint(void *, const char *);
161 int sk_intr(void *);
162 void sk_intr_bcom(struct sk_if_softc *);
163 void sk_intr_xmac(struct sk_if_softc *);
164 void sk_intr_yukon(struct sk_if_softc *);
165 void sk_rxeof(struct sk_if_softc *);
166 void sk_txeof(struct sk_if_softc *);
167 int sk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
168 void sk_start(struct ifnet *);
169 int sk_ioctl(struct ifnet *, u_long, void *);
170 int sk_init(struct ifnet *);
171 void sk_init_xmac(struct sk_if_softc *);
172 void sk_init_yukon(struct sk_if_softc *);
173 void sk_stop(struct ifnet *, int);
174 void sk_watchdog(struct ifnet *);
175 void sk_shutdown(void *);
176 int sk_ifmedia_upd(struct ifnet *);
177 void sk_reset(struct sk_softc *);
178 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
179 int sk_alloc_jumbo_mem(struct sk_if_softc *);
180 void sk_free_jumbo_mem(struct sk_if_softc *);
181 void *sk_jalloc(struct sk_if_softc *);
182 void sk_jfree(struct mbuf *, void *, size_t, void *);
183 int sk_init_rx_ring(struct sk_if_softc *);
184 int sk_init_tx_ring(struct sk_if_softc *);
185 uint8_t sk_vpd_readbyte(struct sk_softc *, int);
186 void sk_vpd_read_res(struct sk_softc *,
187 struct vpd_res *, int);
188 void sk_vpd_read(struct sk_softc *);
189
190 void sk_update_int_mod(struct sk_softc *);
191
192 int sk_xmac_miibus_readreg(device_t, int, int, uint16_t *);
193 int sk_xmac_miibus_writereg(device_t, int, int, uint16_t);
194 void sk_xmac_miibus_statchg(struct ifnet *);
195
196 int sk_marv_miibus_readreg(device_t, int, int, uint16_t *);
197 int sk_marv_miibus_writereg(device_t, int, int, uint16_t);
198 void sk_marv_miibus_statchg(struct ifnet *);
199
200 uint32_t sk_xmac_hash(void *);
201 uint32_t sk_yukon_hash(void *);
202 void sk_setfilt(struct sk_if_softc *, void *, int);
203 void sk_setmulti(struct sk_if_softc *);
204 void sk_tick(void *);
205
206 static bool skc_suspend(device_t, const pmf_qual_t *);
207 static bool skc_resume(device_t, const pmf_qual_t *);
208 static bool sk_resume(device_t dv, const pmf_qual_t *);
209
210 /* #define SK_DEBUG 2 */
211 #ifdef SK_DEBUG
212 #define DPRINTF(x) if (skdebug) printf x
213 #define DPRINTFN(n, x) if (skdebug >= (n)) printf x
214 int skdebug = SK_DEBUG;
215
216 void sk_dump_txdesc(struct sk_tx_desc *, int);
217 void sk_dump_mbuf(struct mbuf *);
218 void sk_dump_bytes(const char *, int);
219 #else
220 #define DPRINTF(x)
221 #define DPRINTFN(n, x)
222 #endif
223
224 static int sk_sysctl_handler(SYSCTLFN_PROTO);
225 static int sk_root_num;
226
227 /* supported device vendors */
228 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
229 static const struct sk_product {
230 pci_vendor_id_t sk_vendor;
231 pci_product_id_t sk_product;
232 } sk_products[] = {
233 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
234 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
235 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
236 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
237 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
238 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
239 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
240 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
241 { 0, 0, }
242 };
243
244 #define SK_LINKSYS_EG1032_SUBID 0x00151737
245
246 static inline uint32_t
247 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
248 {
249 #ifdef SK_USEIOSPACE
250 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
251 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
252 #else
253 return CSR_READ_4(sc, reg);
254 #endif
255 }
256
257 static inline uint16_t
258 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
259 {
260 #ifdef SK_USEIOSPACE
261 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
262 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
263 #else
264 return CSR_READ_2(sc, reg);
265 #endif
266 }
267
268 static inline uint8_t
269 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
270 {
271 #ifdef SK_USEIOSPACE
272 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
273 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
274 #else
275 return CSR_READ_1(sc, reg);
276 #endif
277 }
278
279 static inline void
280 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
281 {
282 #ifdef SK_USEIOSPACE
283 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
284 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
285 #else
286 CSR_WRITE_4(sc, reg, x);
287 #endif
288 }
289
290 static inline void
291 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
292 {
293 #ifdef SK_USEIOSPACE
294 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
295 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
296 #else
297 CSR_WRITE_2(sc, reg, x);
298 #endif
299 }
300
301 static inline void
302 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
303 {
304 #ifdef SK_USEIOSPACE
305 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
306 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
307 #else
308 CSR_WRITE_1(sc, reg, x);
309 #endif
310 }
311
312 /*
313 * The VPD EEPROM contains Vital Product Data, as suggested in
314 * the PCI 2.1 specification. The VPD data is separared into areas
315 * denoted by resource IDs. The SysKonnect VPD contains an ID string
316 * resource (the name of the adapter), a read-only area resource
317 * containing various key/data fields and a read/write area which
318 * can be used to store asset management information or log messages.
319 * We read the ID string and read-only into buffers attached to
320 * the controller softc structure for later use. At the moment,
321 * we only use the ID string during sk_attach().
322 */
323 uint8_t
324 sk_vpd_readbyte(struct sk_softc *sc, int addr)
325 {
326 int i;
327
328 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
329 for (i = 0; i < SK_TIMEOUT; i++) {
330 DELAY(1);
331 if (sk_win_read_2(sc,
332 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
333 break;
334 }
335
336 if (i == SK_TIMEOUT)
337 return 0;
338
339 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
340 }
341
342 void
343 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
344 {
345 int i;
346 uint8_t *ptr;
347
348 ptr = (uint8_t *)res;
349 for (i = 0; i < sizeof(struct vpd_res); i++)
350 ptr[i] = sk_vpd_readbyte(sc, i + addr);
351 }
352
353 void
354 sk_vpd_read(struct sk_softc *sc)
355 {
356 int pos = 0, i;
357 struct vpd_res res;
358
359 if (sc->sk_vpd_prodname != NULL)
360 free(sc->sk_vpd_prodname, M_DEVBUF);
361 if (sc->sk_vpd_readonly != NULL)
362 free(sc->sk_vpd_readonly, M_DEVBUF);
363 sc->sk_vpd_prodname = NULL;
364 sc->sk_vpd_readonly = NULL;
365
366 sk_vpd_read_res(sc, &res, pos);
367
368 if (res.vr_id != VPD_RES_ID) {
369 aprint_error_dev(sc->sk_dev,
370 "bad VPD resource id: expected %x got %x\n",
371 VPD_RES_ID, res.vr_id);
372 return;
373 }
374
375 pos += sizeof(res);
376 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
377 if (sc->sk_vpd_prodname == NULL)
378 panic("sk_vpd_read");
379 for (i = 0; i < res.vr_len; i++)
380 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
381 sc->sk_vpd_prodname[i] = '\0';
382 pos += i;
383
384 sk_vpd_read_res(sc, &res, pos);
385
386 if (res.vr_id != VPD_RES_READ) {
387 aprint_error_dev(sc->sk_dev,
388 "bad VPD resource id: expected %x got %x\n",
389 VPD_RES_READ, res.vr_id);
390 return;
391 }
392
393 pos += sizeof(res);
394 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
395 if (sc->sk_vpd_readonly == NULL)
396 panic("sk_vpd_read");
397 for (i = 0; i < res.vr_len ; i++)
398 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
399 }
400
401 int
402 sk_xmac_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
403 {
404 struct sk_if_softc *sc_if = device_private(dev);
405 int i;
406
407 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
408
409 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
410 return -1;
411
412 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
413 SK_XM_READ_2(sc_if, XM_PHY_DATA);
414 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
415 for (i = 0; i < SK_TIMEOUT; i++) {
416 DELAY(1);
417 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
418 XM_MMUCMD_PHYDATARDY)
419 break;
420 }
421
422 if (i == SK_TIMEOUT) {
423 aprint_error_dev(sc_if->sk_dev,
424 "phy failed to come ready\n");
425 return ETIMEDOUT;
426 }
427 }
428 DELAY(1);
429 *val = SK_XM_READ_2(sc_if, XM_PHY_DATA);
430 return 0;
431 }
432
433 int
434 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
435 {
436 struct sk_if_softc *sc_if = device_private(dev);
437 int i;
438
439 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
440
441 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
442 for (i = 0; i < SK_TIMEOUT; i++) {
443 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
444 break;
445 }
446
447 if (i == SK_TIMEOUT) {
448 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
449 return ETIMEDOUT;
450 }
451
452 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
453 for (i = 0; i < SK_TIMEOUT; i++) {
454 DELAY(1);
455 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
456 break;
457 }
458
459 if (i == SK_TIMEOUT) {
460 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
461 return ETIMEDOUT;
462 }
463
464 return 0;
465 }
466
467 void
468 sk_xmac_miibus_statchg(struct ifnet *ifp)
469 {
470 struct sk_if_softc *sc_if = ifp->if_softc;
471 struct mii_data *mii = &sc_if->sk_mii;
472
473 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
474
475 /*
476 * If this is a GMII PHY, manually set the XMAC's
477 * duplex mode accordingly.
478 */
479 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
480 if ((mii->mii_media_active & IFM_FDX) != 0)
481 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
482 else
483 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
484 }
485 }
486
487 int
488 sk_marv_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
489 {
490 struct sk_if_softc *sc_if = device_private(dev);
491 uint16_t data;
492 int i;
493
494 if (phy != 0 ||
495 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
496 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
497 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
498 phy, reg));
499 return -1;
500 }
501
502 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
503 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
504
505 for (i = 0; i < SK_TIMEOUT; i++) {
506 DELAY(1);
507 data = SK_YU_READ_2(sc_if, YUKON_SMICR);
508 if (data & YU_SMICR_READ_VALID)
509 break;
510 }
511
512 if (i == SK_TIMEOUT) {
513 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
514 return ETIMEDOUT;
515 }
516
517 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
518 SK_TIMEOUT));
519
520 *val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
521
522 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
523 phy, reg, *val));
524
525 return 0;
526 }
527
528 int
529 sk_marv_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
530 {
531 struct sk_if_softc *sc_if = device_private(dev);
532 int i;
533
534 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#hx\n",
535 phy, reg, val));
536
537 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
538 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
539 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
540
541 for (i = 0; i < SK_TIMEOUT; i++) {
542 DELAY(1);
543 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
544 break;
545 }
546
547 if (i == SK_TIMEOUT) {
548 printf("%s: phy write timed out\n",
549 device_xname(sc_if->sk_dev));
550 return ETIMEDOUT;
551 }
552
553 return 0;
554 }
555
556 void
557 sk_marv_miibus_statchg(struct ifnet *ifp)
558 {
559 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
560 SK_YU_READ_2(((struct sk_if_softc *)ifp->if_softc),
561 YUKON_GPCR)));
562 }
563
564 uint32_t
565 sk_xmac_hash(void *addr)
566 {
567 uint32_t crc;
568
569 crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
570 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
571 DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
572 return crc;
573 }
574
575 uint32_t
576 sk_yukon_hash(void *addr)
577 {
578 uint32_t crc;
579
580 crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
581 crc &= ((1 << SK_HASH_BITS) - 1);
582 DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
583 return crc;
584 }
585
586 void
587 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
588 {
589 char *addr = addrv;
590 int base = XM_RXFILT_ENTRY(slot);
591
592 SK_XM_WRITE_2(sc_if, base, *(uint16_t *)(&addr[0]));
593 SK_XM_WRITE_2(sc_if, base + 2, *(uint16_t *)(&addr[2]));
594 SK_XM_WRITE_2(sc_if, base + 4, *(uint16_t *)(&addr[4]));
595 }
596
597 void
598 sk_setmulti(struct sk_if_softc *sc_if)
599 {
600 struct sk_softc *sc = sc_if->sk_softc;
601 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
602 uint32_t hashes[2] = { 0, 0 };
603 int h = 0, i;
604 struct ethercom *ec = &sc_if->sk_ethercom;
605 struct ether_multi *enm;
606 struct ether_multistep step;
607 uint8_t dummy[] = { 0, 0, 0, 0, 0, 0 };
608
609 /* First, zot all the existing filters. */
610 switch (sc->sk_type) {
611 case SK_GENESIS:
612 for (i = 1; i < XM_RXFILT_MAX; i++)
613 sk_setfilt(sc_if, (void *)&dummy, i);
614
615 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
616 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
617 break;
618 case SK_YUKON:
619 case SK_YUKON_LITE:
620 case SK_YUKON_LP:
621 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
622 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
623 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
624 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
625 break;
626 }
627
628 /* Now program new ones. */
629 allmulti:
630 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
631 hashes[0] = 0xFFFFFFFF;
632 hashes[1] = 0xFFFFFFFF;
633 } else {
634 i = 1;
635 /* First find the tail of the list. */
636 ETHER_LOCK(ec);
637 ETHER_FIRST_MULTI(step, ec, enm);
638 while (enm != NULL) {
639 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
640 ETHER_ADDR_LEN)) {
641 ifp->if_flags |= IFF_ALLMULTI;
642 ETHER_UNLOCK(ec);
643 goto allmulti;
644 }
645 DPRINTFN(2,("multicast address %s\n",
646 ether_sprintf(enm->enm_addrlo)));
647 /*
648 * Program the first XM_RXFILT_MAX multicast groups
649 * into the perfect filter. For all others,
650 * use the hash table.
651 */
652 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
653 sk_setfilt(sc_if, enm->enm_addrlo, i);
654 i++;
655 }
656 else {
657 switch (sc->sk_type) {
658 case SK_GENESIS:
659 h = sk_xmac_hash(enm->enm_addrlo);
660 break;
661 case SK_YUKON:
662 case SK_YUKON_LITE:
663 case SK_YUKON_LP:
664 h = sk_yukon_hash(enm->enm_addrlo);
665 break;
666 }
667 if (h < 32)
668 hashes[0] |= (1 << h);
669 else
670 hashes[1] |= (1 << (h - 32));
671 }
672
673 ETHER_NEXT_MULTI(step, enm);
674 }
675 ETHER_UNLOCK(ec);
676 }
677
678 switch (sc->sk_type) {
679 case SK_GENESIS:
680 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH |
681 XM_MODE_RX_USE_PERFECT);
682 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
683 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
684 break;
685 case SK_YUKON:
686 case SK_YUKON_LITE:
687 case SK_YUKON_LP:
688 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
689 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
690 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
691 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
692 break;
693 }
694 }
695
696 int
697 sk_init_rx_ring(struct sk_if_softc *sc_if)
698 {
699 struct sk_chain_data *cd = &sc_if->sk_cdata;
700 struct sk_ring_data *rd = sc_if->sk_rdata;
701 int i;
702
703 memset((char *)rd->sk_rx_ring, 0,
704 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
705
706 for (i = 0; i < SK_RX_RING_CNT; i++) {
707 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
708 if (i == (SK_RX_RING_CNT - 1)) {
709 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
710 rd->sk_rx_ring[i].sk_next =
711 htole32(SK_RX_RING_ADDR(sc_if, 0));
712 } else {
713 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
714 rd->sk_rx_ring[i].sk_next =
715 htole32(SK_RX_RING_ADDR(sc_if, i+1));
716 }
717 }
718
719 for (i = 0; i < SK_RX_RING_CNT; i++) {
720 if (sk_newbuf(sc_if, i, NULL,
721 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
722 aprint_error_dev(sc_if->sk_dev,
723 "failed alloc of %dth mbuf\n", i);
724 return ENOBUFS;
725 }
726 }
727 sc_if->sk_cdata.sk_rx_prod = 0;
728 sc_if->sk_cdata.sk_rx_cons = 0;
729
730 return 0;
731 }
732
733 int
734 sk_init_tx_ring(struct sk_if_softc *sc_if)
735 {
736 struct sk_chain_data *cd = &sc_if->sk_cdata;
737 struct sk_ring_data *rd = sc_if->sk_rdata;
738 int i;
739
740 memset(sc_if->sk_rdata->sk_tx_ring, 0,
741 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
742
743 for (i = 0; i < SK_TX_RING_CNT; i++) {
744 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
745 if (i == (SK_TX_RING_CNT - 1)) {
746 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
747 rd->sk_tx_ring[i].sk_next =
748 htole32(SK_TX_RING_ADDR(sc_if, 0));
749 } else {
750 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
751 rd->sk_tx_ring[i].sk_next =
752 htole32(SK_TX_RING_ADDR(sc_if, i+1));
753 }
754 }
755
756 sc_if->sk_cdata.sk_tx_prod = 0;
757 sc_if->sk_cdata.sk_tx_cons = 0;
758 sc_if->sk_cdata.sk_tx_cnt = 0;
759
760 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
761 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
762
763 return 0;
764 }
765
766 int
767 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
768 bus_dmamap_t dmamap)
769 {
770 struct mbuf *m_new = NULL;
771 struct sk_chain *c;
772 struct sk_rx_desc *r;
773
774 if (m == NULL) {
775 void *buf = NULL;
776
777 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
778 if (m_new == NULL) {
779 aprint_error_dev(sc_if->sk_dev,
780 "no memory for rx list -- packet dropped!\n");
781 return ENOBUFS;
782 }
783
784 /* Allocate the jumbo buffer */
785 buf = sk_jalloc(sc_if);
786 if (buf == NULL) {
787 m_freem(m_new);
788 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
789 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
790 return ENOBUFS;
791 }
792
793 /* Attach the buffer to the mbuf */
794 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
795 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
796
797 } else {
798 /*
799 * We're re-using a previously allocated mbuf;
800 * be sure to re-init pointers and lengths to
801 * default values.
802 */
803 m_new = m;
804 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
805 m_new->m_data = m_new->m_ext.ext_buf;
806 }
807 m_adj(m_new, ETHER_ALIGN);
808
809 c = &sc_if->sk_cdata.sk_rx_chain[i];
810 r = c->sk_desc;
811 c->sk_mbuf = m_new;
812 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
813 (((vaddr_t)m_new->m_data
814 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
815 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
816
817 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
818
819 return 0;
820 }
821
822 /*
823 * Memory management for jumbo frames.
824 */
825
826 int
827 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
828 {
829 struct sk_softc *sc = sc_if->sk_softc;
830 char *ptr, *kva;
831 bus_dma_segment_t seg;
832 int i, rseg, state, error;
833 struct sk_jpool_entry *entry;
834
835 state = error = 0;
836
837 /* Grab a big chunk o' storage. */
838 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
839 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
840 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
841 return ENOBUFS;
842 }
843
844 state = 1;
845 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
846 BUS_DMA_NOWAIT)) {
847 aprint_error_dev(sc->sk_dev,
848 "can't map dma buffers (%d bytes)\n",
849 SK_JMEM);
850 error = ENOBUFS;
851 goto out;
852 }
853
854 state = 2;
855 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
856 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
857 aprint_error_dev(sc->sk_dev, "can't create dma map\n");
858 error = ENOBUFS;
859 goto out;
860 }
861
862 state = 3;
863 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
864 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
865 aprint_error_dev(sc->sk_dev, "can't load dma map\n");
866 error = ENOBUFS;
867 goto out;
868 }
869
870 state = 4;
871 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
872 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
873
874 LIST_INIT(&sc_if->sk_jfree_listhead);
875 LIST_INIT(&sc_if->sk_jinuse_listhead);
876 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
877
878 /*
879 * Now divide it up into 9K pieces and save the addresses
880 * in an array.
881 */
882 ptr = sc_if->sk_cdata.sk_jumbo_buf;
883 for (i = 0; i < SK_JSLOTS; i++) {
884 sc_if->sk_cdata.sk_jslots[i] = ptr;
885 ptr += SK_JLEN;
886 entry = malloc(sizeof(struct sk_jpool_entry),
887 M_DEVBUF, M_NOWAIT);
888 if (entry == NULL) {
889 aprint_error_dev(sc->sk_dev,
890 "no memory for jumbo buffer queue!\n");
891 error = ENOBUFS;
892 goto out;
893 }
894 entry->slot = i;
895 if (i)
896 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
897 entry, jpool_entries);
898 else
899 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
900 entry, jpool_entries);
901 }
902 out:
903 if (error != 0) {
904 switch (state) {
905 case 4:
906 bus_dmamap_unload(sc->sc_dmatag,
907 sc_if->sk_cdata.sk_rx_jumbo_map);
908 /* FALLTHROUGH */
909 case 3:
910 bus_dmamap_destroy(sc->sc_dmatag,
911 sc_if->sk_cdata.sk_rx_jumbo_map);
912 /* FALLTHROUGH */
913 case 2:
914 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
915 /* FALLTHROUGH */
916 case 1:
917 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
918 break;
919 default:
920 break;
921 }
922 }
923
924 return error;
925 }
926
927 /*
928 * Allocate a jumbo buffer.
929 */
930 void *
931 sk_jalloc(struct sk_if_softc *sc_if)
932 {
933 struct sk_jpool_entry *entry;
934
935 mutex_enter(&sc_if->sk_jpool_mtx);
936 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
937
938 if (entry == NULL) {
939 mutex_exit(&sc_if->sk_jpool_mtx);
940 return NULL;
941 }
942
943 LIST_REMOVE(entry, jpool_entries);
944 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
945 mutex_exit(&sc_if->sk_jpool_mtx);
946 return sc_if->sk_cdata.sk_jslots[entry->slot];
947 }
948
949 /*
950 * Release a jumbo buffer.
951 */
952 void
953 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
954 {
955 struct sk_jpool_entry *entry;
956 struct sk_if_softc *sc;
957 int i;
958
959 /* Extract the softc struct pointer. */
960 sc = (struct sk_if_softc *)arg;
961
962 if (sc == NULL)
963 panic("sk_jfree: can't find softc pointer!");
964
965 /* calculate the slot this buffer belongs to */
966
967 i = ((vaddr_t)buf
968 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
969
970 if ((i < 0) || (i >= SK_JSLOTS))
971 panic("sk_jfree: asked to free buffer that we don't manage!");
972
973 mutex_enter(&sc->sk_jpool_mtx);
974 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
975 if (entry == NULL)
976 panic("sk_jfree: buffer not in use!");
977 entry->slot = i;
978 LIST_REMOVE(entry, jpool_entries);
979 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
980 mutex_exit(&sc->sk_jpool_mtx);
981
982 if (__predict_true(m != NULL))
983 pool_cache_put(mb_cache, m);
984 }
985
986 /*
987 * Set media options.
988 */
989 int
990 sk_ifmedia_upd(struct ifnet *ifp)
991 {
992 struct sk_if_softc *sc_if = ifp->if_softc;
993 int rc;
994
995 (void) sk_init(ifp);
996 if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
997 return 0;
998 return rc;
999 }
1000
1001 static void
1002 sk_promisc(struct sk_if_softc *sc_if, int on)
1003 {
1004 struct sk_softc *sc = sc_if->sk_softc;
1005 switch (sc->sk_type) {
1006 case SK_GENESIS:
1007 if (on)
1008 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1009 else
1010 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1011 break;
1012 case SK_YUKON:
1013 case SK_YUKON_LITE:
1014 case SK_YUKON_LP:
1015 if (on)
1016 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1017 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1018 else
1019 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1020 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1021 break;
1022 default:
1023 aprint_error_dev(sc_if->sk_dev, "Can't set promisc for %d\n",
1024 sc->sk_type);
1025 break;
1026 }
1027 }
1028
1029 int
1030 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
1031 {
1032 struct sk_if_softc *sc_if = ifp->if_softc;
1033 int s, error = 0;
1034
1035 /* DPRINTFN(2, ("sk_ioctl\n")); */
1036
1037 s = splnet();
1038
1039 switch (command) {
1040
1041 case SIOCSIFFLAGS:
1042 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1043 if ((error = ifioctl_common(ifp, command, data)) != 0)
1044 break;
1045 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1046 case IFF_RUNNING:
1047 sk_stop(ifp, 1);
1048 break;
1049 case IFF_UP:
1050 sk_init(ifp);
1051 break;
1052 case IFF_UP | IFF_RUNNING:
1053 if ((ifp->if_flags ^ sc_if->sk_if_flags) == IFF_PROMISC) {
1054 sk_promisc(sc_if, ifp->if_flags & IFF_PROMISC);
1055 sk_setmulti(sc_if);
1056 } else
1057 sk_init(ifp);
1058 break;
1059 }
1060 sc_if->sk_if_flags = ifp->if_flags;
1061 error = 0;
1062 break;
1063
1064 default:
1065 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1066 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1067 break;
1068
1069 error = 0;
1070
1071 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1072 ;
1073 else if (ifp->if_flags & IFF_RUNNING) {
1074 sk_setmulti(sc_if);
1075 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1076 }
1077 break;
1078 }
1079
1080 splx(s);
1081 return error;
1082 }
1083
1084 void
1085 sk_update_int_mod(struct sk_softc *sc)
1086 {
1087 uint32_t imtimer_ticks;
1088
1089 /*
1090 * Configure interrupt moderation. The moderation timer
1091 * defers interrupts specified in the interrupt moderation
1092 * timer mask based on the timeout specified in the interrupt
1093 * moderation timer init register. Each bit in the timer
1094 * register represents one tick, so to specify a timeout in
1095 * microseconds, we have to multiply by the correct number of
1096 * ticks-per-microsecond.
1097 */
1098 switch (sc->sk_type) {
1099 case SK_GENESIS:
1100 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1101 break;
1102 case SK_YUKON_EC:
1103 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1104 break;
1105 default:
1106 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1107 }
1108 aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
1109 sc->sk_int_mod);
1110 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1111 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF | SK_ISR_TX2_S_EOF |
1112 SK_ISR_RX1_EOF | SK_ISR_RX2_EOF);
1113 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1114 sc->sk_int_mod_pending = 0;
1115 }
1116
1117 /*
1118 * Lookup: Check the PCI vendor and device, and return a pointer to
1119 * The structure if the IDs match against our list.
1120 */
1121
1122 static const struct sk_product *
1123 sk_lookup(const struct pci_attach_args *pa)
1124 {
1125 const struct sk_product *psk;
1126
1127 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1128 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1129 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1130 return psk;
1131 }
1132 return NULL;
1133 }
1134
1135 /*
1136 * Probe for a SysKonnect GEnesis chip.
1137 */
1138
1139 int
1140 skc_probe(device_t parent, cfdata_t match, void *aux)
1141 {
1142 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1143 const struct sk_product *psk;
1144 pcireg_t subid;
1145
1146 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1147
1148 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1149 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1150 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1151 subid == SK_LINKSYS_EG1032_SUBID)
1152 return 1;
1153
1154 if ((psk = sk_lookup(pa))) {
1155 return 1;
1156 }
1157 return 0;
1158 }
1159
1160 /*
1161 * Force the GEnesis into reset, then bring it out of reset.
1162 */
1163 void sk_reset(struct sk_softc *sc)
1164 {
1165 DPRINTFN(2, ("sk_reset\n"));
1166
1167 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1168 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1169 if (SK_YUKON_FAMILY(sc->sk_type))
1170 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1171
1172 DELAY(1000);
1173 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1174 DELAY(2);
1175 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1176 if (SK_YUKON_FAMILY(sc->sk_type))
1177 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1178
1179 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1180 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1181 CSR_READ_2(sc, SK_LINK_CTRL)));
1182
1183 if (sc->sk_type == SK_GENESIS) {
1184 /* Configure packet arbiter */
1185 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1186 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1187 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1188 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1189 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1190 }
1191
1192 /* Enable RAM interface */
1193 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1194
1195 sk_update_int_mod(sc);
1196 }
1197
1198 int
1199 sk_probe(device_t parent, cfdata_t match, void *aux)
1200 {
1201 struct skc_attach_args *sa = aux;
1202
1203 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1204 return 0;
1205
1206 return 1;
1207 }
1208
1209 /*
1210 * Each XMAC chip is attached as a separate logical IP interface.
1211 * Single port cards will have only one logical interface of course.
1212 */
1213 void
1214 sk_attach(device_t parent, device_t self, void *aux)
1215 {
1216 struct sk_if_softc *sc_if = device_private(self);
1217 struct sk_softc *sc = device_private(parent);
1218 struct skc_attach_args *sa = aux;
1219 struct sk_txmap_entry *entry;
1220 struct ifnet *ifp;
1221 bus_dma_segment_t seg;
1222 bus_dmamap_t dmamap;
1223 prop_data_t data;
1224 void *kva;
1225 int i, rseg;
1226 int mii_flags = 0;
1227
1228 aprint_naive("\n");
1229
1230 sc_if->sk_dev = self;
1231 sc_if->sk_port = sa->skc_port;
1232 sc_if->sk_softc = sc;
1233 sc->sk_if[sa->skc_port] = sc_if;
1234
1235 if (sa->skc_port == SK_PORT_A)
1236 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1237 if (sa->skc_port == SK_PORT_B)
1238 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1239
1240 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1241
1242 /*
1243 * Get station address for this interface. Note that
1244 * dual port cards actually come with three station
1245 * addresses: one for each port, plus an extra. The
1246 * extra one is used by the SysKonnect driver software
1247 * as a 'virtual' station address for when both ports
1248 * are operating in failover mode. Currently we don't
1249 * use this extra address.
1250 */
1251 data = prop_dictionary_get(device_properties(self), "mac-address");
1252 if (data != NULL) {
1253 /*
1254 * Try to get the station address from device properties
1255 * first, in case the ROM is missing.
1256 */
1257 KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
1258 KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
1259 memcpy(sc_if->sk_enaddr, prop_data_data_nocopy(data),
1260 ETHER_ADDR_LEN);
1261 } else
1262 for (i = 0; i < ETHER_ADDR_LEN; i++)
1263 sc_if->sk_enaddr[i] = sk_win_read_1(sc,
1264 SK_MAC0_0 + (sa->skc_port * 8) + i);
1265
1266 aprint_normal(": Ethernet address %s\n",
1267 ether_sprintf(sc_if->sk_enaddr));
1268
1269 /*
1270 * Set up RAM buffer addresses. The NIC will have a certain
1271 * amount of SRAM on it, somewhere between 512K and 2MB. We
1272 * need to divide this up a) between the transmitter and
1273 * receiver and b) between the two XMACs, if this is a
1274 * dual port NIC. Our algorithm is to divide up the memory
1275 * evenly so that everyone gets a fair share.
1276 */
1277 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1278 uint32_t chunk, val;
1279
1280 chunk = sc->sk_ramsize / 2;
1281 val = sc->sk_rboff / sizeof(uint64_t);
1282 sc_if->sk_rx_ramstart = val;
1283 val += (chunk / sizeof(uint64_t));
1284 sc_if->sk_rx_ramend = val - 1;
1285 sc_if->sk_tx_ramstart = val;
1286 val += (chunk / sizeof(uint64_t));
1287 sc_if->sk_tx_ramend = val - 1;
1288 } else {
1289 uint32_t chunk, val;
1290
1291 chunk = sc->sk_ramsize / 4;
1292 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1293 sizeof(uint64_t);
1294 sc_if->sk_rx_ramstart = val;
1295 val += (chunk / sizeof(uint64_t));
1296 sc_if->sk_rx_ramend = val - 1;
1297 sc_if->sk_tx_ramstart = val;
1298 val += (chunk / sizeof(uint64_t));
1299 sc_if->sk_tx_ramend = val - 1;
1300 }
1301
1302 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1303 " tx_ramstart=%#x tx_ramend=%#x\n",
1304 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1305 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1306
1307 /* Read and save PHY type and set PHY address */
1308 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1309 switch (sc_if->sk_phytype) {
1310 case SK_PHYTYPE_XMAC:
1311 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1312 break;
1313 case SK_PHYTYPE_BCOM:
1314 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1315 break;
1316 case SK_PHYTYPE_MARV_COPPER:
1317 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1318 break;
1319 default:
1320 aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
1321 sc_if->sk_phytype);
1322 return;
1323 }
1324
1325 /* Allocate the descriptor queues. */
1326 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1327 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1328 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
1329 goto fail;
1330 }
1331 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1332 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1333 aprint_error_dev(sc_if->sk_dev,
1334 "can't map dma buffers (%lu bytes)\n",
1335 (u_long) sizeof(struct sk_ring_data));
1336 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1337 goto fail;
1338 }
1339 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1340 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1341 &sc_if->sk_ring_map)) {
1342 aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
1343 bus_dmamem_unmap(sc->sc_dmatag, kva,
1344 sizeof(struct sk_ring_data));
1345 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1346 goto fail;
1347 }
1348 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1349 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1350 aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
1351 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1352 bus_dmamem_unmap(sc->sc_dmatag, kva,
1353 sizeof(struct sk_ring_data));
1354 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1355 goto fail;
1356 }
1357
1358 for (i = 0; i < SK_RX_RING_CNT; i++)
1359 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1360
1361 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1362 for (i = 0; i < SK_TX_RING_CNT; i++) {
1363 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1364
1365 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1366 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1367 aprint_error_dev(sc_if->sk_dev,
1368 "Can't create TX dmamap\n");
1369 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1370 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1371 bus_dmamem_unmap(sc->sc_dmatag, kva,
1372 sizeof(struct sk_ring_data));
1373 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1374 goto fail;
1375 }
1376
1377 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1378 if (!entry) {
1379 aprint_error_dev(sc_if->sk_dev,
1380 "Can't alloc txmap entry\n");
1381 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1382 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1383 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1384 bus_dmamem_unmap(sc->sc_dmatag, kva,
1385 sizeof(struct sk_ring_data));
1386 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1387 goto fail;
1388 }
1389 entry->dmamap = dmamap;
1390 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1391 }
1392
1393 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1394 memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
1395
1396 ifp = &sc_if->sk_ethercom.ec_if;
1397 /* Try to allocate memory for jumbo buffers. */
1398 if (sk_alloc_jumbo_mem(sc_if)) {
1399 aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1400 goto fail;
1401 }
1402 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1403 | ETHERCAP_JUMBO_MTU;
1404
1405 ifp->if_softc = sc_if;
1406 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1407 ifp->if_ioctl = sk_ioctl;
1408 ifp->if_start = sk_start;
1409 ifp->if_stop = sk_stop;
1410 ifp->if_init = sk_init;
1411 ifp->if_watchdog = sk_watchdog;
1412 ifp->if_capabilities = 0;
1413 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1414 IFQ_SET_READY(&ifp->if_snd);
1415 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1416
1417 /*
1418 * Do miibus setup.
1419 */
1420 switch (sc->sk_type) {
1421 case SK_GENESIS:
1422 sk_init_xmac(sc_if);
1423 break;
1424 case SK_YUKON:
1425 case SK_YUKON_LITE:
1426 case SK_YUKON_LP:
1427 sk_init_yukon(sc_if);
1428 break;
1429 default:
1430 aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
1431 sc->sk_type);
1432 goto fail;
1433 }
1434
1435 DPRINTFN(2, ("sk_attach: 1\n"));
1436
1437 sc_if->sk_mii.mii_ifp = ifp;
1438 switch (sc->sk_type) {
1439 case SK_GENESIS:
1440 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1441 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1442 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1443 break;
1444 case SK_YUKON:
1445 case SK_YUKON_LITE:
1446 case SK_YUKON_LP:
1447 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1448 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1449 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1450 mii_flags = MIIF_DOPAUSE;
1451 break;
1452 }
1453
1454 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1455 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1456 sk_ifmedia_upd, ether_mediastatus);
1457 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1458 MII_OFFSET_ANY, mii_flags);
1459 if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
1460 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1461 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER | IFM_MANUAL,
1462 0, NULL);
1463 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER | IFM_MANUAL);
1464 } else
1465 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER | IFM_AUTO);
1466
1467 callout_init(&sc_if->sk_tick_ch, 0);
1468 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1469
1470 DPRINTFN(2, ("sk_attach: 1\n"));
1471
1472 /*
1473 * Call MI attach routines.
1474 */
1475 if_attach(ifp);
1476 if_deferred_start_init(ifp, NULL);
1477
1478 ether_ifattach(ifp, sc_if->sk_enaddr);
1479
1480 if (sc->rnd_attached++ == 0) {
1481 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1482 RND_TYPE_NET, RND_FLAG_DEFAULT);
1483 }
1484
1485 if (pmf_device_register(self, NULL, sk_resume))
1486 pmf_class_network_register(self, ifp);
1487 else
1488 aprint_error_dev(self, "couldn't establish power handler\n");
1489
1490 DPRINTFN(2, ("sk_attach: end\n"));
1491
1492 return;
1493
1494 fail:
1495 sc->sk_if[sa->skc_port] = NULL;
1496 }
1497
1498 int
1499 skcprint(void *aux, const char *pnp)
1500 {
1501 struct skc_attach_args *sa = aux;
1502
1503 if (pnp)
1504 aprint_normal("sk port %c at %s",
1505 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1506 else
1507 aprint_normal(" port %c",
1508 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1509 return UNCONF;
1510 }
1511
1512 /*
1513 * Attach the interface. Allocate softc structures, do ifmedia
1514 * setup and ethernet/BPF attach.
1515 */
1516 void
1517 skc_attach(device_t parent, device_t self, void *aux)
1518 {
1519 struct sk_softc *sc = device_private(self);
1520 struct pci_attach_args *pa = aux;
1521 struct skc_attach_args skca;
1522 pci_chipset_tag_t pc = pa->pa_pc;
1523 #ifndef SK_USEIOSPACE
1524 pcireg_t memtype;
1525 #endif
1526 pci_intr_handle_t ih;
1527 const char *intrstr = NULL;
1528 bus_addr_t iobase;
1529 bus_size_t iosize;
1530 int rc, sk_nodenum;
1531 uint32_t command;
1532 const char *revstr;
1533 const struct sysctlnode *node;
1534 char intrbuf[PCI_INTRSTR_LEN];
1535
1536 sc->sk_dev = self;
1537 aprint_naive("\n");
1538
1539 DPRINTFN(2, ("begin skc_attach\n"));
1540
1541 /*
1542 * Handle power management nonsense.
1543 */
1544 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1545
1546 if (command == 0x01) {
1547 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1548 if (command & SK_PSTATE_MASK) {
1549 uint32_t xiobase, membase, irq;
1550
1551 /* Save important PCI config data. */
1552 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1553 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1554 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1555
1556 /* Reset the power state. */
1557 aprint_normal_dev(sc->sk_dev,
1558 "chip is in D%d power mode -- setting to D0\n",
1559 command & SK_PSTATE_MASK);
1560 command &= 0xFFFFFFFC;
1561 pci_conf_write(pc, pa->pa_tag,
1562 SK_PCI_PWRMGMTCTRL, command);
1563
1564 /* Restore PCI config data. */
1565 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1566 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1567 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1568 }
1569 }
1570
1571 /*
1572 * The firmware might have configured the interface to revert the
1573 * byte order in all descriptors. Make that undone.
1574 */
1575 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_OURREG2);
1576 if (command & SK_REG2_REV_DESC)
1577 pci_conf_write(pc, pa->pa_tag, SK_PCI_OURREG2,
1578 command & ~SK_REG2_REV_DESC);
1579
1580 /*
1581 * Map control/status registers.
1582 */
1583 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1584 command |= PCI_COMMAND_IO_ENABLE |
1585 PCI_COMMAND_MEM_ENABLE |
1586 PCI_COMMAND_MASTER_ENABLE;
1587 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1588 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1589
1590 #ifdef SK_USEIOSPACE
1591 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1592 aprint_error(": failed to enable I/O ports!\n");
1593 return;
1594 }
1595 /*
1596 * Map control/status registers.
1597 */
1598 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1599 &sc->sk_btag, &sc->sk_bhandle,
1600 &iobase, &iosize)) {
1601 aprint_error(": can't find i/o space\n");
1602 return;
1603 }
1604 #else
1605 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1606 aprint_error(": failed to enable memory mapping!\n");
1607 return;
1608 }
1609 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1610 switch (memtype) {
1611 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1612 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1613 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1614 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1615 &iobase, &iosize) == 0)
1616 break;
1617 /* FALLTHROUGH */
1618 default:
1619 aprint_error_dev(sc->sk_dev, "can't find mem space\n");
1620 return;
1621 }
1622
1623 DPRINTFN(2, ("skc_attach: iobase=%#" PRIxPADDR ", iosize=%zx\n",
1624 iobase, iosize));
1625 #endif
1626 sc->sc_dmatag = pa->pa_dmat;
1627
1628 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1629 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1630
1631 /* bail out here if chip is not recognized */
1632 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1633 aprint_error_dev(sc->sk_dev, "unknown chip type\n");
1634 goto fail;
1635 }
1636 if (SK_IS_YUKON2(sc)) {
1637 aprint_error_dev(sc->sk_dev,
1638 "Does not support Yukon2--try msk(4).\n");
1639 goto fail;
1640 }
1641 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1642
1643 /* Allocate interrupt */
1644 if (pci_intr_map(pa, &ih)) {
1645 aprint_error(": couldn't map interrupt\n");
1646 goto fail;
1647 }
1648
1649 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1650 sc->sk_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, sk_intr, sc,
1651 device_xname(sc->sk_dev));
1652 if (sc->sk_intrhand == NULL) {
1653 aprint_error(": couldn't establish interrupt");
1654 if (intrstr != NULL)
1655 aprint_error(" at %s", intrstr);
1656 aprint_error("\n");
1657 goto fail;
1658 }
1659 aprint_normal(": %s\n", intrstr);
1660
1661 /* Reset the adapter. */
1662 sk_reset(sc);
1663
1664 /* Read and save vital product data from EEPROM. */
1665 sk_vpd_read(sc);
1666
1667 if (sc->sk_type == SK_GENESIS) {
1668 uint8_t val = sk_win_read_1(sc, SK_EPROM0);
1669 /* Read and save RAM size and RAMbuffer offset */
1670 switch (val) {
1671 case SK_RAMSIZE_512K_64:
1672 sc->sk_ramsize = 0x80000;
1673 sc->sk_rboff = SK_RBOFF_0;
1674 break;
1675 case SK_RAMSIZE_1024K_64:
1676 sc->sk_ramsize = 0x100000;
1677 sc->sk_rboff = SK_RBOFF_80000;
1678 break;
1679 case SK_RAMSIZE_1024K_128:
1680 sc->sk_ramsize = 0x100000;
1681 sc->sk_rboff = SK_RBOFF_0;
1682 break;
1683 case SK_RAMSIZE_2048K_128:
1684 sc->sk_ramsize = 0x200000;
1685 sc->sk_rboff = SK_RBOFF_0;
1686 break;
1687 default:
1688 aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
1689 val);
1690 goto fail_1;
1691 break;
1692 }
1693
1694 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1695 sc->sk_ramsize, sc->sk_ramsize / 1024,
1696 sc->sk_rboff));
1697 } else {
1698 uint8_t val = sk_win_read_1(sc, SK_EPROM0);
1699 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1700 sc->sk_rboff = SK_RBOFF_0;
1701
1702 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1703 sc->sk_ramsize / 1024, sc->sk_ramsize,
1704 sc->sk_rboff));
1705 }
1706
1707 /* Read and save physical media type */
1708 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1709 case SK_PMD_1000BASESX:
1710 sc->sk_pmd = IFM_1000_SX;
1711 break;
1712 case SK_PMD_1000BASELX:
1713 sc->sk_pmd = IFM_1000_LX;
1714 break;
1715 case SK_PMD_1000BASECX:
1716 sc->sk_pmd = IFM_1000_CX;
1717 break;
1718 case SK_PMD_1000BASETX:
1719 case SK_PMD_1000BASETX_ALT:
1720 sc->sk_pmd = IFM_1000_T;
1721 break;
1722 default:
1723 aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
1724 sk_win_read_1(sc, SK_PMDTYPE));
1725 goto fail_1;
1726 }
1727
1728 /* determine whether to name it with vpd or just make it up */
1729 /* Marvell Yukon VPD's can freqently be bogus */
1730
1731 switch (pa->pa_id) {
1732 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1733 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1734 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1735 case PCI_PRODUCT_3COM_3C940:
1736 case PCI_PRODUCT_DLINK_DGE530T:
1737 case PCI_PRODUCT_DLINK_DGE560T:
1738 case PCI_PRODUCT_DLINK_DGE560T_2:
1739 case PCI_PRODUCT_LINKSYS_EG1032:
1740 case PCI_PRODUCT_LINKSYS_EG1064:
1741 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1742 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1743 case PCI_ID_CODE(PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940):
1744 case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T):
1745 case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T):
1746 case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2):
1747 case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032):
1748 case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064):
1749 sc->sk_name = sc->sk_vpd_prodname;
1750 break;
1751 case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET):
1752 /* whoops yukon vpd prodname bears no resemblance to reality */
1753 switch (sc->sk_type) {
1754 case SK_GENESIS:
1755 sc->sk_name = sc->sk_vpd_prodname;
1756 break;
1757 case SK_YUKON:
1758 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1759 break;
1760 case SK_YUKON_LITE:
1761 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1762 break;
1763 case SK_YUKON_LP:
1764 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1765 break;
1766 default:
1767 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1768 }
1769
1770 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1771
1772 if ( sc->sk_type == SK_YUKON ) {
1773 uint32_t flashaddr;
1774 uint8_t testbyte;
1775
1776 flashaddr = sk_win_read_4(sc, SK_EP_ADDR);
1777
1778 /* test Flash-Address Register */
1779 sk_win_write_1(sc, SK_EP_ADDR+3, 0xff);
1780 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1781
1782 if (testbyte != 0) {
1783 /* this is yukon lite Rev. A0 */
1784 sc->sk_type = SK_YUKON_LITE;
1785 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1786 /* restore Flash-Address Register */
1787 sk_win_write_4(sc, SK_EP_ADDR, flashaddr);
1788 }
1789 }
1790 break;
1791 case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN):
1792 sc->sk_name = sc->sk_vpd_prodname;
1793 break;
1794 default:
1795 sc->sk_name = "Unknown Marvell";
1796 }
1797
1798
1799 if ( sc->sk_type == SK_YUKON_LITE ) {
1800 switch (sc->sk_rev) {
1801 case SK_YUKON_LITE_REV_A0:
1802 revstr = "A0";
1803 break;
1804 case SK_YUKON_LITE_REV_A1:
1805 revstr = "A1";
1806 break;
1807 case SK_YUKON_LITE_REV_A3:
1808 revstr = "A3";
1809 break;
1810 default:
1811 revstr = "";
1812 }
1813 } else {
1814 revstr = "";
1815 }
1816
1817 /* Announce the product name. */
1818 aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
1819 sc->sk_name, revstr, sc->sk_rev);
1820
1821 skca.skc_port = SK_PORT_A;
1822 (void)config_found(sc->sk_dev, &skca, skcprint);
1823
1824 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1825 skca.skc_port = SK_PORT_B;
1826 (void)config_found(sc->sk_dev, &skca, skcprint);
1827 }
1828
1829 /* Turn on the 'driver is loaded' LED. */
1830 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1831
1832 /* skc sysctl setup */
1833
1834 sc->sk_int_mod = SK_IM_DEFAULT;
1835 sc->sk_int_mod_pending = 0;
1836
1837 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1838 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1839 SYSCTL_DESCR("skc per-controller controls"),
1840 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1841 CTL_EOL)) != 0) {
1842 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1843 goto fail_1;
1844 }
1845
1846 sk_nodenum = node->sysctl_num;
1847
1848 /* interrupt moderation time in usecs */
1849 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1850 CTLFLAG_READWRITE,
1851 CTLTYPE_INT, "int_mod",
1852 SYSCTL_DESCR("sk interrupt moderation timer"),
1853 sk_sysctl_handler, 0, (void *)sc,
1854 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1855 CTL_EOL)) != 0) {
1856 aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1857 goto fail_1;
1858 }
1859
1860 if (!pmf_device_register(self, skc_suspend, skc_resume))
1861 aprint_error_dev(self, "couldn't establish power handler\n");
1862
1863 return;
1864
1865 fail_1:
1866 pci_intr_disestablish(pc, sc->sk_intrhand);
1867 fail:
1868 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1869 }
1870
1871 int
1872 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1873 {
1874 struct sk_softc *sc = sc_if->sk_softc;
1875 struct sk_tx_desc *f = NULL;
1876 uint32_t frag, cur, cnt = 0, sk_ctl;
1877 int i;
1878 struct sk_txmap_entry *entry;
1879 bus_dmamap_t txmap;
1880
1881 DPRINTFN(3, ("sk_encap\n"));
1882
1883 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1884 if (entry == NULL) {
1885 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1886 return ENOBUFS;
1887 }
1888 txmap = entry->dmamap;
1889
1890 cur = frag = *txidx;
1891
1892 #ifdef SK_DEBUG
1893 if (skdebug >= 3)
1894 sk_dump_mbuf(m_head);
1895 #endif
1896
1897 /*
1898 * Start packing the mbufs in this chain into
1899 * the fragment pointers. Stop when we run out
1900 * of fragments or hit the end of the mbuf chain.
1901 */
1902 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1903 BUS_DMA_NOWAIT)) {
1904 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1905 return ENOBUFS;
1906 }
1907
1908 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1909
1910 /* Sync the DMA map. */
1911 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1912 BUS_DMASYNC_PREWRITE);
1913
1914 for (i = 0; i < txmap->dm_nsegs; i++) {
1915 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1916 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1917 return ENOBUFS;
1918 }
1919 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1920 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1921 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1922 if (cnt == 0)
1923 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1924 else
1925 sk_ctl |= SK_TXCTL_OWN;
1926 f->sk_ctl = htole32(sk_ctl);
1927 cur = frag;
1928 SK_INC(frag, SK_TX_RING_CNT);
1929 cnt++;
1930 }
1931
1932 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1933 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1934
1935 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1936 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1937 htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
1938
1939 /* Sync descriptors before handing to chip */
1940 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1941 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1942
1943 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1944 htole32(SK_TXCTL_OWN);
1945
1946 /* Sync first descriptor to hand it off */
1947 SK_CDTXSYNC(sc_if, *txidx, 1,
1948 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1949
1950 sc_if->sk_cdata.sk_tx_cnt += cnt;
1951
1952 #ifdef SK_DEBUG
1953 if (skdebug >= 3) {
1954 struct sk_tx_desc *desc;
1955 uint32_t idx;
1956 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1957 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1958 sk_dump_txdesc(desc, idx);
1959 }
1960 }
1961 #endif
1962
1963 *txidx = frag;
1964
1965 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1966
1967 return 0;
1968 }
1969
1970 void
1971 sk_start(struct ifnet *ifp)
1972 {
1973 struct sk_if_softc *sc_if = ifp->if_softc;
1974 struct sk_softc *sc = sc_if->sk_softc;
1975 struct mbuf *m_head = NULL;
1976 uint32_t idx = sc_if->sk_cdata.sk_tx_prod;
1977 int pkts = 0;
1978
1979 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1980 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1981
1982 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1983 IFQ_POLL(&ifp->if_snd, m_head);
1984 if (m_head == NULL)
1985 break;
1986
1987 /*
1988 * Pack the data into the transmit ring. If we
1989 * don't have room, set the OACTIVE flag and wait
1990 * for the NIC to drain the ring.
1991 */
1992 if (sk_encap(sc_if, m_head, &idx)) {
1993 ifp->if_flags |= IFF_OACTIVE;
1994 break;
1995 }
1996
1997 /* now we are committed to transmit the packet */
1998 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1999 pkts++;
2000
2001 /*
2002 * If there's a BPF listener, bounce a copy of this frame
2003 * to him.
2004 */
2005 bpf_mtap(ifp, m_head, BPF_D_OUT);
2006 }
2007 if (pkts == 0)
2008 return;
2009
2010 /* Transmit */
2011 if (idx != sc_if->sk_cdata.sk_tx_prod) {
2012 sc_if->sk_cdata.sk_tx_prod = idx;
2013 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2014
2015 /* Set a timeout in case the chip goes out to lunch. */
2016 ifp->if_timer = 5;
2017 }
2018 }
2019
2020
2021 void
2022 sk_watchdog(struct ifnet *ifp)
2023 {
2024 struct sk_if_softc *sc_if = ifp->if_softc;
2025
2026 /*
2027 * Reclaim first as there is a possibility of losing Tx completion
2028 * interrupts.
2029 */
2030 sk_txeof(sc_if);
2031 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2032 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
2033
2034 ifp->if_oerrors++;
2035
2036 sk_init(ifp);
2037 }
2038 }
2039
2040 void
2041 sk_shutdown(void *v)
2042 {
2043 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
2044 struct sk_softc *sc = sc_if->sk_softc;
2045 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2046
2047 DPRINTFN(2, ("sk_shutdown\n"));
2048 sk_stop(ifp, 1);
2049
2050 /* Turn off the 'driver is loaded' LED. */
2051 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2052
2053 /*
2054 * Reset the GEnesis controller. Doing this should also
2055 * assert the resets on the attached XMAC(s).
2056 */
2057 sk_reset(sc);
2058 }
2059
2060 void
2061 sk_rxeof(struct sk_if_softc *sc_if)
2062 {
2063 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2064 struct mbuf *m;
2065 struct sk_chain *cur_rx;
2066 struct sk_rx_desc *cur_desc;
2067 int i, cur, total_len = 0;
2068 uint32_t rxstat, sk_ctl;
2069 bus_dmamap_t dmamap;
2070
2071 i = sc_if->sk_cdata.sk_rx_prod;
2072
2073 DPRINTFN(3, ("sk_rxeof %d\n", i));
2074
2075 for (;;) {
2076 cur = i;
2077
2078 /* Sync the descriptor */
2079 SK_CDRXSYNC(sc_if, cur,
2080 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2081
2082 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2083 if (sk_ctl & SK_RXCTL_OWN) {
2084 /* Invalidate the descriptor -- it's not ready yet */
2085 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2086 sc_if->sk_cdata.sk_rx_prod = i;
2087 break;
2088 }
2089
2090 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2091 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2092 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2093
2094 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2095 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2096
2097 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2098 m = cur_rx->sk_mbuf;
2099 cur_rx->sk_mbuf = NULL;
2100 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2101
2102 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2103
2104 SK_INC(i, SK_RX_RING_CNT);
2105
2106 if (rxstat & XM_RXSTAT_ERRFRAME) {
2107 ifp->if_ierrors++;
2108 sk_newbuf(sc_if, cur, m, dmamap);
2109 continue;
2110 }
2111
2112 /*
2113 * Try to allocate a new jumbo buffer. If that
2114 * fails, copy the packet to mbufs and put the
2115 * jumbo buffer back in the ring so it can be
2116 * re-used. If allocating mbufs fails, then we
2117 * have to drop the packet.
2118 */
2119 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2120 struct mbuf *m0;
2121 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2122 total_len + ETHER_ALIGN, 0, ifp);
2123 sk_newbuf(sc_if, cur, m, dmamap);
2124 if (m0 == NULL) {
2125 aprint_error_dev(sc_if->sk_dev, "no receive "
2126 "buffers available -- packet dropped!\n");
2127 ifp->if_ierrors++;
2128 continue;
2129 }
2130 m_adj(m0, ETHER_ALIGN);
2131 m = m0;
2132 } else {
2133 m_set_rcvif(m, ifp);
2134 m->m_pkthdr.len = m->m_len = total_len;
2135 }
2136
2137 /* pass it on. */
2138 if_percpuq_enqueue(ifp->if_percpuq, m);
2139 }
2140 }
2141
2142 void
2143 sk_txeof(struct sk_if_softc *sc_if)
2144 {
2145 struct sk_softc *sc = sc_if->sk_softc;
2146 struct sk_tx_desc *cur_tx;
2147 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2148 uint32_t idx, sk_ctl;
2149 struct sk_txmap_entry *entry;
2150
2151 DPRINTFN(3, ("sk_txeof\n"));
2152
2153 /*
2154 * Go through our tx ring and free mbufs for those
2155 * frames that have been sent.
2156 */
2157 idx = sc_if->sk_cdata.sk_tx_cons;
2158 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2159 SK_CDTXSYNC(sc_if, idx, 1,
2160 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2161
2162 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2163 sk_ctl = le32toh(cur_tx->sk_ctl);
2164 #ifdef SK_DEBUG
2165 if (skdebug >= 3)
2166 sk_dump_txdesc(cur_tx, idx);
2167 #endif
2168 if (sk_ctl & SK_TXCTL_OWN) {
2169 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2170 break;
2171 }
2172 if (sk_ctl & SK_TXCTL_LASTFRAG)
2173 ifp->if_opackets++;
2174 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2175 entry = sc_if->sk_cdata.sk_tx_map[idx];
2176
2177 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2178 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2179
2180 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2181 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2182
2183 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2184 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2185 link);
2186 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2187 }
2188 sc_if->sk_cdata.sk_tx_cnt--;
2189 SK_INC(idx, SK_TX_RING_CNT);
2190 }
2191 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2192 ifp->if_timer = 0;
2193 else /* nudge chip to keep tx ring moving */
2194 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2195
2196 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2197 ifp->if_flags &= ~IFF_OACTIVE;
2198
2199 sc_if->sk_cdata.sk_tx_cons = idx;
2200 }
2201
2202 void
2203 sk_tick(void *xsc_if)
2204 {
2205 struct sk_if_softc *sc_if = xsc_if;
2206 struct mii_data *mii = &sc_if->sk_mii;
2207 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2208 int i;
2209
2210 DPRINTFN(3, ("sk_tick\n"));
2211
2212 if (!(ifp->if_flags & IFF_UP))
2213 return;
2214
2215 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2216 sk_intr_bcom(sc_if);
2217 return;
2218 }
2219
2220 /*
2221 * According to SysKonnect, the correct way to verify that
2222 * the link has come back up is to poll bit 0 of the GPIO
2223 * register three times. This pin has the signal from the
2224 * link sync pin connected to it; if we read the same link
2225 * state 3 times in a row, we know the link is up.
2226 */
2227 for (i = 0; i < 3; i++) {
2228 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2229 break;
2230 }
2231
2232 if (i != 3) {
2233 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2234 return;
2235 }
2236
2237 /* Turn the GP0 interrupt back on. */
2238 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2239 SK_XM_READ_2(sc_if, XM_ISR);
2240 mii_tick(mii);
2241 if (ifp->if_link_state != LINK_STATE_UP)
2242 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2243 else
2244 callout_stop(&sc_if->sk_tick_ch);
2245 }
2246
2247 void
2248 sk_intr_bcom(struct sk_if_softc *sc_if)
2249 {
2250 struct mii_data *mii = &sc_if->sk_mii;
2251 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2252 uint16_t status;
2253
2254
2255 DPRINTFN(3, ("sk_intr_bcom\n"));
2256
2257 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2258
2259 /*
2260 * Read the PHY interrupt register to make sure
2261 * we clear any pending interrupts.
2262 */
2263 sk_xmac_miibus_readreg(sc_if->sk_dev,
2264 SK_PHYADDR_BCOM, BRGPHY_MII_ISR, &status);
2265
2266 if (!(ifp->if_flags & IFF_RUNNING)) {
2267 sk_init_xmac(sc_if);
2268 return;
2269 }
2270
2271 if (status & (BRGPHY_ISR_LNK_CHG | BRGPHY_ISR_AN_PR)) {
2272 uint16_t lstat;
2273 sk_xmac_miibus_readreg(sc_if->sk_dev,
2274 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS, &lstat);
2275
2276 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2277 (void)mii_mediachg(mii);
2278 /* Turn off the link LED. */
2279 SK_IF_WRITE_1(sc_if, 0,
2280 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2281 sc_if->sk_link = 0;
2282 } else if (status & BRGPHY_ISR_LNK_CHG) {
2283 sk_xmac_miibus_writereg(sc_if->sk_dev,
2284 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2285 mii_tick(mii);
2286 sc_if->sk_link = 1;
2287 /* Turn on the link LED. */
2288 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2289 SK_LINKLED_ON | SK_LINKLED_LINKSYNC_OFF |
2290 SK_LINKLED_BLINK_OFF);
2291 mii_pollstat(mii);
2292 } else {
2293 mii_tick(mii);
2294 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2295 }
2296 }
2297
2298 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2299 }
2300
2301 void
2302 sk_intr_xmac(struct sk_if_softc *sc_if)
2303 {
2304 uint16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2305
2306 DPRINTFN(3, ("sk_intr_xmac\n"));
2307
2308 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2309 if (status & XM_ISR_GP0_SET) {
2310 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2311 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2312 }
2313
2314 if (status & XM_ISR_AUTONEG_DONE) {
2315 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2316 }
2317 }
2318
2319 if (status & XM_IMR_TX_UNDERRUN)
2320 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2321
2322 if (status & XM_IMR_RX_OVERRUN)
2323 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2324 }
2325
2326 void
2327 sk_intr_yukon(struct sk_if_softc *sc_if)
2328 {
2329 #ifdef SK_DEBUG
2330 int status;
2331
2332 status =
2333 #endif
2334 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2335
2336 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2337 }
2338
2339 int
2340 sk_intr(void *xsc)
2341 {
2342 struct sk_softc *sc = xsc;
2343 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2344 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2345 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2346 uint32_t status;
2347 int claimed = 0;
2348
2349 if (sc_if0 != NULL)
2350 ifp0 = &sc_if0->sk_ethercom.ec_if;
2351 if (sc_if1 != NULL)
2352 ifp1 = &sc_if1->sk_ethercom.ec_if;
2353
2354 for (;;) {
2355 status = CSR_READ_4(sc, SK_ISSR);
2356 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2357
2358 if (!(status & sc->sk_intrmask))
2359 break;
2360
2361 claimed = 1;
2362
2363 /* Handle receive interrupts first. */
2364 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2365 sk_rxeof(sc_if0);
2366 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2367 SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
2368 }
2369 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2370 sk_rxeof(sc_if1);
2371 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2372 SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
2373 }
2374
2375 /* Then transmit interrupts. */
2376 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2377 sk_txeof(sc_if0);
2378 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2379 SK_TXBMU_CLR_IRQ_EOF);
2380 }
2381 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2382 sk_txeof(sc_if1);
2383 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2384 SK_TXBMU_CLR_IRQ_EOF);
2385 }
2386
2387 /* Then MAC interrupts. */
2388 if (sc_if0 && (status & SK_ISR_MAC1) &&
2389 (ifp0->if_flags & IFF_RUNNING)) {
2390 if (sc->sk_type == SK_GENESIS)
2391 sk_intr_xmac(sc_if0);
2392 else
2393 sk_intr_yukon(sc_if0);
2394 }
2395
2396 if (sc_if1 && (status & SK_ISR_MAC2) &&
2397 (ifp1->if_flags & IFF_RUNNING)) {
2398 if (sc->sk_type == SK_GENESIS)
2399 sk_intr_xmac(sc_if1);
2400 else
2401 sk_intr_yukon(sc_if1);
2402
2403 }
2404
2405 if (status & SK_ISR_EXTERNAL_REG) {
2406 if (sc_if0 != NULL &&
2407 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2408 sk_intr_bcom(sc_if0);
2409
2410 if (sc_if1 != NULL &&
2411 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2412 sk_intr_bcom(sc_if1);
2413 }
2414 }
2415
2416 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2417
2418 if (ifp0 != NULL)
2419 if_schedule_deferred_start(ifp0);
2420 if (ifp1 != NULL)
2421 if_schedule_deferred_start(ifp1);
2422
2423 KASSERT(sc->rnd_attached > 0);
2424 rnd_add_uint32(&sc->rnd_source, status);
2425
2426 if (sc->sk_int_mod_pending)
2427 sk_update_int_mod(sc);
2428
2429 return claimed;
2430 }
2431
2432 void
2433 sk_init_xmac(struct sk_if_softc *sc_if)
2434 {
2435 struct sk_softc *sc = sc_if->sk_softc;
2436 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2437 static const struct sk_bcom_hack bhack[] = {
2438 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2439 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2440 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2441 { 0, 0 } };
2442
2443 DPRINTFN(1, ("sk_init_xmac\n"));
2444
2445 /* Unreset the XMAC. */
2446 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2447 DELAY(1000);
2448
2449 /* Reset the XMAC's internal state. */
2450 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2451
2452 /* Save the XMAC II revision */
2453 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2454
2455 /*
2456 * Perform additional initialization for external PHYs,
2457 * namely for the 1000baseTX cards that use the XMAC's
2458 * GMII mode.
2459 */
2460 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2461 int i = 0;
2462 uint32_t val;
2463 uint16_t phyval;
2464
2465 /* Take PHY out of reset. */
2466 val = sk_win_read_4(sc, SK_GPIO);
2467 if (sc_if->sk_port == SK_PORT_A)
2468 val |= SK_GPIO_DIR0 | SK_GPIO_DAT0;
2469 else
2470 val |= SK_GPIO_DIR2 | SK_GPIO_DAT2;
2471 sk_win_write_4(sc, SK_GPIO, val);
2472
2473 /* Enable GMII mode on the XMAC. */
2474 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2475
2476 sk_xmac_miibus_writereg(sc_if->sk_dev,
2477 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2478 DELAY(10000);
2479 sk_xmac_miibus_writereg(sc_if->sk_dev,
2480 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2481
2482 /*
2483 * Early versions of the BCM5400 apparently have
2484 * a bug that requires them to have their reserved
2485 * registers initialized to some magic values. I don't
2486 * know what the numbers do, I'm just the messenger.
2487 */
2488 sk_xmac_miibus_readreg(sc_if->sk_dev,
2489 SK_PHYADDR_BCOM, 0x03, &phyval);
2490 if (phyval == 0x6041) {
2491 while (bhack[i].reg) {
2492 sk_xmac_miibus_writereg(sc_if->sk_dev,
2493 SK_PHYADDR_BCOM, bhack[i].reg,
2494 bhack[i].val);
2495 i++;
2496 }
2497 }
2498 }
2499
2500 /* Set station address */
2501 SK_XM_WRITE_2(sc_if, XM_PAR0,
2502 *(uint16_t *)(&sc_if->sk_enaddr[0]));
2503 SK_XM_WRITE_2(sc_if, XM_PAR1,
2504 *(uint16_t *)(&sc_if->sk_enaddr[2]));
2505 SK_XM_WRITE_2(sc_if, XM_PAR2,
2506 *(uint16_t *)(&sc_if->sk_enaddr[4]));
2507 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2508
2509 if (ifp->if_flags & IFF_PROMISC)
2510 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2511 else
2512 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2513
2514 if (ifp->if_flags & IFF_BROADCAST)
2515 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2516 else
2517 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2518
2519 /* We don't need the FCS appended to the packet. */
2520 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2521
2522 /* We want short frames padded to 60 bytes. */
2523 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2524
2525 /*
2526 * Enable the reception of all error frames. This is is
2527 * a necessary evil due to the design of the XMAC. The
2528 * XMAC's receive FIFO is only 8K in size, however jumbo
2529 * frames can be up to 9000 bytes in length. When bad
2530 * frame filtering is enabled, the XMAC's RX FIFO operates
2531 * in 'store and forward' mode. For this to work, the
2532 * entire frame has to fit into the FIFO, but that means
2533 * that jumbo frames larger than 8192 bytes will be
2534 * truncated. Disabling all bad frame filtering causes
2535 * the RX FIFO to operate in streaming mode, in which
2536 * case the XMAC will start transfering frames out of the
2537 * RX FIFO as soon as the FIFO threshold is reached.
2538 */
2539 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES |
2540 XM_MODE_RX_GIANTS | XM_MODE_RX_RUNTS | XM_MODE_RX_CRCERRS |
2541 XM_MODE_RX_INRANGELEN);
2542
2543 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2544 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2545 else
2546 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2547
2548 /*
2549 * Bump up the transmit threshold. This helps hold off transmit
2550 * underruns when we're blasting traffic from both ports at once.
2551 */
2552 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2553
2554 /* Set multicast filter */
2555 sk_setmulti(sc_if);
2556
2557 /* Clear and enable interrupts */
2558 SK_XM_READ_2(sc_if, XM_ISR);
2559 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2560 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2561 else
2562 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2563
2564 /* Configure MAC arbiter */
2565 switch (sc_if->sk_xmac_rev) {
2566 case XM_XMAC_REV_B2:
2567 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2568 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2569 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2570 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2571 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2572 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2573 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2574 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2575 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2576 break;
2577 case XM_XMAC_REV_C1:
2578 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2579 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2580 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2581 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2582 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2583 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2584 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2585 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2586 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2587 break;
2588 default:
2589 break;
2590 }
2591 sk_win_write_2(sc, SK_MACARB_CTL,
2592 SK_MACARBCTL_UNRESET | SK_MACARBCTL_FASTOE_OFF);
2593
2594 sc_if->sk_link = 1;
2595 }
2596
2597 void sk_init_yukon(struct sk_if_softc *sc_if)
2598 {
2599 uint32_t /*mac, */phy;
2600 uint16_t reg;
2601 struct sk_softc *sc;
2602 int i;
2603
2604 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2605 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2606
2607 sc = sc_if->sk_softc;
2608 if (sc->sk_type == SK_YUKON_LITE &&
2609 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2610 /* Take PHY out of reset. */
2611 sk_win_write_4(sc, SK_GPIO,
2612 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2613 }
2614
2615
2616 /* GMAC and GPHY Reset */
2617 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2618
2619 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2620
2621 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2622 DELAY(1000);
2623 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2624 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2625 DELAY(1000);
2626
2627
2628 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2629
2630 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2631 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2632
2633 switch (sc_if->sk_softc->sk_pmd) {
2634 case IFM_1000_SX:
2635 case IFM_1000_LX:
2636 phy |= SK_GPHY_FIBER;
2637 break;
2638
2639 case IFM_1000_CX:
2640 case IFM_1000_T:
2641 phy |= SK_GPHY_COPPER;
2642 break;
2643 }
2644
2645 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2646
2647 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2648 DELAY(1000);
2649 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2650 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2651 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2652
2653 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2654 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2655
2656 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2657
2658 /* unused read of the interrupt source register */
2659 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2660 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2661
2662 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2663 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2664 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2665
2666 /* MIB Counter Clear Mode set */
2667 reg |= YU_PAR_MIB_CLR;
2668 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2669 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2670 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2671
2672 /* MIB Counter Clear Mode clear */
2673 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2674 reg &= ~YU_PAR_MIB_CLR;
2675 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2676
2677 /* receive control reg */
2678 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2679 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2680 YU_RCR_CRCR);
2681
2682 /* transmit parameter register */
2683 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2684 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2685 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2686
2687 /* serial mode register */
2688 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2689 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2690 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2691 YU_SMR_IPG_DATA(0x1e));
2692
2693 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2694 /* Setup Yukon's address */
2695 for (i = 0; i < 3; i++) {
2696 /* Write Source Address 1 (unicast filter) */
2697 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2698 sc_if->sk_enaddr[i * 2] |
2699 sc_if->sk_enaddr[i * 2 + 1] << 8);
2700 }
2701
2702 for (i = 0; i < 3; i++) {
2703 reg = sk_win_read_2(sc_if->sk_softc,
2704 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2705 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2706 }
2707
2708 /* Set multicast filter */
2709 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2710 sk_setmulti(sc_if);
2711
2712 /* enable interrupt mask for counter overflows */
2713 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2714 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2715 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2716 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2717
2718 /* Configure RX MAC FIFO */
2719 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2720 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2721
2722 /* Configure TX MAC FIFO */
2723 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2724 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2725
2726 DPRINTFN(6, ("sk_init_yukon: end\n"));
2727 }
2728
2729 /*
2730 * Note that to properly initialize any part of the GEnesis chip,
2731 * you first have to take it out of reset mode.
2732 */
2733 int
2734 sk_init(struct ifnet *ifp)
2735 {
2736 struct sk_if_softc *sc_if = ifp->if_softc;
2737 struct sk_softc *sc = sc_if->sk_softc;
2738 struct mii_data *mii = &sc_if->sk_mii;
2739 int rc = 0, s;
2740 uint32_t imr, imtimer_ticks;
2741
2742 DPRINTFN(1, ("sk_init\n"));
2743
2744 s = splnet();
2745
2746 if (ifp->if_flags & IFF_RUNNING) {
2747 splx(s);
2748 return 0;
2749 }
2750
2751 /* Cancel pending I/O and free all RX/TX buffers. */
2752 sk_stop(ifp, 0);
2753
2754 if (sc->sk_type == SK_GENESIS) {
2755 /* Configure LINK_SYNC LED */
2756 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2757 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2758 SK_LINKLED_LINKSYNC_ON);
2759
2760 /* Configure RX LED */
2761 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2762 SK_RXLEDCTL_COUNTER_START);
2763
2764 /* Configure TX LED */
2765 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2766 SK_TXLEDCTL_COUNTER_START);
2767 }
2768
2769 /* Configure I2C registers */
2770
2771 /* Configure XMAC(s) */
2772 switch (sc->sk_type) {
2773 case SK_GENESIS:
2774 sk_init_xmac(sc_if);
2775 break;
2776 case SK_YUKON:
2777 case SK_YUKON_LITE:
2778 case SK_YUKON_LP:
2779 sk_init_yukon(sc_if);
2780 break;
2781 }
2782 if ((rc = mii_mediachg(mii)) == ENXIO)
2783 rc = 0;
2784 else if (rc != 0)
2785 goto out;
2786
2787 if (sc->sk_type == SK_GENESIS) {
2788 /* Configure MAC FIFOs */
2789 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2790 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2791 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2792
2793 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2794 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2795 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2796 }
2797
2798 /* Configure transmit arbiter(s) */
2799 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2800 SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON);
2801
2802 /* Configure RAMbuffers */
2803 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2804 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2805 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2806 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2807 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2808 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2809
2810 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2811 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2812 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2813 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2814 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2815 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2816 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2817
2818 /* Configure BMUs */
2819 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2820 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2821 SK_RX_RING_ADDR(sc_if, 0));
2822 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2823
2824 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2825 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2826 SK_TX_RING_ADDR(sc_if, 0));
2827 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2828
2829 /* Init descriptors */
2830 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2831 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2832 "memory for rx buffers\n");
2833 sk_stop(ifp, 0);
2834 splx(s);
2835 return ENOBUFS;
2836 }
2837
2838 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2839 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2840 "memory for tx buffers\n");
2841 sk_stop(ifp, 0);
2842 splx(s);
2843 return ENOBUFS;
2844 }
2845
2846 /* Set interrupt moderation if changed via sysctl. */
2847 switch (sc->sk_type) {
2848 case SK_GENESIS:
2849 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2850 break;
2851 case SK_YUKON_EC:
2852 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2853 break;
2854 default:
2855 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2856 }
2857 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2858 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2859 sk_win_write_4(sc, SK_IMTIMERINIT,
2860 SK_IM_USECS(sc->sk_int_mod));
2861 aprint_verbose_dev(sc->sk_dev,
2862 "interrupt moderation is %d us\n", sc->sk_int_mod);
2863 }
2864
2865 /* Configure interrupt handling */
2866 CSR_READ_4(sc, SK_ISSR);
2867 if (sc_if->sk_port == SK_PORT_A)
2868 sc->sk_intrmask |= SK_INTRS1;
2869 else
2870 sc->sk_intrmask |= SK_INTRS2;
2871
2872 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2873
2874 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2875
2876 /* Start BMUs. */
2877 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2878
2879 if (sc->sk_type == SK_GENESIS) {
2880 /* Enable XMACs TX and RX state machines */
2881 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2882 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2883 XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2884 }
2885
2886 if (SK_YUKON_FAMILY(sc->sk_type)) {
2887 uint16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2888 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2889 #if 0
2890 /* XXX disable 100Mbps and full duplex mode? */
2891 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2892 #endif
2893 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2894 }
2895
2896
2897 ifp->if_flags |= IFF_RUNNING;
2898 ifp->if_flags &= ~IFF_OACTIVE;
2899 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2900
2901 out:
2902 splx(s);
2903 return rc;
2904 }
2905
2906 void
2907 sk_stop(struct ifnet *ifp, int disable)
2908 {
2909 struct sk_if_softc *sc_if = ifp->if_softc;
2910 struct sk_softc *sc = sc_if->sk_softc;
2911 int i;
2912
2913 DPRINTFN(1, ("sk_stop\n"));
2914
2915 callout_stop(&sc_if->sk_tick_ch);
2916
2917 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2918 uint32_t val;
2919
2920 /* Put PHY back into reset. */
2921 val = sk_win_read_4(sc, SK_GPIO);
2922 if (sc_if->sk_port == SK_PORT_A) {
2923 val |= SK_GPIO_DIR0;
2924 val &= ~SK_GPIO_DAT0;
2925 } else {
2926 val |= SK_GPIO_DIR2;
2927 val &= ~SK_GPIO_DAT2;
2928 }
2929 sk_win_write_4(sc, SK_GPIO, val);
2930 }
2931
2932 /* Turn off various components of this interface. */
2933 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2934 switch (sc->sk_type) {
2935 case SK_GENESIS:
2936 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2937 SK_TXMACCTL_XMAC_RESET);
2938 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2939 break;
2940 case SK_YUKON:
2941 case SK_YUKON_LITE:
2942 case SK_YUKON_LP:
2943 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2944 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2945 break;
2946 }
2947 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2948 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET |SK_RBCTL_OFF);
2949 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2950 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2951 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2952 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2953 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2954 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2955 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2956
2957 /* Disable interrupts */
2958 if (sc_if->sk_port == SK_PORT_A)
2959 sc->sk_intrmask &= ~SK_INTRS1;
2960 else
2961 sc->sk_intrmask &= ~SK_INTRS2;
2962 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2963
2964 SK_XM_READ_2(sc_if, XM_ISR);
2965 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2966
2967 /* Free RX and TX mbufs still in the queues. */
2968 for (i = 0; i < SK_RX_RING_CNT; i++) {
2969 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2970 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2971 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2972 }
2973 }
2974
2975 for (i = 0; i < SK_TX_RING_CNT; i++) {
2976 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2977 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2978 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2979 }
2980 }
2981
2982 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2983 }
2984
2985 /* Power Management Framework */
2986
2987 static bool
2988 skc_suspend(device_t dv, const pmf_qual_t *qual)
2989 {
2990 struct sk_softc *sc = device_private(dv);
2991
2992 DPRINTFN(2, ("skc_suspend\n"));
2993
2994 /* Turn off the driver is loaded LED */
2995 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2996
2997 return true;
2998 }
2999
3000 static bool
3001 skc_resume(device_t dv, const pmf_qual_t *qual)
3002 {
3003 struct sk_softc *sc = device_private(dv);
3004
3005 DPRINTFN(2, ("skc_resume\n"));
3006
3007 sk_reset(sc);
3008 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
3009
3010 return true;
3011 }
3012
3013 static bool
3014 sk_resume(device_t dv, const pmf_qual_t *qual)
3015 {
3016 struct sk_if_softc *sc_if = device_private(dv);
3017
3018 sk_init_yukon(sc_if);
3019 return true;
3020 }
3021
3022 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
3023 skc_probe, skc_attach, NULL, NULL);
3024
3025 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
3026 sk_probe, sk_attach, NULL, NULL);
3027
3028 #ifdef SK_DEBUG
3029 void
3030 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
3031 {
3032 #define DESC_PRINT(X) \
3033 if (X) \
3034 printf("txdesc[%d]." #X "=%#x\n", \
3035 idx, X);
3036
3037 DESC_PRINT(le32toh(desc->sk_ctl));
3038 DESC_PRINT(le32toh(desc->sk_next));
3039 DESC_PRINT(le32toh(desc->sk_data_lo));
3040 DESC_PRINT(le32toh(desc->sk_data_hi));
3041 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
3042 DESC_PRINT(le16toh(desc->sk_rsvd0));
3043 DESC_PRINT(le16toh(desc->sk_csum_startval));
3044 DESC_PRINT(le16toh(desc->sk_csum_startpos));
3045 DESC_PRINT(le16toh(desc->sk_csum_writepos));
3046 DESC_PRINT(le16toh(desc->sk_rsvd1));
3047 #undef PRINT
3048 }
3049
3050 void
3051 sk_dump_bytes(const char *data, int len)
3052 {
3053 int c, i, j;
3054
3055 for (i = 0; i < len; i += 16) {
3056 printf("%08x ", i);
3057 c = len - i;
3058 if (c > 16) c = 16;
3059
3060 for (j = 0; j < c; j++) {
3061 printf("%02x ", data[i + j] & 0xff);
3062 if ((j & 0xf) == 7 && j > 0)
3063 printf(" ");
3064 }
3065
3066 for (; j < 16; j++)
3067 printf(" ");
3068 printf(" ");
3069
3070 for (j = 0; j < c; j++) {
3071 int ch = data[i + j] & 0xff;
3072 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
3073 }
3074
3075 printf("\n");
3076
3077 if (c < 16)
3078 break;
3079 }
3080 }
3081
3082 void
3083 sk_dump_mbuf(struct mbuf *m)
3084 {
3085 int count = m->m_pkthdr.len;
3086
3087 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3088
3089 while (count > 0 && m) {
3090 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3091 m, m->m_data, m->m_len);
3092 sk_dump_bytes(mtod(m, char *), m->m_len);
3093
3094 count -= m->m_len;
3095 m = m->m_next;
3096 }
3097 }
3098 #endif
3099
3100 static int
3101 sk_sysctl_handler(SYSCTLFN_ARGS)
3102 {
3103 int error, t;
3104 struct sysctlnode node;
3105 struct sk_softc *sc;
3106
3107 node = *rnode;
3108 sc = node.sysctl_data;
3109 t = sc->sk_int_mod;
3110 node.sysctl_data = &t;
3111 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3112 if (error || newp == NULL)
3113 return error;
3114
3115 if (t < SK_IM_MIN || t > SK_IM_MAX)
3116 return EINVAL;
3117
3118 /* update the softc with sysctl-changed value, and mark
3119 for hardware update */
3120 sc->sk_int_mod = t;
3121 sc->sk_int_mod_pending = 1;
3122 return 0;
3123 }
3124
3125 /*
3126 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3127 * set up in skc_attach()
3128 */
3129 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3130 {
3131 int rc;
3132 const struct sysctlnode *node;
3133
3134 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3135 0, CTLTYPE_NODE, "sk",
3136 SYSCTL_DESCR("sk interface controls"),
3137 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3138 goto err;
3139 }
3140
3141 sk_root_num = node->sysctl_num;
3142 return;
3143
3144 err:
3145 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3146 }
3147