if_sk.c revision 1.98 1 /* $NetBSD: if_sk.c,v 1.98 2019/05/30 02:32:18 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
30
31 /*
32 * Copyright (c) 1997, 1998, 1999, 2000
33 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by Bill Paul.
46 * 4. Neither the name of the author nor the names of any co-contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60 * THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63 */
64
65 /*
66 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
67 *
68 * Permission to use, copy, modify, and distribute this software for any
69 * purpose with or without fee is hereby granted, provided that the above
70 * copyright notice and this permission notice appear in all copies.
71 *
72 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79 */
80
81 /*
82 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83 * the SK-984x series adapters, both single port and dual port.
84 * References:
85 * The XaQti XMAC II datasheet,
86 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87 * The SysKonnect GEnesis manual, http://www.syskonnect.com
88 *
89 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91 * convenience to others until Vitesse corrects this problem:
92 *
93 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94 *
95 * Written by Bill Paul <wpaul (at) ee.columbia.edu>
96 * Department of Electrical Engineering
97 * Columbia University, New York City
98 */
99
100 /*
101 * The SysKonnect gigabit ethernet adapters consist of two main
102 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104 * components and a PHY while the GEnesis controller provides a PCI
105 * interface with DMA support. Each card may have between 512K and
106 * 2MB of SRAM on board depending on the configuration.
107 *
108 * The SysKonnect GEnesis controller can have either one or two XMAC
109 * chips connected to it, allowing single or dual port NIC configurations.
110 * SysKonnect has the distinction of being the only vendor on the market
111 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113 * XMAC registers. This driver takes advantage of these features to allow
114 * both XMACs to operate as independent interfaces.
115 */
116
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.98 2019/05/30 02:32:18 msaitoh Exp $");
119
120 #include <sys/param.h>
121 #include <sys/systm.h>
122 #include <sys/sockio.h>
123 #include <sys/mbuf.h>
124 #include <sys/malloc.h>
125 #include <sys/mutex.h>
126 #include <sys/kernel.h>
127 #include <sys/socket.h>
128 #include <sys/device.h>
129 #include <sys/queue.h>
130 #include <sys/callout.h>
131 #include <sys/sysctl.h>
132 #include <sys/endian.h>
133
134 #include <net/if.h>
135 #include <net/if_dl.h>
136 #include <net/if_types.h>
137
138 #include <net/if_media.h>
139
140 #include <net/bpf.h>
141 #include <sys/rndsource.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145 #include <dev/mii/brgphyreg.h>
146
147 #include <dev/pci/pcireg.h>
148 #include <dev/pci/pcivar.h>
149 #include <dev/pci/pcidevs.h>
150
151 /* #define SK_USEIOSPACE */
152
153 #include <dev/pci/if_skreg.h>
154 #include <dev/pci/if_skvar.h>
155
156 int skc_probe(device_t, cfdata_t, void *);
157 void skc_attach(device_t, device_t, void *aux);
158 int sk_probe(device_t, cfdata_t, void *);
159 void sk_attach(device_t, device_t, void *aux);
160 int skcprint(void *, const char *);
161 int sk_intr(void *);
162 void sk_intr_bcom(struct sk_if_softc *);
163 void sk_intr_xmac(struct sk_if_softc *);
164 void sk_intr_yukon(struct sk_if_softc *);
165 void sk_rxeof(struct sk_if_softc *);
166 void sk_txeof(struct sk_if_softc *);
167 int sk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
168 void sk_start(struct ifnet *);
169 int sk_ioctl(struct ifnet *, u_long, void *);
170 int sk_init(struct ifnet *);
171 void sk_init_xmac(struct sk_if_softc *);
172 void sk_init_yukon(struct sk_if_softc *);
173 void sk_stop(struct ifnet *, int);
174 void sk_watchdog(struct ifnet *);
175 void sk_shutdown(void *);
176 int sk_ifmedia_upd(struct ifnet *);
177 void sk_reset(struct sk_softc *);
178 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
179 int sk_alloc_jumbo_mem(struct sk_if_softc *);
180 void sk_free_jumbo_mem(struct sk_if_softc *);
181 void *sk_jalloc(struct sk_if_softc *);
182 void sk_jfree(struct mbuf *, void *, size_t, void *);
183 int sk_init_rx_ring(struct sk_if_softc *);
184 int sk_init_tx_ring(struct sk_if_softc *);
185 uint8_t sk_vpd_readbyte(struct sk_softc *, int);
186 void sk_vpd_read_res(struct sk_softc *,
187 struct vpd_res *, int);
188 void sk_vpd_read(struct sk_softc *);
189
190 void sk_update_int_mod(struct sk_softc *);
191
192 int sk_xmac_miibus_readreg(device_t, int, int, uint16_t *);
193 int sk_xmac_miibus_writereg(device_t, int, int, uint16_t);
194 void sk_xmac_miibus_statchg(struct ifnet *);
195
196 int sk_marv_miibus_readreg(device_t, int, int, uint16_t *);
197 int sk_marv_miibus_writereg(device_t, int, int, uint16_t);
198 void sk_marv_miibus_statchg(struct ifnet *);
199
200 uint32_t sk_xmac_hash(void *);
201 uint32_t sk_yukon_hash(void *);
202 void sk_setfilt(struct sk_if_softc *, void *, int);
203 void sk_setmulti(struct sk_if_softc *);
204 void sk_tick(void *);
205
206 static bool skc_suspend(device_t, const pmf_qual_t *);
207 static bool skc_resume(device_t, const pmf_qual_t *);
208 static bool sk_resume(device_t dv, const pmf_qual_t *);
209
210 /* #define SK_DEBUG 2 */
211 #ifdef SK_DEBUG
212 #define DPRINTF(x) if (skdebug) printf x
213 #define DPRINTFN(n, x) if (skdebug >= (n)) printf x
214 int skdebug = SK_DEBUG;
215
216 void sk_dump_txdesc(struct sk_tx_desc *, int);
217 void sk_dump_mbuf(struct mbuf *);
218 void sk_dump_bytes(const char *, int);
219 #else
220 #define DPRINTF(x)
221 #define DPRINTFN(n, x)
222 #endif
223
224 static int sk_sysctl_handler(SYSCTLFN_PROTO);
225 static int sk_root_num;
226
227 /* supported device vendors */
228 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
229 static const struct sk_product {
230 pci_vendor_id_t sk_vendor;
231 pci_product_id_t sk_product;
232 } sk_products[] = {
233 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
234 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
235 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
236 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
237 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
238 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
239 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
240 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
241 { 0, 0, }
242 };
243
244 #define SK_LINKSYS_EG1032_SUBID 0x00151737
245
246 static inline uint32_t
247 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
248 {
249 #ifdef SK_USEIOSPACE
250 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
251 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
252 #else
253 return CSR_READ_4(sc, reg);
254 #endif
255 }
256
257 static inline uint16_t
258 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
259 {
260 #ifdef SK_USEIOSPACE
261 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
262 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
263 #else
264 return CSR_READ_2(sc, reg);
265 #endif
266 }
267
268 static inline uint8_t
269 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
270 {
271 #ifdef SK_USEIOSPACE
272 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
273 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
274 #else
275 return CSR_READ_1(sc, reg);
276 #endif
277 }
278
279 static inline void
280 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
281 {
282 #ifdef SK_USEIOSPACE
283 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
284 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
285 #else
286 CSR_WRITE_4(sc, reg, x);
287 #endif
288 }
289
290 static inline void
291 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
292 {
293 #ifdef SK_USEIOSPACE
294 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
295 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
296 #else
297 CSR_WRITE_2(sc, reg, x);
298 #endif
299 }
300
301 static inline void
302 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
303 {
304 #ifdef SK_USEIOSPACE
305 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
306 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
307 #else
308 CSR_WRITE_1(sc, reg, x);
309 #endif
310 }
311
312 /*
313 * The VPD EEPROM contains Vital Product Data, as suggested in
314 * the PCI 2.1 specification. The VPD data is separared into areas
315 * denoted by resource IDs. The SysKonnect VPD contains an ID string
316 * resource (the name of the adapter), a read-only area resource
317 * containing various key/data fields and a read/write area which
318 * can be used to store asset management information or log messages.
319 * We read the ID string and read-only into buffers attached to
320 * the controller softc structure for later use. At the moment,
321 * we only use the ID string during sk_attach().
322 */
323 uint8_t
324 sk_vpd_readbyte(struct sk_softc *sc, int addr)
325 {
326 int i;
327
328 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
329 for (i = 0; i < SK_TIMEOUT; i++) {
330 DELAY(1);
331 if (sk_win_read_2(sc,
332 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
333 break;
334 }
335
336 if (i == SK_TIMEOUT)
337 return 0;
338
339 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
340 }
341
342 void
343 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
344 {
345 int i;
346 uint8_t *ptr;
347
348 ptr = (uint8_t *)res;
349 for (i = 0; i < sizeof(struct vpd_res); i++)
350 ptr[i] = sk_vpd_readbyte(sc, i + addr);
351 }
352
353 void
354 sk_vpd_read(struct sk_softc *sc)
355 {
356 int pos = 0, i;
357 struct vpd_res res;
358
359 if (sc->sk_vpd_prodname != NULL)
360 free(sc->sk_vpd_prodname, M_DEVBUF);
361 if (sc->sk_vpd_readonly != NULL)
362 free(sc->sk_vpd_readonly, M_DEVBUF);
363 sc->sk_vpd_prodname = NULL;
364 sc->sk_vpd_readonly = NULL;
365
366 sk_vpd_read_res(sc, &res, pos);
367
368 if (res.vr_id != VPD_RES_ID) {
369 aprint_error_dev(sc->sk_dev,
370 "bad VPD resource id: expected %x got %x\n",
371 VPD_RES_ID, res.vr_id);
372 return;
373 }
374
375 pos += sizeof(res);
376 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
377 if (sc->sk_vpd_prodname == NULL)
378 panic("sk_vpd_read");
379 for (i = 0; i < res.vr_len; i++)
380 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
381 sc->sk_vpd_prodname[i] = '\0';
382 pos += i;
383
384 sk_vpd_read_res(sc, &res, pos);
385
386 if (res.vr_id != VPD_RES_READ) {
387 aprint_error_dev(sc->sk_dev,
388 "bad VPD resource id: expected %x got %x\n",
389 VPD_RES_READ, res.vr_id);
390 return;
391 }
392
393 pos += sizeof(res);
394 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
395 if (sc->sk_vpd_readonly == NULL)
396 panic("sk_vpd_read");
397 for (i = 0; i < res.vr_len ; i++)
398 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
399 }
400
401 int
402 sk_xmac_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
403 {
404 struct sk_if_softc *sc_if = device_private(dev);
405 int i;
406
407 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
408
409 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
410 return -1;
411
412 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
413 SK_XM_READ_2(sc_if, XM_PHY_DATA);
414 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
415 for (i = 0; i < SK_TIMEOUT; i++) {
416 DELAY(1);
417 if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
418 XM_MMUCMD_PHYDATARDY)
419 break;
420 }
421
422 if (i == SK_TIMEOUT) {
423 aprint_error_dev(sc_if->sk_dev,
424 "phy failed to come ready\n");
425 return ETIMEDOUT;
426 }
427 }
428 DELAY(1);
429 *val = SK_XM_READ_2(sc_if, XM_PHY_DATA);
430 return 0;
431 }
432
433 int
434 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
435 {
436 struct sk_if_softc *sc_if = device_private(dev);
437 int i;
438
439 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
440
441 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
442 for (i = 0; i < SK_TIMEOUT; i++) {
443 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
444 break;
445 }
446
447 if (i == SK_TIMEOUT) {
448 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
449 return ETIMEDOUT;
450 }
451
452 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
453 for (i = 0; i < SK_TIMEOUT; i++) {
454 DELAY(1);
455 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
456 break;
457 }
458
459 if (i == SK_TIMEOUT) {
460 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
461 return ETIMEDOUT;
462 }
463
464 return 0;
465 }
466
467 void
468 sk_xmac_miibus_statchg(struct ifnet *ifp)
469 {
470 struct sk_if_softc *sc_if = ifp->if_softc;
471 struct mii_data *mii = &sc_if->sk_mii;
472
473 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
474
475 /*
476 * If this is a GMII PHY, manually set the XMAC's
477 * duplex mode accordingly.
478 */
479 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
480 if ((mii->mii_media_active & IFM_FDX) != 0)
481 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
482 else
483 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
484 }
485 }
486
487 int
488 sk_marv_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
489 {
490 struct sk_if_softc *sc_if = device_private(dev);
491 uint16_t data;
492 int i;
493
494 if (phy != 0 ||
495 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
496 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
497 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
498 phy, reg));
499 return -1;
500 }
501
502 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
503 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
504
505 for (i = 0; i < SK_TIMEOUT; i++) {
506 DELAY(1);
507 data = SK_YU_READ_2(sc_if, YUKON_SMICR);
508 if (data & YU_SMICR_READ_VALID)
509 break;
510 }
511
512 if (i == SK_TIMEOUT) {
513 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
514 return ETIMEDOUT;
515 }
516
517 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
518 SK_TIMEOUT));
519
520 *val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
521
522 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
523 phy, reg, *val));
524
525 return 0;
526 }
527
528 int
529 sk_marv_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
530 {
531 struct sk_if_softc *sc_if = device_private(dev);
532 int i;
533
534 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#hx\n",
535 phy, reg, val));
536
537 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
538 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
539 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
540
541 for (i = 0; i < SK_TIMEOUT; i++) {
542 DELAY(1);
543 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
544 break;
545 }
546
547 if (i == SK_TIMEOUT) {
548 printf("%s: phy write timed out\n",
549 device_xname(sc_if->sk_dev));
550 return ETIMEDOUT;
551 }
552
553 return 0;
554 }
555
556 void
557 sk_marv_miibus_statchg(struct ifnet *ifp)
558 {
559 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
560 SK_YU_READ_2(((struct sk_if_softc *)ifp->if_softc),
561 YUKON_GPCR)));
562 }
563
564 uint32_t
565 sk_xmac_hash(void *addr)
566 {
567 uint32_t crc;
568
569 crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
570 crc = ~crc & ((1<< SK_HASH_BITS) - 1);
571 DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
572 return crc;
573 }
574
575 uint32_t
576 sk_yukon_hash(void *addr)
577 {
578 uint32_t crc;
579
580 crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
581 crc &= ((1 << SK_HASH_BITS) - 1);
582 DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
583 return crc;
584 }
585
586 void
587 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
588 {
589 char *addr = addrv;
590 int base = XM_RXFILT_ENTRY(slot);
591
592 SK_XM_WRITE_2(sc_if, base, *(uint16_t *)(&addr[0]));
593 SK_XM_WRITE_2(sc_if, base + 2, *(uint16_t *)(&addr[2]));
594 SK_XM_WRITE_2(sc_if, base + 4, *(uint16_t *)(&addr[4]));
595 }
596
597 void
598 sk_setmulti(struct sk_if_softc *sc_if)
599 {
600 struct sk_softc *sc = sc_if->sk_softc;
601 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
602 uint32_t hashes[2] = { 0, 0 };
603 int h = 0, i;
604 struct ethercom *ec = &sc_if->sk_ethercom;
605 struct ether_multi *enm;
606 struct ether_multistep step;
607 uint8_t dummy[] = { 0, 0, 0, 0, 0, 0 };
608
609 /* First, zot all the existing filters. */
610 switch (sc->sk_type) {
611 case SK_GENESIS:
612 for (i = 1; i < XM_RXFILT_MAX; i++)
613 sk_setfilt(sc_if, (void *)&dummy, i);
614
615 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
616 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
617 break;
618 case SK_YUKON:
619 case SK_YUKON_LITE:
620 case SK_YUKON_LP:
621 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
622 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
623 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
624 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
625 break;
626 }
627
628 /* Now program new ones. */
629 allmulti:
630 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
631 hashes[0] = 0xFFFFFFFF;
632 hashes[1] = 0xFFFFFFFF;
633 } else {
634 i = 1;
635 /* First find the tail of the list. */
636 ETHER_LOCK(ec);
637 ETHER_FIRST_MULTI(step, ec, enm);
638 while (enm != NULL) {
639 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
640 ETHER_ADDR_LEN)) {
641 ifp->if_flags |= IFF_ALLMULTI;
642 ETHER_UNLOCK(ec);
643 goto allmulti;
644 }
645 DPRINTFN(2,("multicast address %s\n",
646 ether_sprintf(enm->enm_addrlo)));
647 /*
648 * Program the first XM_RXFILT_MAX multicast groups
649 * into the perfect filter. For all others,
650 * use the hash table.
651 */
652 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
653 sk_setfilt(sc_if, enm->enm_addrlo, i);
654 i++;
655 }
656 else {
657 switch (sc->sk_type) {
658 case SK_GENESIS:
659 h = sk_xmac_hash(enm->enm_addrlo);
660 break;
661 case SK_YUKON:
662 case SK_YUKON_LITE:
663 case SK_YUKON_LP:
664 h = sk_yukon_hash(enm->enm_addrlo);
665 break;
666 }
667 if (h < 32)
668 hashes[0] |= (1 << h);
669 else
670 hashes[1] |= (1 << (h - 32));
671 }
672
673 ETHER_NEXT_MULTI(step, enm);
674 }
675 ETHER_UNLOCK(ec);
676 }
677
678 switch (sc->sk_type) {
679 case SK_GENESIS:
680 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH |
681 XM_MODE_RX_USE_PERFECT);
682 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
683 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
684 break;
685 case SK_YUKON:
686 case SK_YUKON_LITE:
687 case SK_YUKON_LP:
688 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
689 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
690 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
691 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
692 break;
693 }
694 }
695
696 int
697 sk_init_rx_ring(struct sk_if_softc *sc_if)
698 {
699 struct sk_chain_data *cd = &sc_if->sk_cdata;
700 struct sk_ring_data *rd = sc_if->sk_rdata;
701 int i;
702
703 memset((char *)rd->sk_rx_ring, 0,
704 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
705
706 for (i = 0; i < SK_RX_RING_CNT; i++) {
707 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
708 if (i == (SK_RX_RING_CNT - 1)) {
709 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
710 rd->sk_rx_ring[i].sk_next =
711 htole32(SK_RX_RING_ADDR(sc_if, 0));
712 } else {
713 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
714 rd->sk_rx_ring[i].sk_next =
715 htole32(SK_RX_RING_ADDR(sc_if, i+1));
716 }
717 }
718
719 for (i = 0; i < SK_RX_RING_CNT; i++) {
720 if (sk_newbuf(sc_if, i, NULL,
721 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
722 aprint_error_dev(sc_if->sk_dev,
723 "failed alloc of %dth mbuf\n", i);
724 return ENOBUFS;
725 }
726 }
727 sc_if->sk_cdata.sk_rx_prod = 0;
728 sc_if->sk_cdata.sk_rx_cons = 0;
729
730 return 0;
731 }
732
733 int
734 sk_init_tx_ring(struct sk_if_softc *sc_if)
735 {
736 struct sk_chain_data *cd = &sc_if->sk_cdata;
737 struct sk_ring_data *rd = sc_if->sk_rdata;
738 int i;
739
740 memset(sc_if->sk_rdata->sk_tx_ring, 0,
741 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
742
743 for (i = 0; i < SK_TX_RING_CNT; i++) {
744 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
745 if (i == (SK_TX_RING_CNT - 1)) {
746 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
747 rd->sk_tx_ring[i].sk_next =
748 htole32(SK_TX_RING_ADDR(sc_if, 0));
749 } else {
750 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
751 rd->sk_tx_ring[i].sk_next =
752 htole32(SK_TX_RING_ADDR(sc_if, i+1));
753 }
754 }
755
756 sc_if->sk_cdata.sk_tx_prod = 0;
757 sc_if->sk_cdata.sk_tx_cons = 0;
758 sc_if->sk_cdata.sk_tx_cnt = 0;
759
760 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
761 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
762
763 return 0;
764 }
765
766 int
767 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
768 bus_dmamap_t dmamap)
769 {
770 struct mbuf *m_new = NULL;
771 struct sk_chain *c;
772 struct sk_rx_desc *r;
773
774 if (m == NULL) {
775 void *buf = NULL;
776
777 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
778 if (m_new == NULL) {
779 aprint_error_dev(sc_if->sk_dev,
780 "no memory for rx list -- packet dropped!\n");
781 return ENOBUFS;
782 }
783
784 /* Allocate the jumbo buffer */
785 buf = sk_jalloc(sc_if);
786 if (buf == NULL) {
787 m_freem(m_new);
788 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
789 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
790 return ENOBUFS;
791 }
792
793 /* Attach the buffer to the mbuf */
794 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
795 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
796
797 } else {
798 /*
799 * We're re-using a previously allocated mbuf;
800 * be sure to re-init pointers and lengths to
801 * default values.
802 */
803 m_new = m;
804 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
805 m_new->m_data = m_new->m_ext.ext_buf;
806 }
807 m_adj(m_new, ETHER_ALIGN);
808
809 c = &sc_if->sk_cdata.sk_rx_chain[i];
810 r = c->sk_desc;
811 c->sk_mbuf = m_new;
812 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
813 (((vaddr_t)m_new->m_data
814 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
815 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
816
817 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
818
819 return 0;
820 }
821
822 /*
823 * Memory management for jumbo frames.
824 */
825
826 int
827 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
828 {
829 struct sk_softc *sc = sc_if->sk_softc;
830 char *ptr, *kva;
831 bus_dma_segment_t seg;
832 int i, rseg, state, error;
833 struct sk_jpool_entry *entry;
834
835 state = error = 0;
836
837 /* Grab a big chunk o' storage. */
838 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
839 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
840 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
841 return ENOBUFS;
842 }
843
844 state = 1;
845 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
846 BUS_DMA_NOWAIT)) {
847 aprint_error_dev(sc->sk_dev,
848 "can't map dma buffers (%d bytes)\n",
849 SK_JMEM);
850 error = ENOBUFS;
851 goto out;
852 }
853
854 state = 2;
855 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
856 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
857 aprint_error_dev(sc->sk_dev, "can't create dma map\n");
858 error = ENOBUFS;
859 goto out;
860 }
861
862 state = 3;
863 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
864 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
865 aprint_error_dev(sc->sk_dev, "can't load dma map\n");
866 error = ENOBUFS;
867 goto out;
868 }
869
870 state = 4;
871 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
872 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
873
874 LIST_INIT(&sc_if->sk_jfree_listhead);
875 LIST_INIT(&sc_if->sk_jinuse_listhead);
876 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
877
878 /*
879 * Now divide it up into 9K pieces and save the addresses
880 * in an array.
881 */
882 ptr = sc_if->sk_cdata.sk_jumbo_buf;
883 for (i = 0; i < SK_JSLOTS; i++) {
884 sc_if->sk_cdata.sk_jslots[i] = ptr;
885 ptr += SK_JLEN;
886 entry = malloc(sizeof(struct sk_jpool_entry),
887 M_DEVBUF, M_NOWAIT);
888 if (entry == NULL) {
889 aprint_error_dev(sc->sk_dev,
890 "no memory for jumbo buffer queue!\n");
891 error = ENOBUFS;
892 goto out;
893 }
894 entry->slot = i;
895 if (i)
896 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
897 entry, jpool_entries);
898 else
899 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
900 entry, jpool_entries);
901 }
902 out:
903 if (error != 0) {
904 switch (state) {
905 case 4:
906 bus_dmamap_unload(sc->sc_dmatag,
907 sc_if->sk_cdata.sk_rx_jumbo_map);
908 /* FALLTHROUGH */
909 case 3:
910 bus_dmamap_destroy(sc->sc_dmatag,
911 sc_if->sk_cdata.sk_rx_jumbo_map);
912 /* FALLTHROUGH */
913 case 2:
914 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
915 /* FALLTHROUGH */
916 case 1:
917 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
918 break;
919 default:
920 break;
921 }
922 }
923
924 return error;
925 }
926
927 /*
928 * Allocate a jumbo buffer.
929 */
930 void *
931 sk_jalloc(struct sk_if_softc *sc_if)
932 {
933 struct sk_jpool_entry *entry;
934
935 mutex_enter(&sc_if->sk_jpool_mtx);
936 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
937
938 if (entry == NULL) {
939 mutex_exit(&sc_if->sk_jpool_mtx);
940 return NULL;
941 }
942
943 LIST_REMOVE(entry, jpool_entries);
944 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
945 mutex_exit(&sc_if->sk_jpool_mtx);
946 return sc_if->sk_cdata.sk_jslots[entry->slot];
947 }
948
949 /*
950 * Release a jumbo buffer.
951 */
952 void
953 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
954 {
955 struct sk_jpool_entry *entry;
956 struct sk_if_softc *sc;
957 int i;
958
959 /* Extract the softc struct pointer. */
960 sc = (struct sk_if_softc *)arg;
961
962 if (sc == NULL)
963 panic("sk_jfree: can't find softc pointer!");
964
965 /* calculate the slot this buffer belongs to */
966
967 i = ((vaddr_t)buf
968 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
969
970 if ((i < 0) || (i >= SK_JSLOTS))
971 panic("sk_jfree: asked to free buffer that we don't manage!");
972
973 mutex_enter(&sc->sk_jpool_mtx);
974 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
975 if (entry == NULL)
976 panic("sk_jfree: buffer not in use!");
977 entry->slot = i;
978 LIST_REMOVE(entry, jpool_entries);
979 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
980 mutex_exit(&sc->sk_jpool_mtx);
981
982 if (__predict_true(m != NULL))
983 pool_cache_put(mb_cache, m);
984 }
985
986 /*
987 * Set media options.
988 */
989 int
990 sk_ifmedia_upd(struct ifnet *ifp)
991 {
992 struct sk_if_softc *sc_if = ifp->if_softc;
993 int rc;
994
995 (void) sk_init(ifp);
996 if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
997 return 0;
998 return rc;
999 }
1000
1001 static void
1002 sk_promisc(struct sk_if_softc *sc_if, int on)
1003 {
1004 struct sk_softc *sc = sc_if->sk_softc;
1005 switch (sc->sk_type) {
1006 case SK_GENESIS:
1007 if (on)
1008 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1009 else
1010 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1011 break;
1012 case SK_YUKON:
1013 case SK_YUKON_LITE:
1014 case SK_YUKON_LP:
1015 if (on)
1016 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1017 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1018 else
1019 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1020 YU_RCR_UFLEN | YU_RCR_MUFLEN);
1021 break;
1022 default:
1023 aprint_error_dev(sc_if->sk_dev, "Can't set promisc for %d\n",
1024 sc->sk_type);
1025 break;
1026 }
1027 }
1028
1029 int
1030 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
1031 {
1032 struct sk_if_softc *sc_if = ifp->if_softc;
1033 int s, error = 0;
1034
1035 /* DPRINTFN(2, ("sk_ioctl\n")); */
1036
1037 s = splnet();
1038
1039 switch (command) {
1040
1041 case SIOCSIFFLAGS:
1042 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1043 if ((error = ifioctl_common(ifp, command, data)) != 0)
1044 break;
1045 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1046 case IFF_RUNNING:
1047 sk_stop(ifp, 1);
1048 break;
1049 case IFF_UP:
1050 sk_init(ifp);
1051 break;
1052 case IFF_UP | IFF_RUNNING:
1053 if ((ifp->if_flags ^ sc_if->sk_if_flags) == IFF_PROMISC) {
1054 sk_promisc(sc_if, ifp->if_flags & IFF_PROMISC);
1055 sk_setmulti(sc_if);
1056 } else
1057 sk_init(ifp);
1058 break;
1059 }
1060 sc_if->sk_if_flags = ifp->if_flags;
1061 error = 0;
1062 break;
1063
1064 default:
1065 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1066 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1067 break;
1068
1069 error = 0;
1070
1071 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1072 ;
1073 else if (ifp->if_flags & IFF_RUNNING) {
1074 sk_setmulti(sc_if);
1075 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1076 }
1077 break;
1078 }
1079
1080 splx(s);
1081 return error;
1082 }
1083
1084 void
1085 sk_update_int_mod(struct sk_softc *sc)
1086 {
1087 uint32_t imtimer_ticks;
1088
1089 /*
1090 * Configure interrupt moderation. The moderation timer
1091 * defers interrupts specified in the interrupt moderation
1092 * timer mask based on the timeout specified in the interrupt
1093 * moderation timer init register. Each bit in the timer
1094 * register represents one tick, so to specify a timeout in
1095 * microseconds, we have to multiply by the correct number of
1096 * ticks-per-microsecond.
1097 */
1098 switch (sc->sk_type) {
1099 case SK_GENESIS:
1100 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1101 break;
1102 case SK_YUKON_EC:
1103 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1104 break;
1105 default:
1106 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1107 }
1108 aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
1109 sc->sk_int_mod);
1110 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1111 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF | SK_ISR_TX2_S_EOF |
1112 SK_ISR_RX1_EOF | SK_ISR_RX2_EOF);
1113 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1114 sc->sk_int_mod_pending = 0;
1115 }
1116
1117 /*
1118 * Lookup: Check the PCI vendor and device, and return a pointer to
1119 * The structure if the IDs match against our list.
1120 */
1121
1122 static const struct sk_product *
1123 sk_lookup(const struct pci_attach_args *pa)
1124 {
1125 const struct sk_product *psk;
1126
1127 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1128 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1129 PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1130 return psk;
1131 }
1132 return NULL;
1133 }
1134
1135 /*
1136 * Probe for a SysKonnect GEnesis chip.
1137 */
1138
1139 int
1140 skc_probe(device_t parent, cfdata_t match, void *aux)
1141 {
1142 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1143 const struct sk_product *psk;
1144 pcireg_t subid;
1145
1146 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1147
1148 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1149 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1150 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1151 subid == SK_LINKSYS_EG1032_SUBID)
1152 return 1;
1153
1154 if ((psk = sk_lookup(pa))) {
1155 return 1;
1156 }
1157 return 0;
1158 }
1159
1160 /*
1161 * Force the GEnesis into reset, then bring it out of reset.
1162 */
1163 void sk_reset(struct sk_softc *sc)
1164 {
1165 DPRINTFN(2, ("sk_reset\n"));
1166
1167 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1168 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1169 if (SK_YUKON_FAMILY(sc->sk_type))
1170 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1171
1172 DELAY(1000);
1173 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1174 DELAY(2);
1175 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1176 if (SK_YUKON_FAMILY(sc->sk_type))
1177 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1178
1179 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1180 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1181 CSR_READ_2(sc, SK_LINK_CTRL)));
1182
1183 if (sc->sk_type == SK_GENESIS) {
1184 /* Configure packet arbiter */
1185 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1186 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1187 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1188 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1189 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1190 }
1191
1192 /* Enable RAM interface */
1193 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1194
1195 sk_update_int_mod(sc);
1196 }
1197
1198 int
1199 sk_probe(device_t parent, cfdata_t match, void *aux)
1200 {
1201 struct skc_attach_args *sa = aux;
1202
1203 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1204 return 0;
1205
1206 return 1;
1207 }
1208
1209 /*
1210 * Each XMAC chip is attached as a separate logical IP interface.
1211 * Single port cards will have only one logical interface of course.
1212 */
1213 void
1214 sk_attach(device_t parent, device_t self, void *aux)
1215 {
1216 struct sk_if_softc *sc_if = device_private(self);
1217 struct mii_data *mii = &sc_if->sk_mii;
1218 struct sk_softc *sc = device_private(parent);
1219 struct skc_attach_args *sa = aux;
1220 struct sk_txmap_entry *entry;
1221 struct ifnet *ifp;
1222 bus_dma_segment_t seg;
1223 bus_dmamap_t dmamap;
1224 prop_data_t data;
1225 void *kva;
1226 int i, rseg;
1227 int mii_flags = 0;
1228
1229 aprint_naive("\n");
1230
1231 sc_if->sk_dev = self;
1232 sc_if->sk_port = sa->skc_port;
1233 sc_if->sk_softc = sc;
1234 sc->sk_if[sa->skc_port] = sc_if;
1235
1236 if (sa->skc_port == SK_PORT_A)
1237 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1238 if (sa->skc_port == SK_PORT_B)
1239 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1240
1241 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1242
1243 /*
1244 * Get station address for this interface. Note that
1245 * dual port cards actually come with three station
1246 * addresses: one for each port, plus an extra. The
1247 * extra one is used by the SysKonnect driver software
1248 * as a 'virtual' station address for when both ports
1249 * are operating in failover mode. Currently we don't
1250 * use this extra address.
1251 */
1252 data = prop_dictionary_get(device_properties(self), "mac-address");
1253 if (data != NULL) {
1254 /*
1255 * Try to get the station address from device properties
1256 * first, in case the ROM is missing.
1257 */
1258 KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
1259 KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
1260 memcpy(sc_if->sk_enaddr, prop_data_data_nocopy(data),
1261 ETHER_ADDR_LEN);
1262 } else
1263 for (i = 0; i < ETHER_ADDR_LEN; i++)
1264 sc_if->sk_enaddr[i] = sk_win_read_1(sc,
1265 SK_MAC0_0 + (sa->skc_port * 8) + i);
1266
1267 aprint_normal(": Ethernet address %s\n",
1268 ether_sprintf(sc_if->sk_enaddr));
1269
1270 /*
1271 * Set up RAM buffer addresses. The NIC will have a certain
1272 * amount of SRAM on it, somewhere between 512K and 2MB. We
1273 * need to divide this up a) between the transmitter and
1274 * receiver and b) between the two XMACs, if this is a
1275 * dual port NIC. Our algorithm is to divide up the memory
1276 * evenly so that everyone gets a fair share.
1277 */
1278 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1279 uint32_t chunk, val;
1280
1281 chunk = sc->sk_ramsize / 2;
1282 val = sc->sk_rboff / sizeof(uint64_t);
1283 sc_if->sk_rx_ramstart = val;
1284 val += (chunk / sizeof(uint64_t));
1285 sc_if->sk_rx_ramend = val - 1;
1286 sc_if->sk_tx_ramstart = val;
1287 val += (chunk / sizeof(uint64_t));
1288 sc_if->sk_tx_ramend = val - 1;
1289 } else {
1290 uint32_t chunk, val;
1291
1292 chunk = sc->sk_ramsize / 4;
1293 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1294 sizeof(uint64_t);
1295 sc_if->sk_rx_ramstart = val;
1296 val += (chunk / sizeof(uint64_t));
1297 sc_if->sk_rx_ramend = val - 1;
1298 sc_if->sk_tx_ramstart = val;
1299 val += (chunk / sizeof(uint64_t));
1300 sc_if->sk_tx_ramend = val - 1;
1301 }
1302
1303 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1304 " tx_ramstart=%#x tx_ramend=%#x\n",
1305 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1306 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1307
1308 /* Read and save PHY type and set PHY address */
1309 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1310 switch (sc_if->sk_phytype) {
1311 case SK_PHYTYPE_XMAC:
1312 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1313 break;
1314 case SK_PHYTYPE_BCOM:
1315 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1316 break;
1317 case SK_PHYTYPE_MARV_COPPER:
1318 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1319 break;
1320 default:
1321 aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
1322 sc_if->sk_phytype);
1323 return;
1324 }
1325
1326 /* Allocate the descriptor queues. */
1327 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1328 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1329 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
1330 goto fail;
1331 }
1332 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1333 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1334 aprint_error_dev(sc_if->sk_dev,
1335 "can't map dma buffers (%lu bytes)\n",
1336 (u_long) sizeof(struct sk_ring_data));
1337 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1338 goto fail;
1339 }
1340 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1341 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1342 &sc_if->sk_ring_map)) {
1343 aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
1344 bus_dmamem_unmap(sc->sc_dmatag, kva,
1345 sizeof(struct sk_ring_data));
1346 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1347 goto fail;
1348 }
1349 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1350 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1351 aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
1352 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1353 bus_dmamem_unmap(sc->sc_dmatag, kva,
1354 sizeof(struct sk_ring_data));
1355 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1356 goto fail;
1357 }
1358
1359 for (i = 0; i < SK_RX_RING_CNT; i++)
1360 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1361
1362 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1363 for (i = 0; i < SK_TX_RING_CNT; i++) {
1364 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1365
1366 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1367 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1368 aprint_error_dev(sc_if->sk_dev,
1369 "Can't create TX dmamap\n");
1370 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1371 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1372 bus_dmamem_unmap(sc->sc_dmatag, kva,
1373 sizeof(struct sk_ring_data));
1374 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1375 goto fail;
1376 }
1377
1378 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1379 if (!entry) {
1380 aprint_error_dev(sc_if->sk_dev,
1381 "Can't alloc txmap entry\n");
1382 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1383 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1384 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1385 bus_dmamem_unmap(sc->sc_dmatag, kva,
1386 sizeof(struct sk_ring_data));
1387 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1388 goto fail;
1389 }
1390 entry->dmamap = dmamap;
1391 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1392 }
1393
1394 sc_if->sk_rdata = (struct sk_ring_data *)kva;
1395 memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
1396
1397 ifp = &sc_if->sk_ethercom.ec_if;
1398 /* Try to allocate memory for jumbo buffers. */
1399 if (sk_alloc_jumbo_mem(sc_if)) {
1400 aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1401 goto fail;
1402 }
1403 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1404 | ETHERCAP_JUMBO_MTU;
1405
1406 ifp->if_softc = sc_if;
1407 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1408 ifp->if_ioctl = sk_ioctl;
1409 ifp->if_start = sk_start;
1410 ifp->if_stop = sk_stop;
1411 ifp->if_init = sk_init;
1412 ifp->if_watchdog = sk_watchdog;
1413 ifp->if_capabilities = 0;
1414 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1415 IFQ_SET_READY(&ifp->if_snd);
1416 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1417
1418 /*
1419 * Do miibus setup.
1420 */
1421 switch (sc->sk_type) {
1422 case SK_GENESIS:
1423 sk_init_xmac(sc_if);
1424 break;
1425 case SK_YUKON:
1426 case SK_YUKON_LITE:
1427 case SK_YUKON_LP:
1428 sk_init_yukon(sc_if);
1429 break;
1430 default:
1431 aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
1432 sc->sk_type);
1433 goto fail;
1434 }
1435
1436 DPRINTFN(2, ("sk_attach: 1\n"));
1437
1438 mii->mii_ifp = ifp;
1439 switch (sc->sk_type) {
1440 case SK_GENESIS:
1441 mii->mii_readreg = sk_xmac_miibus_readreg;
1442 mii->mii_writereg = sk_xmac_miibus_writereg;
1443 mii->mii_statchg = sk_xmac_miibus_statchg;
1444 break;
1445 case SK_YUKON:
1446 case SK_YUKON_LITE:
1447 case SK_YUKON_LP:
1448 mii->mii_readreg = sk_marv_miibus_readreg;
1449 mii->mii_writereg = sk_marv_miibus_writereg;
1450 mii->mii_statchg = sk_marv_miibus_statchg;
1451 mii_flags = MIIF_DOPAUSE;
1452 break;
1453 }
1454
1455 sc_if->sk_ethercom.ec_mii = mii;
1456 ifmedia_init(&mii->mii_media, 0, sk_ifmedia_upd, ether_mediastatus);
1457 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
1458 MII_OFFSET_ANY, mii_flags);
1459 if (LIST_EMPTY(&mii->mii_phys)) {
1460 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1461 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
1462 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
1463 } else
1464 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1465
1466 callout_init(&sc_if->sk_tick_ch, 0);
1467 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1468
1469 DPRINTFN(2, ("sk_attach: 1\n"));
1470
1471 /*
1472 * Call MI attach routines.
1473 */
1474 if_attach(ifp);
1475 if_deferred_start_init(ifp, NULL);
1476
1477 ether_ifattach(ifp, sc_if->sk_enaddr);
1478
1479 if (sc->rnd_attached++ == 0) {
1480 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1481 RND_TYPE_NET, RND_FLAG_DEFAULT);
1482 }
1483
1484 if (pmf_device_register(self, NULL, sk_resume))
1485 pmf_class_network_register(self, ifp);
1486 else
1487 aprint_error_dev(self, "couldn't establish power handler\n");
1488
1489 DPRINTFN(2, ("sk_attach: end\n"));
1490
1491 return;
1492
1493 fail:
1494 sc->sk_if[sa->skc_port] = NULL;
1495 }
1496
1497 int
1498 skcprint(void *aux, const char *pnp)
1499 {
1500 struct skc_attach_args *sa = aux;
1501
1502 if (pnp)
1503 aprint_normal("sk port %c at %s",
1504 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1505 else
1506 aprint_normal(" port %c",
1507 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1508 return UNCONF;
1509 }
1510
1511 /*
1512 * Attach the interface. Allocate softc structures, do ifmedia
1513 * setup and ethernet/BPF attach.
1514 */
1515 void
1516 skc_attach(device_t parent, device_t self, void *aux)
1517 {
1518 struct sk_softc *sc = device_private(self);
1519 struct pci_attach_args *pa = aux;
1520 struct skc_attach_args skca;
1521 pci_chipset_tag_t pc = pa->pa_pc;
1522 #ifndef SK_USEIOSPACE
1523 pcireg_t memtype;
1524 #endif
1525 pci_intr_handle_t ih;
1526 const char *intrstr = NULL;
1527 bus_addr_t iobase;
1528 bus_size_t iosize;
1529 int rc, sk_nodenum;
1530 uint32_t command;
1531 const char *revstr;
1532 const struct sysctlnode *node;
1533 char intrbuf[PCI_INTRSTR_LEN];
1534
1535 sc->sk_dev = self;
1536 aprint_naive("\n");
1537
1538 DPRINTFN(2, ("begin skc_attach\n"));
1539
1540 /*
1541 * Handle power management nonsense.
1542 */
1543 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1544
1545 if (command == 0x01) {
1546 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1547 if (command & SK_PSTATE_MASK) {
1548 uint32_t xiobase, membase, irq;
1549
1550 /* Save important PCI config data. */
1551 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1552 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1553 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1554
1555 /* Reset the power state. */
1556 aprint_normal_dev(sc->sk_dev,
1557 "chip is in D%d power mode -- setting to D0\n",
1558 command & SK_PSTATE_MASK);
1559 command &= 0xFFFFFFFC;
1560 pci_conf_write(pc, pa->pa_tag,
1561 SK_PCI_PWRMGMTCTRL, command);
1562
1563 /* Restore PCI config data. */
1564 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1565 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1566 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1567 }
1568 }
1569
1570 /*
1571 * The firmware might have configured the interface to revert the
1572 * byte order in all descriptors. Make that undone.
1573 */
1574 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_OURREG2);
1575 if (command & SK_REG2_REV_DESC)
1576 pci_conf_write(pc, pa->pa_tag, SK_PCI_OURREG2,
1577 command & ~SK_REG2_REV_DESC);
1578
1579 /*
1580 * Map control/status registers.
1581 */
1582 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1583 command |= PCI_COMMAND_IO_ENABLE |
1584 PCI_COMMAND_MEM_ENABLE |
1585 PCI_COMMAND_MASTER_ENABLE;
1586 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1587 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1588
1589 #ifdef SK_USEIOSPACE
1590 if (!(command & PCI_COMMAND_IO_ENABLE)) {
1591 aprint_error(": failed to enable I/O ports!\n");
1592 return;
1593 }
1594 /*
1595 * Map control/status registers.
1596 */
1597 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1598 &sc->sk_btag, &sc->sk_bhandle,
1599 &iobase, &iosize)) {
1600 aprint_error(": can't find i/o space\n");
1601 return;
1602 }
1603 #else
1604 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1605 aprint_error(": failed to enable memory mapping!\n");
1606 return;
1607 }
1608 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1609 switch (memtype) {
1610 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1611 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1612 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1613 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1614 &iobase, &iosize) == 0)
1615 break;
1616 /* FALLTHROUGH */
1617 default:
1618 aprint_error_dev(sc->sk_dev, "can't find mem space\n");
1619 return;
1620 }
1621
1622 DPRINTFN(2, ("skc_attach: iobase=%#" PRIxPADDR ", iosize=%zx\n",
1623 iobase, iosize));
1624 #endif
1625 sc->sc_dmatag = pa->pa_dmat;
1626
1627 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1628 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1629
1630 /* bail out here if chip is not recognized */
1631 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1632 aprint_error_dev(sc->sk_dev, "unknown chip type\n");
1633 goto fail;
1634 }
1635 if (SK_IS_YUKON2(sc)) {
1636 aprint_error_dev(sc->sk_dev,
1637 "Does not support Yukon2--try msk(4).\n");
1638 goto fail;
1639 }
1640 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1641
1642 /* Allocate interrupt */
1643 if (pci_intr_map(pa, &ih)) {
1644 aprint_error(": couldn't map interrupt\n");
1645 goto fail;
1646 }
1647
1648 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1649 sc->sk_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, sk_intr, sc,
1650 device_xname(sc->sk_dev));
1651 if (sc->sk_intrhand == NULL) {
1652 aprint_error(": couldn't establish interrupt");
1653 if (intrstr != NULL)
1654 aprint_error(" at %s", intrstr);
1655 aprint_error("\n");
1656 goto fail;
1657 }
1658 aprint_normal(": %s\n", intrstr);
1659
1660 /* Reset the adapter. */
1661 sk_reset(sc);
1662
1663 /* Read and save vital product data from EEPROM. */
1664 sk_vpd_read(sc);
1665
1666 if (sc->sk_type == SK_GENESIS) {
1667 uint8_t val = sk_win_read_1(sc, SK_EPROM0);
1668 /* Read and save RAM size and RAMbuffer offset */
1669 switch (val) {
1670 case SK_RAMSIZE_512K_64:
1671 sc->sk_ramsize = 0x80000;
1672 sc->sk_rboff = SK_RBOFF_0;
1673 break;
1674 case SK_RAMSIZE_1024K_64:
1675 sc->sk_ramsize = 0x100000;
1676 sc->sk_rboff = SK_RBOFF_80000;
1677 break;
1678 case SK_RAMSIZE_1024K_128:
1679 sc->sk_ramsize = 0x100000;
1680 sc->sk_rboff = SK_RBOFF_0;
1681 break;
1682 case SK_RAMSIZE_2048K_128:
1683 sc->sk_ramsize = 0x200000;
1684 sc->sk_rboff = SK_RBOFF_0;
1685 break;
1686 default:
1687 aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
1688 val);
1689 goto fail_1;
1690 break;
1691 }
1692
1693 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1694 sc->sk_ramsize, sc->sk_ramsize / 1024,
1695 sc->sk_rboff));
1696 } else {
1697 uint8_t val = sk_win_read_1(sc, SK_EPROM0);
1698 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
1699 sc->sk_rboff = SK_RBOFF_0;
1700
1701 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1702 sc->sk_ramsize / 1024, sc->sk_ramsize,
1703 sc->sk_rboff));
1704 }
1705
1706 /* Read and save physical media type */
1707 switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1708 case SK_PMD_1000BASESX:
1709 sc->sk_pmd = IFM_1000_SX;
1710 break;
1711 case SK_PMD_1000BASELX:
1712 sc->sk_pmd = IFM_1000_LX;
1713 break;
1714 case SK_PMD_1000BASECX:
1715 sc->sk_pmd = IFM_1000_CX;
1716 break;
1717 case SK_PMD_1000BASETX:
1718 case SK_PMD_1000BASETX_ALT:
1719 sc->sk_pmd = IFM_1000_T;
1720 break;
1721 default:
1722 aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
1723 sk_win_read_1(sc, SK_PMDTYPE));
1724 goto fail_1;
1725 }
1726
1727 /* determine whether to name it with vpd or just make it up */
1728 /* Marvell Yukon VPD's can freqently be bogus */
1729
1730 switch (pa->pa_id) {
1731 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1732 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1733 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1734 case PCI_PRODUCT_3COM_3C940:
1735 case PCI_PRODUCT_DLINK_DGE530T:
1736 case PCI_PRODUCT_DLINK_DGE560T:
1737 case PCI_PRODUCT_DLINK_DGE560T_2:
1738 case PCI_PRODUCT_LINKSYS_EG1032:
1739 case PCI_PRODUCT_LINKSYS_EG1064:
1740 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1741 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1742 case PCI_ID_CODE(PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940):
1743 case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T):
1744 case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T):
1745 case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2):
1746 case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032):
1747 case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064):
1748 sc->sk_name = sc->sk_vpd_prodname;
1749 break;
1750 case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET):
1751 /* whoops yukon vpd prodname bears no resemblance to reality */
1752 switch (sc->sk_type) {
1753 case SK_GENESIS:
1754 sc->sk_name = sc->sk_vpd_prodname;
1755 break;
1756 case SK_YUKON:
1757 sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1758 break;
1759 case SK_YUKON_LITE:
1760 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1761 break;
1762 case SK_YUKON_LP:
1763 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1764 break;
1765 default:
1766 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1767 }
1768
1769 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1770
1771 if ( sc->sk_type == SK_YUKON ) {
1772 uint32_t flashaddr;
1773 uint8_t testbyte;
1774
1775 flashaddr = sk_win_read_4(sc, SK_EP_ADDR);
1776
1777 /* test Flash-Address Register */
1778 sk_win_write_1(sc, SK_EP_ADDR+3, 0xff);
1779 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1780
1781 if (testbyte != 0) {
1782 /* this is yukon lite Rev. A0 */
1783 sc->sk_type = SK_YUKON_LITE;
1784 sc->sk_rev = SK_YUKON_LITE_REV_A0;
1785 /* restore Flash-Address Register */
1786 sk_win_write_4(sc, SK_EP_ADDR, flashaddr);
1787 }
1788 }
1789 break;
1790 case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN):
1791 sc->sk_name = sc->sk_vpd_prodname;
1792 break;
1793 default:
1794 sc->sk_name = "Unknown Marvell";
1795 }
1796
1797
1798 if ( sc->sk_type == SK_YUKON_LITE ) {
1799 switch (sc->sk_rev) {
1800 case SK_YUKON_LITE_REV_A0:
1801 revstr = "A0";
1802 break;
1803 case SK_YUKON_LITE_REV_A1:
1804 revstr = "A1";
1805 break;
1806 case SK_YUKON_LITE_REV_A3:
1807 revstr = "A3";
1808 break;
1809 default:
1810 revstr = "";
1811 }
1812 } else {
1813 revstr = "";
1814 }
1815
1816 /* Announce the product name. */
1817 aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
1818 sc->sk_name, revstr, sc->sk_rev);
1819
1820 skca.skc_port = SK_PORT_A;
1821 (void)config_found(sc->sk_dev, &skca, skcprint);
1822
1823 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1824 skca.skc_port = SK_PORT_B;
1825 (void)config_found(sc->sk_dev, &skca, skcprint);
1826 }
1827
1828 /* Turn on the 'driver is loaded' LED. */
1829 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1830
1831 /* skc sysctl setup */
1832
1833 sc->sk_int_mod = SK_IM_DEFAULT;
1834 sc->sk_int_mod_pending = 0;
1835
1836 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1837 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1838 SYSCTL_DESCR("skc per-controller controls"),
1839 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1840 CTL_EOL)) != 0) {
1841 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1842 goto fail_1;
1843 }
1844
1845 sk_nodenum = node->sysctl_num;
1846
1847 /* interrupt moderation time in usecs */
1848 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1849 CTLFLAG_READWRITE,
1850 CTLTYPE_INT, "int_mod",
1851 SYSCTL_DESCR("sk interrupt moderation timer"),
1852 sk_sysctl_handler, 0, (void *)sc,
1853 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1854 CTL_EOL)) != 0) {
1855 aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1856 goto fail_1;
1857 }
1858
1859 if (!pmf_device_register(self, skc_suspend, skc_resume))
1860 aprint_error_dev(self, "couldn't establish power handler\n");
1861
1862 return;
1863
1864 fail_1:
1865 pci_intr_disestablish(pc, sc->sk_intrhand);
1866 fail:
1867 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1868 }
1869
1870 int
1871 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1872 {
1873 struct sk_softc *sc = sc_if->sk_softc;
1874 struct sk_tx_desc *f = NULL;
1875 uint32_t frag, cur, cnt = 0, sk_ctl;
1876 int i;
1877 struct sk_txmap_entry *entry;
1878 bus_dmamap_t txmap;
1879
1880 DPRINTFN(3, ("sk_encap\n"));
1881
1882 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1883 if (entry == NULL) {
1884 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1885 return ENOBUFS;
1886 }
1887 txmap = entry->dmamap;
1888
1889 cur = frag = *txidx;
1890
1891 #ifdef SK_DEBUG
1892 if (skdebug >= 3)
1893 sk_dump_mbuf(m_head);
1894 #endif
1895
1896 /*
1897 * Start packing the mbufs in this chain into
1898 * the fragment pointers. Stop when we run out
1899 * of fragments or hit the end of the mbuf chain.
1900 */
1901 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1902 BUS_DMA_NOWAIT)) {
1903 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1904 return ENOBUFS;
1905 }
1906
1907 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1908
1909 /* Sync the DMA map. */
1910 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1911 BUS_DMASYNC_PREWRITE);
1912
1913 for (i = 0; i < txmap->dm_nsegs; i++) {
1914 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1915 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1916 return ENOBUFS;
1917 }
1918 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1919 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1920 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1921 if (cnt == 0)
1922 sk_ctl |= SK_TXCTL_FIRSTFRAG;
1923 else
1924 sk_ctl |= SK_TXCTL_OWN;
1925 f->sk_ctl = htole32(sk_ctl);
1926 cur = frag;
1927 SK_INC(frag, SK_TX_RING_CNT);
1928 cnt++;
1929 }
1930
1931 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1932 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1933
1934 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1935 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1936 htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
1937
1938 /* Sync descriptors before handing to chip */
1939 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1940 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1941
1942 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1943 htole32(SK_TXCTL_OWN);
1944
1945 /* Sync first descriptor to hand it off */
1946 SK_CDTXSYNC(sc_if, *txidx, 1,
1947 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1948
1949 sc_if->sk_cdata.sk_tx_cnt += cnt;
1950
1951 #ifdef SK_DEBUG
1952 if (skdebug >= 3) {
1953 struct sk_tx_desc *desc;
1954 uint32_t idx;
1955 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1956 desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1957 sk_dump_txdesc(desc, idx);
1958 }
1959 }
1960 #endif
1961
1962 *txidx = frag;
1963
1964 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1965
1966 return 0;
1967 }
1968
1969 void
1970 sk_start(struct ifnet *ifp)
1971 {
1972 struct sk_if_softc *sc_if = ifp->if_softc;
1973 struct sk_softc *sc = sc_if->sk_softc;
1974 struct mbuf *m_head = NULL;
1975 uint32_t idx = sc_if->sk_cdata.sk_tx_prod;
1976 int pkts = 0;
1977
1978 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1979 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1980
1981 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1982 IFQ_POLL(&ifp->if_snd, m_head);
1983 if (m_head == NULL)
1984 break;
1985
1986 /*
1987 * Pack the data into the transmit ring. If we
1988 * don't have room, set the OACTIVE flag and wait
1989 * for the NIC to drain the ring.
1990 */
1991 if (sk_encap(sc_if, m_head, &idx)) {
1992 ifp->if_flags |= IFF_OACTIVE;
1993 break;
1994 }
1995
1996 /* now we are committed to transmit the packet */
1997 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1998 pkts++;
1999
2000 /*
2001 * If there's a BPF listener, bounce a copy of this frame
2002 * to him.
2003 */
2004 bpf_mtap(ifp, m_head, BPF_D_OUT);
2005 }
2006 if (pkts == 0)
2007 return;
2008
2009 /* Transmit */
2010 if (idx != sc_if->sk_cdata.sk_tx_prod) {
2011 sc_if->sk_cdata.sk_tx_prod = idx;
2012 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2013
2014 /* Set a timeout in case the chip goes out to lunch. */
2015 ifp->if_timer = 5;
2016 }
2017 }
2018
2019
2020 void
2021 sk_watchdog(struct ifnet *ifp)
2022 {
2023 struct sk_if_softc *sc_if = ifp->if_softc;
2024
2025 /*
2026 * Reclaim first as there is a possibility of losing Tx completion
2027 * interrupts.
2028 */
2029 sk_txeof(sc_if);
2030 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2031 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
2032
2033 ifp->if_oerrors++;
2034
2035 sk_init(ifp);
2036 }
2037 }
2038
2039 void
2040 sk_shutdown(void *v)
2041 {
2042 struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
2043 struct sk_softc *sc = sc_if->sk_softc;
2044 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2045
2046 DPRINTFN(2, ("sk_shutdown\n"));
2047 sk_stop(ifp, 1);
2048
2049 /* Turn off the 'driver is loaded' LED. */
2050 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2051
2052 /*
2053 * Reset the GEnesis controller. Doing this should also
2054 * assert the resets on the attached XMAC(s).
2055 */
2056 sk_reset(sc);
2057 }
2058
2059 void
2060 sk_rxeof(struct sk_if_softc *sc_if)
2061 {
2062 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2063 struct mbuf *m;
2064 struct sk_chain *cur_rx;
2065 struct sk_rx_desc *cur_desc;
2066 int i, cur, total_len = 0;
2067 uint32_t rxstat, sk_ctl;
2068 bus_dmamap_t dmamap;
2069
2070 i = sc_if->sk_cdata.sk_rx_prod;
2071
2072 DPRINTFN(3, ("sk_rxeof %d\n", i));
2073
2074 for (;;) {
2075 cur = i;
2076
2077 /* Sync the descriptor */
2078 SK_CDRXSYNC(sc_if, cur,
2079 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2080
2081 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2082 if (sk_ctl & SK_RXCTL_OWN) {
2083 /* Invalidate the descriptor -- it's not ready yet */
2084 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2085 sc_if->sk_cdata.sk_rx_prod = i;
2086 break;
2087 }
2088
2089 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2090 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2091 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2092
2093 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2094 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2095
2096 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2097 m = cur_rx->sk_mbuf;
2098 cur_rx->sk_mbuf = NULL;
2099 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2100
2101 sc_if->sk_cdata.sk_rx_map[cur] = 0;
2102
2103 SK_INC(i, SK_RX_RING_CNT);
2104
2105 if (rxstat & XM_RXSTAT_ERRFRAME) {
2106 ifp->if_ierrors++;
2107 sk_newbuf(sc_if, cur, m, dmamap);
2108 continue;
2109 }
2110
2111 /*
2112 * Try to allocate a new jumbo buffer. If that
2113 * fails, copy the packet to mbufs and put the
2114 * jumbo buffer back in the ring so it can be
2115 * re-used. If allocating mbufs fails, then we
2116 * have to drop the packet.
2117 */
2118 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2119 struct mbuf *m0;
2120 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2121 total_len + ETHER_ALIGN, 0, ifp);
2122 sk_newbuf(sc_if, cur, m, dmamap);
2123 if (m0 == NULL) {
2124 aprint_error_dev(sc_if->sk_dev, "no receive "
2125 "buffers available -- packet dropped!\n");
2126 ifp->if_ierrors++;
2127 continue;
2128 }
2129 m_adj(m0, ETHER_ALIGN);
2130 m = m0;
2131 } else {
2132 m_set_rcvif(m, ifp);
2133 m->m_pkthdr.len = m->m_len = total_len;
2134 }
2135
2136 /* pass it on. */
2137 if_percpuq_enqueue(ifp->if_percpuq, m);
2138 }
2139 }
2140
2141 void
2142 sk_txeof(struct sk_if_softc *sc_if)
2143 {
2144 struct sk_softc *sc = sc_if->sk_softc;
2145 struct sk_tx_desc *cur_tx;
2146 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2147 uint32_t idx, sk_ctl;
2148 struct sk_txmap_entry *entry;
2149
2150 DPRINTFN(3, ("sk_txeof\n"));
2151
2152 /*
2153 * Go through our tx ring and free mbufs for those
2154 * frames that have been sent.
2155 */
2156 idx = sc_if->sk_cdata.sk_tx_cons;
2157 while (idx != sc_if->sk_cdata.sk_tx_prod) {
2158 SK_CDTXSYNC(sc_if, idx, 1,
2159 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2160
2161 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2162 sk_ctl = le32toh(cur_tx->sk_ctl);
2163 #ifdef SK_DEBUG
2164 if (skdebug >= 3)
2165 sk_dump_txdesc(cur_tx, idx);
2166 #endif
2167 if (sk_ctl & SK_TXCTL_OWN) {
2168 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2169 break;
2170 }
2171 if (sk_ctl & SK_TXCTL_LASTFRAG)
2172 ifp->if_opackets++;
2173 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2174 entry = sc_if->sk_cdata.sk_tx_map[idx];
2175
2176 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2177 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2178
2179 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2180 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2181
2182 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2183 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2184 link);
2185 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2186 }
2187 sc_if->sk_cdata.sk_tx_cnt--;
2188 SK_INC(idx, SK_TX_RING_CNT);
2189 }
2190 if (sc_if->sk_cdata.sk_tx_cnt == 0)
2191 ifp->if_timer = 0;
2192 else /* nudge chip to keep tx ring moving */
2193 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2194
2195 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2196 ifp->if_flags &= ~IFF_OACTIVE;
2197
2198 sc_if->sk_cdata.sk_tx_cons = idx;
2199 }
2200
2201 void
2202 sk_tick(void *xsc_if)
2203 {
2204 struct sk_if_softc *sc_if = xsc_if;
2205 struct mii_data *mii = &sc_if->sk_mii;
2206 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2207 int i;
2208
2209 DPRINTFN(3, ("sk_tick\n"));
2210
2211 if (!(ifp->if_flags & IFF_UP))
2212 return;
2213
2214 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2215 sk_intr_bcom(sc_if);
2216 return;
2217 }
2218
2219 /*
2220 * According to SysKonnect, the correct way to verify that
2221 * the link has come back up is to poll bit 0 of the GPIO
2222 * register three times. This pin has the signal from the
2223 * link sync pin connected to it; if we read the same link
2224 * state 3 times in a row, we know the link is up.
2225 */
2226 for (i = 0; i < 3; i++) {
2227 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2228 break;
2229 }
2230
2231 if (i != 3) {
2232 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2233 return;
2234 }
2235
2236 /* Turn the GP0 interrupt back on. */
2237 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2238 SK_XM_READ_2(sc_if, XM_ISR);
2239 mii_tick(mii);
2240 if (ifp->if_link_state != LINK_STATE_UP)
2241 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2242 else
2243 callout_stop(&sc_if->sk_tick_ch);
2244 }
2245
2246 void
2247 sk_intr_bcom(struct sk_if_softc *sc_if)
2248 {
2249 struct mii_data *mii = &sc_if->sk_mii;
2250 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2251 uint16_t status;
2252
2253
2254 DPRINTFN(3, ("sk_intr_bcom\n"));
2255
2256 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2257
2258 /*
2259 * Read the PHY interrupt register to make sure
2260 * we clear any pending interrupts.
2261 */
2262 sk_xmac_miibus_readreg(sc_if->sk_dev,
2263 SK_PHYADDR_BCOM, BRGPHY_MII_ISR, &status);
2264
2265 if (!(ifp->if_flags & IFF_RUNNING)) {
2266 sk_init_xmac(sc_if);
2267 return;
2268 }
2269
2270 if (status & (BRGPHY_ISR_LNK_CHG | BRGPHY_ISR_AN_PR)) {
2271 uint16_t lstat;
2272 sk_xmac_miibus_readreg(sc_if->sk_dev,
2273 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS, &lstat);
2274
2275 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2276 (void)mii_mediachg(mii);
2277 /* Turn off the link LED. */
2278 SK_IF_WRITE_1(sc_if, 0,
2279 SK_LINKLED1_CTL, SK_LINKLED_OFF);
2280 sc_if->sk_link = 0;
2281 } else if (status & BRGPHY_ISR_LNK_CHG) {
2282 sk_xmac_miibus_writereg(sc_if->sk_dev,
2283 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2284 mii_tick(mii);
2285 sc_if->sk_link = 1;
2286 /* Turn on the link LED. */
2287 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2288 SK_LINKLED_ON | SK_LINKLED_LINKSYNC_OFF |
2289 SK_LINKLED_BLINK_OFF);
2290 mii_pollstat(mii);
2291 } else {
2292 mii_tick(mii);
2293 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2294 }
2295 }
2296
2297 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2298 }
2299
2300 void
2301 sk_intr_xmac(struct sk_if_softc *sc_if)
2302 {
2303 uint16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2304
2305 DPRINTFN(3, ("sk_intr_xmac\n"));
2306
2307 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2308 if (status & XM_ISR_GP0_SET) {
2309 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2310 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2311 }
2312
2313 if (status & XM_ISR_AUTONEG_DONE) {
2314 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2315 }
2316 }
2317
2318 if (status & XM_IMR_TX_UNDERRUN)
2319 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2320
2321 if (status & XM_IMR_RX_OVERRUN)
2322 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2323 }
2324
2325 void
2326 sk_intr_yukon(struct sk_if_softc *sc_if)
2327 {
2328 #ifdef SK_DEBUG
2329 int status;
2330
2331 status =
2332 #endif
2333 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2334
2335 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2336 }
2337
2338 int
2339 sk_intr(void *xsc)
2340 {
2341 struct sk_softc *sc = xsc;
2342 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2343 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2344 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2345 uint32_t status;
2346 int claimed = 0;
2347
2348 if (sc_if0 != NULL)
2349 ifp0 = &sc_if0->sk_ethercom.ec_if;
2350 if (sc_if1 != NULL)
2351 ifp1 = &sc_if1->sk_ethercom.ec_if;
2352
2353 for (;;) {
2354 status = CSR_READ_4(sc, SK_ISSR);
2355 DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2356
2357 if (!(status & sc->sk_intrmask))
2358 break;
2359
2360 claimed = 1;
2361
2362 /* Handle receive interrupts first. */
2363 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2364 sk_rxeof(sc_if0);
2365 CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2366 SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
2367 }
2368 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2369 sk_rxeof(sc_if1);
2370 CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2371 SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
2372 }
2373
2374 /* Then transmit interrupts. */
2375 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2376 sk_txeof(sc_if0);
2377 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2378 SK_TXBMU_CLR_IRQ_EOF);
2379 }
2380 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2381 sk_txeof(sc_if1);
2382 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2383 SK_TXBMU_CLR_IRQ_EOF);
2384 }
2385
2386 /* Then MAC interrupts. */
2387 if (sc_if0 && (status & SK_ISR_MAC1) &&
2388 (ifp0->if_flags & IFF_RUNNING)) {
2389 if (sc->sk_type == SK_GENESIS)
2390 sk_intr_xmac(sc_if0);
2391 else
2392 sk_intr_yukon(sc_if0);
2393 }
2394
2395 if (sc_if1 && (status & SK_ISR_MAC2) &&
2396 (ifp1->if_flags & IFF_RUNNING)) {
2397 if (sc->sk_type == SK_GENESIS)
2398 sk_intr_xmac(sc_if1);
2399 else
2400 sk_intr_yukon(sc_if1);
2401
2402 }
2403
2404 if (status & SK_ISR_EXTERNAL_REG) {
2405 if (sc_if0 != NULL &&
2406 sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2407 sk_intr_bcom(sc_if0);
2408
2409 if (sc_if1 != NULL &&
2410 sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2411 sk_intr_bcom(sc_if1);
2412 }
2413 }
2414
2415 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2416
2417 if (ifp0 != NULL)
2418 if_schedule_deferred_start(ifp0);
2419 if (ifp1 != NULL)
2420 if_schedule_deferred_start(ifp1);
2421
2422 KASSERT(sc->rnd_attached > 0);
2423 rnd_add_uint32(&sc->rnd_source, status);
2424
2425 if (sc->sk_int_mod_pending)
2426 sk_update_int_mod(sc);
2427
2428 return claimed;
2429 }
2430
2431 void
2432 sk_init_xmac(struct sk_if_softc *sc_if)
2433 {
2434 struct sk_softc *sc = sc_if->sk_softc;
2435 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2436 static const struct sk_bcom_hack bhack[] = {
2437 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2438 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2439 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2440 { 0, 0 } };
2441
2442 DPRINTFN(1, ("sk_init_xmac\n"));
2443
2444 /* Unreset the XMAC. */
2445 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2446 DELAY(1000);
2447
2448 /* Reset the XMAC's internal state. */
2449 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2450
2451 /* Save the XMAC II revision */
2452 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2453
2454 /*
2455 * Perform additional initialization for external PHYs,
2456 * namely for the 1000baseTX cards that use the XMAC's
2457 * GMII mode.
2458 */
2459 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2460 int i = 0;
2461 uint32_t val;
2462 uint16_t phyval;
2463
2464 /* Take PHY out of reset. */
2465 val = sk_win_read_4(sc, SK_GPIO);
2466 if (sc_if->sk_port == SK_PORT_A)
2467 val |= SK_GPIO_DIR0 | SK_GPIO_DAT0;
2468 else
2469 val |= SK_GPIO_DIR2 | SK_GPIO_DAT2;
2470 sk_win_write_4(sc, SK_GPIO, val);
2471
2472 /* Enable GMII mode on the XMAC. */
2473 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2474
2475 sk_xmac_miibus_writereg(sc_if->sk_dev,
2476 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2477 DELAY(10000);
2478 sk_xmac_miibus_writereg(sc_if->sk_dev,
2479 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2480
2481 /*
2482 * Early versions of the BCM5400 apparently have
2483 * a bug that requires them to have their reserved
2484 * registers initialized to some magic values. I don't
2485 * know what the numbers do, I'm just the messenger.
2486 */
2487 sk_xmac_miibus_readreg(sc_if->sk_dev,
2488 SK_PHYADDR_BCOM, 0x03, &phyval);
2489 if (phyval == 0x6041) {
2490 while (bhack[i].reg) {
2491 sk_xmac_miibus_writereg(sc_if->sk_dev,
2492 SK_PHYADDR_BCOM, bhack[i].reg,
2493 bhack[i].val);
2494 i++;
2495 }
2496 }
2497 }
2498
2499 /* Set station address */
2500 SK_XM_WRITE_2(sc_if, XM_PAR0,
2501 *(uint16_t *)(&sc_if->sk_enaddr[0]));
2502 SK_XM_WRITE_2(sc_if, XM_PAR1,
2503 *(uint16_t *)(&sc_if->sk_enaddr[2]));
2504 SK_XM_WRITE_2(sc_if, XM_PAR2,
2505 *(uint16_t *)(&sc_if->sk_enaddr[4]));
2506 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2507
2508 if (ifp->if_flags & IFF_PROMISC)
2509 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2510 else
2511 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2512
2513 if (ifp->if_flags & IFF_BROADCAST)
2514 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2515 else
2516 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2517
2518 /* We don't need the FCS appended to the packet. */
2519 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2520
2521 /* We want short frames padded to 60 bytes. */
2522 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2523
2524 /*
2525 * Enable the reception of all error frames. This is is
2526 * a necessary evil due to the design of the XMAC. The
2527 * XMAC's receive FIFO is only 8K in size, however jumbo
2528 * frames can be up to 9000 bytes in length. When bad
2529 * frame filtering is enabled, the XMAC's RX FIFO operates
2530 * in 'store and forward' mode. For this to work, the
2531 * entire frame has to fit into the FIFO, but that means
2532 * that jumbo frames larger than 8192 bytes will be
2533 * truncated. Disabling all bad frame filtering causes
2534 * the RX FIFO to operate in streaming mode, in which
2535 * case the XMAC will start transfering frames out of the
2536 * RX FIFO as soon as the FIFO threshold is reached.
2537 */
2538 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES |
2539 XM_MODE_RX_GIANTS | XM_MODE_RX_RUNTS | XM_MODE_RX_CRCERRS |
2540 XM_MODE_RX_INRANGELEN);
2541
2542 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2543 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2544 else
2545 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2546
2547 /*
2548 * Bump up the transmit threshold. This helps hold off transmit
2549 * underruns when we're blasting traffic from both ports at once.
2550 */
2551 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2552
2553 /* Set multicast filter */
2554 sk_setmulti(sc_if);
2555
2556 /* Clear and enable interrupts */
2557 SK_XM_READ_2(sc_if, XM_ISR);
2558 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2559 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2560 else
2561 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2562
2563 /* Configure MAC arbiter */
2564 switch (sc_if->sk_xmac_rev) {
2565 case XM_XMAC_REV_B2:
2566 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2567 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2568 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2569 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2570 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2571 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2572 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2573 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2574 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2575 break;
2576 case XM_XMAC_REV_C1:
2577 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2578 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2579 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2580 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2581 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2582 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2583 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2584 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2585 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2586 break;
2587 default:
2588 break;
2589 }
2590 sk_win_write_2(sc, SK_MACARB_CTL,
2591 SK_MACARBCTL_UNRESET | SK_MACARBCTL_FASTOE_OFF);
2592
2593 sc_if->sk_link = 1;
2594 }
2595
2596 void sk_init_yukon(struct sk_if_softc *sc_if)
2597 {
2598 uint32_t /*mac, */phy;
2599 uint16_t reg;
2600 struct sk_softc *sc;
2601 int i;
2602
2603 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2604 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2605
2606 sc = sc_if->sk_softc;
2607 if (sc->sk_type == SK_YUKON_LITE &&
2608 sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2609 /* Take PHY out of reset. */
2610 sk_win_write_4(sc, SK_GPIO,
2611 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2612 }
2613
2614
2615 /* GMAC and GPHY Reset */
2616 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2617
2618 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2619
2620 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2621 DELAY(1000);
2622 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2623 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2624 DELAY(1000);
2625
2626
2627 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2628
2629 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2630 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2631
2632 switch (sc_if->sk_softc->sk_pmd) {
2633 case IFM_1000_SX:
2634 case IFM_1000_LX:
2635 phy |= SK_GPHY_FIBER;
2636 break;
2637
2638 case IFM_1000_CX:
2639 case IFM_1000_T:
2640 phy |= SK_GPHY_COPPER;
2641 break;
2642 }
2643
2644 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2645
2646 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2647 DELAY(1000);
2648 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2649 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2650 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2651
2652 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2653 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2654
2655 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2656
2657 /* unused read of the interrupt source register */
2658 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2659 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2660
2661 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2662 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2663 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2664
2665 /* MIB Counter Clear Mode set */
2666 reg |= YU_PAR_MIB_CLR;
2667 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2668 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2669 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2670
2671 /* MIB Counter Clear Mode clear */
2672 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2673 reg &= ~YU_PAR_MIB_CLR;
2674 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2675
2676 /* receive control reg */
2677 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2678 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2679 YU_RCR_CRCR);
2680
2681 /* transmit parameter register */
2682 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2683 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2684 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2685
2686 /* serial mode register */
2687 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2688 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2689 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2690 YU_SMR_IPG_DATA(0x1e));
2691
2692 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2693 /* Setup Yukon's address */
2694 for (i = 0; i < 3; i++) {
2695 /* Write Source Address 1 (unicast filter) */
2696 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2697 sc_if->sk_enaddr[i * 2] |
2698 sc_if->sk_enaddr[i * 2 + 1] << 8);
2699 }
2700
2701 for (i = 0; i < 3; i++) {
2702 reg = sk_win_read_2(sc_if->sk_softc,
2703 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2704 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2705 }
2706
2707 /* Set multicast filter */
2708 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2709 sk_setmulti(sc_if);
2710
2711 /* enable interrupt mask for counter overflows */
2712 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2713 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2714 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2715 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2716
2717 /* Configure RX MAC FIFO */
2718 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2719 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2720
2721 /* Configure TX MAC FIFO */
2722 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2723 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2724
2725 DPRINTFN(6, ("sk_init_yukon: end\n"));
2726 }
2727
2728 /*
2729 * Note that to properly initialize any part of the GEnesis chip,
2730 * you first have to take it out of reset mode.
2731 */
2732 int
2733 sk_init(struct ifnet *ifp)
2734 {
2735 struct sk_if_softc *sc_if = ifp->if_softc;
2736 struct sk_softc *sc = sc_if->sk_softc;
2737 struct mii_data *mii = &sc_if->sk_mii;
2738 int rc = 0, s;
2739 uint32_t imr, imtimer_ticks;
2740
2741 DPRINTFN(1, ("sk_init\n"));
2742
2743 s = splnet();
2744
2745 if (ifp->if_flags & IFF_RUNNING) {
2746 splx(s);
2747 return 0;
2748 }
2749
2750 /* Cancel pending I/O and free all RX/TX buffers. */
2751 sk_stop(ifp, 0);
2752
2753 if (sc->sk_type == SK_GENESIS) {
2754 /* Configure LINK_SYNC LED */
2755 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2756 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2757 SK_LINKLED_LINKSYNC_ON);
2758
2759 /* Configure RX LED */
2760 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2761 SK_RXLEDCTL_COUNTER_START);
2762
2763 /* Configure TX LED */
2764 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2765 SK_TXLEDCTL_COUNTER_START);
2766 }
2767
2768 /* Configure I2C registers */
2769
2770 /* Configure XMAC(s) */
2771 switch (sc->sk_type) {
2772 case SK_GENESIS:
2773 sk_init_xmac(sc_if);
2774 break;
2775 case SK_YUKON:
2776 case SK_YUKON_LITE:
2777 case SK_YUKON_LP:
2778 sk_init_yukon(sc_if);
2779 break;
2780 }
2781 if ((rc = mii_mediachg(mii)) == ENXIO)
2782 rc = 0;
2783 else if (rc != 0)
2784 goto out;
2785
2786 if (sc->sk_type == SK_GENESIS) {
2787 /* Configure MAC FIFOs */
2788 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2789 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2790 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2791
2792 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2793 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2794 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2795 }
2796
2797 /* Configure transmit arbiter(s) */
2798 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2799 SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON);
2800
2801 /* Configure RAMbuffers */
2802 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2803 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2804 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2805 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2806 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2807 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2808
2809 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2810 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2811 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2812 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2813 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2814 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2815 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2816
2817 /* Configure BMUs */
2818 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2819 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2820 SK_RX_RING_ADDR(sc_if, 0));
2821 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2822
2823 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2824 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2825 SK_TX_RING_ADDR(sc_if, 0));
2826 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2827
2828 /* Init descriptors */
2829 if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2830 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2831 "memory for rx buffers\n");
2832 sk_stop(ifp, 0);
2833 splx(s);
2834 return ENOBUFS;
2835 }
2836
2837 if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2838 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2839 "memory for tx buffers\n");
2840 sk_stop(ifp, 0);
2841 splx(s);
2842 return ENOBUFS;
2843 }
2844
2845 /* Set interrupt moderation if changed via sysctl. */
2846 switch (sc->sk_type) {
2847 case SK_GENESIS:
2848 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2849 break;
2850 case SK_YUKON_EC:
2851 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2852 break;
2853 default:
2854 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2855 }
2856 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2857 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2858 sk_win_write_4(sc, SK_IMTIMERINIT,
2859 SK_IM_USECS(sc->sk_int_mod));
2860 aprint_verbose_dev(sc->sk_dev,
2861 "interrupt moderation is %d us\n", sc->sk_int_mod);
2862 }
2863
2864 /* Configure interrupt handling */
2865 CSR_READ_4(sc, SK_ISSR);
2866 if (sc_if->sk_port == SK_PORT_A)
2867 sc->sk_intrmask |= SK_INTRS1;
2868 else
2869 sc->sk_intrmask |= SK_INTRS2;
2870
2871 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2872
2873 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2874
2875 /* Start BMUs. */
2876 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2877
2878 if (sc->sk_type == SK_GENESIS) {
2879 /* Enable XMACs TX and RX state machines */
2880 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2881 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2882 XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2883 }
2884
2885 if (SK_YUKON_FAMILY(sc->sk_type)) {
2886 uint16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2887 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2888 #if 0
2889 /* XXX disable 100Mbps and full duplex mode? */
2890 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2891 #endif
2892 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2893 }
2894
2895
2896 ifp->if_flags |= IFF_RUNNING;
2897 ifp->if_flags &= ~IFF_OACTIVE;
2898 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2899
2900 out:
2901 splx(s);
2902 return rc;
2903 }
2904
2905 void
2906 sk_stop(struct ifnet *ifp, int disable)
2907 {
2908 struct sk_if_softc *sc_if = ifp->if_softc;
2909 struct sk_softc *sc = sc_if->sk_softc;
2910 int i;
2911
2912 DPRINTFN(1, ("sk_stop\n"));
2913
2914 callout_stop(&sc_if->sk_tick_ch);
2915
2916 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2917 uint32_t val;
2918
2919 /* Put PHY back into reset. */
2920 val = sk_win_read_4(sc, SK_GPIO);
2921 if (sc_if->sk_port == SK_PORT_A) {
2922 val |= SK_GPIO_DIR0;
2923 val &= ~SK_GPIO_DAT0;
2924 } else {
2925 val |= SK_GPIO_DIR2;
2926 val &= ~SK_GPIO_DAT2;
2927 }
2928 sk_win_write_4(sc, SK_GPIO, val);
2929 }
2930
2931 /* Turn off various components of this interface. */
2932 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2933 switch (sc->sk_type) {
2934 case SK_GENESIS:
2935 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2936 SK_TXMACCTL_XMAC_RESET);
2937 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2938 break;
2939 case SK_YUKON:
2940 case SK_YUKON_LITE:
2941 case SK_YUKON_LP:
2942 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2943 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2944 break;
2945 }
2946 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2947 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET |SK_RBCTL_OFF);
2948 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2949 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2950 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2951 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2952 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2953 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2954 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2955
2956 /* Disable interrupts */
2957 if (sc_if->sk_port == SK_PORT_A)
2958 sc->sk_intrmask &= ~SK_INTRS1;
2959 else
2960 sc->sk_intrmask &= ~SK_INTRS2;
2961 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2962
2963 SK_XM_READ_2(sc_if, XM_ISR);
2964 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2965
2966 /* Free RX and TX mbufs still in the queues. */
2967 for (i = 0; i < SK_RX_RING_CNT; i++) {
2968 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2969 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2970 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2971 }
2972 }
2973
2974 for (i = 0; i < SK_TX_RING_CNT; i++) {
2975 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2976 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2977 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2978 }
2979 }
2980
2981 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2982 }
2983
2984 /* Power Management Framework */
2985
2986 static bool
2987 skc_suspend(device_t dv, const pmf_qual_t *qual)
2988 {
2989 struct sk_softc *sc = device_private(dv);
2990
2991 DPRINTFN(2, ("skc_suspend\n"));
2992
2993 /* Turn off the driver is loaded LED */
2994 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2995
2996 return true;
2997 }
2998
2999 static bool
3000 skc_resume(device_t dv, const pmf_qual_t *qual)
3001 {
3002 struct sk_softc *sc = device_private(dv);
3003
3004 DPRINTFN(2, ("skc_resume\n"));
3005
3006 sk_reset(sc);
3007 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
3008
3009 return true;
3010 }
3011
3012 static bool
3013 sk_resume(device_t dv, const pmf_qual_t *qual)
3014 {
3015 struct sk_if_softc *sc_if = device_private(dv);
3016
3017 sk_init_yukon(sc_if);
3018 return true;
3019 }
3020
3021 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
3022 skc_probe, skc_attach, NULL, NULL);
3023
3024 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
3025 sk_probe, sk_attach, NULL, NULL);
3026
3027 #ifdef SK_DEBUG
3028 void
3029 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
3030 {
3031 #define DESC_PRINT(X) \
3032 if (X) \
3033 printf("txdesc[%d]." #X "=%#x\n", \
3034 idx, X);
3035
3036 DESC_PRINT(le32toh(desc->sk_ctl));
3037 DESC_PRINT(le32toh(desc->sk_next));
3038 DESC_PRINT(le32toh(desc->sk_data_lo));
3039 DESC_PRINT(le32toh(desc->sk_data_hi));
3040 DESC_PRINT(le32toh(desc->sk_xmac_txstat));
3041 DESC_PRINT(le16toh(desc->sk_rsvd0));
3042 DESC_PRINT(le16toh(desc->sk_csum_startval));
3043 DESC_PRINT(le16toh(desc->sk_csum_startpos));
3044 DESC_PRINT(le16toh(desc->sk_csum_writepos));
3045 DESC_PRINT(le16toh(desc->sk_rsvd1));
3046 #undef PRINT
3047 }
3048
3049 void
3050 sk_dump_bytes(const char *data, int len)
3051 {
3052 int c, i, j;
3053
3054 for (i = 0; i < len; i += 16) {
3055 printf("%08x ", i);
3056 c = len - i;
3057 if (c > 16) c = 16;
3058
3059 for (j = 0; j < c; j++) {
3060 printf("%02x ", data[i + j] & 0xff);
3061 if ((j & 0xf) == 7 && j > 0)
3062 printf(" ");
3063 }
3064
3065 for (; j < 16; j++)
3066 printf(" ");
3067 printf(" ");
3068
3069 for (j = 0; j < c; j++) {
3070 int ch = data[i + j] & 0xff;
3071 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
3072 }
3073
3074 printf("\n");
3075
3076 if (c < 16)
3077 break;
3078 }
3079 }
3080
3081 void
3082 sk_dump_mbuf(struct mbuf *m)
3083 {
3084 int count = m->m_pkthdr.len;
3085
3086 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3087
3088 while (count > 0 && m) {
3089 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3090 m, m->m_data, m->m_len);
3091 sk_dump_bytes(mtod(m, char *), m->m_len);
3092
3093 count -= m->m_len;
3094 m = m->m_next;
3095 }
3096 }
3097 #endif
3098
3099 static int
3100 sk_sysctl_handler(SYSCTLFN_ARGS)
3101 {
3102 int error, t;
3103 struct sysctlnode node;
3104 struct sk_softc *sc;
3105
3106 node = *rnode;
3107 sc = node.sysctl_data;
3108 t = sc->sk_int_mod;
3109 node.sysctl_data = &t;
3110 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3111 if (error || newp == NULL)
3112 return error;
3113
3114 if (t < SK_IM_MIN || t > SK_IM_MAX)
3115 return EINVAL;
3116
3117 /* update the softc with sysctl-changed value, and mark
3118 for hardware update */
3119 sc->sk_int_mod = t;
3120 sc->sk_int_mod_pending = 1;
3121 return 0;
3122 }
3123
3124 /*
3125 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3126 * set up in skc_attach()
3127 */
3128 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3129 {
3130 int rc;
3131 const struct sysctlnode *node;
3132
3133 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3134 0, CTLTYPE_NODE, "sk",
3135 SYSCTL_DESCR("sk interface controls"),
3136 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3137 goto err;
3138 }
3139
3140 sk_root_num = node->sysctl_num;
3141 return;
3142
3143 err:
3144 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3145 }
3146