Home | History | Annotate | Line # | Download | only in pci
if_sk.c revision 1.98
      1 /*	$NetBSD: if_sk.c,v 1.98 2019/05/30 02:32:18 msaitoh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
     30 
     31 /*
     32  * Copyright (c) 1997, 1998, 1999, 2000
     33  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *	This product includes software developed by Bill Paul.
     46  * 4. Neither the name of the author nor the names of any co-contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     60  * THE POSSIBILITY OF SUCH DAMAGE.
     61  *
     62  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
     63  */
     64 
     65 /*
     66  * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
     67  *
     68  * Permission to use, copy, modify, and distribute this software for any
     69  * purpose with or without fee is hereby granted, provided that the above
     70  * copyright notice and this permission notice appear in all copies.
     71  *
     72  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     73  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     74  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     75  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     76  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     77  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     78  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     79  */
     80 
     81 /*
     82  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
     83  * the SK-984x series adapters, both single port and dual port.
     84  * References:
     85  *	The XaQti XMAC II datasheet,
     86  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     87  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
     88  *
     89  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
     90  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
     91  * convenience to others until Vitesse corrects this problem:
     92  *
     93  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     94  *
     95  * Written by Bill Paul <wpaul (at) ee.columbia.edu>
     96  * Department of Electrical Engineering
     97  * Columbia University, New York City
     98  */
     99 
    100 /*
    101  * The SysKonnect gigabit ethernet adapters consist of two main
    102  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
    103  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
    104  * components and a PHY while the GEnesis controller provides a PCI
    105  * interface with DMA support. Each card may have between 512K and
    106  * 2MB of SRAM on board depending on the configuration.
    107  *
    108  * The SysKonnect GEnesis controller can have either one or two XMAC
    109  * chips connected to it, allowing single or dual port NIC configurations.
    110  * SysKonnect has the distinction of being the only vendor on the market
    111  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
    112  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
    113  * XMAC registers. This driver takes advantage of these features to allow
    114  * both XMACs to operate as independent interfaces.
    115  */
    116 
    117 #include <sys/cdefs.h>
    118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.98 2019/05/30 02:32:18 msaitoh Exp $");
    119 
    120 #include <sys/param.h>
    121 #include <sys/systm.h>
    122 #include <sys/sockio.h>
    123 #include <sys/mbuf.h>
    124 #include <sys/malloc.h>
    125 #include <sys/mutex.h>
    126 #include <sys/kernel.h>
    127 #include <sys/socket.h>
    128 #include <sys/device.h>
    129 #include <sys/queue.h>
    130 #include <sys/callout.h>
    131 #include <sys/sysctl.h>
    132 #include <sys/endian.h>
    133 
    134 #include <net/if.h>
    135 #include <net/if_dl.h>
    136 #include <net/if_types.h>
    137 
    138 #include <net/if_media.h>
    139 
    140 #include <net/bpf.h>
    141 #include <sys/rndsource.h>
    142 
    143 #include <dev/mii/mii.h>
    144 #include <dev/mii/miivar.h>
    145 #include <dev/mii/brgphyreg.h>
    146 
    147 #include <dev/pci/pcireg.h>
    148 #include <dev/pci/pcivar.h>
    149 #include <dev/pci/pcidevs.h>
    150 
    151 /* #define SK_USEIOSPACE */
    152 
    153 #include <dev/pci/if_skreg.h>
    154 #include <dev/pci/if_skvar.h>
    155 
    156 int skc_probe(device_t, cfdata_t, void *);
    157 void skc_attach(device_t, device_t, void *aux);
    158 int sk_probe(device_t, cfdata_t, void *);
    159 void sk_attach(device_t, device_t, void *aux);
    160 int skcprint(void *, const char *);
    161 int sk_intr(void *);
    162 void sk_intr_bcom(struct sk_if_softc *);
    163 void sk_intr_xmac(struct sk_if_softc *);
    164 void sk_intr_yukon(struct sk_if_softc *);
    165 void sk_rxeof(struct sk_if_softc *);
    166 void sk_txeof(struct sk_if_softc *);
    167 int sk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
    168 void sk_start(struct ifnet *);
    169 int sk_ioctl(struct ifnet *, u_long, void *);
    170 int sk_init(struct ifnet *);
    171 void sk_init_xmac(struct sk_if_softc *);
    172 void sk_init_yukon(struct sk_if_softc *);
    173 void sk_stop(struct ifnet *, int);
    174 void sk_watchdog(struct ifnet *);
    175 void sk_shutdown(void *);
    176 int sk_ifmedia_upd(struct ifnet *);
    177 void sk_reset(struct sk_softc *);
    178 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
    179 int sk_alloc_jumbo_mem(struct sk_if_softc *);
    180 void sk_free_jumbo_mem(struct sk_if_softc *);
    181 void *sk_jalloc(struct sk_if_softc *);
    182 void sk_jfree(struct mbuf *, void *, size_t, void *);
    183 int sk_init_rx_ring(struct sk_if_softc *);
    184 int sk_init_tx_ring(struct sk_if_softc *);
    185 uint8_t sk_vpd_readbyte(struct sk_softc *, int);
    186 void sk_vpd_read_res(struct sk_softc *,
    187 					struct vpd_res *, int);
    188 void sk_vpd_read(struct sk_softc *);
    189 
    190 void sk_update_int_mod(struct sk_softc *);
    191 
    192 int sk_xmac_miibus_readreg(device_t, int, int, uint16_t *);
    193 int sk_xmac_miibus_writereg(device_t, int, int, uint16_t);
    194 void sk_xmac_miibus_statchg(struct ifnet *);
    195 
    196 int sk_marv_miibus_readreg(device_t, int, int, uint16_t *);
    197 int sk_marv_miibus_writereg(device_t, int, int, uint16_t);
    198 void sk_marv_miibus_statchg(struct ifnet *);
    199 
    200 uint32_t sk_xmac_hash(void *);
    201 uint32_t sk_yukon_hash(void *);
    202 void sk_setfilt(struct sk_if_softc *, void *, int);
    203 void sk_setmulti(struct sk_if_softc *);
    204 void sk_tick(void *);
    205 
    206 static bool skc_suspend(device_t, const pmf_qual_t *);
    207 static bool skc_resume(device_t, const pmf_qual_t *);
    208 static bool sk_resume(device_t dv, const pmf_qual_t *);
    209 
    210 /* #define SK_DEBUG 2 */
    211 #ifdef SK_DEBUG
    212 #define DPRINTF(x)	if (skdebug) printf x
    213 #define DPRINTFN(n, x)	if (skdebug >= (n)) printf x
    214 int	skdebug = SK_DEBUG;
    215 
    216 void sk_dump_txdesc(struct sk_tx_desc *, int);
    217 void sk_dump_mbuf(struct mbuf *);
    218 void sk_dump_bytes(const char *, int);
    219 #else
    220 #define DPRINTF(x)
    221 #define DPRINTFN(n, x)
    222 #endif
    223 
    224 static int sk_sysctl_handler(SYSCTLFN_PROTO);
    225 static int sk_root_num;
    226 
    227 /* supported device vendors */
    228 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
    229 static const struct sk_product {
    230 	pci_vendor_id_t		sk_vendor;
    231 	pci_product_id_t	sk_product;
    232 } sk_products[] = {
    233 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
    234 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
    235 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
    236 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
    237 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
    238 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
    239 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
    240 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
    241 	{ 0, 0, }
    242 };
    243 
    244 #define SK_LINKSYS_EG1032_SUBID	0x00151737
    245 
    246 static inline uint32_t
    247 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
    248 {
    249 #ifdef SK_USEIOSPACE
    250 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    251 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
    252 #else
    253 	return CSR_READ_4(sc, reg);
    254 #endif
    255 }
    256 
    257 static inline uint16_t
    258 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
    259 {
    260 #ifdef SK_USEIOSPACE
    261 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    262 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
    263 #else
    264 	return CSR_READ_2(sc, reg);
    265 #endif
    266 }
    267 
    268 static inline uint8_t
    269 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
    270 {
    271 #ifdef SK_USEIOSPACE
    272 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    273 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
    274 #else
    275 	return CSR_READ_1(sc, reg);
    276 #endif
    277 }
    278 
    279 static inline void
    280 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
    281 {
    282 #ifdef SK_USEIOSPACE
    283 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    284 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
    285 #else
    286 	CSR_WRITE_4(sc, reg, x);
    287 #endif
    288 }
    289 
    290 static inline void
    291 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
    292 {
    293 #ifdef SK_USEIOSPACE
    294 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    295 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
    296 #else
    297 	CSR_WRITE_2(sc, reg, x);
    298 #endif
    299 }
    300 
    301 static inline void
    302 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
    303 {
    304 #ifdef SK_USEIOSPACE
    305 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    306 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
    307 #else
    308 	CSR_WRITE_1(sc, reg, x);
    309 #endif
    310 }
    311 
    312 /*
    313  * The VPD EEPROM contains Vital Product Data, as suggested in
    314  * the PCI 2.1 specification. The VPD data is separared into areas
    315  * denoted by resource IDs. The SysKonnect VPD contains an ID string
    316  * resource (the name of the adapter), a read-only area resource
    317  * containing various key/data fields and a read/write area which
    318  * can be used to store asset management information or log messages.
    319  * We read the ID string and read-only into buffers attached to
    320  * the controller softc structure for later use. At the moment,
    321  * we only use the ID string during sk_attach().
    322  */
    323 uint8_t
    324 sk_vpd_readbyte(struct sk_softc *sc, int addr)
    325 {
    326 	int			i;
    327 
    328 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
    329 	for (i = 0; i < SK_TIMEOUT; i++) {
    330 		DELAY(1);
    331 		if (sk_win_read_2(sc,
    332 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
    333 			break;
    334 	}
    335 
    336 	if (i == SK_TIMEOUT)
    337 		return 0;
    338 
    339 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
    340 }
    341 
    342 void
    343 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
    344 {
    345 	int			i;
    346 	uint8_t		*ptr;
    347 
    348 	ptr = (uint8_t *)res;
    349 	for (i = 0; i < sizeof(struct vpd_res); i++)
    350 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
    351 }
    352 
    353 void
    354 sk_vpd_read(struct sk_softc *sc)
    355 {
    356 	int			pos = 0, i;
    357 	struct vpd_res		res;
    358 
    359 	if (sc->sk_vpd_prodname != NULL)
    360 		free(sc->sk_vpd_prodname, M_DEVBUF);
    361 	if (sc->sk_vpd_readonly != NULL)
    362 		free(sc->sk_vpd_readonly, M_DEVBUF);
    363 	sc->sk_vpd_prodname = NULL;
    364 	sc->sk_vpd_readonly = NULL;
    365 
    366 	sk_vpd_read_res(sc, &res, pos);
    367 
    368 	if (res.vr_id != VPD_RES_ID) {
    369 		aprint_error_dev(sc->sk_dev,
    370 		    "bad VPD resource id: expected %x got %x\n",
    371 		    VPD_RES_ID, res.vr_id);
    372 		return;
    373 	}
    374 
    375 	pos += sizeof(res);
    376 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    377 	if (sc->sk_vpd_prodname == NULL)
    378 		panic("sk_vpd_read");
    379 	for (i = 0; i < res.vr_len; i++)
    380 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
    381 	sc->sk_vpd_prodname[i] = '\0';
    382 	pos += i;
    383 
    384 	sk_vpd_read_res(sc, &res, pos);
    385 
    386 	if (res.vr_id != VPD_RES_READ) {
    387 		aprint_error_dev(sc->sk_dev,
    388 		    "bad VPD resource id: expected %x got %x\n",
    389 		    VPD_RES_READ, res.vr_id);
    390 		return;
    391 	}
    392 
    393 	pos += sizeof(res);
    394 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    395 	if (sc->sk_vpd_readonly == NULL)
    396 		panic("sk_vpd_read");
    397 	for (i = 0; i < res.vr_len ; i++)
    398 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
    399 }
    400 
    401 int
    402 sk_xmac_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
    403 {
    404 	struct sk_if_softc *sc_if = device_private(dev);
    405 	int i;
    406 
    407 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
    408 
    409 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
    410 		return -1;
    411 
    412 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    413 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
    414 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    415 		for (i = 0; i < SK_TIMEOUT; i++) {
    416 			DELAY(1);
    417 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
    418 			    XM_MMUCMD_PHYDATARDY)
    419 				break;
    420 		}
    421 
    422 		if (i == SK_TIMEOUT) {
    423 			aprint_error_dev(sc_if->sk_dev,
    424 			    "phy failed to come ready\n");
    425 			return ETIMEDOUT;
    426 		}
    427 	}
    428 	DELAY(1);
    429 	*val = SK_XM_READ_2(sc_if, XM_PHY_DATA);
    430 	return 0;
    431 }
    432 
    433 int
    434 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
    435 {
    436 	struct sk_if_softc *sc_if = device_private(dev);
    437 	int i;
    438 
    439 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
    440 
    441 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    442 	for (i = 0; i < SK_TIMEOUT; i++) {
    443 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    444 			break;
    445 	}
    446 
    447 	if (i == SK_TIMEOUT) {
    448 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
    449 		return ETIMEDOUT;
    450 	}
    451 
    452 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
    453 	for (i = 0; i < SK_TIMEOUT; i++) {
    454 		DELAY(1);
    455 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    456 			break;
    457 	}
    458 
    459 	if (i == SK_TIMEOUT) {
    460 		aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
    461 		return ETIMEDOUT;
    462 	}
    463 
    464 	return 0;
    465 }
    466 
    467 void
    468 sk_xmac_miibus_statchg(struct ifnet *ifp)
    469 {
    470 	struct sk_if_softc *sc_if = ifp->if_softc;
    471 	struct mii_data *mii = &sc_if->sk_mii;
    472 
    473 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
    474 
    475 	/*
    476 	 * If this is a GMII PHY, manually set the XMAC's
    477 	 * duplex mode accordingly.
    478 	 */
    479 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    480 		if ((mii->mii_media_active & IFM_FDX) != 0)
    481 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    482 		else
    483 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    484 	}
    485 }
    486 
    487 int
    488 sk_marv_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
    489 {
    490 	struct sk_if_softc *sc_if = device_private(dev);
    491 	uint16_t data;
    492 	int i;
    493 
    494 	if (phy != 0 ||
    495 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
    496 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
    497 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
    498 			     phy, reg));
    499 		return -1;
    500 	}
    501 
    502 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    503 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
    504 
    505 	for (i = 0; i < SK_TIMEOUT; i++) {
    506 		DELAY(1);
    507 		data = SK_YU_READ_2(sc_if, YUKON_SMICR);
    508 		if (data & YU_SMICR_READ_VALID)
    509 			break;
    510 	}
    511 
    512 	if (i == SK_TIMEOUT) {
    513 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
    514 		return ETIMEDOUT;
    515 	}
    516 
    517 	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
    518 		     SK_TIMEOUT));
    519 
    520 	*val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
    521 
    522 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
    523 		     phy, reg, *val));
    524 
    525 	return 0;
    526 }
    527 
    528 int
    529 sk_marv_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
    530 {
    531 	struct sk_if_softc *sc_if = device_private(dev);
    532 	int i;
    533 
    534 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#hx\n",
    535 		     phy, reg, val));
    536 
    537 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
    538 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    539 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
    540 
    541 	for (i = 0; i < SK_TIMEOUT; i++) {
    542 		DELAY(1);
    543 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
    544 			break;
    545 	}
    546 
    547 	if (i == SK_TIMEOUT) {
    548 		printf("%s: phy write timed out\n",
    549 		    device_xname(sc_if->sk_dev));
    550 		return ETIMEDOUT;
    551 	}
    552 
    553 	return 0;
    554 }
    555 
    556 void
    557 sk_marv_miibus_statchg(struct ifnet *ifp)
    558 {
    559 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
    560 		     SK_YU_READ_2(((struct sk_if_softc *)ifp->if_softc),
    561 		     YUKON_GPCR)));
    562 }
    563 
    564 uint32_t
    565 sk_xmac_hash(void *addr)
    566 {
    567 	uint32_t		crc;
    568 
    569 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
    570 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
    571 	DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
    572 	return crc;
    573 }
    574 
    575 uint32_t
    576 sk_yukon_hash(void *addr)
    577 {
    578 	uint32_t		crc;
    579 
    580 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
    581 	crc &= ((1 << SK_HASH_BITS) - 1);
    582 	DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
    583 	return crc;
    584 }
    585 
    586 void
    587 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
    588 {
    589 	char *addr = addrv;
    590 	int base = XM_RXFILT_ENTRY(slot);
    591 
    592 	SK_XM_WRITE_2(sc_if, base, *(uint16_t *)(&addr[0]));
    593 	SK_XM_WRITE_2(sc_if, base + 2, *(uint16_t *)(&addr[2]));
    594 	SK_XM_WRITE_2(sc_if, base + 4, *(uint16_t *)(&addr[4]));
    595 }
    596 
    597 void
    598 sk_setmulti(struct sk_if_softc *sc_if)
    599 {
    600 	struct sk_softc *sc = sc_if->sk_softc;
    601 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
    602 	uint32_t hashes[2] = { 0, 0 };
    603 	int h = 0, i;
    604 	struct ethercom *ec = &sc_if->sk_ethercom;
    605 	struct ether_multi *enm;
    606 	struct ether_multistep step;
    607 	uint8_t dummy[] = { 0, 0, 0, 0, 0, 0 };
    608 
    609 	/* First, zot all the existing filters. */
    610 	switch (sc->sk_type) {
    611 	case SK_GENESIS:
    612 		for (i = 1; i < XM_RXFILT_MAX; i++)
    613 			sk_setfilt(sc_if, (void *)&dummy, i);
    614 
    615 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
    616 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
    617 		break;
    618 	case SK_YUKON:
    619 	case SK_YUKON_LITE:
    620 	case SK_YUKON_LP:
    621 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
    622 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
    623 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
    624 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
    625 		break;
    626 	}
    627 
    628 	/* Now program new ones. */
    629 allmulti:
    630 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    631 		hashes[0] = 0xFFFFFFFF;
    632 		hashes[1] = 0xFFFFFFFF;
    633 	} else {
    634 		i = 1;
    635 		/* First find the tail of the list. */
    636 		ETHER_LOCK(ec);
    637 		ETHER_FIRST_MULTI(step, ec, enm);
    638 		while (enm != NULL) {
    639 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    640 				 ETHER_ADDR_LEN)) {
    641 				ifp->if_flags |= IFF_ALLMULTI;
    642 				ETHER_UNLOCK(ec);
    643 				goto allmulti;
    644 			}
    645 			DPRINTFN(2,("multicast address %s\n",
    646 				ether_sprintf(enm->enm_addrlo)));
    647 			/*
    648 			 * Program the first XM_RXFILT_MAX multicast groups
    649 			 * into the perfect filter. For all others,
    650 			 * use the hash table.
    651 			 */
    652 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
    653 				sk_setfilt(sc_if, enm->enm_addrlo, i);
    654 				i++;
    655 			}
    656 			else {
    657 				switch (sc->sk_type) {
    658 				case SK_GENESIS:
    659 					h = sk_xmac_hash(enm->enm_addrlo);
    660 					break;
    661 				case SK_YUKON:
    662 				case SK_YUKON_LITE:
    663 				case SK_YUKON_LP:
    664 					h = sk_yukon_hash(enm->enm_addrlo);
    665 					break;
    666 				}
    667 				if (h < 32)
    668 					hashes[0] |= (1 << h);
    669 				else
    670 					hashes[1] |= (1 << (h - 32));
    671 			}
    672 
    673 			ETHER_NEXT_MULTI(step, enm);
    674 		}
    675 		ETHER_UNLOCK(ec);
    676 	}
    677 
    678 	switch (sc->sk_type) {
    679 	case SK_GENESIS:
    680 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH |
    681 			       XM_MODE_RX_USE_PERFECT);
    682 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
    683 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
    684 		break;
    685 	case SK_YUKON:
    686 	case SK_YUKON_LITE:
    687 	case SK_YUKON_LP:
    688 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
    689 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
    690 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
    691 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
    692 		break;
    693 	}
    694 }
    695 
    696 int
    697 sk_init_rx_ring(struct sk_if_softc *sc_if)
    698 {
    699 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    700 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    701 	int			i;
    702 
    703 	memset((char *)rd->sk_rx_ring, 0,
    704 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
    705 
    706 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    707 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
    708 		if (i == (SK_RX_RING_CNT - 1)) {
    709 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
    710 			rd->sk_rx_ring[i].sk_next =
    711 				htole32(SK_RX_RING_ADDR(sc_if, 0));
    712 		} else {
    713 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
    714 			rd->sk_rx_ring[i].sk_next =
    715 				htole32(SK_RX_RING_ADDR(sc_if, i+1));
    716 		}
    717 	}
    718 
    719 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    720 		if (sk_newbuf(sc_if, i, NULL,
    721 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
    722 			aprint_error_dev(sc_if->sk_dev,
    723 			    "failed alloc of %dth mbuf\n", i);
    724 			return ENOBUFS;
    725 		}
    726 	}
    727 	sc_if->sk_cdata.sk_rx_prod = 0;
    728 	sc_if->sk_cdata.sk_rx_cons = 0;
    729 
    730 	return 0;
    731 }
    732 
    733 int
    734 sk_init_tx_ring(struct sk_if_softc *sc_if)
    735 {
    736 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    737 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    738 	int			i;
    739 
    740 	memset(sc_if->sk_rdata->sk_tx_ring, 0,
    741 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
    742 
    743 	for (i = 0; i < SK_TX_RING_CNT; i++) {
    744 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
    745 		if (i == (SK_TX_RING_CNT - 1)) {
    746 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
    747 			rd->sk_tx_ring[i].sk_next =
    748 				htole32(SK_TX_RING_ADDR(sc_if, 0));
    749 		} else {
    750 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
    751 			rd->sk_tx_ring[i].sk_next =
    752 				htole32(SK_TX_RING_ADDR(sc_if, i+1));
    753 		}
    754 	}
    755 
    756 	sc_if->sk_cdata.sk_tx_prod = 0;
    757 	sc_if->sk_cdata.sk_tx_cons = 0;
    758 	sc_if->sk_cdata.sk_tx_cnt = 0;
    759 
    760 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
    761 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    762 
    763 	return 0;
    764 }
    765 
    766 int
    767 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
    768 	  bus_dmamap_t dmamap)
    769 {
    770 	struct mbuf		*m_new = NULL;
    771 	struct sk_chain		*c;
    772 	struct sk_rx_desc	*r;
    773 
    774 	if (m == NULL) {
    775 		void *buf = NULL;
    776 
    777 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    778 		if (m_new == NULL) {
    779 			aprint_error_dev(sc_if->sk_dev,
    780 			    "no memory for rx list -- packet dropped!\n");
    781 			return ENOBUFS;
    782 		}
    783 
    784 		/* Allocate the jumbo buffer */
    785 		buf = sk_jalloc(sc_if);
    786 		if (buf == NULL) {
    787 			m_freem(m_new);
    788 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
    789 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
    790 			return ENOBUFS;
    791 		}
    792 
    793 		/* Attach the buffer to the mbuf */
    794 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    795 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
    796 
    797 	} else {
    798 		/*
    799 		 * We're re-using a previously allocated mbuf;
    800 		 * be sure to re-init pointers and lengths to
    801 		 * default values.
    802 		 */
    803 		m_new = m;
    804 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    805 		m_new->m_data = m_new->m_ext.ext_buf;
    806 	}
    807 	m_adj(m_new, ETHER_ALIGN);
    808 
    809 	c = &sc_if->sk_cdata.sk_rx_chain[i];
    810 	r = c->sk_desc;
    811 	c->sk_mbuf = m_new;
    812 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
    813 	    (((vaddr_t)m_new->m_data
    814 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
    815 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
    816 
    817 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
    818 
    819 	return 0;
    820 }
    821 
    822 /*
    823  * Memory management for jumbo frames.
    824  */
    825 
    826 int
    827 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
    828 {
    829 	struct sk_softc		*sc = sc_if->sk_softc;
    830 	char *ptr, *kva;
    831 	bus_dma_segment_t	seg;
    832 	int		i, rseg, state, error;
    833 	struct sk_jpool_entry	*entry;
    834 
    835 	state = error = 0;
    836 
    837 	/* Grab a big chunk o' storage. */
    838 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
    839 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    840 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
    841 		return ENOBUFS;
    842 	}
    843 
    844 	state = 1;
    845 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
    846 			   BUS_DMA_NOWAIT)) {
    847 		aprint_error_dev(sc->sk_dev,
    848 		    "can't map dma buffers (%d bytes)\n",
    849 		    SK_JMEM);
    850 		error = ENOBUFS;
    851 		goto out;
    852 	}
    853 
    854 	state = 2;
    855 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
    856 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
    857 		aprint_error_dev(sc->sk_dev, "can't create dma map\n");
    858 		error = ENOBUFS;
    859 		goto out;
    860 	}
    861 
    862 	state = 3;
    863 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
    864 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
    865 		aprint_error_dev(sc->sk_dev, "can't load dma map\n");
    866 		error = ENOBUFS;
    867 		goto out;
    868 	}
    869 
    870 	state = 4;
    871 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
    872 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
    873 
    874 	LIST_INIT(&sc_if->sk_jfree_listhead);
    875 	LIST_INIT(&sc_if->sk_jinuse_listhead);
    876 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
    877 
    878 	/*
    879 	 * Now divide it up into 9K pieces and save the addresses
    880 	 * in an array.
    881 	 */
    882 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
    883 	for (i = 0; i < SK_JSLOTS; i++) {
    884 		sc_if->sk_cdata.sk_jslots[i] = ptr;
    885 		ptr += SK_JLEN;
    886 		entry = malloc(sizeof(struct sk_jpool_entry),
    887 		    M_DEVBUF, M_NOWAIT);
    888 		if (entry == NULL) {
    889 			aprint_error_dev(sc->sk_dev,
    890 			    "no memory for jumbo buffer queue!\n");
    891 			error = ENOBUFS;
    892 			goto out;
    893 		}
    894 		entry->slot = i;
    895 		if (i)
    896 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
    897 				 entry, jpool_entries);
    898 		else
    899 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
    900 				 entry, jpool_entries);
    901 	}
    902 out:
    903 	if (error != 0) {
    904 		switch (state) {
    905 		case 4:
    906 			bus_dmamap_unload(sc->sc_dmatag,
    907 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    908 			/* FALLTHROUGH */
    909 		case 3:
    910 			bus_dmamap_destroy(sc->sc_dmatag,
    911 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    912 			/* FALLTHROUGH */
    913 		case 2:
    914 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
    915 			/* FALLTHROUGH */
    916 		case 1:
    917 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
    918 			break;
    919 		default:
    920 			break;
    921 		}
    922 	}
    923 
    924 	return error;
    925 }
    926 
    927 /*
    928  * Allocate a jumbo buffer.
    929  */
    930 void *
    931 sk_jalloc(struct sk_if_softc *sc_if)
    932 {
    933 	struct sk_jpool_entry	*entry;
    934 
    935 	mutex_enter(&sc_if->sk_jpool_mtx);
    936 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
    937 
    938 	if (entry == NULL) {
    939 		mutex_exit(&sc_if->sk_jpool_mtx);
    940 		return NULL;
    941 	}
    942 
    943 	LIST_REMOVE(entry, jpool_entries);
    944 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
    945 	mutex_exit(&sc_if->sk_jpool_mtx);
    946 	return sc_if->sk_cdata.sk_jslots[entry->slot];
    947 }
    948 
    949 /*
    950  * Release a jumbo buffer.
    951  */
    952 void
    953 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
    954 {
    955 	struct sk_jpool_entry *entry;
    956 	struct sk_if_softc *sc;
    957 	int i;
    958 
    959 	/* Extract the softc struct pointer. */
    960 	sc = (struct sk_if_softc *)arg;
    961 
    962 	if (sc == NULL)
    963 		panic("sk_jfree: can't find softc pointer!");
    964 
    965 	/* calculate the slot this buffer belongs to */
    966 
    967 	i = ((vaddr_t)buf
    968 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
    969 
    970 	if ((i < 0) || (i >= SK_JSLOTS))
    971 		panic("sk_jfree: asked to free buffer that we don't manage!");
    972 
    973 	mutex_enter(&sc->sk_jpool_mtx);
    974 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
    975 	if (entry == NULL)
    976 		panic("sk_jfree: buffer not in use!");
    977 	entry->slot = i;
    978 	LIST_REMOVE(entry, jpool_entries);
    979 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
    980 	mutex_exit(&sc->sk_jpool_mtx);
    981 
    982 	if (__predict_true(m != NULL))
    983 		pool_cache_put(mb_cache, m);
    984 }
    985 
    986 /*
    987  * Set media options.
    988  */
    989 int
    990 sk_ifmedia_upd(struct ifnet *ifp)
    991 {
    992 	struct sk_if_softc *sc_if = ifp->if_softc;
    993 	int rc;
    994 
    995 	(void) sk_init(ifp);
    996 	if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
    997 		return 0;
    998 	return rc;
    999 }
   1000 
   1001 static void
   1002 sk_promisc(struct sk_if_softc *sc_if, int on)
   1003 {
   1004 	struct sk_softc *sc = sc_if->sk_softc;
   1005 	switch (sc->sk_type) {
   1006 	case SK_GENESIS:
   1007 		if (on)
   1008 			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   1009 		else
   1010 			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   1011 		break;
   1012 	case SK_YUKON:
   1013 	case SK_YUKON_LITE:
   1014 	case SK_YUKON_LP:
   1015 		if (on)
   1016 			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
   1017 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1018 		else
   1019 			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
   1020 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1021 		break;
   1022 	default:
   1023 		aprint_error_dev(sc_if->sk_dev, "Can't set promisc for %d\n",
   1024 			sc->sk_type);
   1025 		break;
   1026 	}
   1027 }
   1028 
   1029 int
   1030 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
   1031 {
   1032 	struct sk_if_softc *sc_if = ifp->if_softc;
   1033 	int s, error = 0;
   1034 
   1035 	/* DPRINTFN(2, ("sk_ioctl\n")); */
   1036 
   1037 	s = splnet();
   1038 
   1039 	switch (command) {
   1040 
   1041 	case SIOCSIFFLAGS:
   1042 		DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
   1043 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   1044 			break;
   1045 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
   1046 		case IFF_RUNNING:
   1047 			sk_stop(ifp, 1);
   1048 			break;
   1049 		case IFF_UP:
   1050 			sk_init(ifp);
   1051 			break;
   1052 		case IFF_UP | IFF_RUNNING:
   1053 			if ((ifp->if_flags ^ sc_if->sk_if_flags) == IFF_PROMISC)			{
   1054 				sk_promisc(sc_if, ifp->if_flags & IFF_PROMISC);
   1055 				sk_setmulti(sc_if);
   1056 			} else
   1057 				sk_init(ifp);
   1058 			break;
   1059 		}
   1060 		sc_if->sk_if_flags = ifp->if_flags;
   1061 		error = 0;
   1062 		break;
   1063 
   1064 	default:
   1065 		DPRINTFN(2, ("sk_ioctl ETHER\n"));
   1066 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   1067 			break;
   1068 
   1069 		error = 0;
   1070 
   1071 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   1072 			;
   1073 		else if (ifp->if_flags & IFF_RUNNING) {
   1074 			sk_setmulti(sc_if);
   1075 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
   1076 		}
   1077 		break;
   1078 	}
   1079 
   1080 	splx(s);
   1081 	return error;
   1082 }
   1083 
   1084 void
   1085 sk_update_int_mod(struct sk_softc *sc)
   1086 {
   1087 	uint32_t imtimer_ticks;
   1088 
   1089 	/*
   1090 	 * Configure interrupt moderation. The moderation timer
   1091 	 * defers interrupts specified in the interrupt moderation
   1092 	 * timer mask based on the timeout specified in the interrupt
   1093 	 * moderation timer init register. Each bit in the timer
   1094 	 * register represents one tick, so to specify a timeout in
   1095 	 * microseconds, we have to multiply by the correct number of
   1096 	 * ticks-per-microsecond.
   1097 	 */
   1098 	switch (sc->sk_type) {
   1099 	case SK_GENESIS:
   1100 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   1101 		break;
   1102 	case SK_YUKON_EC:
   1103 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   1104 		break;
   1105 	default:
   1106 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   1107 	}
   1108 	aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
   1109 	    sc->sk_int_mod);
   1110 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
   1111 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF | SK_ISR_TX2_S_EOF |
   1112 	    SK_ISR_RX1_EOF | SK_ISR_RX2_EOF);
   1113 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
   1114 	sc->sk_int_mod_pending = 0;
   1115 }
   1116 
   1117 /*
   1118  * Lookup: Check the PCI vendor and device, and return a pointer to
   1119  * The structure if the IDs match against our list.
   1120  */
   1121 
   1122 static const struct sk_product *
   1123 sk_lookup(const struct pci_attach_args *pa)
   1124 {
   1125 	const struct sk_product *psk;
   1126 
   1127 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
   1128 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
   1129 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
   1130 			return psk;
   1131 	}
   1132 	return NULL;
   1133 }
   1134 
   1135 /*
   1136  * Probe for a SysKonnect GEnesis chip.
   1137  */
   1138 
   1139 int
   1140 skc_probe(device_t parent, cfdata_t match, void *aux)
   1141 {
   1142 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1143 	const struct sk_product *psk;
   1144 	pcireg_t subid;
   1145 
   1146 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
   1147 
   1148 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
   1149 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
   1150 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
   1151 	    subid == SK_LINKSYS_EG1032_SUBID)
   1152 		return 1;
   1153 
   1154 	if ((psk = sk_lookup(pa))) {
   1155 		return 1;
   1156 	}
   1157 	return 0;
   1158 }
   1159 
   1160 /*
   1161  * Force the GEnesis into reset, then bring it out of reset.
   1162  */
   1163 void sk_reset(struct sk_softc *sc)
   1164 {
   1165 	DPRINTFN(2, ("sk_reset\n"));
   1166 
   1167 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
   1168 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
   1169 	if (SK_YUKON_FAMILY(sc->sk_type))
   1170 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
   1171 
   1172 	DELAY(1000);
   1173 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
   1174 	DELAY(2);
   1175 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
   1176 	if (SK_YUKON_FAMILY(sc->sk_type))
   1177 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
   1178 
   1179 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
   1180 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
   1181 		     CSR_READ_2(sc, SK_LINK_CTRL)));
   1182 
   1183 	if (sc->sk_type == SK_GENESIS) {
   1184 		/* Configure packet arbiter */
   1185 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
   1186 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1187 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1188 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1189 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1190 	}
   1191 
   1192 	/* Enable RAM interface */
   1193 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
   1194 
   1195 	sk_update_int_mod(sc);
   1196 }
   1197 
   1198 int
   1199 sk_probe(device_t parent, cfdata_t match, void *aux)
   1200 {
   1201 	struct skc_attach_args *sa = aux;
   1202 
   1203 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
   1204 		return 0;
   1205 
   1206 	return 1;
   1207 }
   1208 
   1209 /*
   1210  * Each XMAC chip is attached as a separate logical IP interface.
   1211  * Single port cards will have only one logical interface of course.
   1212  */
   1213 void
   1214 sk_attach(device_t parent, device_t self, void *aux)
   1215 {
   1216 	struct sk_if_softc *sc_if = device_private(self);
   1217 	struct mii_data *mii = &sc_if->sk_mii;
   1218 	struct sk_softc *sc = device_private(parent);
   1219 	struct skc_attach_args *sa = aux;
   1220 	struct sk_txmap_entry	*entry;
   1221 	struct ifnet *ifp;
   1222 	bus_dma_segment_t seg;
   1223 	bus_dmamap_t dmamap;
   1224 	prop_data_t data;
   1225 	void *kva;
   1226 	int i, rseg;
   1227 	int mii_flags = 0;
   1228 
   1229 	aprint_naive("\n");
   1230 
   1231 	sc_if->sk_dev = self;
   1232 	sc_if->sk_port = sa->skc_port;
   1233 	sc_if->sk_softc = sc;
   1234 	sc->sk_if[sa->skc_port] = sc_if;
   1235 
   1236 	if (sa->skc_port == SK_PORT_A)
   1237 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
   1238 	if (sa->skc_port == SK_PORT_B)
   1239 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
   1240 
   1241 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
   1242 
   1243 	/*
   1244 	 * Get station address for this interface. Note that
   1245 	 * dual port cards actually come with three station
   1246 	 * addresses: one for each port, plus an extra. The
   1247 	 * extra one is used by the SysKonnect driver software
   1248 	 * as a 'virtual' station address for when both ports
   1249 	 * are operating in failover mode. Currently we don't
   1250 	 * use this extra address.
   1251 	 */
   1252 	data = prop_dictionary_get(device_properties(self), "mac-address");
   1253 	if (data != NULL) {
   1254 		/*
   1255 		 * Try to get the station address from device properties
   1256 		 * first, in case the ROM is missing.
   1257 		 */
   1258 		KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
   1259 		KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
   1260 		memcpy(sc_if->sk_enaddr, prop_data_data_nocopy(data),
   1261 		    ETHER_ADDR_LEN);
   1262 	} else
   1263 		for (i = 0; i < ETHER_ADDR_LEN; i++)
   1264 			sc_if->sk_enaddr[i] = sk_win_read_1(sc,
   1265 			    SK_MAC0_0 + (sa->skc_port * 8) + i);
   1266 
   1267 	aprint_normal(": Ethernet address %s\n",
   1268 	    ether_sprintf(sc_if->sk_enaddr));
   1269 
   1270 	/*
   1271 	 * Set up RAM buffer addresses. The NIC will have a certain
   1272 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
   1273 	 * need to divide this up a) between the transmitter and
   1274 	 * receiver and b) between the two XMACs, if this is a
   1275 	 * dual port NIC. Our algorithm is to divide up the memory
   1276 	 * evenly so that everyone gets a fair share.
   1277 	 */
   1278 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
   1279 		uint32_t		chunk, val;
   1280 
   1281 		chunk = sc->sk_ramsize / 2;
   1282 		val = sc->sk_rboff / sizeof(uint64_t);
   1283 		sc_if->sk_rx_ramstart = val;
   1284 		val += (chunk / sizeof(uint64_t));
   1285 		sc_if->sk_rx_ramend = val - 1;
   1286 		sc_if->sk_tx_ramstart = val;
   1287 		val += (chunk / sizeof(uint64_t));
   1288 		sc_if->sk_tx_ramend = val - 1;
   1289 	} else {
   1290 		uint32_t		chunk, val;
   1291 
   1292 		chunk = sc->sk_ramsize / 4;
   1293 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
   1294 		    sizeof(uint64_t);
   1295 		sc_if->sk_rx_ramstart = val;
   1296 		val += (chunk / sizeof(uint64_t));
   1297 		sc_if->sk_rx_ramend = val - 1;
   1298 		sc_if->sk_tx_ramstart = val;
   1299 		val += (chunk / sizeof(uint64_t));
   1300 		sc_if->sk_tx_ramend = val - 1;
   1301 	}
   1302 
   1303 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
   1304 		     "		 tx_ramstart=%#x tx_ramend=%#x\n",
   1305 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
   1306 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
   1307 
   1308 	/* Read and save PHY type and set PHY address */
   1309 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
   1310 	switch (sc_if->sk_phytype) {
   1311 	case SK_PHYTYPE_XMAC:
   1312 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
   1313 		break;
   1314 	case SK_PHYTYPE_BCOM:
   1315 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
   1316 		break;
   1317 	case SK_PHYTYPE_MARV_COPPER:
   1318 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
   1319 		break;
   1320 	default:
   1321 		aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
   1322 		    sc_if->sk_phytype);
   1323 		return;
   1324 	}
   1325 
   1326 	/* Allocate the descriptor queues. */
   1327 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
   1328 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1329 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
   1330 		goto fail;
   1331 	}
   1332 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
   1333 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
   1334 		aprint_error_dev(sc_if->sk_dev,
   1335 		    "can't map dma buffers (%lu bytes)\n",
   1336 		    (u_long) sizeof(struct sk_ring_data));
   1337 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1338 		goto fail;
   1339 	}
   1340 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
   1341 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
   1342 	    &sc_if->sk_ring_map)) {
   1343 		aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
   1344 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1345 		    sizeof(struct sk_ring_data));
   1346 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1347 		goto fail;
   1348 	}
   1349 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
   1350 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
   1351 		aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
   1352 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1353 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1354 		    sizeof(struct sk_ring_data));
   1355 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1356 		goto fail;
   1357 	}
   1358 
   1359 	for (i = 0; i < SK_RX_RING_CNT; i++)
   1360 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   1361 
   1362 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
   1363 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   1364 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   1365 
   1366 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
   1367 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
   1368 			aprint_error_dev(sc_if->sk_dev,
   1369 			    "Can't create TX dmamap\n");
   1370 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1371 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1372 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1373 			    sizeof(struct sk_ring_data));
   1374 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1375 			goto fail;
   1376 		}
   1377 
   1378 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
   1379 		if (!entry) {
   1380 			aprint_error_dev(sc_if->sk_dev,
   1381 			    "Can't alloc txmap entry\n");
   1382 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
   1383 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1384 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1385 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1386 			    sizeof(struct sk_ring_data));
   1387 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1388 			goto fail;
   1389 		}
   1390 		entry->dmamap = dmamap;
   1391 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
   1392 	}
   1393 
   1394 	sc_if->sk_rdata = (struct sk_ring_data *)kva;
   1395 	memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
   1396 
   1397 	ifp = &sc_if->sk_ethercom.ec_if;
   1398 	/* Try to allocate memory for jumbo buffers. */
   1399 	if (sk_alloc_jumbo_mem(sc_if)) {
   1400 		aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
   1401 		goto fail;
   1402 	}
   1403 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
   1404 		| ETHERCAP_JUMBO_MTU;
   1405 
   1406 	ifp->if_softc = sc_if;
   1407 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1408 	ifp->if_ioctl = sk_ioctl;
   1409 	ifp->if_start = sk_start;
   1410 	ifp->if_stop = sk_stop;
   1411 	ifp->if_init = sk_init;
   1412 	ifp->if_watchdog = sk_watchdog;
   1413 	ifp->if_capabilities = 0;
   1414 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
   1415 	IFQ_SET_READY(&ifp->if_snd);
   1416 	strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
   1417 
   1418 	/*
   1419 	 * Do miibus setup.
   1420 	 */
   1421 	switch (sc->sk_type) {
   1422 	case SK_GENESIS:
   1423 		sk_init_xmac(sc_if);
   1424 		break;
   1425 	case SK_YUKON:
   1426 	case SK_YUKON_LITE:
   1427 	case SK_YUKON_LP:
   1428 		sk_init_yukon(sc_if);
   1429 		break;
   1430 	default:
   1431 		aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
   1432 			sc->sk_type);
   1433 		goto fail;
   1434 	}
   1435 
   1436 	DPRINTFN(2, ("sk_attach: 1\n"));
   1437 
   1438 	mii->mii_ifp = ifp;
   1439 	switch (sc->sk_type) {
   1440 	case SK_GENESIS:
   1441 		mii->mii_readreg = sk_xmac_miibus_readreg;
   1442 		mii->mii_writereg = sk_xmac_miibus_writereg;
   1443 		mii->mii_statchg = sk_xmac_miibus_statchg;
   1444 		break;
   1445 	case SK_YUKON:
   1446 	case SK_YUKON_LITE:
   1447 	case SK_YUKON_LP:
   1448 		mii->mii_readreg = sk_marv_miibus_readreg;
   1449 		mii->mii_writereg = sk_marv_miibus_writereg;
   1450 		mii->mii_statchg = sk_marv_miibus_statchg;
   1451 		mii_flags = MIIF_DOPAUSE;
   1452 		break;
   1453 	}
   1454 
   1455 	sc_if->sk_ethercom.ec_mii = mii;
   1456 	ifmedia_init(&mii->mii_media, 0, sk_ifmedia_upd, ether_mediastatus);
   1457 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
   1458 	    MII_OFFSET_ANY, mii_flags);
   1459 	if (LIST_EMPTY(&mii->mii_phys)) {
   1460 		aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
   1461 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
   1462 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
   1463 	} else
   1464 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
   1465 
   1466 	callout_init(&sc_if->sk_tick_ch, 0);
   1467 	callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   1468 
   1469 	DPRINTFN(2, ("sk_attach: 1\n"));
   1470 
   1471 	/*
   1472 	 * Call MI attach routines.
   1473 	 */
   1474 	if_attach(ifp);
   1475 	if_deferred_start_init(ifp, NULL);
   1476 
   1477 	ether_ifattach(ifp, sc_if->sk_enaddr);
   1478 
   1479 	if (sc->rnd_attached++ == 0) {
   1480 		rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
   1481 		    RND_TYPE_NET, RND_FLAG_DEFAULT);
   1482 	}
   1483 
   1484 	if (pmf_device_register(self, NULL, sk_resume))
   1485 		pmf_class_network_register(self, ifp);
   1486 	else
   1487 		aprint_error_dev(self, "couldn't establish power handler\n");
   1488 
   1489 	DPRINTFN(2, ("sk_attach: end\n"));
   1490 
   1491 	return;
   1492 
   1493 fail:
   1494 	sc->sk_if[sa->skc_port] = NULL;
   1495 }
   1496 
   1497 int
   1498 skcprint(void *aux, const char *pnp)
   1499 {
   1500 	struct skc_attach_args *sa = aux;
   1501 
   1502 	if (pnp)
   1503 		aprint_normal("sk port %c at %s",
   1504 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
   1505 	else
   1506 		aprint_normal(" port %c",
   1507 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
   1508 	return UNCONF;
   1509 }
   1510 
   1511 /*
   1512  * Attach the interface. Allocate softc structures, do ifmedia
   1513  * setup and ethernet/BPF attach.
   1514  */
   1515 void
   1516 skc_attach(device_t parent, device_t self, void *aux)
   1517 {
   1518 	struct sk_softc *sc = device_private(self);
   1519 	struct pci_attach_args *pa = aux;
   1520 	struct skc_attach_args skca;
   1521 	pci_chipset_tag_t pc = pa->pa_pc;
   1522 #ifndef SK_USEIOSPACE
   1523 	pcireg_t memtype;
   1524 #endif
   1525 	pci_intr_handle_t ih;
   1526 	const char *intrstr = NULL;
   1527 	bus_addr_t iobase;
   1528 	bus_size_t iosize;
   1529 	int rc, sk_nodenum;
   1530 	uint32_t command;
   1531 	const char *revstr;
   1532 	const struct sysctlnode *node;
   1533 	char intrbuf[PCI_INTRSTR_LEN];
   1534 
   1535 	sc->sk_dev = self;
   1536 	aprint_naive("\n");
   1537 
   1538 	DPRINTFN(2, ("begin skc_attach\n"));
   1539 
   1540 	/*
   1541 	 * Handle power management nonsense.
   1542 	 */
   1543 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
   1544 
   1545 	if (command == 0x01) {
   1546 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
   1547 		if (command & SK_PSTATE_MASK) {
   1548 			uint32_t		xiobase, membase, irq;
   1549 
   1550 			/* Save important PCI config data. */
   1551 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
   1552 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
   1553 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
   1554 
   1555 			/* Reset the power state. */
   1556 			aprint_normal_dev(sc->sk_dev,
   1557 			    "chip is in D%d power mode -- setting to D0\n",
   1558 			    command & SK_PSTATE_MASK);
   1559 			command &= 0xFFFFFFFC;
   1560 			pci_conf_write(pc, pa->pa_tag,
   1561 			    SK_PCI_PWRMGMTCTRL, command);
   1562 
   1563 			/* Restore PCI config data. */
   1564 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
   1565 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
   1566 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
   1567 		}
   1568 	}
   1569 
   1570 	/*
   1571 	 * The firmware might have configured the interface to revert the
   1572 	 * byte order in all descriptors. Make that undone.
   1573 	 */
   1574 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_OURREG2);
   1575 	if (command & SK_REG2_REV_DESC)
   1576 		pci_conf_write(pc, pa->pa_tag, SK_PCI_OURREG2,
   1577 		    command & ~SK_REG2_REV_DESC);
   1578 
   1579 	/*
   1580 	 * Map control/status registers.
   1581 	 */
   1582 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1583 	command |= PCI_COMMAND_IO_ENABLE |
   1584 	    PCI_COMMAND_MEM_ENABLE |
   1585 	    PCI_COMMAND_MASTER_ENABLE;
   1586 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1587 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1588 
   1589 #ifdef SK_USEIOSPACE
   1590 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
   1591 		aprint_error(": failed to enable I/O ports!\n");
   1592 		return;
   1593 	}
   1594 	/*
   1595 	 * Map control/status registers.
   1596 	 */
   1597 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
   1598 			&sc->sk_btag, &sc->sk_bhandle,
   1599 			&iobase, &iosize)) {
   1600 		aprint_error(": can't find i/o space\n");
   1601 		return;
   1602 	}
   1603 #else
   1604 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1605 		aprint_error(": failed to enable memory mapping!\n");
   1606 		return;
   1607 	}
   1608 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
   1609 	switch (memtype) {
   1610 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1611 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1612 		if (pci_mapreg_map(pa, SK_PCI_LOMEM,
   1613 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
   1614 				   &iobase, &iosize) == 0)
   1615 			break;
   1616 		/* FALLTHROUGH */
   1617 	default:
   1618 		aprint_error_dev(sc->sk_dev, "can't find mem space\n");
   1619 		return;
   1620 	}
   1621 
   1622 	DPRINTFN(2, ("skc_attach: iobase=%#" PRIxPADDR ", iosize=%zx\n",
   1623 	    iobase, iosize));
   1624 #endif
   1625 	sc->sc_dmatag = pa->pa_dmat;
   1626 
   1627 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
   1628 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
   1629 
   1630 	/* bail out here if chip is not recognized */
   1631 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
   1632 		aprint_error_dev(sc->sk_dev, "unknown chip type\n");
   1633 		goto fail;
   1634 	}
   1635 	if (SK_IS_YUKON2(sc)) {
   1636 		aprint_error_dev(sc->sk_dev,
   1637 		    "Does not support Yukon2--try msk(4).\n");
   1638 		goto fail;
   1639 	}
   1640 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
   1641 
   1642 	/* Allocate interrupt */
   1643 	if (pci_intr_map(pa, &ih)) {
   1644 		aprint_error(": couldn't map interrupt\n");
   1645 		goto fail;
   1646 	}
   1647 
   1648 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
   1649 	sc->sk_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, sk_intr, sc,
   1650 	    device_xname(sc->sk_dev));
   1651 	if (sc->sk_intrhand == NULL) {
   1652 		aprint_error(": couldn't establish interrupt");
   1653 		if (intrstr != NULL)
   1654 			aprint_error(" at %s", intrstr);
   1655 		aprint_error("\n");
   1656 		goto fail;
   1657 	}
   1658 	aprint_normal(": %s\n", intrstr);
   1659 
   1660 	/* Reset the adapter. */
   1661 	sk_reset(sc);
   1662 
   1663 	/* Read and save vital product data from EEPROM. */
   1664 	sk_vpd_read(sc);
   1665 
   1666 	if (sc->sk_type == SK_GENESIS) {
   1667 		uint8_t val = sk_win_read_1(sc, SK_EPROM0);
   1668 		/* Read and save RAM size and RAMbuffer offset */
   1669 		switch (val) {
   1670 		case SK_RAMSIZE_512K_64:
   1671 			sc->sk_ramsize = 0x80000;
   1672 			sc->sk_rboff = SK_RBOFF_0;
   1673 			break;
   1674 		case SK_RAMSIZE_1024K_64:
   1675 			sc->sk_ramsize = 0x100000;
   1676 			sc->sk_rboff = SK_RBOFF_80000;
   1677 			break;
   1678 		case SK_RAMSIZE_1024K_128:
   1679 			sc->sk_ramsize = 0x100000;
   1680 			sc->sk_rboff = SK_RBOFF_0;
   1681 			break;
   1682 		case SK_RAMSIZE_2048K_128:
   1683 			sc->sk_ramsize = 0x200000;
   1684 			sc->sk_rboff = SK_RBOFF_0;
   1685 			break;
   1686 		default:
   1687 			aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
   1688 			       val);
   1689 			goto fail_1;
   1690 			break;
   1691 		}
   1692 
   1693 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
   1694 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
   1695 			     sc->sk_rboff));
   1696 	} else {
   1697 		uint8_t val = sk_win_read_1(sc, SK_EPROM0);
   1698 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
   1699 		sc->sk_rboff = SK_RBOFF_0;
   1700 
   1701 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
   1702 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
   1703 			     sc->sk_rboff));
   1704 	}
   1705 
   1706 	/* Read and save physical media type */
   1707 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
   1708 	case SK_PMD_1000BASESX:
   1709 		sc->sk_pmd = IFM_1000_SX;
   1710 		break;
   1711 	case SK_PMD_1000BASELX:
   1712 		sc->sk_pmd = IFM_1000_LX;
   1713 		break;
   1714 	case SK_PMD_1000BASECX:
   1715 		sc->sk_pmd = IFM_1000_CX;
   1716 		break;
   1717 	case SK_PMD_1000BASETX:
   1718 	case SK_PMD_1000BASETX_ALT:
   1719 		sc->sk_pmd = IFM_1000_T;
   1720 		break;
   1721 	default:
   1722 		aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
   1723 		    sk_win_read_1(sc, SK_PMDTYPE));
   1724 		goto fail_1;
   1725 	}
   1726 
   1727 	/* determine whether to name it with vpd or just make it up */
   1728 	/* Marvell Yukon VPD's can freqently be bogus */
   1729 
   1730 	switch (pa->pa_id) {
   1731 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1732 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
   1733 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
   1734 	case PCI_PRODUCT_3COM_3C940:
   1735 	case PCI_PRODUCT_DLINK_DGE530T:
   1736 	case PCI_PRODUCT_DLINK_DGE560T:
   1737 	case PCI_PRODUCT_DLINK_DGE560T_2:
   1738 	case PCI_PRODUCT_LINKSYS_EG1032:
   1739 	case PCI_PRODUCT_LINKSYS_EG1064:
   1740 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1741 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
   1742 	case PCI_ID_CODE(PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940):
   1743 	case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T):
   1744 	case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T):
   1745 	case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2):
   1746 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032):
   1747 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064):
   1748 		sc->sk_name = sc->sk_vpd_prodname;
   1749 		break;
   1750 	case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET):
   1751 	/* whoops yukon vpd prodname bears no resemblance to reality */
   1752 		switch (sc->sk_type) {
   1753 		case SK_GENESIS:
   1754 			sc->sk_name = sc->sk_vpd_prodname;
   1755 			break;
   1756 		case SK_YUKON:
   1757 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
   1758 			break;
   1759 		case SK_YUKON_LITE:
   1760 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
   1761 			break;
   1762 		case SK_YUKON_LP:
   1763 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
   1764 			break;
   1765 		default:
   1766 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
   1767 		}
   1768 
   1769 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
   1770 
   1771 		if ( sc->sk_type == SK_YUKON ) {
   1772 			uint32_t flashaddr;
   1773 			uint8_t testbyte;
   1774 
   1775 			flashaddr = sk_win_read_4(sc, SK_EP_ADDR);
   1776 
   1777 			/* test Flash-Address Register */
   1778 			sk_win_write_1(sc, SK_EP_ADDR+3, 0xff);
   1779 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
   1780 
   1781 			if (testbyte != 0) {
   1782 				/* this is yukon lite Rev. A0 */
   1783 				sc->sk_type = SK_YUKON_LITE;
   1784 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
   1785 				/* restore Flash-Address Register */
   1786 				sk_win_write_4(sc, SK_EP_ADDR, flashaddr);
   1787 			}
   1788 		}
   1789 		break;
   1790 	case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN):
   1791 		sc->sk_name = sc->sk_vpd_prodname;
   1792 		break;
   1793 	default:
   1794 		sc->sk_name = "Unknown Marvell";
   1795 	}
   1796 
   1797 
   1798 	if ( sc->sk_type == SK_YUKON_LITE ) {
   1799 		switch (sc->sk_rev) {
   1800 		case SK_YUKON_LITE_REV_A0:
   1801 			revstr = "A0";
   1802 			break;
   1803 		case SK_YUKON_LITE_REV_A1:
   1804 			revstr = "A1";
   1805 			break;
   1806 		case SK_YUKON_LITE_REV_A3:
   1807 			revstr = "A3";
   1808 			break;
   1809 		default:
   1810 			revstr = "";
   1811 		}
   1812 	} else {
   1813 		revstr = "";
   1814 	}
   1815 
   1816 	/* Announce the product name. */
   1817 	aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
   1818 			      sc->sk_name, revstr, sc->sk_rev);
   1819 
   1820 	skca.skc_port = SK_PORT_A;
   1821 	(void)config_found(sc->sk_dev, &skca, skcprint);
   1822 
   1823 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
   1824 		skca.skc_port = SK_PORT_B;
   1825 		(void)config_found(sc->sk_dev, &skca, skcprint);
   1826 	}
   1827 
   1828 	/* Turn on the 'driver is loaded' LED. */
   1829 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   1830 
   1831 	/* skc sysctl setup */
   1832 
   1833 	sc->sk_int_mod = SK_IM_DEFAULT;
   1834 	sc->sk_int_mod_pending = 0;
   1835 
   1836 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1837 	    0, CTLTYPE_NODE, device_xname(sc->sk_dev),
   1838 	    SYSCTL_DESCR("skc per-controller controls"),
   1839 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
   1840 	    CTL_EOL)) != 0) {
   1841 		aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
   1842 		goto fail_1;
   1843 	}
   1844 
   1845 	sk_nodenum = node->sysctl_num;
   1846 
   1847 	/* interrupt moderation time in usecs */
   1848 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1849 	    CTLFLAG_READWRITE,
   1850 	    CTLTYPE_INT, "int_mod",
   1851 	    SYSCTL_DESCR("sk interrupt moderation timer"),
   1852 	    sk_sysctl_handler, 0, (void *)sc,
   1853 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
   1854 	    CTL_EOL)) != 0) {
   1855 		aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
   1856 		goto fail_1;
   1857 	}
   1858 
   1859 	if (!pmf_device_register(self, skc_suspend, skc_resume))
   1860 		aprint_error_dev(self, "couldn't establish power handler\n");
   1861 
   1862 	return;
   1863 
   1864 fail_1:
   1865 	pci_intr_disestablish(pc, sc->sk_intrhand);
   1866 fail:
   1867 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
   1868 }
   1869 
   1870 int
   1871 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
   1872 {
   1873 	struct sk_softc		*sc = sc_if->sk_softc;
   1874 	struct sk_tx_desc	*f = NULL;
   1875 	uint32_t		frag, cur, cnt = 0, sk_ctl;
   1876 	int			i;
   1877 	struct sk_txmap_entry	*entry;
   1878 	bus_dmamap_t		txmap;
   1879 
   1880 	DPRINTFN(3, ("sk_encap\n"));
   1881 
   1882 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
   1883 	if (entry == NULL) {
   1884 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
   1885 		return ENOBUFS;
   1886 	}
   1887 	txmap = entry->dmamap;
   1888 
   1889 	cur = frag = *txidx;
   1890 
   1891 #ifdef SK_DEBUG
   1892 	if (skdebug >= 3)
   1893 		sk_dump_mbuf(m_head);
   1894 #endif
   1895 
   1896 	/*
   1897 	 * Start packing the mbufs in this chain into
   1898 	 * the fragment pointers. Stop when we run out
   1899 	 * of fragments or hit the end of the mbuf chain.
   1900 	 */
   1901 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
   1902 	    BUS_DMA_NOWAIT)) {
   1903 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
   1904 		return ENOBUFS;
   1905 	}
   1906 
   1907 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
   1908 
   1909 	/* Sync the DMA map. */
   1910 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
   1911 	    BUS_DMASYNC_PREWRITE);
   1912 
   1913 	for (i = 0; i < txmap->dm_nsegs; i++) {
   1914 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
   1915 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
   1916 			return ENOBUFS;
   1917 		}
   1918 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
   1919 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
   1920 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
   1921 		if (cnt == 0)
   1922 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
   1923 		else
   1924 			sk_ctl |= SK_TXCTL_OWN;
   1925 		f->sk_ctl = htole32(sk_ctl);
   1926 		cur = frag;
   1927 		SK_INC(frag, SK_TX_RING_CNT);
   1928 		cnt++;
   1929 	}
   1930 
   1931 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
   1932 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
   1933 
   1934 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
   1935 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
   1936 		htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
   1937 
   1938 	/* Sync descriptors before handing to chip */
   1939 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
   1940 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1941 
   1942 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
   1943 		htole32(SK_TXCTL_OWN);
   1944 
   1945 	/* Sync first descriptor to hand it off */
   1946 	SK_CDTXSYNC(sc_if, *txidx, 1,
   1947 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1948 
   1949 	sc_if->sk_cdata.sk_tx_cnt += cnt;
   1950 
   1951 #ifdef SK_DEBUG
   1952 	if (skdebug >= 3) {
   1953 		struct sk_tx_desc *desc;
   1954 		uint32_t idx;
   1955 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
   1956 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
   1957 			sk_dump_txdesc(desc, idx);
   1958 		}
   1959 	}
   1960 #endif
   1961 
   1962 	*txidx = frag;
   1963 
   1964 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
   1965 
   1966 	return 0;
   1967 }
   1968 
   1969 void
   1970 sk_start(struct ifnet *ifp)
   1971 {
   1972 	struct sk_if_softc	*sc_if = ifp->if_softc;
   1973 	struct sk_softc		*sc = sc_if->sk_softc;
   1974 	struct mbuf		*m_head = NULL;
   1975 	uint32_t		idx = sc_if->sk_cdata.sk_tx_prod;
   1976 	int			pkts = 0;
   1977 
   1978 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
   1979 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
   1980 
   1981 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
   1982 		IFQ_POLL(&ifp->if_snd, m_head);
   1983 		if (m_head == NULL)
   1984 			break;
   1985 
   1986 		/*
   1987 		 * Pack the data into the transmit ring. If we
   1988 		 * don't have room, set the OACTIVE flag and wait
   1989 		 * for the NIC to drain the ring.
   1990 		 */
   1991 		if (sk_encap(sc_if, m_head, &idx)) {
   1992 			ifp->if_flags |= IFF_OACTIVE;
   1993 			break;
   1994 		}
   1995 
   1996 		/* now we are committed to transmit the packet */
   1997 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1998 		pkts++;
   1999 
   2000 		/*
   2001 		 * If there's a BPF listener, bounce a copy of this frame
   2002 		 * to him.
   2003 		 */
   2004 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   2005 	}
   2006 	if (pkts == 0)
   2007 		return;
   2008 
   2009 	/* Transmit */
   2010 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
   2011 		sc_if->sk_cdata.sk_tx_prod = idx;
   2012 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   2013 
   2014 		/* Set a timeout in case the chip goes out to lunch. */
   2015 		ifp->if_timer = 5;
   2016 	}
   2017 }
   2018 
   2019 
   2020 void
   2021 sk_watchdog(struct ifnet *ifp)
   2022 {
   2023 	struct sk_if_softc *sc_if = ifp->if_softc;
   2024 
   2025 	/*
   2026 	 * Reclaim first as there is a possibility of losing Tx completion
   2027 	 * interrupts.
   2028 	 */
   2029 	sk_txeof(sc_if);
   2030 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
   2031 		aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
   2032 
   2033 		ifp->if_oerrors++;
   2034 
   2035 		sk_init(ifp);
   2036 	}
   2037 }
   2038 
   2039 void
   2040 sk_shutdown(void *v)
   2041 {
   2042 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
   2043 	struct sk_softc		*sc = sc_if->sk_softc;
   2044 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2045 
   2046 	DPRINTFN(2, ("sk_shutdown\n"));
   2047 	sk_stop(ifp, 1);
   2048 
   2049 	/* Turn off the 'driver is loaded' LED. */
   2050 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   2051 
   2052 	/*
   2053 	 * Reset the GEnesis controller. Doing this should also
   2054 	 * assert the resets on the attached XMAC(s).
   2055 	 */
   2056 	sk_reset(sc);
   2057 }
   2058 
   2059 void
   2060 sk_rxeof(struct sk_if_softc *sc_if)
   2061 {
   2062 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2063 	struct mbuf		*m;
   2064 	struct sk_chain		*cur_rx;
   2065 	struct sk_rx_desc	*cur_desc;
   2066 	int			i, cur, total_len = 0;
   2067 	uint32_t		rxstat, sk_ctl;
   2068 	bus_dmamap_t		dmamap;
   2069 
   2070 	i = sc_if->sk_cdata.sk_rx_prod;
   2071 
   2072 	DPRINTFN(3, ("sk_rxeof %d\n", i));
   2073 
   2074 	for (;;) {
   2075 		cur = i;
   2076 
   2077 		/* Sync the descriptor */
   2078 		SK_CDRXSYNC(sc_if, cur,
   2079 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   2080 
   2081 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
   2082 		if (sk_ctl & SK_RXCTL_OWN) {
   2083 			/* Invalidate the descriptor -- it's not ready yet */
   2084 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
   2085 			sc_if->sk_cdata.sk_rx_prod = i;
   2086 			break;
   2087 		}
   2088 
   2089 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
   2090 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
   2091 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
   2092 
   2093 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
   2094 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2095 
   2096 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
   2097 		m = cur_rx->sk_mbuf;
   2098 		cur_rx->sk_mbuf = NULL;
   2099 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
   2100 
   2101 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
   2102 
   2103 		SK_INC(i, SK_RX_RING_CNT);
   2104 
   2105 		if (rxstat & XM_RXSTAT_ERRFRAME) {
   2106 			ifp->if_ierrors++;
   2107 			sk_newbuf(sc_if, cur, m, dmamap);
   2108 			continue;
   2109 		}
   2110 
   2111 		/*
   2112 		 * Try to allocate a new jumbo buffer. If that
   2113 		 * fails, copy the packet to mbufs and put the
   2114 		 * jumbo buffer back in the ring so it can be
   2115 		 * re-used. If allocating mbufs fails, then we
   2116 		 * have to drop the packet.
   2117 		 */
   2118 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
   2119 			struct mbuf		*m0;
   2120 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
   2121 			    total_len + ETHER_ALIGN, 0, ifp);
   2122 			sk_newbuf(sc_if, cur, m, dmamap);
   2123 			if (m0 == NULL) {
   2124 				aprint_error_dev(sc_if->sk_dev, "no receive "
   2125 				    "buffers available -- packet dropped!\n");
   2126 				ifp->if_ierrors++;
   2127 				continue;
   2128 			}
   2129 			m_adj(m0, ETHER_ALIGN);
   2130 			m = m0;
   2131 		} else {
   2132 			m_set_rcvif(m, ifp);
   2133 			m->m_pkthdr.len = m->m_len = total_len;
   2134 		}
   2135 
   2136 		/* pass it on. */
   2137 		if_percpuq_enqueue(ifp->if_percpuq, m);
   2138 	}
   2139 }
   2140 
   2141 void
   2142 sk_txeof(struct sk_if_softc *sc_if)
   2143 {
   2144 	struct sk_softc		*sc = sc_if->sk_softc;
   2145 	struct sk_tx_desc	*cur_tx;
   2146 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2147 	uint32_t		idx, sk_ctl;
   2148 	struct sk_txmap_entry	*entry;
   2149 
   2150 	DPRINTFN(3, ("sk_txeof\n"));
   2151 
   2152 	/*
   2153 	 * Go through our tx ring and free mbufs for those
   2154 	 * frames that have been sent.
   2155 	 */
   2156 	idx = sc_if->sk_cdata.sk_tx_cons;
   2157 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
   2158 		SK_CDTXSYNC(sc_if, idx, 1,
   2159 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   2160 
   2161 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
   2162 		sk_ctl = le32toh(cur_tx->sk_ctl);
   2163 #ifdef SK_DEBUG
   2164 		if (skdebug >= 3)
   2165 			sk_dump_txdesc(cur_tx, idx);
   2166 #endif
   2167 		if (sk_ctl & SK_TXCTL_OWN) {
   2168 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
   2169 			break;
   2170 		}
   2171 		if (sk_ctl & SK_TXCTL_LASTFRAG)
   2172 			ifp->if_opackets++;
   2173 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
   2174 			entry = sc_if->sk_cdata.sk_tx_map[idx];
   2175 
   2176 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
   2177 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
   2178 
   2179 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
   2180 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2181 
   2182 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
   2183 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
   2184 					  link);
   2185 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
   2186 		}
   2187 		sc_if->sk_cdata.sk_tx_cnt--;
   2188 		SK_INC(idx, SK_TX_RING_CNT);
   2189 	}
   2190 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
   2191 		ifp->if_timer = 0;
   2192 	else /* nudge chip to keep tx ring moving */
   2193 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   2194 
   2195 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
   2196 		ifp->if_flags &= ~IFF_OACTIVE;
   2197 
   2198 	sc_if->sk_cdata.sk_tx_cons = idx;
   2199 }
   2200 
   2201 void
   2202 sk_tick(void *xsc_if)
   2203 {
   2204 	struct sk_if_softc *sc_if = xsc_if;
   2205 	struct mii_data *mii = &sc_if->sk_mii;
   2206 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2207 	int i;
   2208 
   2209 	DPRINTFN(3, ("sk_tick\n"));
   2210 
   2211 	if (!(ifp->if_flags & IFF_UP))
   2212 		return;
   2213 
   2214 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2215 		sk_intr_bcom(sc_if);
   2216 		return;
   2217 	}
   2218 
   2219 	/*
   2220 	 * According to SysKonnect, the correct way to verify that
   2221 	 * the link has come back up is to poll bit 0 of the GPIO
   2222 	 * register three times. This pin has the signal from the
   2223 	 * link sync pin connected to it; if we read the same link
   2224 	 * state 3 times in a row, we know the link is up.
   2225 	 */
   2226 	for (i = 0; i < 3; i++) {
   2227 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
   2228 			break;
   2229 	}
   2230 
   2231 	if (i != 3) {
   2232 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2233 		return;
   2234 	}
   2235 
   2236 	/* Turn the GP0 interrupt back on. */
   2237 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2238 	SK_XM_READ_2(sc_if, XM_ISR);
   2239 	mii_tick(mii);
   2240 	if (ifp->if_link_state != LINK_STATE_UP)
   2241 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2242 	else
   2243 		callout_stop(&sc_if->sk_tick_ch);
   2244 }
   2245 
   2246 void
   2247 sk_intr_bcom(struct sk_if_softc *sc_if)
   2248 {
   2249 	struct mii_data *mii = &sc_if->sk_mii;
   2250 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2251 	uint16_t status;
   2252 
   2253 
   2254 	DPRINTFN(3, ("sk_intr_bcom\n"));
   2255 
   2256 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
   2257 
   2258 	/*
   2259 	 * Read the PHY interrupt register to make sure
   2260 	 * we clear any pending interrupts.
   2261 	 */
   2262 	sk_xmac_miibus_readreg(sc_if->sk_dev,
   2263 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR, &status);
   2264 
   2265 	if (!(ifp->if_flags & IFF_RUNNING)) {
   2266 		sk_init_xmac(sc_if);
   2267 		return;
   2268 	}
   2269 
   2270 	if (status & (BRGPHY_ISR_LNK_CHG | BRGPHY_ISR_AN_PR)) {
   2271 		uint16_t lstat;
   2272 		sk_xmac_miibus_readreg(sc_if->sk_dev,
   2273 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS, &lstat);
   2274 
   2275 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
   2276 			(void)mii_mediachg(mii);
   2277 			/* Turn off the link LED. */
   2278 			SK_IF_WRITE_1(sc_if, 0,
   2279 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2280 			sc_if->sk_link = 0;
   2281 		} else if (status & BRGPHY_ISR_LNK_CHG) {
   2282 			sk_xmac_miibus_writereg(sc_if->sk_dev,
   2283 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
   2284 			mii_tick(mii);
   2285 			sc_if->sk_link = 1;
   2286 			/* Turn on the link LED. */
   2287 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2288 			    SK_LINKLED_ON | SK_LINKLED_LINKSYNC_OFF |
   2289 			    SK_LINKLED_BLINK_OFF);
   2290 			mii_pollstat(mii);
   2291 		} else {
   2292 			mii_tick(mii);
   2293 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2294 		}
   2295 	}
   2296 
   2297 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
   2298 }
   2299 
   2300 void
   2301 sk_intr_xmac(struct sk_if_softc	*sc_if)
   2302 {
   2303 	uint16_t status = SK_XM_READ_2(sc_if, XM_ISR);
   2304 
   2305 	DPRINTFN(3, ("sk_intr_xmac\n"));
   2306 
   2307 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
   2308 		if (status & XM_ISR_GP0_SET) {
   2309 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2310 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2311 		}
   2312 
   2313 		if (status & XM_ISR_AUTONEG_DONE) {
   2314 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2315 		}
   2316 	}
   2317 
   2318 	if (status & XM_IMR_TX_UNDERRUN)
   2319 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
   2320 
   2321 	if (status & XM_IMR_RX_OVERRUN)
   2322 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
   2323 }
   2324 
   2325 void
   2326 sk_intr_yukon(struct sk_if_softc *sc_if)
   2327 {
   2328 #ifdef SK_DEBUG
   2329 	int status;
   2330 
   2331 	status =
   2332 #endif
   2333 		SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2334 
   2335 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
   2336 }
   2337 
   2338 int
   2339 sk_intr(void *xsc)
   2340 {
   2341 	struct sk_softc		*sc = xsc;
   2342 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
   2343 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
   2344 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
   2345 	uint32_t		status;
   2346 	int			claimed = 0;
   2347 
   2348 	if (sc_if0 != NULL)
   2349 		ifp0 = &sc_if0->sk_ethercom.ec_if;
   2350 	if (sc_if1 != NULL)
   2351 		ifp1 = &sc_if1->sk_ethercom.ec_if;
   2352 
   2353 	for (;;) {
   2354 		status = CSR_READ_4(sc, SK_ISSR);
   2355 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
   2356 
   2357 		if (!(status & sc->sk_intrmask))
   2358 			break;
   2359 
   2360 		claimed = 1;
   2361 
   2362 		/* Handle receive interrupts first. */
   2363 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
   2364 			sk_rxeof(sc_if0);
   2365 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
   2366 			    SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
   2367 		}
   2368 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
   2369 			sk_rxeof(sc_if1);
   2370 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
   2371 			    SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
   2372 		}
   2373 
   2374 		/* Then transmit interrupts. */
   2375 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
   2376 			sk_txeof(sc_if0);
   2377 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
   2378 			    SK_TXBMU_CLR_IRQ_EOF);
   2379 		}
   2380 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
   2381 			sk_txeof(sc_if1);
   2382 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
   2383 			    SK_TXBMU_CLR_IRQ_EOF);
   2384 		}
   2385 
   2386 		/* Then MAC interrupts. */
   2387 		if (sc_if0 && (status & SK_ISR_MAC1) &&
   2388 		    (ifp0->if_flags & IFF_RUNNING)) {
   2389 			if (sc->sk_type == SK_GENESIS)
   2390 				sk_intr_xmac(sc_if0);
   2391 			else
   2392 				sk_intr_yukon(sc_if0);
   2393 		}
   2394 
   2395 		if (sc_if1 && (status & SK_ISR_MAC2) &&
   2396 		    (ifp1->if_flags & IFF_RUNNING)) {
   2397 			if (sc->sk_type == SK_GENESIS)
   2398 				sk_intr_xmac(sc_if1);
   2399 			else
   2400 				sk_intr_yukon(sc_if1);
   2401 
   2402 		}
   2403 
   2404 		if (status & SK_ISR_EXTERNAL_REG) {
   2405 			if (sc_if0 != NULL &&
   2406 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
   2407 				sk_intr_bcom(sc_if0);
   2408 
   2409 			if (sc_if1 != NULL &&
   2410 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
   2411 				sk_intr_bcom(sc_if1);
   2412 		}
   2413 	}
   2414 
   2415 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2416 
   2417 	if (ifp0 != NULL)
   2418 		if_schedule_deferred_start(ifp0);
   2419 	if (ifp1 != NULL)
   2420 		if_schedule_deferred_start(ifp1);
   2421 
   2422 	KASSERT(sc->rnd_attached > 0);
   2423 	rnd_add_uint32(&sc->rnd_source, status);
   2424 
   2425 	if (sc->sk_int_mod_pending)
   2426 		sk_update_int_mod(sc);
   2427 
   2428 	return claimed;
   2429 }
   2430 
   2431 void
   2432 sk_init_xmac(struct sk_if_softc	*sc_if)
   2433 {
   2434 	struct sk_softc		*sc = sc_if->sk_softc;
   2435 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2436 	static const struct sk_bcom_hack     bhack[] = {
   2437 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
   2438 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
   2439 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
   2440 	{ 0, 0 } };
   2441 
   2442 	DPRINTFN(1, ("sk_init_xmac\n"));
   2443 
   2444 	/* Unreset the XMAC. */
   2445 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
   2446 	DELAY(1000);
   2447 
   2448 	/* Reset the XMAC's internal state. */
   2449 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2450 
   2451 	/* Save the XMAC II revision */
   2452 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
   2453 
   2454 	/*
   2455 	 * Perform additional initialization for external PHYs,
   2456 	 * namely for the 1000baseTX cards that use the XMAC's
   2457 	 * GMII mode.
   2458 	 */
   2459 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2460 		int			i = 0;
   2461 		uint32_t		val;
   2462 		uint16_t		phyval;
   2463 
   2464 		/* Take PHY out of reset. */
   2465 		val = sk_win_read_4(sc, SK_GPIO);
   2466 		if (sc_if->sk_port == SK_PORT_A)
   2467 			val |= SK_GPIO_DIR0 | SK_GPIO_DAT0;
   2468 		else
   2469 			val |= SK_GPIO_DIR2 | SK_GPIO_DAT2;
   2470 		sk_win_write_4(sc, SK_GPIO, val);
   2471 
   2472 		/* Enable GMII mode on the XMAC. */
   2473 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
   2474 
   2475 		sk_xmac_miibus_writereg(sc_if->sk_dev,
   2476 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
   2477 		DELAY(10000);
   2478 		sk_xmac_miibus_writereg(sc_if->sk_dev,
   2479 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
   2480 
   2481 		/*
   2482 		 * Early versions of the BCM5400 apparently have
   2483 		 * a bug that requires them to have their reserved
   2484 		 * registers initialized to some magic values. I don't
   2485 		 * know what the numbers do, I'm just the messenger.
   2486 		 */
   2487 		sk_xmac_miibus_readreg(sc_if->sk_dev,
   2488 		    SK_PHYADDR_BCOM, 0x03, &phyval);
   2489 		if (phyval == 0x6041) {
   2490 			while (bhack[i].reg) {
   2491 				sk_xmac_miibus_writereg(sc_if->sk_dev,
   2492 				    SK_PHYADDR_BCOM, bhack[i].reg,
   2493 				    bhack[i].val);
   2494 				i++;
   2495 			}
   2496 		}
   2497 	}
   2498 
   2499 	/* Set station address */
   2500 	SK_XM_WRITE_2(sc_if, XM_PAR0,
   2501 		      *(uint16_t *)(&sc_if->sk_enaddr[0]));
   2502 	SK_XM_WRITE_2(sc_if, XM_PAR1,
   2503 		      *(uint16_t *)(&sc_if->sk_enaddr[2]));
   2504 	SK_XM_WRITE_2(sc_if, XM_PAR2,
   2505 		      *(uint16_t *)(&sc_if->sk_enaddr[4]));
   2506 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
   2507 
   2508 	if (ifp->if_flags & IFF_PROMISC)
   2509 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2510 	else
   2511 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2512 
   2513 	if (ifp->if_flags & IFF_BROADCAST)
   2514 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2515 	else
   2516 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2517 
   2518 	/* We don't need the FCS appended to the packet. */
   2519 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
   2520 
   2521 	/* We want short frames padded to 60 bytes. */
   2522 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
   2523 
   2524 	/*
   2525 	 * Enable the reception of all error frames. This is is
   2526 	 * a necessary evil due to the design of the XMAC. The
   2527 	 * XMAC's receive FIFO is only 8K in size, however jumbo
   2528 	 * frames can be up to 9000 bytes in length. When bad
   2529 	 * frame filtering is enabled, the XMAC's RX FIFO operates
   2530 	 * in 'store and forward' mode. For this to work, the
   2531 	 * entire frame has to fit into the FIFO, but that means
   2532 	 * that jumbo frames larger than 8192 bytes will be
   2533 	 * truncated. Disabling all bad frame filtering causes
   2534 	 * the RX FIFO to operate in streaming mode, in which
   2535 	 * case the XMAC will start transfering frames out of the
   2536 	 * RX FIFO as soon as the FIFO threshold is reached.
   2537 	 */
   2538 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES |
   2539 	    XM_MODE_RX_GIANTS | XM_MODE_RX_RUNTS | XM_MODE_RX_CRCERRS |
   2540 	    XM_MODE_RX_INRANGELEN);
   2541 
   2542 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2543 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2544 	else
   2545 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2546 
   2547 	/*
   2548 	 * Bump up the transmit threshold. This helps hold off transmit
   2549 	 * underruns when we're blasting traffic from both ports at once.
   2550 	 */
   2551 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
   2552 
   2553 	/* Set multicast filter */
   2554 	sk_setmulti(sc_if);
   2555 
   2556 	/* Clear and enable interrupts */
   2557 	SK_XM_READ_2(sc_if, XM_ISR);
   2558 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
   2559 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
   2560 	else
   2561 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2562 
   2563 	/* Configure MAC arbiter */
   2564 	switch (sc_if->sk_xmac_rev) {
   2565 	case XM_XMAC_REV_B2:
   2566 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
   2567 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
   2568 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
   2569 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
   2570 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
   2571 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
   2572 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
   2573 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
   2574 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2575 		break;
   2576 	case XM_XMAC_REV_C1:
   2577 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
   2578 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
   2579 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
   2580 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
   2581 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
   2582 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
   2583 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
   2584 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
   2585 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2586 		break;
   2587 	default:
   2588 		break;
   2589 	}
   2590 	sk_win_write_2(sc, SK_MACARB_CTL,
   2591 	    SK_MACARBCTL_UNRESET | SK_MACARBCTL_FASTOE_OFF);
   2592 
   2593 	sc_if->sk_link = 1;
   2594 }
   2595 
   2596 void sk_init_yukon(struct sk_if_softc *sc_if)
   2597 {
   2598 	uint32_t		/*mac, */phy;
   2599 	uint16_t		reg;
   2600 	struct sk_softc		*sc;
   2601 	int			i;
   2602 
   2603 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
   2604 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
   2605 
   2606 	sc = sc_if->sk_softc;
   2607 	if (sc->sk_type == SK_YUKON_LITE &&
   2608 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
   2609 		/* Take PHY out of reset. */
   2610 		sk_win_write_4(sc, SK_GPIO,
   2611 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
   2612 	}
   2613 
   2614 
   2615 	/* GMAC and GPHY Reset */
   2616 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
   2617 
   2618 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
   2619 
   2620 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2621 	DELAY(1000);
   2622 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
   2623 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2624 	DELAY(1000);
   2625 
   2626 
   2627 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
   2628 
   2629 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
   2630 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
   2631 
   2632 	switch (sc_if->sk_softc->sk_pmd) {
   2633 	case IFM_1000_SX:
   2634 	case IFM_1000_LX:
   2635 		phy |= SK_GPHY_FIBER;
   2636 		break;
   2637 
   2638 	case IFM_1000_CX:
   2639 	case IFM_1000_T:
   2640 		phy |= SK_GPHY_COPPER;
   2641 		break;
   2642 	}
   2643 
   2644 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
   2645 
   2646 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
   2647 	DELAY(1000);
   2648 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
   2649 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
   2650 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
   2651 
   2652 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
   2653 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
   2654 
   2655 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
   2656 
   2657 	/* unused read of the interrupt source register */
   2658 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
   2659 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2660 
   2661 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
   2662 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
   2663 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2664 
   2665 	/* MIB Counter Clear Mode set */
   2666 	reg |= YU_PAR_MIB_CLR;
   2667 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2668 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
   2669 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2670 
   2671 	/* MIB Counter Clear Mode clear */
   2672 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
   2673 	reg &= ~YU_PAR_MIB_CLR;
   2674 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2675 
   2676 	/* receive control reg */
   2677 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
   2678 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
   2679 		      YU_RCR_CRCR);
   2680 
   2681 	/* transmit parameter register */
   2682 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
   2683 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
   2684 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
   2685 
   2686 	/* serial mode register */
   2687 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
   2688 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
   2689 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
   2690 		      YU_SMR_IPG_DATA(0x1e));
   2691 
   2692 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
   2693 	/* Setup Yukon's address */
   2694 	for (i = 0; i < 3; i++) {
   2695 		/* Write Source Address 1 (unicast filter) */
   2696 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
   2697 			      sc_if->sk_enaddr[i * 2] |
   2698 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
   2699 	}
   2700 
   2701 	for (i = 0; i < 3; i++) {
   2702 		reg = sk_win_read_2(sc_if->sk_softc,
   2703 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
   2704 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
   2705 	}
   2706 
   2707 	/* Set multicast filter */
   2708 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
   2709 	sk_setmulti(sc_if);
   2710 
   2711 	/* enable interrupt mask for counter overflows */
   2712 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
   2713 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
   2714 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
   2715 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
   2716 
   2717 	/* Configure RX MAC FIFO */
   2718 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
   2719 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
   2720 
   2721 	/* Configure TX MAC FIFO */
   2722 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
   2723 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
   2724 
   2725 	DPRINTFN(6, ("sk_init_yukon: end\n"));
   2726 }
   2727 
   2728 /*
   2729  * Note that to properly initialize any part of the GEnesis chip,
   2730  * you first have to take it out of reset mode.
   2731  */
   2732 int
   2733 sk_init(struct ifnet *ifp)
   2734 {
   2735 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2736 	struct sk_softc		*sc = sc_if->sk_softc;
   2737 	struct mii_data		*mii = &sc_if->sk_mii;
   2738 	int			rc = 0, s;
   2739 	uint32_t		imr, imtimer_ticks;
   2740 
   2741 	DPRINTFN(1, ("sk_init\n"));
   2742 
   2743 	s = splnet();
   2744 
   2745 	if (ifp->if_flags & IFF_RUNNING) {
   2746 		splx(s);
   2747 		return 0;
   2748 	}
   2749 
   2750 	/* Cancel pending I/O and free all RX/TX buffers. */
   2751 	sk_stop(ifp, 0);
   2752 
   2753 	if (sc->sk_type == SK_GENESIS) {
   2754 		/* Configure LINK_SYNC LED */
   2755 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
   2756 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2757 			      SK_LINKLED_LINKSYNC_ON);
   2758 
   2759 		/* Configure RX LED */
   2760 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
   2761 			      SK_RXLEDCTL_COUNTER_START);
   2762 
   2763 		/* Configure TX LED */
   2764 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
   2765 			      SK_TXLEDCTL_COUNTER_START);
   2766 	}
   2767 
   2768 	/* Configure I2C registers */
   2769 
   2770 	/* Configure XMAC(s) */
   2771 	switch (sc->sk_type) {
   2772 	case SK_GENESIS:
   2773 		sk_init_xmac(sc_if);
   2774 		break;
   2775 	case SK_YUKON:
   2776 	case SK_YUKON_LITE:
   2777 	case SK_YUKON_LP:
   2778 		sk_init_yukon(sc_if);
   2779 		break;
   2780 	}
   2781 	if ((rc = mii_mediachg(mii)) == ENXIO)
   2782 		rc = 0;
   2783 	else if (rc != 0)
   2784 		goto out;
   2785 
   2786 	if (sc->sk_type == SK_GENESIS) {
   2787 		/* Configure MAC FIFOs */
   2788 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
   2789 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
   2790 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
   2791 
   2792 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
   2793 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
   2794 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
   2795 	}
   2796 
   2797 	/* Configure transmit arbiter(s) */
   2798 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
   2799 	    SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON);
   2800 
   2801 	/* Configure RAMbuffers */
   2802 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
   2803 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
   2804 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
   2805 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
   2806 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
   2807 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
   2808 
   2809 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
   2810 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
   2811 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
   2812 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
   2813 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
   2814 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
   2815 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
   2816 
   2817 	/* Configure BMUs */
   2818 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
   2819 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
   2820 	    SK_RX_RING_ADDR(sc_if, 0));
   2821 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
   2822 
   2823 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
   2824 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
   2825 	    SK_TX_RING_ADDR(sc_if, 0));
   2826 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
   2827 
   2828 	/* Init descriptors */
   2829 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
   2830 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
   2831 		    "memory for rx buffers\n");
   2832 		sk_stop(ifp, 0);
   2833 		splx(s);
   2834 		return ENOBUFS;
   2835 	}
   2836 
   2837 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
   2838 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
   2839 		    "memory for tx buffers\n");
   2840 		sk_stop(ifp, 0);
   2841 		splx(s);
   2842 		return ENOBUFS;
   2843 	}
   2844 
   2845 	/* Set interrupt moderation if changed via sysctl. */
   2846 	switch (sc->sk_type) {
   2847 	case SK_GENESIS:
   2848 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   2849 		break;
   2850 	case SK_YUKON_EC:
   2851 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   2852 		break;
   2853 	default:
   2854 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   2855 	}
   2856 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
   2857 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
   2858 		sk_win_write_4(sc, SK_IMTIMERINIT,
   2859 		    SK_IM_USECS(sc->sk_int_mod));
   2860 		aprint_verbose_dev(sc->sk_dev,
   2861 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
   2862 	}
   2863 
   2864 	/* Configure interrupt handling */
   2865 	CSR_READ_4(sc, SK_ISSR);
   2866 	if (sc_if->sk_port == SK_PORT_A)
   2867 		sc->sk_intrmask |= SK_INTRS1;
   2868 	else
   2869 		sc->sk_intrmask |= SK_INTRS2;
   2870 
   2871 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
   2872 
   2873 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2874 
   2875 	/* Start BMUs. */
   2876 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
   2877 
   2878 	if (sc->sk_type == SK_GENESIS) {
   2879 		/* Enable XMACs TX and RX state machines */
   2880 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
   2881 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
   2882 			       XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
   2883 	}
   2884 
   2885 	if (SK_YUKON_FAMILY(sc->sk_type)) {
   2886 		uint16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
   2887 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
   2888 #if 0
   2889 		/* XXX disable 100Mbps and full duplex mode? */
   2890 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
   2891 #endif
   2892 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
   2893 	}
   2894 
   2895 
   2896 	ifp->if_flags |= IFF_RUNNING;
   2897 	ifp->if_flags &= ~IFF_OACTIVE;
   2898 	callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2899 
   2900 out:
   2901 	splx(s);
   2902 	return rc;
   2903 }
   2904 
   2905 void
   2906 sk_stop(struct ifnet *ifp, int disable)
   2907 {
   2908 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2909 	struct sk_softc		*sc = sc_if->sk_softc;
   2910 	int			i;
   2911 
   2912 	DPRINTFN(1, ("sk_stop\n"));
   2913 
   2914 	callout_stop(&sc_if->sk_tick_ch);
   2915 
   2916 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2917 		uint32_t		val;
   2918 
   2919 		/* Put PHY back into reset. */
   2920 		val = sk_win_read_4(sc, SK_GPIO);
   2921 		if (sc_if->sk_port == SK_PORT_A) {
   2922 			val |= SK_GPIO_DIR0;
   2923 			val &= ~SK_GPIO_DAT0;
   2924 		} else {
   2925 			val |= SK_GPIO_DIR2;
   2926 			val &= ~SK_GPIO_DAT2;
   2927 		}
   2928 		sk_win_write_4(sc, SK_GPIO, val);
   2929 	}
   2930 
   2931 	/* Turn off various components of this interface. */
   2932 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2933 	switch (sc->sk_type) {
   2934 	case SK_GENESIS:
   2935 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
   2936 			      SK_TXMACCTL_XMAC_RESET);
   2937 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
   2938 		break;
   2939 	case SK_YUKON:
   2940 	case SK_YUKON_LITE:
   2941 	case SK_YUKON_LP:
   2942 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
   2943 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
   2944 		break;
   2945 	}
   2946 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
   2947 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET |SK_RBCTL_OFF);
   2948 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
   2949 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2950 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
   2951 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2952 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2953 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2954 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
   2955 
   2956 	/* Disable interrupts */
   2957 	if (sc_if->sk_port == SK_PORT_A)
   2958 		sc->sk_intrmask &= ~SK_INTRS1;
   2959 	else
   2960 		sc->sk_intrmask &= ~SK_INTRS2;
   2961 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2962 
   2963 	SK_XM_READ_2(sc_if, XM_ISR);
   2964 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2965 
   2966 	/* Free RX and TX mbufs still in the queues. */
   2967 	for (i = 0; i < SK_RX_RING_CNT; i++) {
   2968 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
   2969 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
   2970 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   2971 		}
   2972 	}
   2973 
   2974 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   2975 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
   2976 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
   2977 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   2978 		}
   2979 	}
   2980 
   2981 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2982 }
   2983 
   2984 /* Power Management Framework */
   2985 
   2986 static bool
   2987 skc_suspend(device_t dv, const pmf_qual_t *qual)
   2988 {
   2989 	struct sk_softc *sc = device_private(dv);
   2990 
   2991 	DPRINTFN(2, ("skc_suspend\n"));
   2992 
   2993 	/* Turn off the driver is loaded LED */
   2994 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   2995 
   2996 	return true;
   2997 }
   2998 
   2999 static bool
   3000 skc_resume(device_t dv, const pmf_qual_t *qual)
   3001 {
   3002 	struct sk_softc *sc = device_private(dv);
   3003 
   3004 	DPRINTFN(2, ("skc_resume\n"));
   3005 
   3006 	sk_reset(sc);
   3007 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   3008 
   3009 	return true;
   3010 }
   3011 
   3012 static bool
   3013 sk_resume(device_t dv, const pmf_qual_t *qual)
   3014 {
   3015 	struct sk_if_softc *sc_if = device_private(dv);
   3016 
   3017 	sk_init_yukon(sc_if);
   3018 	return true;
   3019 }
   3020 
   3021 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
   3022     skc_probe, skc_attach, NULL, NULL);
   3023 
   3024 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
   3025     sk_probe, sk_attach, NULL, NULL);
   3026 
   3027 #ifdef SK_DEBUG
   3028 void
   3029 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
   3030 {
   3031 #define DESC_PRINT(X)					\
   3032 	if (X)					\
   3033 		printf("txdesc[%d]." #X "=%#x\n",	\
   3034 		       idx, X);
   3035 
   3036 	DESC_PRINT(le32toh(desc->sk_ctl));
   3037 	DESC_PRINT(le32toh(desc->sk_next));
   3038 	DESC_PRINT(le32toh(desc->sk_data_lo));
   3039 	DESC_PRINT(le32toh(desc->sk_data_hi));
   3040 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
   3041 	DESC_PRINT(le16toh(desc->sk_rsvd0));
   3042 	DESC_PRINT(le16toh(desc->sk_csum_startval));
   3043 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
   3044 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
   3045 	DESC_PRINT(le16toh(desc->sk_rsvd1));
   3046 #undef PRINT
   3047 }
   3048 
   3049 void
   3050 sk_dump_bytes(const char *data, int len)
   3051 {
   3052 	int c, i, j;
   3053 
   3054 	for (i = 0; i < len; i += 16) {
   3055 		printf("%08x  ", i);
   3056 		c = len - i;
   3057 		if (c > 16) c = 16;
   3058 
   3059 		for (j = 0; j < c; j++) {
   3060 			printf("%02x ", data[i + j] & 0xff);
   3061 			if ((j & 0xf) == 7 && j > 0)
   3062 				printf(" ");
   3063 		}
   3064 
   3065 		for (; j < 16; j++)
   3066 			printf("   ");
   3067 		printf("  ");
   3068 
   3069 		for (j = 0; j < c; j++) {
   3070 			int ch = data[i + j] & 0xff;
   3071 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
   3072 		}
   3073 
   3074 		printf("\n");
   3075 
   3076 		if (c < 16)
   3077 			break;
   3078 	}
   3079 }
   3080 
   3081 void
   3082 sk_dump_mbuf(struct mbuf *m)
   3083 {
   3084 	int count = m->m_pkthdr.len;
   3085 
   3086 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
   3087 
   3088 	while (count > 0 && m) {
   3089 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
   3090 		       m, m->m_data, m->m_len);
   3091 		sk_dump_bytes(mtod(m, char *), m->m_len);
   3092 
   3093 		count -= m->m_len;
   3094 		m = m->m_next;
   3095 	}
   3096 }
   3097 #endif
   3098 
   3099 static int
   3100 sk_sysctl_handler(SYSCTLFN_ARGS)
   3101 {
   3102 	int error, t;
   3103 	struct sysctlnode node;
   3104 	struct sk_softc *sc;
   3105 
   3106 	node = *rnode;
   3107 	sc = node.sysctl_data;
   3108 	t = sc->sk_int_mod;
   3109 	node.sysctl_data = &t;
   3110 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3111 	if (error || newp == NULL)
   3112 		return error;
   3113 
   3114 	if (t < SK_IM_MIN || t > SK_IM_MAX)
   3115 		return EINVAL;
   3116 
   3117 	/* update the softc with sysctl-changed value, and mark
   3118 	   for hardware update */
   3119 	sc->sk_int_mod = t;
   3120 	sc->sk_int_mod_pending = 1;
   3121 	return 0;
   3122 }
   3123 
   3124 /*
   3125  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
   3126  * set up in skc_attach()
   3127  */
   3128 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
   3129 {
   3130 	int rc;
   3131 	const struct sysctlnode *node;
   3132 
   3133 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   3134 	    0, CTLTYPE_NODE, "sk",
   3135 	    SYSCTL_DESCR("sk interface controls"),
   3136 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   3137 		goto err;
   3138 	}
   3139 
   3140 	sk_root_num = node->sysctl_num;
   3141 	return;
   3142 
   3143 err:
   3144 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
   3145 }
   3146