if_ste.c revision 1.6.2.4 1 1.6.2.4 nathanw /* $NetBSD: if_ste.c,v 1.6.2.4 2002/06/20 03:45:28 nathanw Exp $ */
2 1.6.2.2 nathanw
3 1.6.2.2 nathanw /*-
4 1.6.2.2 nathanw * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 1.6.2.2 nathanw * All rights reserved.
6 1.6.2.2 nathanw *
7 1.6.2.2 nathanw * This code is derived from software contributed to The NetBSD Foundation
8 1.6.2.2 nathanw * by Jason R. Thorpe.
9 1.6.2.2 nathanw *
10 1.6.2.2 nathanw * Redistribution and use in source and binary forms, with or without
11 1.6.2.2 nathanw * modification, are permitted provided that the following conditions
12 1.6.2.2 nathanw * are met:
13 1.6.2.2 nathanw * 1. Redistributions of source code must retain the above copyright
14 1.6.2.2 nathanw * notice, this list of conditions and the following disclaimer.
15 1.6.2.2 nathanw * 2. Redistributions in binary form must reproduce the above copyright
16 1.6.2.2 nathanw * notice, this list of conditions and the following disclaimer in the
17 1.6.2.2 nathanw * documentation and/or other materials provided with the distribution.
18 1.6.2.2 nathanw * 3. All advertising materials mentioning features or use of this software
19 1.6.2.2 nathanw * must display the following acknowledgement:
20 1.6.2.2 nathanw * This product includes software developed by the NetBSD
21 1.6.2.2 nathanw * Foundation, Inc. and its contributors.
22 1.6.2.2 nathanw * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.6.2.2 nathanw * contributors may be used to endorse or promote products derived
24 1.6.2.2 nathanw * from this software without specific prior written permission.
25 1.6.2.2 nathanw *
26 1.6.2.2 nathanw * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.6.2.2 nathanw * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.6.2.2 nathanw * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.6.2.2 nathanw * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.6.2.2 nathanw * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.6.2.2 nathanw * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.6.2.2 nathanw * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.6.2.2 nathanw * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.6.2.2 nathanw * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.6.2.2 nathanw * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.6.2.2 nathanw * POSSIBILITY OF SUCH DAMAGE.
37 1.6.2.2 nathanw */
38 1.6.2.2 nathanw
39 1.6.2.2 nathanw /*
40 1.6.2.2 nathanw * Device driver for the Sundance Tech. ST-201 10/100
41 1.6.2.2 nathanw * Ethernet controller.
42 1.6.2.2 nathanw */
43 1.6.2.2 nathanw
44 1.6.2.3 nathanw #include <sys/cdefs.h>
45 1.6.2.4 nathanw __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.6.2.4 2002/06/20 03:45:28 nathanw Exp $");
46 1.6.2.3 nathanw
47 1.6.2.2 nathanw #include "bpfilter.h"
48 1.6.2.2 nathanw
49 1.6.2.2 nathanw #include <sys/param.h>
50 1.6.2.2 nathanw #include <sys/systm.h>
51 1.6.2.2 nathanw #include <sys/callout.h>
52 1.6.2.2 nathanw #include <sys/mbuf.h>
53 1.6.2.2 nathanw #include <sys/malloc.h>
54 1.6.2.2 nathanw #include <sys/kernel.h>
55 1.6.2.2 nathanw #include <sys/socket.h>
56 1.6.2.2 nathanw #include <sys/ioctl.h>
57 1.6.2.2 nathanw #include <sys/errno.h>
58 1.6.2.2 nathanw #include <sys/device.h>
59 1.6.2.2 nathanw #include <sys/queue.h>
60 1.6.2.2 nathanw
61 1.6.2.2 nathanw #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
62 1.6.2.2 nathanw
63 1.6.2.2 nathanw #include <net/if.h>
64 1.6.2.2 nathanw #include <net/if_dl.h>
65 1.6.2.2 nathanw #include <net/if_media.h>
66 1.6.2.2 nathanw #include <net/if_ether.h>
67 1.6.2.2 nathanw
68 1.6.2.2 nathanw #if NBPFILTER > 0
69 1.6.2.2 nathanw #include <net/bpf.h>
70 1.6.2.2 nathanw #endif
71 1.6.2.2 nathanw
72 1.6.2.2 nathanw #include <machine/bus.h>
73 1.6.2.2 nathanw #include <machine/intr.h>
74 1.6.2.2 nathanw
75 1.6.2.2 nathanw #include <dev/mii/mii.h>
76 1.6.2.2 nathanw #include <dev/mii/miivar.h>
77 1.6.2.2 nathanw #include <dev/mii/mii_bitbang.h>
78 1.6.2.2 nathanw
79 1.6.2.2 nathanw #include <dev/pci/pcireg.h>
80 1.6.2.2 nathanw #include <dev/pci/pcivar.h>
81 1.6.2.2 nathanw #include <dev/pci/pcidevs.h>
82 1.6.2.2 nathanw
83 1.6.2.2 nathanw #include <dev/pci/if_stereg.h>
84 1.6.2.2 nathanw
85 1.6.2.2 nathanw /*
86 1.6.2.2 nathanw * Transmit descriptor list size.
87 1.6.2.2 nathanw */
88 1.6.2.2 nathanw #define STE_NTXDESC 256
89 1.6.2.2 nathanw #define STE_NTXDESC_MASK (STE_NTXDESC - 1)
90 1.6.2.2 nathanw #define STE_NEXTTX(x) (((x) + 1) & STE_NTXDESC_MASK)
91 1.6.2.2 nathanw
92 1.6.2.2 nathanw /*
93 1.6.2.2 nathanw * Receive descriptor list size.
94 1.6.2.2 nathanw */
95 1.6.2.2 nathanw #define STE_NRXDESC 128
96 1.6.2.2 nathanw #define STE_NRXDESC_MASK (STE_NRXDESC - 1)
97 1.6.2.2 nathanw #define STE_NEXTRX(x) (((x) + 1) & STE_NRXDESC_MASK)
98 1.6.2.2 nathanw
99 1.6.2.2 nathanw /*
100 1.6.2.2 nathanw * Control structures are DMA'd to the ST-201 chip. We allocate them in
101 1.6.2.2 nathanw * a single clump that maps to a single DMA segment to make several things
102 1.6.2.2 nathanw * easier.
103 1.6.2.2 nathanw */
104 1.6.2.2 nathanw struct ste_control_data {
105 1.6.2.2 nathanw /*
106 1.6.2.2 nathanw * The transmit descriptors.
107 1.6.2.2 nathanw */
108 1.6.2.2 nathanw struct ste_tfd scd_txdescs[STE_NTXDESC];
109 1.6.2.2 nathanw
110 1.6.2.2 nathanw /*
111 1.6.2.2 nathanw * The receive descriptors.
112 1.6.2.2 nathanw */
113 1.6.2.2 nathanw struct ste_rfd scd_rxdescs[STE_NRXDESC];
114 1.6.2.2 nathanw };
115 1.6.2.2 nathanw
116 1.6.2.2 nathanw #define STE_CDOFF(x) offsetof(struct ste_control_data, x)
117 1.6.2.2 nathanw #define STE_CDTXOFF(x) STE_CDOFF(scd_txdescs[(x)])
118 1.6.2.2 nathanw #define STE_CDRXOFF(x) STE_CDOFF(scd_rxdescs[(x)])
119 1.6.2.2 nathanw
120 1.6.2.2 nathanw /*
121 1.6.2.2 nathanw * Software state for transmit and receive jobs.
122 1.6.2.2 nathanw */
123 1.6.2.2 nathanw struct ste_descsoft {
124 1.6.2.2 nathanw struct mbuf *ds_mbuf; /* head of our mbuf chain */
125 1.6.2.2 nathanw bus_dmamap_t ds_dmamap; /* our DMA map */
126 1.6.2.2 nathanw };
127 1.6.2.2 nathanw
128 1.6.2.2 nathanw /*
129 1.6.2.2 nathanw * Software state per device.
130 1.6.2.2 nathanw */
131 1.6.2.2 nathanw struct ste_softc {
132 1.6.2.2 nathanw struct device sc_dev; /* generic device information */
133 1.6.2.2 nathanw bus_space_tag_t sc_st; /* bus space tag */
134 1.6.2.2 nathanw bus_space_handle_t sc_sh; /* bus space handle */
135 1.6.2.2 nathanw bus_dma_tag_t sc_dmat; /* bus DMA tag */
136 1.6.2.2 nathanw struct ethercom sc_ethercom; /* ethernet common data */
137 1.6.2.2 nathanw void *sc_sdhook; /* shutdown hook */
138 1.6.2.2 nathanw
139 1.6.2.2 nathanw void *sc_ih; /* interrupt cookie */
140 1.6.2.2 nathanw
141 1.6.2.2 nathanw struct mii_data sc_mii; /* MII/media information */
142 1.6.2.2 nathanw
143 1.6.2.2 nathanw struct callout sc_tick_ch; /* tick callout */
144 1.6.2.2 nathanw
145 1.6.2.2 nathanw bus_dmamap_t sc_cddmamap; /* control data DMA map */
146 1.6.2.2 nathanw #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
147 1.6.2.2 nathanw
148 1.6.2.2 nathanw /*
149 1.6.2.2 nathanw * Software state for transmit and receive descriptors.
150 1.6.2.2 nathanw */
151 1.6.2.2 nathanw struct ste_descsoft sc_txsoft[STE_NTXDESC];
152 1.6.2.2 nathanw struct ste_descsoft sc_rxsoft[STE_NRXDESC];
153 1.6.2.2 nathanw
154 1.6.2.2 nathanw /*
155 1.6.2.2 nathanw * Control data structures.
156 1.6.2.2 nathanw */
157 1.6.2.2 nathanw struct ste_control_data *sc_control_data;
158 1.6.2.2 nathanw #define sc_txdescs sc_control_data->scd_txdescs
159 1.6.2.2 nathanw #define sc_rxdescs sc_control_data->scd_rxdescs
160 1.6.2.2 nathanw
161 1.6.2.2 nathanw int sc_txpending; /* number of Tx requests pending */
162 1.6.2.2 nathanw int sc_txdirty; /* first dirty Tx descriptor */
163 1.6.2.2 nathanw int sc_txlast; /* last used Tx descriptor */
164 1.6.2.2 nathanw
165 1.6.2.2 nathanw int sc_rxptr; /* next ready Rx descriptor/descsoft */
166 1.6.2.2 nathanw
167 1.6.2.2 nathanw int sc_txthresh; /* Tx threshold */
168 1.6.2.2 nathanw uint32_t sc_DMACtrl; /* prototype DMACtrl register */
169 1.6.2.2 nathanw uint16_t sc_IntEnable; /* prototype IntEnable register */
170 1.6.2.2 nathanw uint16_t sc_MacCtrl0; /* prototype MacCtrl0 register */
171 1.6.2.2 nathanw uint8_t sc_ReceiveMode; /* prototype ReceiveMode register */
172 1.6.2.2 nathanw };
173 1.6.2.2 nathanw
174 1.6.2.2 nathanw #define STE_CDTXADDR(sc, x) ((sc)->sc_cddma + STE_CDTXOFF((x)))
175 1.6.2.2 nathanw #define STE_CDRXADDR(sc, x) ((sc)->sc_cddma + STE_CDRXOFF((x)))
176 1.6.2.2 nathanw
177 1.6.2.2 nathanw #define STE_CDTXSYNC(sc, x, ops) \
178 1.6.2.2 nathanw bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
179 1.6.2.2 nathanw STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
180 1.6.2.2 nathanw
181 1.6.2.2 nathanw #define STE_CDRXSYNC(sc, x, ops) \
182 1.6.2.2 nathanw bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
183 1.6.2.2 nathanw STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
184 1.6.2.2 nathanw
185 1.6.2.2 nathanw #define STE_INIT_RXDESC(sc, x) \
186 1.6.2.2 nathanw do { \
187 1.6.2.2 nathanw struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
188 1.6.2.2 nathanw struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
189 1.6.2.2 nathanw struct mbuf *__m = __ds->ds_mbuf; \
190 1.6.2.2 nathanw \
191 1.6.2.2 nathanw /* \
192 1.6.2.2 nathanw * Note: We scoot the packet forward 2 bytes in the buffer \
193 1.6.2.2 nathanw * so that the payload after the Ethernet header is aligned \
194 1.6.2.2 nathanw * to a 4-byte boundary. \
195 1.6.2.2 nathanw */ \
196 1.6.2.2 nathanw __m->m_data = __m->m_ext.ext_buf + 2; \
197 1.6.2.2 nathanw __rfd->rfd_frag.frag_addr = \
198 1.6.2.2 nathanw htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2); \
199 1.6.2.2 nathanw __rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST); \
200 1.6.2.2 nathanw __rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x)))); \
201 1.6.2.2 nathanw __rfd->rfd_status = 0; \
202 1.6.2.2 nathanw STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
203 1.6.2.2 nathanw } while (/*CONSTCOND*/0)
204 1.6.2.2 nathanw
205 1.6.2.2 nathanw #define STE_TIMEOUT 1000
206 1.6.2.2 nathanw
207 1.6.2.2 nathanw void ste_start(struct ifnet *);
208 1.6.2.2 nathanw void ste_watchdog(struct ifnet *);
209 1.6.2.2 nathanw int ste_ioctl(struct ifnet *, u_long, caddr_t);
210 1.6.2.2 nathanw int ste_init(struct ifnet *);
211 1.6.2.2 nathanw void ste_stop(struct ifnet *, int);
212 1.6.2.2 nathanw
213 1.6.2.2 nathanw void ste_shutdown(void *);
214 1.6.2.2 nathanw
215 1.6.2.4 nathanw void ste_reset(struct ste_softc *, u_int32_t);
216 1.6.2.4 nathanw void ste_setthresh(struct ste_softc *);
217 1.6.2.4 nathanw void ste_txrestart(struct ste_softc *, u_int8_t);
218 1.6.2.2 nathanw void ste_rxdrain(struct ste_softc *);
219 1.6.2.2 nathanw int ste_add_rxbuf(struct ste_softc *, int);
220 1.6.2.2 nathanw void ste_read_eeprom(struct ste_softc *, int, uint16_t *);
221 1.6.2.2 nathanw void ste_tick(void *);
222 1.6.2.2 nathanw
223 1.6.2.2 nathanw void ste_stats_update(struct ste_softc *);
224 1.6.2.2 nathanw
225 1.6.2.2 nathanw void ste_set_filter(struct ste_softc *);
226 1.6.2.2 nathanw
227 1.6.2.2 nathanw int ste_intr(void *);
228 1.6.2.2 nathanw void ste_txintr(struct ste_softc *);
229 1.6.2.2 nathanw void ste_rxintr(struct ste_softc *);
230 1.6.2.2 nathanw
231 1.6.2.2 nathanw int ste_mii_readreg(struct device *, int, int);
232 1.6.2.2 nathanw void ste_mii_writereg(struct device *, int, int, int);
233 1.6.2.2 nathanw void ste_mii_statchg(struct device *);
234 1.6.2.2 nathanw
235 1.6.2.2 nathanw int ste_mediachange(struct ifnet *);
236 1.6.2.2 nathanw void ste_mediastatus(struct ifnet *, struct ifmediareq *);
237 1.6.2.2 nathanw
238 1.6.2.2 nathanw int ste_match(struct device *, struct cfdata *, void *);
239 1.6.2.2 nathanw void ste_attach(struct device *, struct device *, void *);
240 1.6.2.2 nathanw
241 1.6.2.2 nathanw int ste_copy_small = 0;
242 1.6.2.2 nathanw
243 1.6.2.2 nathanw struct cfattach ste_ca = {
244 1.6.2.2 nathanw sizeof(struct ste_softc), ste_match, ste_attach,
245 1.6.2.2 nathanw };
246 1.6.2.2 nathanw
247 1.6.2.2 nathanw uint32_t ste_mii_bitbang_read(struct device *);
248 1.6.2.2 nathanw void ste_mii_bitbang_write(struct device *, uint32_t);
249 1.6.2.2 nathanw
250 1.6.2.2 nathanw const struct mii_bitbang_ops ste_mii_bitbang_ops = {
251 1.6.2.2 nathanw ste_mii_bitbang_read,
252 1.6.2.2 nathanw ste_mii_bitbang_write,
253 1.6.2.2 nathanw {
254 1.6.2.2 nathanw PC_MgmtData, /* MII_BIT_MDO */
255 1.6.2.2 nathanw PC_MgmtData, /* MII_BIT_MDI */
256 1.6.2.2 nathanw PC_MgmtClk, /* MII_BIT_MDC */
257 1.6.2.2 nathanw PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
258 1.6.2.2 nathanw 0, /* MII_BIT_DIR_PHY_HOST */
259 1.6.2.2 nathanw }
260 1.6.2.2 nathanw };
261 1.6.2.2 nathanw
262 1.6.2.2 nathanw /*
263 1.6.2.2 nathanw * Devices supported by this driver.
264 1.6.2.2 nathanw */
265 1.6.2.2 nathanw const struct ste_product {
266 1.6.2.2 nathanw pci_vendor_id_t ste_vendor;
267 1.6.2.2 nathanw pci_product_id_t ste_product;
268 1.6.2.2 nathanw const char *ste_name;
269 1.6.2.2 nathanw } ste_products[] = {
270 1.6.2.2 nathanw { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST201,
271 1.6.2.2 nathanw "Sundance ST-201 10/100 Ethernet" },
272 1.6.2.2 nathanw
273 1.6.2.2 nathanw { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL1002,
274 1.6.2.2 nathanw "D-Link DL-1002 10/100 Ethernet" },
275 1.6.2.2 nathanw
276 1.6.2.2 nathanw { 0, 0,
277 1.6.2.2 nathanw NULL },
278 1.6.2.2 nathanw };
279 1.6.2.2 nathanw
280 1.6.2.2 nathanw static const struct ste_product *
281 1.6.2.2 nathanw ste_lookup(const struct pci_attach_args *pa)
282 1.6.2.2 nathanw {
283 1.6.2.2 nathanw const struct ste_product *sp;
284 1.6.2.2 nathanw
285 1.6.2.2 nathanw for (sp = ste_products; sp->ste_name != NULL; sp++) {
286 1.6.2.2 nathanw if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
287 1.6.2.2 nathanw PCI_PRODUCT(pa->pa_id) == sp->ste_product)
288 1.6.2.2 nathanw return (sp);
289 1.6.2.2 nathanw }
290 1.6.2.2 nathanw return (NULL);
291 1.6.2.2 nathanw }
292 1.6.2.2 nathanw
293 1.6.2.2 nathanw int
294 1.6.2.2 nathanw ste_match(struct device *parent, struct cfdata *cf, void *aux)
295 1.6.2.2 nathanw {
296 1.6.2.2 nathanw struct pci_attach_args *pa = aux;
297 1.6.2.2 nathanw
298 1.6.2.2 nathanw if (ste_lookup(pa) != NULL)
299 1.6.2.2 nathanw return (1);
300 1.6.2.2 nathanw
301 1.6.2.2 nathanw return (0);
302 1.6.2.2 nathanw }
303 1.6.2.2 nathanw
304 1.6.2.2 nathanw void
305 1.6.2.2 nathanw ste_attach(struct device *parent, struct device *self, void *aux)
306 1.6.2.2 nathanw {
307 1.6.2.2 nathanw struct ste_softc *sc = (struct ste_softc *) self;
308 1.6.2.2 nathanw struct pci_attach_args *pa = aux;
309 1.6.2.2 nathanw struct ifnet *ifp = &sc->sc_ethercom.ec_if;
310 1.6.2.2 nathanw pci_chipset_tag_t pc = pa->pa_pc;
311 1.6.2.2 nathanw pci_intr_handle_t ih;
312 1.6.2.2 nathanw const char *intrstr = NULL;
313 1.6.2.2 nathanw bus_space_tag_t iot, memt;
314 1.6.2.2 nathanw bus_space_handle_t ioh, memh;
315 1.6.2.2 nathanw bus_dma_segment_t seg;
316 1.6.2.2 nathanw int ioh_valid, memh_valid;
317 1.6.2.2 nathanw int i, rseg, error;
318 1.6.2.2 nathanw const struct ste_product *sp;
319 1.6.2.2 nathanw pcireg_t pmode;
320 1.6.2.2 nathanw uint8_t enaddr[ETHER_ADDR_LEN];
321 1.6.2.2 nathanw uint16_t myea[ETHER_ADDR_LEN / 2];
322 1.6.2.2 nathanw int pmreg;
323 1.6.2.2 nathanw
324 1.6.2.2 nathanw callout_init(&sc->sc_tick_ch);
325 1.6.2.2 nathanw
326 1.6.2.2 nathanw sp = ste_lookup(pa);
327 1.6.2.2 nathanw if (sp == NULL) {
328 1.6.2.2 nathanw printf("\n");
329 1.6.2.2 nathanw panic("ste_attach: impossible");
330 1.6.2.2 nathanw }
331 1.6.2.2 nathanw
332 1.6.2.2 nathanw printf(": %s\n", sp->ste_name);
333 1.6.2.2 nathanw
334 1.6.2.2 nathanw /*
335 1.6.2.2 nathanw * Map the device.
336 1.6.2.2 nathanw */
337 1.6.2.2 nathanw ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
338 1.6.2.2 nathanw PCI_MAPREG_TYPE_IO, 0,
339 1.6.2.2 nathanw &iot, &ioh, NULL, NULL) == 0);
340 1.6.2.2 nathanw memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
341 1.6.2.2 nathanw PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
342 1.6.2.2 nathanw &memt, &memh, NULL, NULL) == 0);
343 1.6.2.2 nathanw
344 1.6.2.2 nathanw if (memh_valid) {
345 1.6.2.2 nathanw sc->sc_st = memt;
346 1.6.2.2 nathanw sc->sc_sh = memh;
347 1.6.2.2 nathanw } else if (ioh_valid) {
348 1.6.2.2 nathanw sc->sc_st = iot;
349 1.6.2.2 nathanw sc->sc_sh = ioh;
350 1.6.2.2 nathanw } else {
351 1.6.2.2 nathanw printf("%s: unable to map device registers\n",
352 1.6.2.2 nathanw sc->sc_dev.dv_xname);
353 1.6.2.2 nathanw return;
354 1.6.2.2 nathanw }
355 1.6.2.2 nathanw
356 1.6.2.2 nathanw sc->sc_dmat = pa->pa_dmat;
357 1.6.2.2 nathanw
358 1.6.2.2 nathanw /* Enable bus mastering. */
359 1.6.2.2 nathanw pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
360 1.6.2.2 nathanw pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
361 1.6.2.2 nathanw PCI_COMMAND_MASTER_ENABLE);
362 1.6.2.2 nathanw
363 1.6.2.2 nathanw /* Get it out of power save mode if needed. */
364 1.6.2.2 nathanw if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
365 1.6.2.2 nathanw pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
366 1.6.2.2 nathanw if (pmode == 3) {
367 1.6.2.2 nathanw /*
368 1.6.2.2 nathanw * The card has lost all configuration data in
369 1.6.2.2 nathanw * this state, so punt.
370 1.6.2.2 nathanw */
371 1.6.2.2 nathanw printf("%s: unable to wake up from power state D3\n",
372 1.6.2.2 nathanw sc->sc_dev.dv_xname);
373 1.6.2.2 nathanw return;
374 1.6.2.2 nathanw }
375 1.6.2.2 nathanw if (pmode != 0) {
376 1.6.2.2 nathanw printf("%s: waking up from power state D%d\n",
377 1.6.2.2 nathanw sc->sc_dev.dv_xname, pmode);
378 1.6.2.2 nathanw pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
379 1.6.2.2 nathanw }
380 1.6.2.2 nathanw }
381 1.6.2.2 nathanw
382 1.6.2.2 nathanw /*
383 1.6.2.2 nathanw * Map and establish our interrupt.
384 1.6.2.2 nathanw */
385 1.6.2.2 nathanw if (pci_intr_map(pa, &ih)) {
386 1.6.2.2 nathanw printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
387 1.6.2.2 nathanw return;
388 1.6.2.2 nathanw }
389 1.6.2.2 nathanw intrstr = pci_intr_string(pc, ih);
390 1.6.2.2 nathanw sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
391 1.6.2.2 nathanw if (sc->sc_ih == NULL) {
392 1.6.2.2 nathanw printf("%s: unable to establish interrupt",
393 1.6.2.2 nathanw sc->sc_dev.dv_xname);
394 1.6.2.2 nathanw if (intrstr != NULL)
395 1.6.2.2 nathanw printf(" at %s", intrstr);
396 1.6.2.2 nathanw printf("\n");
397 1.6.2.2 nathanw return;
398 1.6.2.2 nathanw }
399 1.6.2.2 nathanw printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
400 1.6.2.2 nathanw
401 1.6.2.2 nathanw /*
402 1.6.2.2 nathanw * Allocate the control data structures, and create and load the
403 1.6.2.2 nathanw * DMA map for it.
404 1.6.2.2 nathanw */
405 1.6.2.2 nathanw if ((error = bus_dmamem_alloc(sc->sc_dmat,
406 1.6.2.2 nathanw sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
407 1.6.2.2 nathanw 0)) != 0) {
408 1.6.2.2 nathanw printf("%s: unable to allocate control data, error = %d\n",
409 1.6.2.2 nathanw sc->sc_dev.dv_xname, error);
410 1.6.2.2 nathanw goto fail_0;
411 1.6.2.2 nathanw }
412 1.6.2.2 nathanw
413 1.6.2.2 nathanw if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
414 1.6.2.2 nathanw sizeof(struct ste_control_data), (caddr_t *)&sc->sc_control_data,
415 1.6.2.2 nathanw BUS_DMA_COHERENT)) != 0) {
416 1.6.2.2 nathanw printf("%s: unable to map control data, error = %d\n",
417 1.6.2.2 nathanw sc->sc_dev.dv_xname, error);
418 1.6.2.2 nathanw goto fail_1;
419 1.6.2.2 nathanw }
420 1.6.2.2 nathanw
421 1.6.2.2 nathanw if ((error = bus_dmamap_create(sc->sc_dmat,
422 1.6.2.2 nathanw sizeof(struct ste_control_data), 1,
423 1.6.2.2 nathanw sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
424 1.6.2.2 nathanw printf("%s: unable to create control data DMA map, "
425 1.6.2.2 nathanw "error = %d\n", sc->sc_dev.dv_xname, error);
426 1.6.2.2 nathanw goto fail_2;
427 1.6.2.2 nathanw }
428 1.6.2.2 nathanw
429 1.6.2.2 nathanw if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
430 1.6.2.2 nathanw sc->sc_control_data, sizeof(struct ste_control_data), NULL,
431 1.6.2.2 nathanw 0)) != 0) {
432 1.6.2.2 nathanw printf("%s: unable to load control data DMA map, error = %d\n",
433 1.6.2.2 nathanw sc->sc_dev.dv_xname, error);
434 1.6.2.2 nathanw goto fail_3;
435 1.6.2.2 nathanw }
436 1.6.2.2 nathanw
437 1.6.2.2 nathanw /*
438 1.6.2.2 nathanw * Create the transmit buffer DMA maps.
439 1.6.2.2 nathanw */
440 1.6.2.2 nathanw for (i = 0; i < STE_NTXDESC; i++) {
441 1.6.2.2 nathanw if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
442 1.6.2.2 nathanw STE_NTXFRAGS, MCLBYTES, 0, 0,
443 1.6.2.2 nathanw &sc->sc_txsoft[i].ds_dmamap)) != 0) {
444 1.6.2.2 nathanw printf("%s: unable to create tx DMA map %d, "
445 1.6.2.2 nathanw "error = %d\n", sc->sc_dev.dv_xname, i, error);
446 1.6.2.2 nathanw goto fail_4;
447 1.6.2.2 nathanw }
448 1.6.2.2 nathanw }
449 1.6.2.2 nathanw
450 1.6.2.2 nathanw /*
451 1.6.2.2 nathanw * Create the receive buffer DMA maps.
452 1.6.2.2 nathanw */
453 1.6.2.2 nathanw for (i = 0; i < STE_NRXDESC; i++) {
454 1.6.2.2 nathanw if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
455 1.6.2.2 nathanw MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
456 1.6.2.2 nathanw printf("%s: unable to create rx DMA map %d, "
457 1.6.2.2 nathanw "error = %d\n", sc->sc_dev.dv_xname, i, error);
458 1.6.2.2 nathanw goto fail_5;
459 1.6.2.2 nathanw }
460 1.6.2.2 nathanw sc->sc_rxsoft[i].ds_mbuf = NULL;
461 1.6.2.2 nathanw }
462 1.6.2.2 nathanw
463 1.6.2.2 nathanw /*
464 1.6.2.2 nathanw * Reset the chip to a known state.
465 1.6.2.2 nathanw */
466 1.6.2.4 nathanw ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
467 1.6.2.4 nathanw AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
468 1.6.2.2 nathanw
469 1.6.2.2 nathanw /*
470 1.6.2.2 nathanw * Read the Ethernet address from the EEPROM.
471 1.6.2.2 nathanw */
472 1.6.2.2 nathanw for (i = 0; i < 3; i++) {
473 1.6.2.2 nathanw ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
474 1.6.2.2 nathanw myea[i] = le16toh(myea[i]);
475 1.6.2.2 nathanw }
476 1.6.2.2 nathanw memcpy(enaddr, myea, sizeof(enaddr));
477 1.6.2.2 nathanw
478 1.6.2.2 nathanw printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
479 1.6.2.2 nathanw ether_sprintf(enaddr));
480 1.6.2.2 nathanw
481 1.6.2.2 nathanw /*
482 1.6.2.2 nathanw * Initialize our media structures and probe the MII.
483 1.6.2.2 nathanw */
484 1.6.2.2 nathanw sc->sc_mii.mii_ifp = ifp;
485 1.6.2.2 nathanw sc->sc_mii.mii_readreg = ste_mii_readreg;
486 1.6.2.2 nathanw sc->sc_mii.mii_writereg = ste_mii_writereg;
487 1.6.2.2 nathanw sc->sc_mii.mii_statchg = ste_mii_statchg;
488 1.6.2.2 nathanw ifmedia_init(&sc->sc_mii.mii_media, 0, ste_mediachange,
489 1.6.2.2 nathanw ste_mediastatus);
490 1.6.2.2 nathanw mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
491 1.6.2.2 nathanw MII_OFFSET_ANY, 0);
492 1.6.2.2 nathanw if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
493 1.6.2.2 nathanw ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
494 1.6.2.2 nathanw ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
495 1.6.2.2 nathanw } else
496 1.6.2.2 nathanw ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
497 1.6.2.2 nathanw
498 1.6.2.2 nathanw ifp = &sc->sc_ethercom.ec_if;
499 1.6.2.2 nathanw strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
500 1.6.2.2 nathanw ifp->if_softc = sc;
501 1.6.2.2 nathanw ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
502 1.6.2.2 nathanw ifp->if_ioctl = ste_ioctl;
503 1.6.2.2 nathanw ifp->if_start = ste_start;
504 1.6.2.2 nathanw ifp->if_watchdog = ste_watchdog;
505 1.6.2.2 nathanw ifp->if_init = ste_init;
506 1.6.2.2 nathanw ifp->if_stop = ste_stop;
507 1.6.2.2 nathanw IFQ_SET_READY(&ifp->if_snd);
508 1.6.2.2 nathanw
509 1.6.2.2 nathanw /*
510 1.6.2.2 nathanw * Default the transmit threshold to 128 bytes.
511 1.6.2.2 nathanw */
512 1.6.2.2 nathanw sc->sc_txthresh = 128;
513 1.6.2.2 nathanw
514 1.6.2.2 nathanw /*
515 1.6.2.2 nathanw * Disable MWI if the PCI layer tells us to.
516 1.6.2.2 nathanw */
517 1.6.2.2 nathanw sc->sc_DMACtrl = 0;
518 1.6.2.2 nathanw if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
519 1.6.2.2 nathanw sc->sc_DMACtrl |= DC_MWIDisable;
520 1.6.2.2 nathanw
521 1.6.2.2 nathanw /*
522 1.6.2.2 nathanw * We can support 802.1Q VLAN-sized frames.
523 1.6.2.2 nathanw */
524 1.6.2.2 nathanw sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
525 1.6.2.2 nathanw
526 1.6.2.2 nathanw /*
527 1.6.2.2 nathanw * Attach the interface.
528 1.6.2.2 nathanw */
529 1.6.2.2 nathanw if_attach(ifp);
530 1.6.2.2 nathanw ether_ifattach(ifp, enaddr);
531 1.6.2.2 nathanw
532 1.6.2.2 nathanw /*
533 1.6.2.2 nathanw * Make sure the interface is shutdown during reboot.
534 1.6.2.2 nathanw */
535 1.6.2.2 nathanw sc->sc_sdhook = shutdownhook_establish(ste_shutdown, sc);
536 1.6.2.2 nathanw if (sc->sc_sdhook == NULL)
537 1.6.2.2 nathanw printf("%s: WARNING: unable to establish shutdown hook\n",
538 1.6.2.2 nathanw sc->sc_dev.dv_xname);
539 1.6.2.2 nathanw return;
540 1.6.2.2 nathanw
541 1.6.2.2 nathanw /*
542 1.6.2.2 nathanw * Free any resources we've allocated during the failed attach
543 1.6.2.2 nathanw * attempt. Do this in reverse order and fall through.
544 1.6.2.2 nathanw */
545 1.6.2.2 nathanw fail_5:
546 1.6.2.2 nathanw for (i = 0; i < STE_NRXDESC; i++) {
547 1.6.2.2 nathanw if (sc->sc_rxsoft[i].ds_dmamap != NULL)
548 1.6.2.2 nathanw bus_dmamap_destroy(sc->sc_dmat,
549 1.6.2.2 nathanw sc->sc_rxsoft[i].ds_dmamap);
550 1.6.2.2 nathanw }
551 1.6.2.2 nathanw fail_4:
552 1.6.2.2 nathanw for (i = 0; i < STE_NTXDESC; i++) {
553 1.6.2.2 nathanw if (sc->sc_txsoft[i].ds_dmamap != NULL)
554 1.6.2.2 nathanw bus_dmamap_destroy(sc->sc_dmat,
555 1.6.2.2 nathanw sc->sc_txsoft[i].ds_dmamap);
556 1.6.2.2 nathanw }
557 1.6.2.2 nathanw bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
558 1.6.2.2 nathanw fail_3:
559 1.6.2.2 nathanw bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
560 1.6.2.2 nathanw fail_2:
561 1.6.2.2 nathanw bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
562 1.6.2.2 nathanw sizeof(struct ste_control_data));
563 1.6.2.2 nathanw fail_1:
564 1.6.2.2 nathanw bus_dmamem_free(sc->sc_dmat, &seg, rseg);
565 1.6.2.2 nathanw fail_0:
566 1.6.2.2 nathanw return;
567 1.6.2.2 nathanw }
568 1.6.2.2 nathanw
569 1.6.2.2 nathanw /*
570 1.6.2.2 nathanw * ste_shutdown:
571 1.6.2.2 nathanw *
572 1.6.2.2 nathanw * Make sure the interface is stopped at reboot time.
573 1.6.2.2 nathanw */
574 1.6.2.2 nathanw void
575 1.6.2.2 nathanw ste_shutdown(void *arg)
576 1.6.2.2 nathanw {
577 1.6.2.2 nathanw struct ste_softc *sc = arg;
578 1.6.2.2 nathanw
579 1.6.2.2 nathanw ste_stop(&sc->sc_ethercom.ec_if, 1);
580 1.6.2.2 nathanw }
581 1.6.2.2 nathanw
582 1.6.2.2 nathanw static void
583 1.6.2.2 nathanw ste_dmahalt_wait(struct ste_softc *sc)
584 1.6.2.2 nathanw {
585 1.6.2.2 nathanw int i;
586 1.6.2.2 nathanw
587 1.6.2.2 nathanw for (i = 0; i < STE_TIMEOUT; i++) {
588 1.6.2.2 nathanw delay(2);
589 1.6.2.2 nathanw if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
590 1.6.2.2 nathanw DC_DMAHaltBusy) == 0)
591 1.6.2.2 nathanw break;
592 1.6.2.2 nathanw }
593 1.6.2.2 nathanw
594 1.6.2.2 nathanw if (i == STE_TIMEOUT)
595 1.6.2.2 nathanw printf("%s: DMA halt timed out\n", sc->sc_dev.dv_xname);
596 1.6.2.2 nathanw }
597 1.6.2.2 nathanw
598 1.6.2.2 nathanw /*
599 1.6.2.2 nathanw * ste_start: [ifnet interface function]
600 1.6.2.2 nathanw *
601 1.6.2.2 nathanw * Start packet transmission on the interface.
602 1.6.2.2 nathanw */
603 1.6.2.2 nathanw void
604 1.6.2.2 nathanw ste_start(struct ifnet *ifp)
605 1.6.2.2 nathanw {
606 1.6.2.2 nathanw struct ste_softc *sc = ifp->if_softc;
607 1.6.2.2 nathanw struct mbuf *m0, *m;
608 1.6.2.2 nathanw struct ste_descsoft *ds;
609 1.6.2.2 nathanw struct ste_tfd *tfd;
610 1.6.2.2 nathanw bus_dmamap_t dmamap;
611 1.6.2.2 nathanw int error, olasttx, nexttx, opending, seg, totlen;
612 1.6.2.2 nathanw
613 1.6.2.2 nathanw if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
614 1.6.2.2 nathanw return;
615 1.6.2.2 nathanw
616 1.6.2.2 nathanw /*
617 1.6.2.2 nathanw * Remember the previous number of pending transmissions
618 1.6.2.2 nathanw * and the current last descriptor in the list.
619 1.6.2.2 nathanw */
620 1.6.2.2 nathanw opending = sc->sc_txpending;
621 1.6.2.2 nathanw olasttx = sc->sc_txlast;
622 1.6.2.2 nathanw
623 1.6.2.2 nathanw /*
624 1.6.2.2 nathanw * Loop through the send queue, setting up transmit descriptors
625 1.6.2.2 nathanw * until we drain the queue, or use up all available transmit
626 1.6.2.2 nathanw * descriptors.
627 1.6.2.2 nathanw */
628 1.6.2.2 nathanw while (sc->sc_txpending < STE_NTXDESC) {
629 1.6.2.2 nathanw /*
630 1.6.2.2 nathanw * Grab a packet off the queue.
631 1.6.2.2 nathanw */
632 1.6.2.2 nathanw IFQ_POLL(&ifp->if_snd, m0);
633 1.6.2.2 nathanw if (m0 == NULL)
634 1.6.2.2 nathanw break;
635 1.6.2.2 nathanw m = NULL;
636 1.6.2.2 nathanw
637 1.6.2.2 nathanw /*
638 1.6.2.2 nathanw * Get the last and next available transmit descriptor.
639 1.6.2.2 nathanw */
640 1.6.2.2 nathanw nexttx = STE_NEXTTX(sc->sc_txlast);
641 1.6.2.2 nathanw tfd = &sc->sc_txdescs[nexttx];
642 1.6.2.2 nathanw ds = &sc->sc_txsoft[nexttx];
643 1.6.2.2 nathanw
644 1.6.2.2 nathanw dmamap = ds->ds_dmamap;
645 1.6.2.2 nathanw
646 1.6.2.2 nathanw /*
647 1.6.2.2 nathanw * Load the DMA map. If this fails, the packet either
648 1.6.2.2 nathanw * didn't fit in the alloted number of segments, or we
649 1.6.2.2 nathanw * were short on resources. In this case, we'll copy
650 1.6.2.2 nathanw * and try again.
651 1.6.2.2 nathanw */
652 1.6.2.2 nathanw if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
653 1.6.2.2 nathanw BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
654 1.6.2.2 nathanw MGETHDR(m, M_DONTWAIT, MT_DATA);
655 1.6.2.2 nathanw if (m == NULL) {
656 1.6.2.2 nathanw printf("%s: unable to allocate Tx mbuf\n",
657 1.6.2.2 nathanw sc->sc_dev.dv_xname);
658 1.6.2.2 nathanw break;
659 1.6.2.2 nathanw }
660 1.6.2.2 nathanw if (m0->m_pkthdr.len > MHLEN) {
661 1.6.2.2 nathanw MCLGET(m, M_DONTWAIT);
662 1.6.2.2 nathanw if ((m->m_flags & M_EXT) == 0) {
663 1.6.2.2 nathanw printf("%s: unable to allocate Tx "
664 1.6.2.2 nathanw "cluster\n", sc->sc_dev.dv_xname);
665 1.6.2.2 nathanw m_freem(m);
666 1.6.2.2 nathanw break;
667 1.6.2.2 nathanw }
668 1.6.2.2 nathanw }
669 1.6.2.2 nathanw m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
670 1.6.2.2 nathanw m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
671 1.6.2.2 nathanw error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
672 1.6.2.2 nathanw m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
673 1.6.2.2 nathanw if (error) {
674 1.6.2.2 nathanw printf("%s: unable to load Tx buffer, "
675 1.6.2.2 nathanw "error = %d\n", sc->sc_dev.dv_xname, error);
676 1.6.2.2 nathanw break;
677 1.6.2.2 nathanw }
678 1.6.2.2 nathanw }
679 1.6.2.2 nathanw
680 1.6.2.2 nathanw IFQ_DEQUEUE(&ifp->if_snd, m0);
681 1.6.2.2 nathanw if (m != NULL) {
682 1.6.2.2 nathanw m_freem(m0);
683 1.6.2.2 nathanw m0 = m;
684 1.6.2.2 nathanw }
685 1.6.2.2 nathanw
686 1.6.2.2 nathanw /*
687 1.6.2.2 nathanw * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
688 1.6.2.2 nathanw */
689 1.6.2.2 nathanw
690 1.6.2.2 nathanw /* Sync the DMA map. */
691 1.6.2.2 nathanw bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
692 1.6.2.2 nathanw BUS_DMASYNC_PREWRITE);
693 1.6.2.2 nathanw
694 1.6.2.2 nathanw /* Initialize the fragment list. */
695 1.6.2.2 nathanw for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
696 1.6.2.2 nathanw tfd->tfd_frags[seg].frag_addr =
697 1.6.2.2 nathanw htole32(dmamap->dm_segs[seg].ds_addr);
698 1.6.2.2 nathanw tfd->tfd_frags[seg].frag_len =
699 1.6.2.2 nathanw htole32(dmamap->dm_segs[seg].ds_len);
700 1.6.2.2 nathanw totlen += dmamap->dm_segs[seg].ds_len;
701 1.6.2.2 nathanw }
702 1.6.2.2 nathanw tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
703 1.6.2.2 nathanw
704 1.6.2.2 nathanw /* Initialize the descriptor. */
705 1.6.2.2 nathanw tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
706 1.6.2.2 nathanw tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
707 1.6.2.2 nathanw
708 1.6.2.2 nathanw /* Sync the descriptor. */
709 1.6.2.2 nathanw STE_CDTXSYNC(sc, nexttx,
710 1.6.2.2 nathanw BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
711 1.6.2.2 nathanw
712 1.6.2.2 nathanw /*
713 1.6.2.2 nathanw * Store a pointer to the packet so we can free it later,
714 1.6.2.2 nathanw * and remember what txdirty will be once the packet is
715 1.6.2.2 nathanw * done.
716 1.6.2.2 nathanw */
717 1.6.2.2 nathanw ds->ds_mbuf = m0;
718 1.6.2.2 nathanw
719 1.6.2.2 nathanw /* Advance the tx pointer. */
720 1.6.2.2 nathanw sc->sc_txpending++;
721 1.6.2.2 nathanw sc->sc_txlast = nexttx;
722 1.6.2.2 nathanw
723 1.6.2.2 nathanw #if NBPFILTER > 0
724 1.6.2.2 nathanw /*
725 1.6.2.2 nathanw * Pass the packet to any BPF listeners.
726 1.6.2.2 nathanw */
727 1.6.2.2 nathanw if (ifp->if_bpf)
728 1.6.2.2 nathanw bpf_mtap(ifp->if_bpf, m0);
729 1.6.2.2 nathanw #endif /* NBPFILTER > 0 */
730 1.6.2.2 nathanw }
731 1.6.2.2 nathanw
732 1.6.2.2 nathanw if (sc->sc_txpending == STE_NTXDESC) {
733 1.6.2.2 nathanw /* No more slots left; notify upper layer. */
734 1.6.2.2 nathanw ifp->if_flags |= IFF_OACTIVE;
735 1.6.2.2 nathanw }
736 1.6.2.2 nathanw
737 1.6.2.2 nathanw if (sc->sc_txpending != opending) {
738 1.6.2.2 nathanw /*
739 1.6.2.2 nathanw * We enqueued packets. If the transmitter was idle,
740 1.6.2.2 nathanw * reset the txdirty pointer.
741 1.6.2.2 nathanw */
742 1.6.2.2 nathanw if (opending == 0)
743 1.6.2.2 nathanw sc->sc_txdirty = STE_NEXTTX(olasttx);
744 1.6.2.2 nathanw
745 1.6.2.2 nathanw /*
746 1.6.2.2 nathanw * Cause a descriptor interrupt to happen on the
747 1.6.2.2 nathanw * last packet we enqueued, and also cause the
748 1.6.2.2 nathanw * DMA engine to wait after is has finished processing
749 1.6.2.2 nathanw * it.
750 1.6.2.2 nathanw */
751 1.6.2.2 nathanw sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
752 1.6.2.2 nathanw sc->sc_txdescs[sc->sc_txlast].tfd_control |=
753 1.6.2.2 nathanw htole32(TFD_TxDMAIndicate);
754 1.6.2.2 nathanw STE_CDTXSYNC(sc, sc->sc_txlast,
755 1.6.2.2 nathanw BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
756 1.6.2.2 nathanw
757 1.6.2.2 nathanw /*
758 1.6.2.2 nathanw * Link up the new chain of descriptors to the
759 1.6.2.2 nathanw * last.
760 1.6.2.2 nathanw */
761 1.6.2.2 nathanw sc->sc_txdescs[olasttx].tfd_next =
762 1.6.2.2 nathanw STE_CDTXADDR(sc, STE_NEXTTX(olasttx));
763 1.6.2.2 nathanw STE_CDTXSYNC(sc, olasttx,
764 1.6.2.2 nathanw BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
765 1.6.2.2 nathanw
766 1.6.2.2 nathanw /*
767 1.6.2.2 nathanw * Kick the transmit DMA logic. Note that since we're
768 1.6.2.2 nathanw * using auto-polling, reading the Tx desc pointer will
769 1.6.2.2 nathanw * give it the nudge it needs to get going.
770 1.6.2.2 nathanw */
771 1.6.2.2 nathanw if (bus_space_read_4(sc->sc_st, sc->sc_sh,
772 1.6.2.2 nathanw STE_TxDMAListPtr) == 0) {
773 1.6.2.2 nathanw bus_space_write_4(sc->sc_st, sc->sc_sh,
774 1.6.2.2 nathanw STE_DMACtrl, DC_TxDMAHalt);
775 1.6.2.2 nathanw ste_dmahalt_wait(sc);
776 1.6.2.2 nathanw bus_space_write_4(sc->sc_st, sc->sc_sh,
777 1.6.2.2 nathanw STE_TxDMAListPtr,
778 1.6.2.2 nathanw STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
779 1.6.2.2 nathanw bus_space_write_4(sc->sc_st, sc->sc_sh,
780 1.6.2.2 nathanw STE_DMACtrl, DC_TxDMAResume);
781 1.6.2.2 nathanw }
782 1.6.2.2 nathanw
783 1.6.2.2 nathanw /* Set a watchdog timer in case the chip flakes out. */
784 1.6.2.2 nathanw ifp->if_timer = 5;
785 1.6.2.2 nathanw }
786 1.6.2.2 nathanw }
787 1.6.2.2 nathanw
788 1.6.2.2 nathanw /*
789 1.6.2.2 nathanw * ste_watchdog: [ifnet interface function]
790 1.6.2.2 nathanw *
791 1.6.2.2 nathanw * Watchdog timer handler.
792 1.6.2.2 nathanw */
793 1.6.2.2 nathanw void
794 1.6.2.2 nathanw ste_watchdog(struct ifnet *ifp)
795 1.6.2.2 nathanw {
796 1.6.2.2 nathanw struct ste_softc *sc = ifp->if_softc;
797 1.6.2.2 nathanw
798 1.6.2.2 nathanw printf("%s: device timeout\n", sc->sc_dev.dv_xname);
799 1.6.2.2 nathanw ifp->if_oerrors++;
800 1.6.2.2 nathanw
801 1.6.2.2 nathanw (void) ste_init(ifp);
802 1.6.2.2 nathanw
803 1.6.2.2 nathanw /* Try to get more packets going. */
804 1.6.2.2 nathanw ste_start(ifp);
805 1.6.2.2 nathanw }
806 1.6.2.2 nathanw
807 1.6.2.2 nathanw /*
808 1.6.2.2 nathanw * ste_ioctl: [ifnet interface function]
809 1.6.2.2 nathanw *
810 1.6.2.2 nathanw * Handle control requests from the operator.
811 1.6.2.2 nathanw */
812 1.6.2.2 nathanw int
813 1.6.2.2 nathanw ste_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
814 1.6.2.2 nathanw {
815 1.6.2.2 nathanw struct ste_softc *sc = ifp->if_softc;
816 1.6.2.2 nathanw struct ifreq *ifr = (struct ifreq *)data;
817 1.6.2.2 nathanw int s, error;
818 1.6.2.2 nathanw
819 1.6.2.2 nathanw s = splnet();
820 1.6.2.2 nathanw
821 1.6.2.2 nathanw switch (cmd) {
822 1.6.2.2 nathanw case SIOCSIFMEDIA:
823 1.6.2.2 nathanw case SIOCGIFMEDIA:
824 1.6.2.2 nathanw error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
825 1.6.2.2 nathanw break;
826 1.6.2.2 nathanw
827 1.6.2.2 nathanw default:
828 1.6.2.2 nathanw error = ether_ioctl(ifp, cmd, data);
829 1.6.2.2 nathanw if (error == ENETRESET) {
830 1.6.2.2 nathanw /*
831 1.6.2.2 nathanw * Multicast list has changed; set the hardware filter
832 1.6.2.2 nathanw * accordingly.
833 1.6.2.2 nathanw */
834 1.6.2.2 nathanw ste_set_filter(sc);
835 1.6.2.2 nathanw error = 0;
836 1.6.2.2 nathanw }
837 1.6.2.2 nathanw break;
838 1.6.2.2 nathanw }
839 1.6.2.2 nathanw
840 1.6.2.2 nathanw /* Try to get more packets going. */
841 1.6.2.2 nathanw ste_start(ifp);
842 1.6.2.2 nathanw
843 1.6.2.2 nathanw splx(s);
844 1.6.2.2 nathanw return (error);
845 1.6.2.2 nathanw }
846 1.6.2.2 nathanw
847 1.6.2.2 nathanw /*
848 1.6.2.2 nathanw * ste_intr:
849 1.6.2.2 nathanw *
850 1.6.2.2 nathanw * Interrupt service routine.
851 1.6.2.2 nathanw */
852 1.6.2.2 nathanw int
853 1.6.2.2 nathanw ste_intr(void *arg)
854 1.6.2.2 nathanw {
855 1.6.2.2 nathanw struct ste_softc *sc = arg;
856 1.6.2.2 nathanw struct ifnet *ifp = &sc->sc_ethercom.ec_if;
857 1.6.2.2 nathanw uint16_t isr;
858 1.6.2.2 nathanw uint8_t txstat;
859 1.6.2.2 nathanw int wantinit;
860 1.6.2.2 nathanw
861 1.6.2.2 nathanw if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
862 1.6.2.2 nathanw IS_InterruptStatus) == 0)
863 1.6.2.2 nathanw return (0);
864 1.6.2.2 nathanw
865 1.6.2.2 nathanw for (wantinit = 0; wantinit == 0;) {
866 1.6.2.2 nathanw isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
867 1.6.2.2 nathanw if ((isr & sc->sc_IntEnable) == 0)
868 1.6.2.2 nathanw break;
869 1.6.2.2 nathanw
870 1.6.2.2 nathanw /* Receive interrupts. */
871 1.6.2.2 nathanw if (isr & IE_RxDMAComplete)
872 1.6.2.2 nathanw ste_rxintr(sc);
873 1.6.2.2 nathanw
874 1.6.2.2 nathanw /* Transmit interrupts. */
875 1.6.2.2 nathanw if (isr & (IE_TxDMAComplete|IE_TxComplete))
876 1.6.2.2 nathanw ste_txintr(sc);
877 1.6.2.2 nathanw
878 1.6.2.2 nathanw /* Statistics overflow. */
879 1.6.2.2 nathanw if (isr & IE_UpdateStats)
880 1.6.2.2 nathanw ste_stats_update(sc);
881 1.6.2.2 nathanw
882 1.6.2.2 nathanw /* Transmission errors. */
883 1.6.2.2 nathanw if (isr & IE_TxComplete) {
884 1.6.2.2 nathanw for (;;) {
885 1.6.2.2 nathanw txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
886 1.6.2.2 nathanw STE_TxStatus);
887 1.6.2.2 nathanw if ((txstat & TS_TxComplete) == 0)
888 1.6.2.2 nathanw break;
889 1.6.2.2 nathanw if (txstat & TS_TxUnderrun) {
890 1.6.2.2 nathanw sc->sc_txthresh += 32;
891 1.6.2.2 nathanw if (sc->sc_txthresh > 0x1ffc)
892 1.6.2.2 nathanw sc->sc_txthresh = 0x1ffc;
893 1.6.2.2 nathanw printf("%s: transmit underrun, new "
894 1.6.2.2 nathanw "threshold: %d bytes\n",
895 1.6.2.2 nathanw sc->sc_dev.dv_xname,
896 1.6.2.2 nathanw sc->sc_txthresh);
897 1.6.2.4 nathanw ste_reset(sc, AC_TxReset | AC_DMA |
898 1.6.2.4 nathanw AC_FIFO | AC_Network);
899 1.6.2.4 nathanw ste_setthresh(sc);
900 1.6.2.4 nathanw bus_space_write_1(sc->sc_st, sc->sc_sh,
901 1.6.2.4 nathanw STE_TxDMAPollPeriod, 127);
902 1.6.2.4 nathanw ste_txrestart(sc,
903 1.6.2.4 nathanw bus_space_read_1(sc->sc_st,
904 1.6.2.4 nathanw sc->sc_sh, STE_TxFrameId));
905 1.6.2.2 nathanw }
906 1.6.2.4 nathanw if (txstat & TS_TxReleaseError) {
907 1.6.2.2 nathanw printf("%s: Tx FIFO release error\n",
908 1.6.2.2 nathanw sc->sc_dev.dv_xname);
909 1.6.2.4 nathanw wantinit = 1;
910 1.6.2.4 nathanw }
911 1.6.2.4 nathanw if (txstat & TS_MaxCollisions) {
912 1.6.2.2 nathanw printf("%s: excessive collisions\n",
913 1.6.2.2 nathanw sc->sc_dev.dv_xname);
914 1.6.2.4 nathanw wantinit = 1;
915 1.6.2.4 nathanw }
916 1.6.2.4 nathanw if (txstat & TS_TxStatusOverflow) {
917 1.6.2.4 nathanw printf("%s: status overflow\n",
918 1.6.2.4 nathanw sc->sc_dev.dv_xname);
919 1.6.2.4 nathanw wantinit = 1;
920 1.6.2.4 nathanw }
921 1.6.2.2 nathanw bus_space_write_2(sc->sc_st, sc->sc_sh,
922 1.6.2.2 nathanw STE_TxStatus, 0);
923 1.6.2.2 nathanw }
924 1.6.2.2 nathanw }
925 1.6.2.2 nathanw
926 1.6.2.2 nathanw /* Host interface errors. */
927 1.6.2.2 nathanw if (isr & IE_HostError) {
928 1.6.2.2 nathanw printf("%s: Host interface error\n",
929 1.6.2.2 nathanw sc->sc_dev.dv_xname);
930 1.6.2.2 nathanw wantinit = 1;
931 1.6.2.2 nathanw }
932 1.6.2.2 nathanw }
933 1.6.2.2 nathanw
934 1.6.2.2 nathanw if (wantinit)
935 1.6.2.2 nathanw ste_init(ifp);
936 1.6.2.2 nathanw
937 1.6.2.2 nathanw bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
938 1.6.2.2 nathanw sc->sc_IntEnable);
939 1.6.2.2 nathanw
940 1.6.2.2 nathanw /* Try to get more packets going. */
941 1.6.2.2 nathanw ste_start(ifp);
942 1.6.2.2 nathanw
943 1.6.2.2 nathanw return (1);
944 1.6.2.2 nathanw }
945 1.6.2.2 nathanw
946 1.6.2.2 nathanw /*
947 1.6.2.2 nathanw * ste_txintr:
948 1.6.2.2 nathanw *
949 1.6.2.2 nathanw * Helper; handle transmit interrupts.
950 1.6.2.2 nathanw */
951 1.6.2.2 nathanw void
952 1.6.2.2 nathanw ste_txintr(struct ste_softc *sc)
953 1.6.2.2 nathanw {
954 1.6.2.2 nathanw struct ifnet *ifp = &sc->sc_ethercom.ec_if;
955 1.6.2.2 nathanw struct ste_descsoft *ds;
956 1.6.2.2 nathanw uint32_t control;
957 1.6.2.2 nathanw int i;
958 1.6.2.2 nathanw
959 1.6.2.2 nathanw ifp->if_flags &= ~IFF_OACTIVE;
960 1.6.2.2 nathanw
961 1.6.2.2 nathanw /*
962 1.6.2.2 nathanw * Go through our Tx list and free mbufs for those
963 1.6.2.2 nathanw * frames which have been transmitted.
964 1.6.2.2 nathanw */
965 1.6.2.2 nathanw for (i = sc->sc_txdirty; sc->sc_txpending != 0;
966 1.6.2.2 nathanw i = STE_NEXTTX(i), sc->sc_txpending--) {
967 1.6.2.2 nathanw ds = &sc->sc_txsoft[i];
968 1.6.2.2 nathanw
969 1.6.2.2 nathanw STE_CDTXSYNC(sc, i,
970 1.6.2.2 nathanw BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
971 1.6.2.2 nathanw
972 1.6.2.2 nathanw control = le32toh(sc->sc_txdescs[i].tfd_control);
973 1.6.2.2 nathanw if ((control & TFD_TxDMAComplete) == 0)
974 1.6.2.2 nathanw break;
975 1.6.2.2 nathanw
976 1.6.2.2 nathanw bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
977 1.6.2.2 nathanw 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
978 1.6.2.2 nathanw bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
979 1.6.2.2 nathanw m_freem(ds->ds_mbuf);
980 1.6.2.2 nathanw ds->ds_mbuf = NULL;
981 1.6.2.2 nathanw }
982 1.6.2.2 nathanw
983 1.6.2.2 nathanw /* Update the dirty transmit buffer pointer. */
984 1.6.2.2 nathanw sc->sc_txdirty = i;
985 1.6.2.2 nathanw
986 1.6.2.2 nathanw /*
987 1.6.2.2 nathanw * If there are no more pending transmissions, cancel the watchdog
988 1.6.2.2 nathanw * timer.
989 1.6.2.2 nathanw */
990 1.6.2.2 nathanw if (sc->sc_txpending == 0)
991 1.6.2.2 nathanw ifp->if_timer = 0;
992 1.6.2.2 nathanw }
993 1.6.2.2 nathanw
994 1.6.2.2 nathanw /*
995 1.6.2.2 nathanw * ste_rxintr:
996 1.6.2.2 nathanw *
997 1.6.2.2 nathanw * Helper; handle receive interrupts.
998 1.6.2.2 nathanw */
999 1.6.2.2 nathanw void
1000 1.6.2.2 nathanw ste_rxintr(struct ste_softc *sc)
1001 1.6.2.2 nathanw {
1002 1.6.2.2 nathanw struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1003 1.6.2.2 nathanw struct ste_descsoft *ds;
1004 1.6.2.2 nathanw struct mbuf *m;
1005 1.6.2.2 nathanw uint32_t status;
1006 1.6.2.2 nathanw int i, len;
1007 1.6.2.2 nathanw
1008 1.6.2.2 nathanw for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
1009 1.6.2.2 nathanw ds = &sc->sc_rxsoft[i];
1010 1.6.2.2 nathanw
1011 1.6.2.2 nathanw STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1012 1.6.2.2 nathanw
1013 1.6.2.2 nathanw status = le32toh(sc->sc_rxdescs[i].rfd_status);
1014 1.6.2.2 nathanw
1015 1.6.2.2 nathanw if ((status & RFD_RxDMAComplete) == 0)
1016 1.6.2.2 nathanw break;
1017 1.6.2.2 nathanw
1018 1.6.2.2 nathanw /*
1019 1.6.2.2 nathanw * If the packet had an error, simply recycle the
1020 1.6.2.2 nathanw * buffer. Note, we count the error later in the
1021 1.6.2.2 nathanw * periodic stats update.
1022 1.6.2.2 nathanw */
1023 1.6.2.2 nathanw if (status & RFD_RxFrameError) {
1024 1.6.2.2 nathanw STE_INIT_RXDESC(sc, i);
1025 1.6.2.2 nathanw continue;
1026 1.6.2.2 nathanw }
1027 1.6.2.2 nathanw
1028 1.6.2.2 nathanw bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1029 1.6.2.2 nathanw ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1030 1.6.2.2 nathanw
1031 1.6.2.2 nathanw /*
1032 1.6.2.2 nathanw * No errors; receive the packet. Note, we have
1033 1.6.2.2 nathanw * configured the chip to not include the CRC at
1034 1.6.2.2 nathanw * the end of the packet.
1035 1.6.2.2 nathanw */
1036 1.6.2.2 nathanw len = RFD_RxDMAFrameLen(status);
1037 1.6.2.2 nathanw
1038 1.6.2.2 nathanw /*
1039 1.6.2.2 nathanw * If the packet is small enough to fit in a
1040 1.6.2.2 nathanw * single header mbuf, allocate one and copy
1041 1.6.2.2 nathanw * the data into it. This greatly reduces
1042 1.6.2.2 nathanw * memory consumption when we receive lots
1043 1.6.2.2 nathanw * of small packets.
1044 1.6.2.2 nathanw *
1045 1.6.2.2 nathanw * Otherwise, we add a new buffer to the receive
1046 1.6.2.2 nathanw * chain. If this fails, we drop the packet and
1047 1.6.2.2 nathanw * recycle the old buffer.
1048 1.6.2.2 nathanw */
1049 1.6.2.2 nathanw if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
1050 1.6.2.2 nathanw MGETHDR(m, M_DONTWAIT, MT_DATA);
1051 1.6.2.2 nathanw if (m == NULL)
1052 1.6.2.2 nathanw goto dropit;
1053 1.6.2.2 nathanw m->m_data += 2;
1054 1.6.2.2 nathanw memcpy(mtod(m, caddr_t),
1055 1.6.2.2 nathanw mtod(ds->ds_mbuf, caddr_t), len);
1056 1.6.2.2 nathanw STE_INIT_RXDESC(sc, i);
1057 1.6.2.2 nathanw bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1058 1.6.2.2 nathanw ds->ds_dmamap->dm_mapsize,
1059 1.6.2.2 nathanw BUS_DMASYNC_PREREAD);
1060 1.6.2.2 nathanw } else {
1061 1.6.2.2 nathanw m = ds->ds_mbuf;
1062 1.6.2.2 nathanw if (ste_add_rxbuf(sc, i) != 0) {
1063 1.6.2.2 nathanw dropit:
1064 1.6.2.2 nathanw ifp->if_ierrors++;
1065 1.6.2.2 nathanw STE_INIT_RXDESC(sc, i);
1066 1.6.2.2 nathanw bus_dmamap_sync(sc->sc_dmat,
1067 1.6.2.2 nathanw ds->ds_dmamap, 0,
1068 1.6.2.2 nathanw ds->ds_dmamap->dm_mapsize,
1069 1.6.2.2 nathanw BUS_DMASYNC_PREREAD);
1070 1.6.2.2 nathanw continue;
1071 1.6.2.2 nathanw }
1072 1.6.2.2 nathanw }
1073 1.6.2.2 nathanw
1074 1.6.2.2 nathanw m->m_pkthdr.rcvif = ifp;
1075 1.6.2.2 nathanw m->m_pkthdr.len = m->m_len = len;
1076 1.6.2.2 nathanw
1077 1.6.2.2 nathanw #if NBPFILTER > 0
1078 1.6.2.2 nathanw /*
1079 1.6.2.2 nathanw * Pass this up to any BPF listeners, but only
1080 1.6.2.2 nathanw * pass if up the stack if it's for us.
1081 1.6.2.2 nathanw */
1082 1.6.2.2 nathanw if (ifp->if_bpf)
1083 1.6.2.2 nathanw bpf_mtap(ifp->if_bpf, m);
1084 1.6.2.2 nathanw #endif /* NBPFILTER > 0 */
1085 1.6.2.2 nathanw
1086 1.6.2.2 nathanw /* Pass it on. */
1087 1.6.2.2 nathanw (*ifp->if_input)(ifp, m);
1088 1.6.2.2 nathanw }
1089 1.6.2.2 nathanw
1090 1.6.2.2 nathanw /* Update the receive pointer. */
1091 1.6.2.2 nathanw sc->sc_rxptr = i;
1092 1.6.2.2 nathanw }
1093 1.6.2.2 nathanw
1094 1.6.2.2 nathanw /*
1095 1.6.2.2 nathanw * ste_tick:
1096 1.6.2.2 nathanw *
1097 1.6.2.2 nathanw * One second timer, used to tick the MII.
1098 1.6.2.2 nathanw */
1099 1.6.2.2 nathanw void
1100 1.6.2.2 nathanw ste_tick(void *arg)
1101 1.6.2.2 nathanw {
1102 1.6.2.2 nathanw struct ste_softc *sc = arg;
1103 1.6.2.2 nathanw int s;
1104 1.6.2.2 nathanw
1105 1.6.2.2 nathanw s = splnet();
1106 1.6.2.2 nathanw mii_tick(&sc->sc_mii);
1107 1.6.2.2 nathanw ste_stats_update(sc);
1108 1.6.2.2 nathanw splx(s);
1109 1.6.2.2 nathanw
1110 1.6.2.2 nathanw callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1111 1.6.2.2 nathanw }
1112 1.6.2.2 nathanw
1113 1.6.2.2 nathanw /*
1114 1.6.2.2 nathanw * ste_stats_update:
1115 1.6.2.2 nathanw *
1116 1.6.2.2 nathanw * Read the ST-201 statistics counters.
1117 1.6.2.2 nathanw */
1118 1.6.2.2 nathanw void
1119 1.6.2.2 nathanw ste_stats_update(struct ste_softc *sc)
1120 1.6.2.2 nathanw {
1121 1.6.2.2 nathanw struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1122 1.6.2.2 nathanw bus_space_tag_t st = sc->sc_st;
1123 1.6.2.2 nathanw bus_space_handle_t sh = sc->sc_sh;
1124 1.6.2.2 nathanw
1125 1.6.2.2 nathanw (void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
1126 1.6.2.2 nathanw (void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
1127 1.6.2.2 nathanw
1128 1.6.2.2 nathanw (void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
1129 1.6.2.2 nathanw (void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
1130 1.6.2.2 nathanw
1131 1.6.2.2 nathanw ifp->if_opackets +=
1132 1.6.2.2 nathanw (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
1133 1.6.2.2 nathanw ifp->if_ipackets +=
1134 1.6.2.2 nathanw (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
1135 1.6.2.2 nathanw
1136 1.6.2.2 nathanw ifp->if_collisions +=
1137 1.6.2.2 nathanw (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
1138 1.6.2.2 nathanw (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
1139 1.6.2.2 nathanw (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
1140 1.6.2.2 nathanw
1141 1.6.2.2 nathanw (void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
1142 1.6.2.2 nathanw
1143 1.6.2.2 nathanw ifp->if_ierrors +=
1144 1.6.2.2 nathanw (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
1145 1.6.2.2 nathanw
1146 1.6.2.2 nathanw ifp->if_oerrors +=
1147 1.6.2.2 nathanw (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
1148 1.6.2.4 nathanw (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
1149 1.6.2.4 nathanw bus_space_read_1(st, sh, STE_CarrierSenseErrors);
1150 1.6.2.2 nathanw
1151 1.6.2.2 nathanw (void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
1152 1.6.2.2 nathanw (void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
1153 1.6.2.2 nathanw (void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
1154 1.6.2.2 nathanw (void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
1155 1.6.2.2 nathanw }
1156 1.6.2.2 nathanw
1157 1.6.2.2 nathanw /*
1158 1.6.2.2 nathanw * ste_reset:
1159 1.6.2.2 nathanw *
1160 1.6.2.2 nathanw * Perform a soft reset on the ST-201.
1161 1.6.2.2 nathanw */
1162 1.6.2.2 nathanw void
1163 1.6.2.4 nathanw ste_reset(struct ste_softc *sc, u_int32_t rstbits)
1164 1.6.2.2 nathanw {
1165 1.6.2.2 nathanw uint32_t ac;
1166 1.6.2.2 nathanw int i;
1167 1.6.2.2 nathanw
1168 1.6.2.2 nathanw ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
1169 1.6.2.2 nathanw
1170 1.6.2.4 nathanw bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
1171 1.6.2.2 nathanw
1172 1.6.2.2 nathanw delay(50000);
1173 1.6.2.2 nathanw
1174 1.6.2.2 nathanw for (i = 0; i < STE_TIMEOUT; i++) {
1175 1.6.2.2 nathanw delay(1000);
1176 1.6.2.2 nathanw if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
1177 1.6.2.2 nathanw AC_ResetBusy) == 0)
1178 1.6.2.2 nathanw break;
1179 1.6.2.2 nathanw }
1180 1.6.2.2 nathanw
1181 1.6.2.2 nathanw if (i == STE_TIMEOUT)
1182 1.6.2.2 nathanw printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1183 1.6.2.2 nathanw
1184 1.6.2.2 nathanw delay(1000);
1185 1.6.2.2 nathanw }
1186 1.6.2.2 nathanw
1187 1.6.2.2 nathanw /*
1188 1.6.2.4 nathanw * ste_setthresh:
1189 1.6.2.4 nathanw *
1190 1.6.2.4 nathanw * set the various transmit threshold registers
1191 1.6.2.4 nathanw */
1192 1.6.2.4 nathanw void
1193 1.6.2.4 nathanw ste_setthresh(struct ste_softc *sc)
1194 1.6.2.4 nathanw {
1195 1.6.2.4 nathanw /* set the TX threhold */
1196 1.6.2.4 nathanw bus_space_write_2(sc->sc_st, sc->sc_sh,
1197 1.6.2.4 nathanw STE_TxStartThresh, sc->sc_txthresh);
1198 1.6.2.4 nathanw /* Urgent threshold: set to sc_txthresh / 2 */
1199 1.6.2.4 nathanw bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
1200 1.6.2.4 nathanw sc->sc_txthresh >> 6);
1201 1.6.2.4 nathanw /* Burst threshold: use default value (256 bytes) */
1202 1.6.2.4 nathanw }
1203 1.6.2.4 nathanw
1204 1.6.2.4 nathanw /*
1205 1.6.2.4 nathanw * restart TX at the given frame ID in the transmitter ring
1206 1.6.2.4 nathanw */
1207 1.6.2.4 nathanw
1208 1.6.2.4 nathanw void
1209 1.6.2.4 nathanw ste_txrestart(struct ste_softc *sc, u_int8_t id)
1210 1.6.2.4 nathanw {
1211 1.6.2.4 nathanw u_int32_t control;
1212 1.6.2.4 nathanw
1213 1.6.2.4 nathanw STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1214 1.6.2.4 nathanw control = le32toh(sc->sc_txdescs[id].tfd_control);
1215 1.6.2.4 nathanw control &= ~TFD_TxDMAComplete;
1216 1.6.2.4 nathanw sc->sc_txdescs[id].tfd_control = htole32(control);
1217 1.6.2.4 nathanw STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1218 1.6.2.4 nathanw
1219 1.6.2.4 nathanw bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
1220 1.6.2.4 nathanw bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
1221 1.6.2.4 nathanw bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
1222 1.6.2.4 nathanw ste_dmahalt_wait(sc);
1223 1.6.2.4 nathanw bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
1224 1.6.2.4 nathanw STE_CDTXADDR(sc, id));
1225 1.6.2.4 nathanw bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
1226 1.6.2.4 nathanw }
1227 1.6.2.4 nathanw
1228 1.6.2.4 nathanw /*
1229 1.6.2.2 nathanw * ste_init: [ ifnet interface function ]
1230 1.6.2.2 nathanw *
1231 1.6.2.2 nathanw * Initialize the interface. Must be called at splnet().
1232 1.6.2.2 nathanw */
1233 1.6.2.2 nathanw int
1234 1.6.2.2 nathanw ste_init(struct ifnet *ifp)
1235 1.6.2.2 nathanw {
1236 1.6.2.2 nathanw struct ste_softc *sc = ifp->if_softc;
1237 1.6.2.2 nathanw bus_space_tag_t st = sc->sc_st;
1238 1.6.2.2 nathanw bus_space_handle_t sh = sc->sc_sh;
1239 1.6.2.2 nathanw struct ste_descsoft *ds;
1240 1.6.2.2 nathanw int i, error = 0;
1241 1.6.2.2 nathanw
1242 1.6.2.2 nathanw /*
1243 1.6.2.2 nathanw * Cancel any pending I/O.
1244 1.6.2.2 nathanw */
1245 1.6.2.2 nathanw ste_stop(ifp, 0);
1246 1.6.2.2 nathanw
1247 1.6.2.2 nathanw /*
1248 1.6.2.2 nathanw * Reset the chip to a known state.
1249 1.6.2.2 nathanw */
1250 1.6.2.4 nathanw ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
1251 1.6.2.4 nathanw AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
1252 1.6.2.2 nathanw
1253 1.6.2.2 nathanw /*
1254 1.6.2.2 nathanw * Initialize the transmit descriptor ring.
1255 1.6.2.2 nathanw */
1256 1.6.2.2 nathanw memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1257 1.6.2.2 nathanw sc->sc_txpending = 0;
1258 1.6.2.2 nathanw sc->sc_txdirty = 0;
1259 1.6.2.2 nathanw sc->sc_txlast = STE_NTXDESC - 1;
1260 1.6.2.2 nathanw
1261 1.6.2.2 nathanw /*
1262 1.6.2.2 nathanw * Initialize the receive descriptor and receive job
1263 1.6.2.2 nathanw * descriptor rings.
1264 1.6.2.2 nathanw */
1265 1.6.2.2 nathanw for (i = 0; i < STE_NRXDESC; i++) {
1266 1.6.2.2 nathanw ds = &sc->sc_rxsoft[i];
1267 1.6.2.2 nathanw if (ds->ds_mbuf == NULL) {
1268 1.6.2.2 nathanw if ((error = ste_add_rxbuf(sc, i)) != 0) {
1269 1.6.2.2 nathanw printf("%s: unable to allocate or map rx "
1270 1.6.2.2 nathanw "buffer %d, error = %d\n",
1271 1.6.2.2 nathanw sc->sc_dev.dv_xname, i, error);
1272 1.6.2.2 nathanw /*
1273 1.6.2.2 nathanw * XXX Should attempt to run with fewer receive
1274 1.6.2.2 nathanw * XXX buffers instead of just failing.
1275 1.6.2.2 nathanw */
1276 1.6.2.2 nathanw ste_rxdrain(sc);
1277 1.6.2.2 nathanw goto out;
1278 1.6.2.2 nathanw }
1279 1.6.2.2 nathanw } else
1280 1.6.2.2 nathanw STE_INIT_RXDESC(sc, i);
1281 1.6.2.2 nathanw }
1282 1.6.2.2 nathanw sc->sc_rxptr = 0;
1283 1.6.2.2 nathanw
1284 1.6.2.2 nathanw /* Set the station address. */
1285 1.6.2.2 nathanw for (i = 0; i < ETHER_ADDR_LEN; i++)
1286 1.6.2.2 nathanw bus_space_write_1(st, sh, STE_StationAddress0 + 1,
1287 1.6.2.2 nathanw LLADDR(ifp->if_sadl)[i]);
1288 1.6.2.2 nathanw
1289 1.6.2.2 nathanw /* Set up the receive filter. */
1290 1.6.2.2 nathanw ste_set_filter(sc);
1291 1.6.2.2 nathanw
1292 1.6.2.2 nathanw /*
1293 1.6.2.2 nathanw * Give the receive ring to the chip.
1294 1.6.2.2 nathanw */
1295 1.6.2.2 nathanw bus_space_write_4(st, sh, STE_RxDMAListPtr,
1296 1.6.2.2 nathanw STE_CDRXADDR(sc, sc->sc_rxptr));
1297 1.6.2.2 nathanw
1298 1.6.2.2 nathanw /*
1299 1.6.2.2 nathanw * We defer giving the transmit ring to the chip until we
1300 1.6.2.2 nathanw * transmit the first packet.
1301 1.6.2.2 nathanw */
1302 1.6.2.2 nathanw
1303 1.6.2.2 nathanw /*
1304 1.6.2.2 nathanw * Initialize the Tx auto-poll period. It's OK to make this number
1305 1.6.2.2 nathanw * large (127 is the max) -- we explicitly kick the transmit engine
1306 1.6.2.2 nathanw * when there's actually a packet. We are using auto-polling only
1307 1.6.2.2 nathanw * to make the interface to the transmit engine not suck.
1308 1.6.2.2 nathanw */
1309 1.6.2.2 nathanw bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
1310 1.6.2.2 nathanw
1311 1.6.2.2 nathanw /* ..and the Rx auto-poll period. */
1312 1.6.2.2 nathanw bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
1313 1.6.2.2 nathanw
1314 1.6.2.2 nathanw /* Initialize the Tx start threshold. */
1315 1.6.2.4 nathanw ste_setthresh(sc);
1316 1.6.2.2 nathanw
1317 1.6.2.2 nathanw /* Set the FIFO release threshold to 512 bytes. */
1318 1.6.2.2 nathanw bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
1319 1.6.2.2 nathanw
1320 1.6.2.2 nathanw /*
1321 1.6.2.2 nathanw * Initialize the interrupt mask.
1322 1.6.2.2 nathanw */
1323 1.6.2.2 nathanw sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1324 1.6.2.2 nathanw IE_TxDMAComplete | IE_RxDMAComplete;
1325 1.6.2.4 nathanw
1326 1.6.2.2 nathanw bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
1327 1.6.2.2 nathanw bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
1328 1.6.2.2 nathanw
1329 1.6.2.2 nathanw /*
1330 1.6.2.2 nathanw * Start the receive DMA engine.
1331 1.6.2.2 nathanw */
1332 1.6.2.2 nathanw bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
1333 1.6.2.2 nathanw
1334 1.6.2.2 nathanw /*
1335 1.6.2.2 nathanw * Initialize MacCtrl0 -- do it before setting the media,
1336 1.6.2.2 nathanw * as setting the media will actually program the register.
1337 1.6.2.2 nathanw */
1338 1.6.2.2 nathanw sc->sc_MacCtrl0 = MC0_IFSSelect(0);
1339 1.6.2.2 nathanw if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1340 1.6.2.2 nathanw sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
1341 1.6.2.2 nathanw
1342 1.6.2.2 nathanw /*
1343 1.6.2.2 nathanw * Set the current media.
1344 1.6.2.2 nathanw */
1345 1.6.2.2 nathanw mii_mediachg(&sc->sc_mii);
1346 1.6.2.2 nathanw
1347 1.6.2.2 nathanw /*
1348 1.6.2.2 nathanw * Start the MAC.
1349 1.6.2.2 nathanw */
1350 1.6.2.2 nathanw bus_space_write_2(st, sh, STE_MacCtrl1,
1351 1.6.2.2 nathanw MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
1352 1.6.2.2 nathanw
1353 1.6.2.2 nathanw /*
1354 1.6.2.2 nathanw * Start the one second MII clock.
1355 1.6.2.2 nathanw */
1356 1.6.2.2 nathanw callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1357 1.6.2.2 nathanw
1358 1.6.2.2 nathanw /*
1359 1.6.2.2 nathanw * ...all done!
1360 1.6.2.2 nathanw */
1361 1.6.2.2 nathanw ifp->if_flags |= IFF_RUNNING;
1362 1.6.2.2 nathanw ifp->if_flags &= ~IFF_OACTIVE;
1363 1.6.2.2 nathanw
1364 1.6.2.2 nathanw out:
1365 1.6.2.2 nathanw if (error)
1366 1.6.2.2 nathanw printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1367 1.6.2.2 nathanw return (error);
1368 1.6.2.2 nathanw }
1369 1.6.2.2 nathanw
1370 1.6.2.2 nathanw /*
1371 1.6.2.2 nathanw * ste_drain:
1372 1.6.2.2 nathanw *
1373 1.6.2.2 nathanw * Drain the receive queue.
1374 1.6.2.2 nathanw */
1375 1.6.2.2 nathanw void
1376 1.6.2.2 nathanw ste_rxdrain(struct ste_softc *sc)
1377 1.6.2.2 nathanw {
1378 1.6.2.2 nathanw struct ste_descsoft *ds;
1379 1.6.2.2 nathanw int i;
1380 1.6.2.2 nathanw
1381 1.6.2.2 nathanw for (i = 0; i < STE_NRXDESC; i++) {
1382 1.6.2.2 nathanw ds = &sc->sc_rxsoft[i];
1383 1.6.2.2 nathanw if (ds->ds_mbuf != NULL) {
1384 1.6.2.2 nathanw bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1385 1.6.2.2 nathanw m_freem(ds->ds_mbuf);
1386 1.6.2.2 nathanw ds->ds_mbuf = NULL;
1387 1.6.2.2 nathanw }
1388 1.6.2.2 nathanw }
1389 1.6.2.2 nathanw }
1390 1.6.2.2 nathanw
1391 1.6.2.2 nathanw /*
1392 1.6.2.2 nathanw * ste_stop: [ ifnet interface function ]
1393 1.6.2.2 nathanw *
1394 1.6.2.2 nathanw * Stop transmission on the interface.
1395 1.6.2.2 nathanw */
1396 1.6.2.2 nathanw void
1397 1.6.2.2 nathanw ste_stop(struct ifnet *ifp, int disable)
1398 1.6.2.2 nathanw {
1399 1.6.2.2 nathanw struct ste_softc *sc = ifp->if_softc;
1400 1.6.2.2 nathanw struct ste_descsoft *ds;
1401 1.6.2.2 nathanw int i;
1402 1.6.2.2 nathanw
1403 1.6.2.2 nathanw /*
1404 1.6.2.2 nathanw * Stop the one second clock.
1405 1.6.2.2 nathanw */
1406 1.6.2.2 nathanw callout_stop(&sc->sc_tick_ch);
1407 1.6.2.2 nathanw
1408 1.6.2.2 nathanw /* Down the MII. */
1409 1.6.2.2 nathanw mii_down(&sc->sc_mii);
1410 1.6.2.2 nathanw
1411 1.6.2.2 nathanw /*
1412 1.6.2.2 nathanw * Disable interrupts.
1413 1.6.2.2 nathanw */
1414 1.6.2.2 nathanw bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
1415 1.6.2.2 nathanw
1416 1.6.2.2 nathanw /*
1417 1.6.2.2 nathanw * Stop receiver, transmitter, and stats update.
1418 1.6.2.2 nathanw */
1419 1.6.2.2 nathanw bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
1420 1.6.2.2 nathanw MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
1421 1.6.2.2 nathanw
1422 1.6.2.2 nathanw /*
1423 1.6.2.2 nathanw * Stop the transmit and receive DMA.
1424 1.6.2.2 nathanw */
1425 1.6.2.2 nathanw bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
1426 1.6.2.2 nathanw DC_RxDMAHalt | DC_TxDMAHalt);
1427 1.6.2.2 nathanw ste_dmahalt_wait(sc);
1428 1.6.2.2 nathanw
1429 1.6.2.2 nathanw /*
1430 1.6.2.2 nathanw * Release any queued transmit buffers.
1431 1.6.2.2 nathanw */
1432 1.6.2.2 nathanw for (i = 0; i < STE_NTXDESC; i++) {
1433 1.6.2.2 nathanw ds = &sc->sc_txsoft[i];
1434 1.6.2.2 nathanw if (ds->ds_mbuf != NULL) {
1435 1.6.2.2 nathanw bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1436 1.6.2.2 nathanw m_freem(ds->ds_mbuf);
1437 1.6.2.2 nathanw ds->ds_mbuf = NULL;
1438 1.6.2.2 nathanw }
1439 1.6.2.2 nathanw }
1440 1.6.2.2 nathanw
1441 1.6.2.2 nathanw if (disable)
1442 1.6.2.2 nathanw ste_rxdrain(sc);
1443 1.6.2.2 nathanw
1444 1.6.2.2 nathanw /*
1445 1.6.2.2 nathanw * Mark the interface down and cancel the watchdog timer.
1446 1.6.2.2 nathanw */
1447 1.6.2.2 nathanw ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1448 1.6.2.2 nathanw ifp->if_timer = 0;
1449 1.6.2.2 nathanw }
1450 1.6.2.2 nathanw
1451 1.6.2.2 nathanw static int
1452 1.6.2.2 nathanw ste_eeprom_wait(struct ste_softc *sc)
1453 1.6.2.2 nathanw {
1454 1.6.2.2 nathanw int i;
1455 1.6.2.2 nathanw
1456 1.6.2.2 nathanw for (i = 0; i < STE_TIMEOUT; i++) {
1457 1.6.2.2 nathanw delay(1000);
1458 1.6.2.2 nathanw if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
1459 1.6.2.2 nathanw EC_EepromBusy) == 0)
1460 1.6.2.2 nathanw return (0);
1461 1.6.2.2 nathanw }
1462 1.6.2.2 nathanw return (1);
1463 1.6.2.2 nathanw }
1464 1.6.2.2 nathanw
1465 1.6.2.2 nathanw /*
1466 1.6.2.2 nathanw * ste_read_eeprom:
1467 1.6.2.2 nathanw *
1468 1.6.2.2 nathanw * Read data from the serial EEPROM.
1469 1.6.2.2 nathanw */
1470 1.6.2.2 nathanw void
1471 1.6.2.2 nathanw ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
1472 1.6.2.2 nathanw {
1473 1.6.2.2 nathanw
1474 1.6.2.2 nathanw if (ste_eeprom_wait(sc))
1475 1.6.2.2 nathanw printf("%s: EEPROM failed to come ready\n",
1476 1.6.2.2 nathanw sc->sc_dev.dv_xname);
1477 1.6.2.2 nathanw
1478 1.6.2.2 nathanw bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
1479 1.6.2.2 nathanw EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
1480 1.6.2.2 nathanw if (ste_eeprom_wait(sc))
1481 1.6.2.2 nathanw printf("%s: EEPROM read timed out\n",
1482 1.6.2.2 nathanw sc->sc_dev.dv_xname);
1483 1.6.2.2 nathanw *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
1484 1.6.2.2 nathanw }
1485 1.6.2.2 nathanw
1486 1.6.2.2 nathanw /*
1487 1.6.2.2 nathanw * ste_add_rxbuf:
1488 1.6.2.2 nathanw *
1489 1.6.2.2 nathanw * Add a receive buffer to the indicated descriptor.
1490 1.6.2.2 nathanw */
1491 1.6.2.2 nathanw int
1492 1.6.2.2 nathanw ste_add_rxbuf(struct ste_softc *sc, int idx)
1493 1.6.2.2 nathanw {
1494 1.6.2.2 nathanw struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
1495 1.6.2.2 nathanw struct mbuf *m;
1496 1.6.2.2 nathanw int error;
1497 1.6.2.2 nathanw
1498 1.6.2.2 nathanw MGETHDR(m, M_DONTWAIT, MT_DATA);
1499 1.6.2.2 nathanw if (m == NULL)
1500 1.6.2.2 nathanw return (ENOBUFS);
1501 1.6.2.2 nathanw
1502 1.6.2.2 nathanw MCLGET(m, M_DONTWAIT);
1503 1.6.2.2 nathanw if ((m->m_flags & M_EXT) == 0) {
1504 1.6.2.2 nathanw m_freem(m);
1505 1.6.2.2 nathanw return (ENOBUFS);
1506 1.6.2.2 nathanw }
1507 1.6.2.2 nathanw
1508 1.6.2.2 nathanw if (ds->ds_mbuf != NULL)
1509 1.6.2.2 nathanw bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1510 1.6.2.2 nathanw
1511 1.6.2.2 nathanw ds->ds_mbuf = m;
1512 1.6.2.2 nathanw
1513 1.6.2.2 nathanw error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1514 1.6.2.2 nathanw m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1515 1.6.2.2 nathanw BUS_DMA_READ|BUS_DMA_NOWAIT);
1516 1.6.2.2 nathanw if (error) {
1517 1.6.2.2 nathanw printf("%s: can't load rx DMA map %d, error = %d\n",
1518 1.6.2.2 nathanw sc->sc_dev.dv_xname, idx, error);
1519 1.6.2.2 nathanw panic("ste_add_rxbuf"); /* XXX */
1520 1.6.2.2 nathanw }
1521 1.6.2.2 nathanw
1522 1.6.2.2 nathanw bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1523 1.6.2.2 nathanw ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1524 1.6.2.2 nathanw
1525 1.6.2.2 nathanw STE_INIT_RXDESC(sc, idx);
1526 1.6.2.2 nathanw
1527 1.6.2.2 nathanw return (0);
1528 1.6.2.2 nathanw }
1529 1.6.2.2 nathanw
1530 1.6.2.2 nathanw /*
1531 1.6.2.2 nathanw * ste_set_filter:
1532 1.6.2.2 nathanw *
1533 1.6.2.2 nathanw * Set up the receive filter.
1534 1.6.2.2 nathanw */
1535 1.6.2.2 nathanw void
1536 1.6.2.2 nathanw ste_set_filter(struct ste_softc *sc)
1537 1.6.2.2 nathanw {
1538 1.6.2.2 nathanw struct ethercom *ec = &sc->sc_ethercom;
1539 1.6.2.2 nathanw struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1540 1.6.2.2 nathanw struct ether_multi *enm;
1541 1.6.2.2 nathanw struct ether_multistep step;
1542 1.6.2.2 nathanw uint32_t crc;
1543 1.6.2.2 nathanw uint16_t mchash[4];
1544 1.6.2.2 nathanw
1545 1.6.2.2 nathanw sc->sc_ReceiveMode = RM_ReceiveUnicast;
1546 1.6.2.2 nathanw if (ifp->if_flags & IFF_BROADCAST)
1547 1.6.2.2 nathanw sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1548 1.6.2.2 nathanw
1549 1.6.2.2 nathanw if (ifp->if_flags & IFF_PROMISC) {
1550 1.6.2.2 nathanw sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1551 1.6.2.2 nathanw goto allmulti;
1552 1.6.2.2 nathanw }
1553 1.6.2.2 nathanw
1554 1.6.2.2 nathanw /*
1555 1.6.2.2 nathanw * Set up the multicast address filter by passing all multicast
1556 1.6.2.2 nathanw * addresses through a CRC generator, and then using the low-order
1557 1.6.2.2 nathanw * 6 bits as an index into the 64 bit multicast hash table. The
1558 1.6.2.2 nathanw * high order bits select the register, while the rest of the bits
1559 1.6.2.2 nathanw * select the bit within the register.
1560 1.6.2.2 nathanw */
1561 1.6.2.2 nathanw
1562 1.6.2.2 nathanw memset(mchash, 0, sizeof(mchash));
1563 1.6.2.2 nathanw
1564 1.6.2.2 nathanw ETHER_FIRST_MULTI(step, ec, enm);
1565 1.6.2.2 nathanw if (enm == NULL)
1566 1.6.2.2 nathanw goto done;
1567 1.6.2.2 nathanw
1568 1.6.2.2 nathanw while (enm != NULL) {
1569 1.6.2.2 nathanw if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1570 1.6.2.2 nathanw /*
1571 1.6.2.2 nathanw * We must listen to a range of multicast addresses.
1572 1.6.2.2 nathanw * For now, just accept all multicasts, rather than
1573 1.6.2.2 nathanw * trying to set only those filter bits needed to match
1574 1.6.2.2 nathanw * the range. (At this time, the only use of address
1575 1.6.2.2 nathanw * ranges is for IP multicast routing, for which the
1576 1.6.2.2 nathanw * range is big enough to require all bits set.)
1577 1.6.2.2 nathanw */
1578 1.6.2.2 nathanw goto allmulti;
1579 1.6.2.2 nathanw }
1580 1.6.2.2 nathanw
1581 1.6.2.2 nathanw crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1582 1.6.2.2 nathanw
1583 1.6.2.2 nathanw /* Just want the 6 least significant bits. */
1584 1.6.2.2 nathanw crc &= 0x3f;
1585 1.6.2.2 nathanw
1586 1.6.2.2 nathanw /* Set the corresponding bit in the hash table. */
1587 1.6.2.2 nathanw mchash[crc >> 4] |= 1 << (crc & 0xf);
1588 1.6.2.2 nathanw
1589 1.6.2.2 nathanw ETHER_NEXT_MULTI(step, enm);
1590 1.6.2.2 nathanw }
1591 1.6.2.2 nathanw
1592 1.6.2.2 nathanw sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1593 1.6.2.2 nathanw
1594 1.6.2.2 nathanw ifp->if_flags &= ~IFF_ALLMULTI;
1595 1.6.2.2 nathanw goto done;
1596 1.6.2.2 nathanw
1597 1.6.2.2 nathanw allmulti:
1598 1.6.2.2 nathanw ifp->if_flags |= IFF_ALLMULTI;
1599 1.6.2.2 nathanw sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1600 1.6.2.2 nathanw
1601 1.6.2.2 nathanw done:
1602 1.6.2.2 nathanw if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1603 1.6.2.2 nathanw /*
1604 1.6.2.2 nathanw * Program the multicast hash table.
1605 1.6.2.2 nathanw */
1606 1.6.2.2 nathanw bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
1607 1.6.2.2 nathanw mchash[0]);
1608 1.6.2.2 nathanw bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
1609 1.6.2.2 nathanw mchash[1]);
1610 1.6.2.2 nathanw bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
1611 1.6.2.2 nathanw mchash[2]);
1612 1.6.2.2 nathanw bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
1613 1.6.2.2 nathanw mchash[3]);
1614 1.6.2.2 nathanw }
1615 1.6.2.2 nathanw
1616 1.6.2.2 nathanw bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
1617 1.6.2.2 nathanw sc->sc_ReceiveMode);
1618 1.6.2.2 nathanw }
1619 1.6.2.2 nathanw
1620 1.6.2.2 nathanw /*
1621 1.6.2.2 nathanw * ste_mii_readreg: [mii interface function]
1622 1.6.2.2 nathanw *
1623 1.6.2.2 nathanw * Read a PHY register on the MII of the ST-201.
1624 1.6.2.2 nathanw */
1625 1.6.2.2 nathanw int
1626 1.6.2.2 nathanw ste_mii_readreg(struct device *self, int phy, int reg)
1627 1.6.2.2 nathanw {
1628 1.6.2.2 nathanw
1629 1.6.2.2 nathanw return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
1630 1.6.2.2 nathanw }
1631 1.6.2.2 nathanw
1632 1.6.2.2 nathanw /*
1633 1.6.2.2 nathanw * ste_mii_writereg: [mii interface function]
1634 1.6.2.2 nathanw *
1635 1.6.2.2 nathanw * Write a PHY register on the MII of the ST-201.
1636 1.6.2.2 nathanw */
1637 1.6.2.2 nathanw void
1638 1.6.2.2 nathanw ste_mii_writereg(struct device *self, int phy, int reg, int val)
1639 1.6.2.2 nathanw {
1640 1.6.2.2 nathanw
1641 1.6.2.2 nathanw mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
1642 1.6.2.2 nathanw }
1643 1.6.2.2 nathanw
1644 1.6.2.2 nathanw /*
1645 1.6.2.2 nathanw * ste_mii_statchg: [mii interface function]
1646 1.6.2.2 nathanw *
1647 1.6.2.2 nathanw * Callback from MII layer when media changes.
1648 1.6.2.2 nathanw */
1649 1.6.2.2 nathanw void
1650 1.6.2.2 nathanw ste_mii_statchg(struct device *self)
1651 1.6.2.2 nathanw {
1652 1.6.2.2 nathanw struct ste_softc *sc = (struct ste_softc *) self;
1653 1.6.2.2 nathanw
1654 1.6.2.2 nathanw if (sc->sc_mii.mii_media_active & IFM_FDX)
1655 1.6.2.2 nathanw sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
1656 1.6.2.2 nathanw else
1657 1.6.2.2 nathanw sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
1658 1.6.2.2 nathanw
1659 1.6.2.2 nathanw /* XXX 802.1x flow-control? */
1660 1.6.2.2 nathanw
1661 1.6.2.2 nathanw bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
1662 1.6.2.2 nathanw }
1663 1.6.2.2 nathanw
1664 1.6.2.2 nathanw /*
1665 1.6.2.2 nathanw * ste_mii_bitbang_read: [mii bit-bang interface function]
1666 1.6.2.2 nathanw *
1667 1.6.2.2 nathanw * Read the MII serial port for the MII bit-bang module.
1668 1.6.2.2 nathanw */
1669 1.6.2.2 nathanw uint32_t
1670 1.6.2.2 nathanw ste_mii_bitbang_read(struct device *self)
1671 1.6.2.2 nathanw {
1672 1.6.2.2 nathanw struct ste_softc *sc = (void *) self;
1673 1.6.2.2 nathanw
1674 1.6.2.2 nathanw return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
1675 1.6.2.2 nathanw }
1676 1.6.2.2 nathanw
1677 1.6.2.2 nathanw /*
1678 1.6.2.2 nathanw * ste_mii_bitbang_write: [mii big-bang interface function]
1679 1.6.2.2 nathanw *
1680 1.6.2.2 nathanw * Write the MII serial port for the MII bit-bang module.
1681 1.6.2.2 nathanw */
1682 1.6.2.2 nathanw void
1683 1.6.2.2 nathanw ste_mii_bitbang_write(struct device *self, uint32_t val)
1684 1.6.2.2 nathanw {
1685 1.6.2.2 nathanw struct ste_softc *sc = (void *) self;
1686 1.6.2.2 nathanw
1687 1.6.2.2 nathanw bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
1688 1.6.2.2 nathanw }
1689 1.6.2.2 nathanw
1690 1.6.2.2 nathanw /*
1691 1.6.2.2 nathanw * ste_mediastatus: [ifmedia interface function]
1692 1.6.2.2 nathanw *
1693 1.6.2.2 nathanw * Get the current interface media status.
1694 1.6.2.2 nathanw */
1695 1.6.2.2 nathanw void
1696 1.6.2.2 nathanw ste_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1697 1.6.2.2 nathanw {
1698 1.6.2.2 nathanw struct ste_softc *sc = ifp->if_softc;
1699 1.6.2.2 nathanw
1700 1.6.2.2 nathanw mii_pollstat(&sc->sc_mii);
1701 1.6.2.2 nathanw ifmr->ifm_status = sc->sc_mii.mii_media_status;
1702 1.6.2.2 nathanw ifmr->ifm_active = sc->sc_mii.mii_media_active;
1703 1.6.2.2 nathanw }
1704 1.6.2.2 nathanw
1705 1.6.2.2 nathanw /*
1706 1.6.2.2 nathanw * ste_mediachange: [ifmedia interface function]
1707 1.6.2.2 nathanw *
1708 1.6.2.2 nathanw * Set hardware to newly-selected media.
1709 1.6.2.2 nathanw */
1710 1.6.2.2 nathanw int
1711 1.6.2.2 nathanw ste_mediachange(struct ifnet *ifp)
1712 1.6.2.2 nathanw {
1713 1.6.2.2 nathanw struct ste_softc *sc = ifp->if_softc;
1714 1.6.2.2 nathanw
1715 1.6.2.2 nathanw if (ifp->if_flags & IFF_UP)
1716 1.6.2.2 nathanw mii_mediachg(&sc->sc_mii);
1717 1.6.2.2 nathanw return (0);
1718 1.6.2.2 nathanw }
1719