if_ste.c revision 1.11 1 /* $NetBSD: if_ste.c,v 1.11 2002/06/05 16:27:29 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the Sundance Tech. ST-201 10/100
41 * Ethernet controller.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.11 2002/06/05 16:27:29 bouyer Exp $");
46
47 #include "bpfilter.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/socket.h>
56 #include <sys/ioctl.h>
57 #include <sys/errno.h>
58 #include <sys/device.h>
59 #include <sys/queue.h>
60
61 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
62
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_ether.h>
67
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71
72 #include <machine/bus.h>
73 #include <machine/intr.h>
74
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 #include <dev/mii/mii_bitbang.h>
78
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 #include <dev/pci/pcidevs.h>
82
83 #include <dev/pci/if_stereg.h>
84
85 /*
86 * Transmit descriptor list size.
87 */
88 #define STE_NTXDESC 256
89 #define STE_NTXDESC_MASK (STE_NTXDESC - 1)
90 #define STE_NEXTTX(x) (((x) + 1) & STE_NTXDESC_MASK)
91
92 /*
93 * Receive descriptor list size.
94 */
95 #define STE_NRXDESC 128
96 #define STE_NRXDESC_MASK (STE_NRXDESC - 1)
97 #define STE_NEXTRX(x) (((x) + 1) & STE_NRXDESC_MASK)
98
99 /*
100 * Control structures are DMA'd to the ST-201 chip. We allocate them in
101 * a single clump that maps to a single DMA segment to make several things
102 * easier.
103 */
104 struct ste_control_data {
105 /*
106 * The transmit descriptors.
107 */
108 struct ste_tfd scd_txdescs[STE_NTXDESC];
109
110 /*
111 * The receive descriptors.
112 */
113 struct ste_rfd scd_rxdescs[STE_NRXDESC];
114 };
115
116 #define STE_CDOFF(x) offsetof(struct ste_control_data, x)
117 #define STE_CDTXOFF(x) STE_CDOFF(scd_txdescs[(x)])
118 #define STE_CDRXOFF(x) STE_CDOFF(scd_rxdescs[(x)])
119
120 /*
121 * Software state for transmit and receive jobs.
122 */
123 struct ste_descsoft {
124 struct mbuf *ds_mbuf; /* head of our mbuf chain */
125 bus_dmamap_t ds_dmamap; /* our DMA map */
126 };
127
128 /*
129 * Software state per device.
130 */
131 struct ste_softc {
132 struct device sc_dev; /* generic device information */
133 bus_space_tag_t sc_st; /* bus space tag */
134 bus_space_handle_t sc_sh; /* bus space handle */
135 bus_dma_tag_t sc_dmat; /* bus DMA tag */
136 struct ethercom sc_ethercom; /* ethernet common data */
137 void *sc_sdhook; /* shutdown hook */
138
139 void *sc_ih; /* interrupt cookie */
140
141 struct mii_data sc_mii; /* MII/media information */
142
143 struct callout sc_tick_ch; /* tick callout */
144
145 bus_dmamap_t sc_cddmamap; /* control data DMA map */
146 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
147
148 /*
149 * Software state for transmit and receive descriptors.
150 */
151 struct ste_descsoft sc_txsoft[STE_NTXDESC];
152 struct ste_descsoft sc_rxsoft[STE_NRXDESC];
153
154 /*
155 * Control data structures.
156 */
157 struct ste_control_data *sc_control_data;
158 #define sc_txdescs sc_control_data->scd_txdescs
159 #define sc_rxdescs sc_control_data->scd_rxdescs
160
161 int sc_txpending; /* number of Tx requests pending */
162 int sc_txdirty; /* first dirty Tx descriptor */
163 int sc_txlast; /* last used Tx descriptor */
164
165 int sc_rxptr; /* next ready Rx descriptor/descsoft */
166
167 int sc_txthresh; /* Tx threshold */
168 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
169 uint16_t sc_IntEnable; /* prototype IntEnable register */
170 uint16_t sc_MacCtrl0; /* prototype MacCtrl0 register */
171 uint8_t sc_ReceiveMode; /* prototype ReceiveMode register */
172 };
173
174 #define STE_CDTXADDR(sc, x) ((sc)->sc_cddma + STE_CDTXOFF((x)))
175 #define STE_CDRXADDR(sc, x) ((sc)->sc_cddma + STE_CDRXOFF((x)))
176
177 #define STE_CDTXSYNC(sc, x, ops) \
178 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
179 STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
180
181 #define STE_CDRXSYNC(sc, x, ops) \
182 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
183 STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
184
185 #define STE_INIT_RXDESC(sc, x) \
186 do { \
187 struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
188 struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
189 struct mbuf *__m = __ds->ds_mbuf; \
190 \
191 /* \
192 * Note: We scoot the packet forward 2 bytes in the buffer \
193 * so that the payload after the Ethernet header is aligned \
194 * to a 4-byte boundary. \
195 */ \
196 __m->m_data = __m->m_ext.ext_buf + 2; \
197 __rfd->rfd_frag.frag_addr = \
198 htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2); \
199 __rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST); \
200 __rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x)))); \
201 __rfd->rfd_status = 0; \
202 STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
203 } while (/*CONSTCOND*/0)
204
205 #define STE_TIMEOUT 1000
206
207 void ste_start(struct ifnet *);
208 void ste_watchdog(struct ifnet *);
209 int ste_ioctl(struct ifnet *, u_long, caddr_t);
210 int ste_init(struct ifnet *);
211 void ste_stop(struct ifnet *, int);
212
213 void ste_shutdown(void *);
214
215 void ste_reset(struct ste_softc *, u_int32_t);
216 void ste_setthresh(struct ste_softc *);
217 void ste_txrestart(struct ste_softc *, u_int8_t);
218 void ste_rxdrain(struct ste_softc *);
219 int ste_add_rxbuf(struct ste_softc *, int);
220 void ste_read_eeprom(struct ste_softc *, int, uint16_t *);
221 void ste_tick(void *);
222
223 void ste_stats_update(struct ste_softc *);
224
225 void ste_set_filter(struct ste_softc *);
226
227 int ste_intr(void *);
228 void ste_txintr(struct ste_softc *);
229 void ste_rxintr(struct ste_softc *);
230
231 int ste_mii_readreg(struct device *, int, int);
232 void ste_mii_writereg(struct device *, int, int, int);
233 void ste_mii_statchg(struct device *);
234
235 int ste_mediachange(struct ifnet *);
236 void ste_mediastatus(struct ifnet *, struct ifmediareq *);
237
238 int ste_match(struct device *, struct cfdata *, void *);
239 void ste_attach(struct device *, struct device *, void *);
240
241 int ste_copy_small = 0;
242
243 struct cfattach ste_ca = {
244 sizeof(struct ste_softc), ste_match, ste_attach,
245 };
246
247 uint32_t ste_mii_bitbang_read(struct device *);
248 void ste_mii_bitbang_write(struct device *, uint32_t);
249
250 const struct mii_bitbang_ops ste_mii_bitbang_ops = {
251 ste_mii_bitbang_read,
252 ste_mii_bitbang_write,
253 {
254 PC_MgmtData, /* MII_BIT_MDO */
255 PC_MgmtData, /* MII_BIT_MDI */
256 PC_MgmtClk, /* MII_BIT_MDC */
257 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
258 0, /* MII_BIT_DIR_PHY_HOST */
259 }
260 };
261
262 /*
263 * Devices supported by this driver.
264 */
265 const struct ste_product {
266 pci_vendor_id_t ste_vendor;
267 pci_product_id_t ste_product;
268 const char *ste_name;
269 } ste_products[] = {
270 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST201,
271 "Sundance ST-201 10/100 Ethernet" },
272
273 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL1002,
274 "D-Link DL-1002 10/100 Ethernet" },
275
276 { 0, 0,
277 NULL },
278 };
279
280 static const struct ste_product *
281 ste_lookup(const struct pci_attach_args *pa)
282 {
283 const struct ste_product *sp;
284
285 for (sp = ste_products; sp->ste_name != NULL; sp++) {
286 if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
287 PCI_PRODUCT(pa->pa_id) == sp->ste_product)
288 return (sp);
289 }
290 return (NULL);
291 }
292
293 int
294 ste_match(struct device *parent, struct cfdata *cf, void *aux)
295 {
296 struct pci_attach_args *pa = aux;
297
298 if (ste_lookup(pa) != NULL)
299 return (1);
300
301 return (0);
302 }
303
304 void
305 ste_attach(struct device *parent, struct device *self, void *aux)
306 {
307 struct ste_softc *sc = (struct ste_softc *) self;
308 struct pci_attach_args *pa = aux;
309 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
310 pci_chipset_tag_t pc = pa->pa_pc;
311 pci_intr_handle_t ih;
312 const char *intrstr = NULL;
313 bus_space_tag_t iot, memt;
314 bus_space_handle_t ioh, memh;
315 bus_dma_segment_t seg;
316 int ioh_valid, memh_valid;
317 int i, rseg, error;
318 const struct ste_product *sp;
319 pcireg_t pmode;
320 uint8_t enaddr[ETHER_ADDR_LEN];
321 uint16_t myea[ETHER_ADDR_LEN / 2];
322 int pmreg;
323
324 callout_init(&sc->sc_tick_ch);
325
326 sp = ste_lookup(pa);
327 if (sp == NULL) {
328 printf("\n");
329 panic("ste_attach: impossible");
330 }
331
332 printf(": %s\n", sp->ste_name);
333
334 /*
335 * Map the device.
336 */
337 ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
338 PCI_MAPREG_TYPE_IO, 0,
339 &iot, &ioh, NULL, NULL) == 0);
340 memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
341 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
342 &memt, &memh, NULL, NULL) == 0);
343
344 if (memh_valid) {
345 sc->sc_st = memt;
346 sc->sc_sh = memh;
347 } else if (ioh_valid) {
348 sc->sc_st = iot;
349 sc->sc_sh = ioh;
350 } else {
351 printf("%s: unable to map device registers\n",
352 sc->sc_dev.dv_xname);
353 return;
354 }
355
356 sc->sc_dmat = pa->pa_dmat;
357
358 /* Enable bus mastering. */
359 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
360 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
361 PCI_COMMAND_MASTER_ENABLE);
362
363 /* Get it out of power save mode if needed. */
364 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
365 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
366 if (pmode == 3) {
367 /*
368 * The card has lost all configuration data in
369 * this state, so punt.
370 */
371 printf("%s: unable to wake up from power state D3\n",
372 sc->sc_dev.dv_xname);
373 return;
374 }
375 if (pmode != 0) {
376 printf("%s: waking up from power state D%d\n",
377 sc->sc_dev.dv_xname, pmode);
378 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
379 }
380 }
381
382 /*
383 * Map and establish our interrupt.
384 */
385 if (pci_intr_map(pa, &ih)) {
386 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
387 return;
388 }
389 intrstr = pci_intr_string(pc, ih);
390 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
391 if (sc->sc_ih == NULL) {
392 printf("%s: unable to establish interrupt",
393 sc->sc_dev.dv_xname);
394 if (intrstr != NULL)
395 printf(" at %s", intrstr);
396 printf("\n");
397 return;
398 }
399 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
400
401 /*
402 * Allocate the control data structures, and create and load the
403 * DMA map for it.
404 */
405 if ((error = bus_dmamem_alloc(sc->sc_dmat,
406 sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
407 0)) != 0) {
408 printf("%s: unable to allocate control data, error = %d\n",
409 sc->sc_dev.dv_xname, error);
410 goto fail_0;
411 }
412
413 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
414 sizeof(struct ste_control_data), (caddr_t *)&sc->sc_control_data,
415 BUS_DMA_COHERENT)) != 0) {
416 printf("%s: unable to map control data, error = %d\n",
417 sc->sc_dev.dv_xname, error);
418 goto fail_1;
419 }
420
421 if ((error = bus_dmamap_create(sc->sc_dmat,
422 sizeof(struct ste_control_data), 1,
423 sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
424 printf("%s: unable to create control data DMA map, "
425 "error = %d\n", sc->sc_dev.dv_xname, error);
426 goto fail_2;
427 }
428
429 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
430 sc->sc_control_data, sizeof(struct ste_control_data), NULL,
431 0)) != 0) {
432 printf("%s: unable to load control data DMA map, error = %d\n",
433 sc->sc_dev.dv_xname, error);
434 goto fail_3;
435 }
436
437 /*
438 * Create the transmit buffer DMA maps.
439 */
440 for (i = 0; i < STE_NTXDESC; i++) {
441 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
442 STE_NTXFRAGS, MCLBYTES, 0, 0,
443 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
444 printf("%s: unable to create tx DMA map %d, "
445 "error = %d\n", sc->sc_dev.dv_xname, i, error);
446 goto fail_4;
447 }
448 }
449
450 /*
451 * Create the receive buffer DMA maps.
452 */
453 for (i = 0; i < STE_NRXDESC; i++) {
454 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
455 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
456 printf("%s: unable to create rx DMA map %d, "
457 "error = %d\n", sc->sc_dev.dv_xname, i, error);
458 goto fail_5;
459 }
460 sc->sc_rxsoft[i].ds_mbuf = NULL;
461 }
462
463 /*
464 * Reset the chip to a known state.
465 */
466 ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
467 AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
468
469 /*
470 * Read the Ethernet address from the EEPROM.
471 */
472 for (i = 0; i < 3; i++) {
473 ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
474 myea[i] = le16toh(myea[i]);
475 }
476 memcpy(enaddr, myea, sizeof(enaddr));
477
478 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
479 ether_sprintf(enaddr));
480
481 /*
482 * Initialize our media structures and probe the MII.
483 */
484 sc->sc_mii.mii_ifp = ifp;
485 sc->sc_mii.mii_readreg = ste_mii_readreg;
486 sc->sc_mii.mii_writereg = ste_mii_writereg;
487 sc->sc_mii.mii_statchg = ste_mii_statchg;
488 ifmedia_init(&sc->sc_mii.mii_media, 0, ste_mediachange,
489 ste_mediastatus);
490 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
491 MII_OFFSET_ANY, 0);
492 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
493 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
494 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
495 } else
496 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
497
498 ifp = &sc->sc_ethercom.ec_if;
499 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
500 ifp->if_softc = sc;
501 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
502 ifp->if_ioctl = ste_ioctl;
503 ifp->if_start = ste_start;
504 ifp->if_watchdog = ste_watchdog;
505 ifp->if_init = ste_init;
506 ifp->if_stop = ste_stop;
507 IFQ_SET_READY(&ifp->if_snd);
508
509 /*
510 * Default the transmit threshold to 128 bytes.
511 */
512 sc->sc_txthresh = 128;
513
514 /*
515 * Disable MWI if the PCI layer tells us to.
516 */
517 sc->sc_DMACtrl = 0;
518 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
519 sc->sc_DMACtrl |= DC_MWIDisable;
520
521 /*
522 * We can support 802.1Q VLAN-sized frames.
523 */
524 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
525
526 /*
527 * Attach the interface.
528 */
529 if_attach(ifp);
530 ether_ifattach(ifp, enaddr);
531
532 /*
533 * Make sure the interface is shutdown during reboot.
534 */
535 sc->sc_sdhook = shutdownhook_establish(ste_shutdown, sc);
536 if (sc->sc_sdhook == NULL)
537 printf("%s: WARNING: unable to establish shutdown hook\n",
538 sc->sc_dev.dv_xname);
539 return;
540
541 /*
542 * Free any resources we've allocated during the failed attach
543 * attempt. Do this in reverse order and fall through.
544 */
545 fail_5:
546 for (i = 0; i < STE_NRXDESC; i++) {
547 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
548 bus_dmamap_destroy(sc->sc_dmat,
549 sc->sc_rxsoft[i].ds_dmamap);
550 }
551 fail_4:
552 for (i = 0; i < STE_NTXDESC; i++) {
553 if (sc->sc_txsoft[i].ds_dmamap != NULL)
554 bus_dmamap_destroy(sc->sc_dmat,
555 sc->sc_txsoft[i].ds_dmamap);
556 }
557 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
558 fail_3:
559 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
560 fail_2:
561 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
562 sizeof(struct ste_control_data));
563 fail_1:
564 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
565 fail_0:
566 return;
567 }
568
569 /*
570 * ste_shutdown:
571 *
572 * Make sure the interface is stopped at reboot time.
573 */
574 void
575 ste_shutdown(void *arg)
576 {
577 struct ste_softc *sc = arg;
578
579 ste_stop(&sc->sc_ethercom.ec_if, 1);
580 }
581
582 static void
583 ste_dmahalt_wait(struct ste_softc *sc)
584 {
585 int i;
586
587 for (i = 0; i < STE_TIMEOUT; i++) {
588 delay(2);
589 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
590 DC_DMAHaltBusy) == 0)
591 break;
592 }
593
594 if (i == STE_TIMEOUT)
595 printf("%s: DMA halt timed out\n", sc->sc_dev.dv_xname);
596 }
597
598 /*
599 * ste_start: [ifnet interface function]
600 *
601 * Start packet transmission on the interface.
602 */
603 void
604 ste_start(struct ifnet *ifp)
605 {
606 struct ste_softc *sc = ifp->if_softc;
607 struct mbuf *m0, *m;
608 struct ste_descsoft *ds;
609 struct ste_tfd *tfd;
610 bus_dmamap_t dmamap;
611 int error, olasttx, nexttx, opending, seg, totlen;
612
613 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
614 return;
615
616 /*
617 * Remember the previous number of pending transmissions
618 * and the current last descriptor in the list.
619 */
620 opending = sc->sc_txpending;
621 olasttx = sc->sc_txlast;
622
623 /*
624 * Loop through the send queue, setting up transmit descriptors
625 * until we drain the queue, or use up all available transmit
626 * descriptors.
627 */
628 while (sc->sc_txpending < STE_NTXDESC) {
629 /*
630 * Grab a packet off the queue.
631 */
632 IFQ_POLL(&ifp->if_snd, m0);
633 if (m0 == NULL)
634 break;
635 m = NULL;
636
637 /*
638 * Get the last and next available transmit descriptor.
639 */
640 nexttx = STE_NEXTTX(sc->sc_txlast);
641 tfd = &sc->sc_txdescs[nexttx];
642 ds = &sc->sc_txsoft[nexttx];
643
644 dmamap = ds->ds_dmamap;
645
646 /*
647 * Load the DMA map. If this fails, the packet either
648 * didn't fit in the alloted number of segments, or we
649 * were short on resources. In this case, we'll copy
650 * and try again.
651 */
652 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
653 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
654 MGETHDR(m, M_DONTWAIT, MT_DATA);
655 if (m == NULL) {
656 printf("%s: unable to allocate Tx mbuf\n",
657 sc->sc_dev.dv_xname);
658 break;
659 }
660 if (m0->m_pkthdr.len > MHLEN) {
661 MCLGET(m, M_DONTWAIT);
662 if ((m->m_flags & M_EXT) == 0) {
663 printf("%s: unable to allocate Tx "
664 "cluster\n", sc->sc_dev.dv_xname);
665 m_freem(m);
666 break;
667 }
668 }
669 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
670 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
671 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
672 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
673 if (error) {
674 printf("%s: unable to load Tx buffer, "
675 "error = %d\n", sc->sc_dev.dv_xname, error);
676 break;
677 }
678 }
679
680 IFQ_DEQUEUE(&ifp->if_snd, m0);
681 if (m != NULL) {
682 m_freem(m0);
683 m0 = m;
684 }
685
686 /*
687 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
688 */
689
690 /* Sync the DMA map. */
691 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
692 BUS_DMASYNC_PREWRITE);
693
694 /* Initialize the fragment list. */
695 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
696 tfd->tfd_frags[seg].frag_addr =
697 htole32(dmamap->dm_segs[seg].ds_addr);
698 tfd->tfd_frags[seg].frag_len =
699 htole32(dmamap->dm_segs[seg].ds_len);
700 totlen += dmamap->dm_segs[seg].ds_len;
701 }
702 tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
703
704 /* Initialize the descriptor. */
705 tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
706 tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
707
708 /* Sync the descriptor. */
709 STE_CDTXSYNC(sc, nexttx,
710 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
711
712 /*
713 * Store a pointer to the packet so we can free it later,
714 * and remember what txdirty will be once the packet is
715 * done.
716 */
717 ds->ds_mbuf = m0;
718
719 /* Advance the tx pointer. */
720 sc->sc_txpending++;
721 sc->sc_txlast = nexttx;
722
723 #if NBPFILTER > 0
724 /*
725 * Pass the packet to any BPF listeners.
726 */
727 if (ifp->if_bpf)
728 bpf_mtap(ifp->if_bpf, m0);
729 #endif /* NBPFILTER > 0 */
730 }
731
732 if (sc->sc_txpending == STE_NTXDESC) {
733 /* No more slots left; notify upper layer. */
734 ifp->if_flags |= IFF_OACTIVE;
735 }
736
737 if (sc->sc_txpending != opending) {
738 /*
739 * We enqueued packets. If the transmitter was idle,
740 * reset the txdirty pointer.
741 */
742 if (opending == 0)
743 sc->sc_txdirty = STE_NEXTTX(olasttx);
744
745 /*
746 * Cause a descriptor interrupt to happen on the
747 * last packet we enqueued, and also cause the
748 * DMA engine to wait after is has finished processing
749 * it.
750 */
751 sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
752 sc->sc_txdescs[sc->sc_txlast].tfd_control |=
753 htole32(TFD_TxDMAIndicate);
754 STE_CDTXSYNC(sc, sc->sc_txlast,
755 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
756
757 /*
758 * Link up the new chain of descriptors to the
759 * last.
760 */
761 sc->sc_txdescs[olasttx].tfd_next =
762 STE_CDTXADDR(sc, STE_NEXTTX(olasttx));
763 STE_CDTXSYNC(sc, olasttx,
764 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
765
766 /*
767 * Kick the transmit DMA logic. Note that since we're
768 * using auto-polling, reading the Tx desc pointer will
769 * give it the nudge it needs to get going.
770 */
771 if (bus_space_read_4(sc->sc_st, sc->sc_sh,
772 STE_TxDMAListPtr) == 0) {
773 bus_space_write_4(sc->sc_st, sc->sc_sh,
774 STE_DMACtrl, DC_TxDMAHalt);
775 ste_dmahalt_wait(sc);
776 bus_space_write_4(sc->sc_st, sc->sc_sh,
777 STE_TxDMAListPtr,
778 STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
779 bus_space_write_4(sc->sc_st, sc->sc_sh,
780 STE_DMACtrl, DC_TxDMAResume);
781 }
782
783 /* Set a watchdog timer in case the chip flakes out. */
784 ifp->if_timer = 5;
785 }
786 }
787
788 /*
789 * ste_watchdog: [ifnet interface function]
790 *
791 * Watchdog timer handler.
792 */
793 void
794 ste_watchdog(struct ifnet *ifp)
795 {
796 struct ste_softc *sc = ifp->if_softc;
797
798 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
799 ifp->if_oerrors++;
800
801 (void) ste_init(ifp);
802
803 /* Try to get more packets going. */
804 ste_start(ifp);
805 }
806
807 /*
808 * ste_ioctl: [ifnet interface function]
809 *
810 * Handle control requests from the operator.
811 */
812 int
813 ste_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
814 {
815 struct ste_softc *sc = ifp->if_softc;
816 struct ifreq *ifr = (struct ifreq *)data;
817 int s, error;
818
819 s = splnet();
820
821 switch (cmd) {
822 case SIOCSIFMEDIA:
823 case SIOCGIFMEDIA:
824 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
825 break;
826
827 default:
828 error = ether_ioctl(ifp, cmd, data);
829 if (error == ENETRESET) {
830 /*
831 * Multicast list has changed; set the hardware filter
832 * accordingly.
833 */
834 ste_set_filter(sc);
835 error = 0;
836 }
837 break;
838 }
839
840 /* Try to get more packets going. */
841 ste_start(ifp);
842
843 splx(s);
844 return (error);
845 }
846
847 /*
848 * ste_intr:
849 *
850 * Interrupt service routine.
851 */
852 int
853 ste_intr(void *arg)
854 {
855 struct ste_softc *sc = arg;
856 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
857 uint16_t isr;
858 uint8_t txstat;
859 int wantinit;
860
861 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
862 IS_InterruptStatus) == 0)
863 return (0);
864
865 for (wantinit = 0; wantinit == 0;) {
866 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
867 if ((isr & sc->sc_IntEnable) == 0)
868 break;
869
870 /* Receive interrupts. */
871 if (isr & IE_RxDMAComplete)
872 ste_rxintr(sc);
873
874 /* Transmit interrupts. */
875 if (isr & (IE_TxDMAComplete|IE_TxComplete))
876 ste_txintr(sc);
877
878 /* Statistics overflow. */
879 if (isr & IE_UpdateStats)
880 ste_stats_update(sc);
881
882 /* Transmission errors. */
883 if (isr & IE_TxComplete) {
884 for (;;) {
885 txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
886 STE_TxStatus);
887 if ((txstat & TS_TxComplete) == 0)
888 break;
889 if (txstat & TS_TxUnderrun) {
890 sc->sc_txthresh += 32;
891 if (sc->sc_txthresh > 0x1ffc)
892 sc->sc_txthresh = 0x1ffc;
893 printf("%s: transmit underrun, new "
894 "threshold: %d bytes\n",
895 sc->sc_dev.dv_xname,
896 sc->sc_txthresh);
897 ste_reset(sc, AC_TxReset | AC_DMA |
898 AC_FIFO | AC_Network);
899 ste_setthresh(sc);
900 bus_space_write_1(sc->sc_st, sc->sc_sh,
901 STE_TxDMAPollPeriod, 127);
902 ste_txrestart(sc,
903 bus_space_read_1(sc->sc_st,
904 sc->sc_sh, STE_TxFrameId));
905 }
906 if (txstat & TS_TxReleaseError) {
907 printf("%s: Tx FIFO release error\n",
908 sc->sc_dev.dv_xname);
909 wantinit = 1;
910 }
911 if (txstat & TS_MaxCollisions) {
912 printf("%s: excessive collisions\n",
913 sc->sc_dev.dv_xname);
914 wantinit = 1;
915 }
916 if (txstat & TS_TxStatusOverflow) {
917 printf("%s: status overflow\n",
918 sc->sc_dev.dv_xname);
919 wantinit = 1;
920 }
921 bus_space_write_2(sc->sc_st, sc->sc_sh,
922 STE_TxStatus, 0);
923 }
924 }
925
926 /* Host interface errors. */
927 if (isr & IE_HostError) {
928 printf("%s: Host interface error\n",
929 sc->sc_dev.dv_xname);
930 wantinit = 1;
931 }
932 }
933
934 if (wantinit)
935 ste_init(ifp);
936
937 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
938 sc->sc_IntEnable);
939
940 /* Try to get more packets going. */
941 ste_start(ifp);
942
943 return (1);
944 }
945
946 /*
947 * ste_txintr:
948 *
949 * Helper; handle transmit interrupts.
950 */
951 void
952 ste_txintr(struct ste_softc *sc)
953 {
954 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
955 struct ste_descsoft *ds;
956 uint32_t control;
957 int i;
958
959 ifp->if_flags &= ~IFF_OACTIVE;
960
961 /*
962 * Go through our Tx list and free mbufs for those
963 * frames which have been transmitted.
964 */
965 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
966 i = STE_NEXTTX(i), sc->sc_txpending--) {
967 ds = &sc->sc_txsoft[i];
968
969 STE_CDTXSYNC(sc, i,
970 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
971
972 control = le32toh(sc->sc_txdescs[i].tfd_control);
973 if ((control & TFD_TxDMAComplete) == 0)
974 break;
975
976 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
977 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
978 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
979 m_freem(ds->ds_mbuf);
980 ds->ds_mbuf = NULL;
981 }
982
983 /* Update the dirty transmit buffer pointer. */
984 sc->sc_txdirty = i;
985
986 /*
987 * If there are no more pending transmissions, cancel the watchdog
988 * timer.
989 */
990 if (sc->sc_txpending == 0)
991 ifp->if_timer = 0;
992 }
993
994 /*
995 * ste_rxintr:
996 *
997 * Helper; handle receive interrupts.
998 */
999 void
1000 ste_rxintr(struct ste_softc *sc)
1001 {
1002 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1003 struct ste_descsoft *ds;
1004 struct mbuf *m;
1005 uint32_t status;
1006 int i, len;
1007
1008 for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
1009 ds = &sc->sc_rxsoft[i];
1010
1011 STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1012
1013 status = le32toh(sc->sc_rxdescs[i].rfd_status);
1014
1015 if ((status & RFD_RxDMAComplete) == 0)
1016 break;
1017
1018 /*
1019 * If the packet had an error, simply recycle the
1020 * buffer. Note, we count the error later in the
1021 * periodic stats update.
1022 */
1023 if (status & RFD_RxFrameError) {
1024 STE_INIT_RXDESC(sc, i);
1025 continue;
1026 }
1027
1028 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1029 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1030
1031 /*
1032 * No errors; receive the packet. Note, we have
1033 * configured the chip to not include the CRC at
1034 * the end of the packet.
1035 */
1036 len = RFD_RxDMAFrameLen(status);
1037
1038 /*
1039 * If the packet is small enough to fit in a
1040 * single header mbuf, allocate one and copy
1041 * the data into it. This greatly reduces
1042 * memory consumption when we receive lots
1043 * of small packets.
1044 *
1045 * Otherwise, we add a new buffer to the receive
1046 * chain. If this fails, we drop the packet and
1047 * recycle the old buffer.
1048 */
1049 if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
1050 MGETHDR(m, M_DONTWAIT, MT_DATA);
1051 if (m == NULL)
1052 goto dropit;
1053 m->m_data += 2;
1054 memcpy(mtod(m, caddr_t),
1055 mtod(ds->ds_mbuf, caddr_t), len);
1056 STE_INIT_RXDESC(sc, i);
1057 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1058 ds->ds_dmamap->dm_mapsize,
1059 BUS_DMASYNC_PREREAD);
1060 } else {
1061 m = ds->ds_mbuf;
1062 if (ste_add_rxbuf(sc, i) != 0) {
1063 dropit:
1064 ifp->if_ierrors++;
1065 STE_INIT_RXDESC(sc, i);
1066 bus_dmamap_sync(sc->sc_dmat,
1067 ds->ds_dmamap, 0,
1068 ds->ds_dmamap->dm_mapsize,
1069 BUS_DMASYNC_PREREAD);
1070 continue;
1071 }
1072 }
1073
1074 m->m_pkthdr.rcvif = ifp;
1075 m->m_pkthdr.len = m->m_len = len;
1076
1077 #if NBPFILTER > 0
1078 /*
1079 * Pass this up to any BPF listeners, but only
1080 * pass if up the stack if it's for us.
1081 */
1082 if (ifp->if_bpf)
1083 bpf_mtap(ifp->if_bpf, m);
1084 #endif /* NBPFILTER > 0 */
1085
1086 /* Pass it on. */
1087 (*ifp->if_input)(ifp, m);
1088 }
1089
1090 /* Update the receive pointer. */
1091 sc->sc_rxptr = i;
1092 }
1093
1094 /*
1095 * ste_tick:
1096 *
1097 * One second timer, used to tick the MII.
1098 */
1099 void
1100 ste_tick(void *arg)
1101 {
1102 struct ste_softc *sc = arg;
1103 int s;
1104
1105 s = splnet();
1106 mii_tick(&sc->sc_mii);
1107 ste_stats_update(sc);
1108 splx(s);
1109
1110 callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1111 }
1112
1113 /*
1114 * ste_stats_update:
1115 *
1116 * Read the ST-201 statistics counters.
1117 */
1118 void
1119 ste_stats_update(struct ste_softc *sc)
1120 {
1121 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1122 bus_space_tag_t st = sc->sc_st;
1123 bus_space_handle_t sh = sc->sc_sh;
1124
1125 (void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
1126 (void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
1127
1128 (void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
1129 (void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
1130
1131 ifp->if_opackets +=
1132 (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
1133 ifp->if_ipackets +=
1134 (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
1135
1136 ifp->if_collisions +=
1137 (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
1138 (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
1139 (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
1140
1141 (void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
1142
1143 ifp->if_ierrors +=
1144 (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
1145
1146 ifp->if_oerrors +=
1147 (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
1148 (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
1149 bus_space_read_1(st, sh, STE_CarrierSenseErrors);
1150
1151 (void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
1152 (void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
1153 (void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
1154 (void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
1155 }
1156
1157 /*
1158 * ste_reset:
1159 *
1160 * Perform a soft reset on the ST-201.
1161 */
1162 void
1163 ste_reset(struct ste_softc *sc, u_int32_t rstbits)
1164 {
1165 uint32_t ac;
1166 int i;
1167
1168 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
1169
1170 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
1171
1172 delay(50000);
1173
1174 for (i = 0; i < STE_TIMEOUT; i++) {
1175 delay(1000);
1176 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
1177 AC_ResetBusy) == 0)
1178 break;
1179 }
1180
1181 if (i == STE_TIMEOUT)
1182 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1183
1184 delay(1000);
1185 }
1186
1187 /*
1188 * ste_setthresh:
1189 *
1190 * set the various transmit threshold registers
1191 */
1192 void
1193 ste_setthresh(struct ste_softc *sc)
1194 {
1195 /* set the TX threhold */
1196 bus_space_write_2(sc->sc_st, sc->sc_sh,
1197 STE_TxStartThresh, sc->sc_txthresh);
1198 /* Urgent threshold: set to sc_txthresh / 2 */
1199 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
1200 sc->sc_txthresh >> 6);
1201 /* Burst threshold: use default value (256 bytes) */
1202 }
1203
1204 /*
1205 * restart TX at the given frame ID in the transmitter ring
1206 */
1207
1208 void
1209 ste_txrestart(struct ste_softc *sc, u_int8_t id)
1210 {
1211 u_int32_t control;
1212
1213 STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1214 control = le32toh(sc->sc_txdescs[id].tfd_control);
1215 control &= ~TFD_TxDMAComplete;
1216 sc->sc_txdescs[id].tfd_control = htole32(control);
1217 STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1218
1219 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
1220 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
1221 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
1222 ste_dmahalt_wait(sc);
1223 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
1224 STE_CDTXADDR(sc, id));
1225 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
1226 }
1227
1228 /*
1229 * ste_init: [ ifnet interface function ]
1230 *
1231 * Initialize the interface. Must be called at splnet().
1232 */
1233 int
1234 ste_init(struct ifnet *ifp)
1235 {
1236 struct ste_softc *sc = ifp->if_softc;
1237 bus_space_tag_t st = sc->sc_st;
1238 bus_space_handle_t sh = sc->sc_sh;
1239 struct ste_descsoft *ds;
1240 int i, error = 0;
1241
1242 /*
1243 * Cancel any pending I/O.
1244 */
1245 ste_stop(ifp, 0);
1246
1247 /*
1248 * Reset the chip to a known state.
1249 */
1250 ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
1251 AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
1252
1253 /*
1254 * Initialize the transmit descriptor ring.
1255 */
1256 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1257 sc->sc_txpending = 0;
1258 sc->sc_txdirty = 0;
1259 sc->sc_txlast = STE_NTXDESC - 1;
1260
1261 /*
1262 * Initialize the receive descriptor and receive job
1263 * descriptor rings.
1264 */
1265 for (i = 0; i < STE_NRXDESC; i++) {
1266 ds = &sc->sc_rxsoft[i];
1267 if (ds->ds_mbuf == NULL) {
1268 if ((error = ste_add_rxbuf(sc, i)) != 0) {
1269 printf("%s: unable to allocate or map rx "
1270 "buffer %d, error = %d\n",
1271 sc->sc_dev.dv_xname, i, error);
1272 /*
1273 * XXX Should attempt to run with fewer receive
1274 * XXX buffers instead of just failing.
1275 */
1276 ste_rxdrain(sc);
1277 goto out;
1278 }
1279 } else
1280 STE_INIT_RXDESC(sc, i);
1281 }
1282 sc->sc_rxptr = 0;
1283
1284 /* Set the station address. */
1285 for (i = 0; i < ETHER_ADDR_LEN; i++)
1286 bus_space_write_1(st, sh, STE_StationAddress0 + 1,
1287 LLADDR(ifp->if_sadl)[i]);
1288
1289 /* Set up the receive filter. */
1290 ste_set_filter(sc);
1291
1292 /*
1293 * Give the receive ring to the chip.
1294 */
1295 bus_space_write_4(st, sh, STE_RxDMAListPtr,
1296 STE_CDRXADDR(sc, sc->sc_rxptr));
1297
1298 /*
1299 * We defer giving the transmit ring to the chip until we
1300 * transmit the first packet.
1301 */
1302
1303 /*
1304 * Initialize the Tx auto-poll period. It's OK to make this number
1305 * large (127 is the max) -- we explicitly kick the transmit engine
1306 * when there's actually a packet. We are using auto-polling only
1307 * to make the interface to the transmit engine not suck.
1308 */
1309 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
1310
1311 /* ..and the Rx auto-poll period. */
1312 bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
1313
1314 /* Initialize the Tx start threshold. */
1315 ste_setthresh(sc);
1316
1317 /* Set the FIFO release threshold to 512 bytes. */
1318 bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
1319
1320 /*
1321 * Initialize the interrupt mask.
1322 */
1323 sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1324 IE_TxDMAComplete | IE_RxDMAComplete;
1325
1326 bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
1327 bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
1328
1329 /*
1330 * Start the receive DMA engine.
1331 */
1332 bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
1333
1334 /*
1335 * Initialize MacCtrl0 -- do it before setting the media,
1336 * as setting the media will actually program the register.
1337 */
1338 sc->sc_MacCtrl0 = MC0_IFSSelect(0);
1339 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1340 sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
1341
1342 /*
1343 * Set the current media.
1344 */
1345 mii_mediachg(&sc->sc_mii);
1346
1347 /*
1348 * Start the MAC.
1349 */
1350 bus_space_write_2(st, sh, STE_MacCtrl1,
1351 MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
1352
1353 /*
1354 * Start the one second MII clock.
1355 */
1356 callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1357
1358 /*
1359 * ...all done!
1360 */
1361 ifp->if_flags |= IFF_RUNNING;
1362 ifp->if_flags &= ~IFF_OACTIVE;
1363
1364 out:
1365 if (error)
1366 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1367 return (error);
1368 }
1369
1370 /*
1371 * ste_drain:
1372 *
1373 * Drain the receive queue.
1374 */
1375 void
1376 ste_rxdrain(struct ste_softc *sc)
1377 {
1378 struct ste_descsoft *ds;
1379 int i;
1380
1381 for (i = 0; i < STE_NRXDESC; i++) {
1382 ds = &sc->sc_rxsoft[i];
1383 if (ds->ds_mbuf != NULL) {
1384 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1385 m_freem(ds->ds_mbuf);
1386 ds->ds_mbuf = NULL;
1387 }
1388 }
1389 }
1390
1391 /*
1392 * ste_stop: [ ifnet interface function ]
1393 *
1394 * Stop transmission on the interface.
1395 */
1396 void
1397 ste_stop(struct ifnet *ifp, int disable)
1398 {
1399 struct ste_softc *sc = ifp->if_softc;
1400 struct ste_descsoft *ds;
1401 int i;
1402
1403 /*
1404 * Stop the one second clock.
1405 */
1406 callout_stop(&sc->sc_tick_ch);
1407
1408 /* Down the MII. */
1409 mii_down(&sc->sc_mii);
1410
1411 /*
1412 * Disable interrupts.
1413 */
1414 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
1415
1416 /*
1417 * Stop receiver, transmitter, and stats update.
1418 */
1419 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
1420 MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
1421
1422 /*
1423 * Stop the transmit and receive DMA.
1424 */
1425 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
1426 DC_RxDMAHalt | DC_TxDMAHalt);
1427 ste_dmahalt_wait(sc);
1428
1429 /*
1430 * Release any queued transmit buffers.
1431 */
1432 for (i = 0; i < STE_NTXDESC; i++) {
1433 ds = &sc->sc_txsoft[i];
1434 if (ds->ds_mbuf != NULL) {
1435 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1436 m_freem(ds->ds_mbuf);
1437 ds->ds_mbuf = NULL;
1438 }
1439 }
1440
1441 if (disable)
1442 ste_rxdrain(sc);
1443
1444 /*
1445 * Mark the interface down and cancel the watchdog timer.
1446 */
1447 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1448 ifp->if_timer = 0;
1449 }
1450
1451 static int
1452 ste_eeprom_wait(struct ste_softc *sc)
1453 {
1454 int i;
1455
1456 for (i = 0; i < STE_TIMEOUT; i++) {
1457 delay(1000);
1458 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
1459 EC_EepromBusy) == 0)
1460 return (0);
1461 }
1462 return (1);
1463 }
1464
1465 /*
1466 * ste_read_eeprom:
1467 *
1468 * Read data from the serial EEPROM.
1469 */
1470 void
1471 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
1472 {
1473
1474 if (ste_eeprom_wait(sc))
1475 printf("%s: EEPROM failed to come ready\n",
1476 sc->sc_dev.dv_xname);
1477
1478 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
1479 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
1480 if (ste_eeprom_wait(sc))
1481 printf("%s: EEPROM read timed out\n",
1482 sc->sc_dev.dv_xname);
1483 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
1484 }
1485
1486 /*
1487 * ste_add_rxbuf:
1488 *
1489 * Add a receive buffer to the indicated descriptor.
1490 */
1491 int
1492 ste_add_rxbuf(struct ste_softc *sc, int idx)
1493 {
1494 struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
1495 struct mbuf *m;
1496 int error;
1497
1498 MGETHDR(m, M_DONTWAIT, MT_DATA);
1499 if (m == NULL)
1500 return (ENOBUFS);
1501
1502 MCLGET(m, M_DONTWAIT);
1503 if ((m->m_flags & M_EXT) == 0) {
1504 m_freem(m);
1505 return (ENOBUFS);
1506 }
1507
1508 if (ds->ds_mbuf != NULL)
1509 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1510
1511 ds->ds_mbuf = m;
1512
1513 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1514 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1515 BUS_DMA_READ|BUS_DMA_NOWAIT);
1516 if (error) {
1517 printf("%s: can't load rx DMA map %d, error = %d\n",
1518 sc->sc_dev.dv_xname, idx, error);
1519 panic("ste_add_rxbuf"); /* XXX */
1520 }
1521
1522 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1523 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1524
1525 STE_INIT_RXDESC(sc, idx);
1526
1527 return (0);
1528 }
1529
1530 /*
1531 * ste_set_filter:
1532 *
1533 * Set up the receive filter.
1534 */
1535 void
1536 ste_set_filter(struct ste_softc *sc)
1537 {
1538 struct ethercom *ec = &sc->sc_ethercom;
1539 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1540 struct ether_multi *enm;
1541 struct ether_multistep step;
1542 uint32_t crc;
1543 uint16_t mchash[4];
1544
1545 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1546 if (ifp->if_flags & IFF_BROADCAST)
1547 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1548
1549 if (ifp->if_flags & IFF_PROMISC) {
1550 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1551 goto allmulti;
1552 }
1553
1554 /*
1555 * Set up the multicast address filter by passing all multicast
1556 * addresses through a CRC generator, and then using the low-order
1557 * 6 bits as an index into the 64 bit multicast hash table. The
1558 * high order bits select the register, while the rest of the bits
1559 * select the bit within the register.
1560 */
1561
1562 memset(mchash, 0, sizeof(mchash));
1563
1564 ETHER_FIRST_MULTI(step, ec, enm);
1565 if (enm == NULL)
1566 goto done;
1567
1568 while (enm != NULL) {
1569 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1570 /*
1571 * We must listen to a range of multicast addresses.
1572 * For now, just accept all multicasts, rather than
1573 * trying to set only those filter bits needed to match
1574 * the range. (At this time, the only use of address
1575 * ranges is for IP multicast routing, for which the
1576 * range is big enough to require all bits set.)
1577 */
1578 goto allmulti;
1579 }
1580
1581 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1582
1583 /* Just want the 6 least significant bits. */
1584 crc &= 0x3f;
1585
1586 /* Set the corresponding bit in the hash table. */
1587 mchash[crc >> 4] |= 1 << (crc & 0xf);
1588
1589 ETHER_NEXT_MULTI(step, enm);
1590 }
1591
1592 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1593
1594 ifp->if_flags &= ~IFF_ALLMULTI;
1595 goto done;
1596
1597 allmulti:
1598 ifp->if_flags |= IFF_ALLMULTI;
1599 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1600
1601 done:
1602 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1603 /*
1604 * Program the multicast hash table.
1605 */
1606 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
1607 mchash[0]);
1608 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
1609 mchash[1]);
1610 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
1611 mchash[2]);
1612 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
1613 mchash[3]);
1614 }
1615
1616 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
1617 sc->sc_ReceiveMode);
1618 }
1619
1620 /*
1621 * ste_mii_readreg: [mii interface function]
1622 *
1623 * Read a PHY register on the MII of the ST-201.
1624 */
1625 int
1626 ste_mii_readreg(struct device *self, int phy, int reg)
1627 {
1628
1629 return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
1630 }
1631
1632 /*
1633 * ste_mii_writereg: [mii interface function]
1634 *
1635 * Write a PHY register on the MII of the ST-201.
1636 */
1637 void
1638 ste_mii_writereg(struct device *self, int phy, int reg, int val)
1639 {
1640
1641 mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
1642 }
1643
1644 /*
1645 * ste_mii_statchg: [mii interface function]
1646 *
1647 * Callback from MII layer when media changes.
1648 */
1649 void
1650 ste_mii_statchg(struct device *self)
1651 {
1652 struct ste_softc *sc = (struct ste_softc *) self;
1653
1654 if (sc->sc_mii.mii_media_active & IFM_FDX)
1655 sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
1656 else
1657 sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
1658
1659 /* XXX 802.1x flow-control? */
1660
1661 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
1662 }
1663
1664 /*
1665 * ste_mii_bitbang_read: [mii bit-bang interface function]
1666 *
1667 * Read the MII serial port for the MII bit-bang module.
1668 */
1669 uint32_t
1670 ste_mii_bitbang_read(struct device *self)
1671 {
1672 struct ste_softc *sc = (void *) self;
1673
1674 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
1675 }
1676
1677 /*
1678 * ste_mii_bitbang_write: [mii big-bang interface function]
1679 *
1680 * Write the MII serial port for the MII bit-bang module.
1681 */
1682 void
1683 ste_mii_bitbang_write(struct device *self, uint32_t val)
1684 {
1685 struct ste_softc *sc = (void *) self;
1686
1687 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
1688 }
1689
1690 /*
1691 * ste_mediastatus: [ifmedia interface function]
1692 *
1693 * Get the current interface media status.
1694 */
1695 void
1696 ste_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1697 {
1698 struct ste_softc *sc = ifp->if_softc;
1699
1700 mii_pollstat(&sc->sc_mii);
1701 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1702 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1703 }
1704
1705 /*
1706 * ste_mediachange: [ifmedia interface function]
1707 *
1708 * Set hardware to newly-selected media.
1709 */
1710 int
1711 ste_mediachange(struct ifnet *ifp)
1712 {
1713 struct ste_softc *sc = ifp->if_softc;
1714
1715 if (ifp->if_flags & IFF_UP)
1716 mii_mediachg(&sc->sc_mii);
1717 return (0);
1718 }
1719