Home | History | Annotate | Line # | Download | only in pci
if_ste.c revision 1.17
      1 /*	$NetBSD: if_ste.c,v 1.17 2003/06/05 16:33:43 tsutsui Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Device driver for the Sundance Tech. ST-201 10/100
     41  * Ethernet controller.
     42  */
     43 
     44 #include <sys/cdefs.h>
     45 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.17 2003/06/05 16:33:43 tsutsui Exp $");
     46 
     47 #include "bpfilter.h"
     48 
     49 #include <sys/param.h>
     50 #include <sys/systm.h>
     51 #include <sys/callout.h>
     52 #include <sys/mbuf.h>
     53 #include <sys/malloc.h>
     54 #include <sys/kernel.h>
     55 #include <sys/socket.h>
     56 #include <sys/ioctl.h>
     57 #include <sys/errno.h>
     58 #include <sys/device.h>
     59 #include <sys/queue.h>
     60 
     61 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     62 
     63 #include <net/if.h>
     64 #include <net/if_dl.h>
     65 #include <net/if_media.h>
     66 #include <net/if_ether.h>
     67 
     68 #if NBPFILTER > 0
     69 #include <net/bpf.h>
     70 #endif
     71 
     72 #include <machine/bus.h>
     73 #include <machine/intr.h>
     74 
     75 #include <dev/mii/mii.h>
     76 #include <dev/mii/miivar.h>
     77 #include <dev/mii/mii_bitbang.h>
     78 
     79 #include <dev/pci/pcireg.h>
     80 #include <dev/pci/pcivar.h>
     81 #include <dev/pci/pcidevs.h>
     82 
     83 #include <dev/pci/if_stereg.h>
     84 
     85 /*
     86  * Transmit descriptor list size.
     87  */
     88 #define	STE_NTXDESC		256
     89 #define	STE_NTXDESC_MASK	(STE_NTXDESC - 1)
     90 #define	STE_NEXTTX(x)		(((x) + 1) & STE_NTXDESC_MASK)
     91 
     92 /*
     93  * Receive descriptor list size.
     94  */
     95 #define	STE_NRXDESC		128
     96 #define	STE_NRXDESC_MASK	(STE_NRXDESC - 1)
     97 #define	STE_NEXTRX(x)		(((x) + 1) & STE_NRXDESC_MASK)
     98 
     99 /*
    100  * Control structures are DMA'd to the ST-201 chip.  We allocate them in
    101  * a single clump that maps to a single DMA segment to make several things
    102  * easier.
    103  */
    104 struct ste_control_data {
    105 	/*
    106 	 * The transmit descriptors.
    107 	 */
    108 	struct ste_tfd scd_txdescs[STE_NTXDESC];
    109 
    110 	/*
    111 	 * The receive descriptors.
    112 	 */
    113 	struct ste_rfd scd_rxdescs[STE_NRXDESC];
    114 };
    115 
    116 #define	STE_CDOFF(x)	offsetof(struct ste_control_data, x)
    117 #define	STE_CDTXOFF(x)	STE_CDOFF(scd_txdescs[(x)])
    118 #define	STE_CDRXOFF(x)	STE_CDOFF(scd_rxdescs[(x)])
    119 
    120 /*
    121  * Software state for transmit and receive jobs.
    122  */
    123 struct ste_descsoft {
    124 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
    125 	bus_dmamap_t ds_dmamap;		/* our DMA map */
    126 };
    127 
    128 /*
    129  * Software state per device.
    130  */
    131 struct ste_softc {
    132 	struct device sc_dev;		/* generic device information */
    133 	bus_space_tag_t sc_st;		/* bus space tag */
    134 	bus_space_handle_t sc_sh;	/* bus space handle */
    135 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    136 	struct ethercom sc_ethercom;	/* ethernet common data */
    137 	void *sc_sdhook;		/* shutdown hook */
    138 
    139 	void *sc_ih;			/* interrupt cookie */
    140 
    141 	struct mii_data sc_mii;		/* MII/media information */
    142 
    143 	struct callout sc_tick_ch;	/* tick callout */
    144 
    145 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    146 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    147 
    148 	/*
    149 	 * Software state for transmit and receive descriptors.
    150 	 */
    151 	struct ste_descsoft sc_txsoft[STE_NTXDESC];
    152 	struct ste_descsoft sc_rxsoft[STE_NRXDESC];
    153 
    154 	/*
    155 	 * Control data structures.
    156 	 */
    157 	struct ste_control_data *sc_control_data;
    158 #define	sc_txdescs	sc_control_data->scd_txdescs
    159 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    160 
    161 	int	sc_txpending;		/* number of Tx requests pending */
    162 	int	sc_txdirty;		/* first dirty Tx descriptor */
    163 	int	sc_txlast;		/* last used Tx descriptor */
    164 
    165 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    166 
    167 	int	sc_txthresh;		/* Tx threshold */
    168 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
    169 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
    170 	uint16_t sc_MacCtrl0;		/* prototype MacCtrl0 register */
    171 	uint8_t	sc_ReceiveMode;		/* prototype ReceiveMode register */
    172 };
    173 
    174 #define	STE_CDTXADDR(sc, x)	((sc)->sc_cddma + STE_CDTXOFF((x)))
    175 #define	STE_CDRXADDR(sc, x)	((sc)->sc_cddma + STE_CDRXOFF((x)))
    176 
    177 #define	STE_CDTXSYNC(sc, x, ops)					\
    178 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    179 	    STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
    180 
    181 #define	STE_CDRXSYNC(sc, x, ops)					\
    182 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    183 	    STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
    184 
    185 #define	STE_INIT_RXDESC(sc, x)						\
    186 do {									\
    187 	struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
    188 	struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)];			\
    189 	struct mbuf *__m = __ds->ds_mbuf;				\
    190 									\
    191 	/*								\
    192 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    193 	 * so that the payload after the Ethernet header is aligned	\
    194 	 * to a 4-byte boundary.					\
    195 	 */								\
    196 	__m->m_data = __m->m_ext.ext_buf + 2;				\
    197 	__rfd->rfd_frag.frag_addr =					\
    198 	    htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2);		\
    199 	__rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST);	\
    200 	__rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x))));	\
    201 	__rfd->rfd_status = 0;						\
    202 	STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    203 } while (/*CONSTCOND*/0)
    204 
    205 #define STE_TIMEOUT 1000
    206 
    207 void	ste_start(struct ifnet *);
    208 void	ste_watchdog(struct ifnet *);
    209 int	ste_ioctl(struct ifnet *, u_long, caddr_t);
    210 int	ste_init(struct ifnet *);
    211 void	ste_stop(struct ifnet *, int);
    212 
    213 void	ste_shutdown(void *);
    214 
    215 void	ste_reset(struct ste_softc *, u_int32_t);
    216 void	ste_setthresh(struct ste_softc *);
    217 void	ste_txrestart(struct ste_softc *, u_int8_t);
    218 void	ste_rxdrain(struct ste_softc *);
    219 int	ste_add_rxbuf(struct ste_softc *, int);
    220 void	ste_read_eeprom(struct ste_softc *, int, uint16_t *);
    221 void	ste_tick(void *);
    222 
    223 void	ste_stats_update(struct ste_softc *);
    224 
    225 void	ste_set_filter(struct ste_softc *);
    226 
    227 int	ste_intr(void *);
    228 void	ste_txintr(struct ste_softc *);
    229 void	ste_rxintr(struct ste_softc *);
    230 
    231 int	ste_mii_readreg(struct device *, int, int);
    232 void	ste_mii_writereg(struct device *, int, int, int);
    233 void	ste_mii_statchg(struct device *);
    234 
    235 int	ste_mediachange(struct ifnet *);
    236 void	ste_mediastatus(struct ifnet *, struct ifmediareq *);
    237 
    238 int	ste_match(struct device *, struct cfdata *, void *);
    239 void	ste_attach(struct device *, struct device *, void *);
    240 
    241 int	ste_copy_small = 0;
    242 
    243 CFATTACH_DECL(ste, sizeof(struct ste_softc),
    244     ste_match, ste_attach, NULL, NULL);
    245 
    246 uint32_t ste_mii_bitbang_read(struct device *);
    247 void	ste_mii_bitbang_write(struct device *, uint32_t);
    248 
    249 const struct mii_bitbang_ops ste_mii_bitbang_ops = {
    250 	ste_mii_bitbang_read,
    251 	ste_mii_bitbang_write,
    252 	{
    253 		PC_MgmtData,		/* MII_BIT_MDO */
    254 		PC_MgmtData,		/* MII_BIT_MDI */
    255 		PC_MgmtClk,		/* MII_BIT_MDC */
    256 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
    257 		0,			/* MII_BIT_DIR_PHY_HOST */
    258 	}
    259 };
    260 
    261 /*
    262  * Devices supported by this driver.
    263  */
    264 const struct ste_product {
    265 	pci_vendor_id_t		ste_vendor;
    266 	pci_product_id_t	ste_product;
    267 	const char		*ste_name;
    268 } ste_products[] = {
    269 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST201,
    270 	  "Sundance ST-201 10/100 Ethernet" },
    271 
    272 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL1002,
    273 	  "D-Link DL-1002 10/100 Ethernet" },
    274 
    275 	{ 0,				0,
    276 	  NULL },
    277 };
    278 
    279 static const struct ste_product *
    280 ste_lookup(const struct pci_attach_args *pa)
    281 {
    282 	const struct ste_product *sp;
    283 
    284 	for (sp = ste_products; sp->ste_name != NULL; sp++) {
    285 		if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
    286 		    PCI_PRODUCT(pa->pa_id) == sp->ste_product)
    287 			return (sp);
    288 	}
    289 	return (NULL);
    290 }
    291 
    292 int
    293 ste_match(struct device *parent, struct cfdata *cf, void *aux)
    294 {
    295 	struct pci_attach_args *pa = aux;
    296 
    297 	if (ste_lookup(pa) != NULL)
    298 		return (1);
    299 
    300 	return (0);
    301 }
    302 
    303 void
    304 ste_attach(struct device *parent, struct device *self, void *aux)
    305 {
    306 	struct ste_softc *sc = (struct ste_softc *) self;
    307 	struct pci_attach_args *pa = aux;
    308 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    309 	pci_chipset_tag_t pc = pa->pa_pc;
    310 	pci_intr_handle_t ih;
    311 	const char *intrstr = NULL;
    312 	bus_space_tag_t iot, memt;
    313 	bus_space_handle_t ioh, memh;
    314 	bus_dma_segment_t seg;
    315 	int ioh_valid, memh_valid;
    316 	int i, rseg, error;
    317 	const struct ste_product *sp;
    318 	pcireg_t pmode;
    319 	uint8_t enaddr[ETHER_ADDR_LEN];
    320 	uint16_t myea[ETHER_ADDR_LEN / 2];
    321 	int pmreg;
    322 
    323 	callout_init(&sc->sc_tick_ch);
    324 
    325 	sp = ste_lookup(pa);
    326 	if (sp == NULL) {
    327 		printf("\n");
    328 		panic("ste_attach: impossible");
    329 	}
    330 
    331 	printf(": %s\n", sp->ste_name);
    332 
    333 	/*
    334 	 * Map the device.
    335 	 */
    336 	ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
    337 	    PCI_MAPREG_TYPE_IO, 0,
    338 	    &iot, &ioh, NULL, NULL) == 0);
    339 	memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
    340 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    341 	    &memt, &memh, NULL, NULL) == 0);
    342 
    343 	if (memh_valid) {
    344 		sc->sc_st = memt;
    345 		sc->sc_sh = memh;
    346 	} else if (ioh_valid) {
    347 		sc->sc_st = iot;
    348 		sc->sc_sh = ioh;
    349 	} else {
    350 		printf("%s: unable to map device registers\n",
    351 		    sc->sc_dev.dv_xname);
    352 		return;
    353 	}
    354 
    355 	sc->sc_dmat = pa->pa_dmat;
    356 
    357 	/* Enable bus mastering. */
    358 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    359 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    360 	    PCI_COMMAND_MASTER_ENABLE);
    361 
    362 	/* Get it out of power save mode if needed. */
    363 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    364 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
    365 		    PCI_PMCSR_STATE_MASK;
    366 		if (pmode == PCI_PMCSR_STATE_D3) {
    367 			/*
    368 			 * The card has lost all configuration data in
    369 			 * this state, so punt.
    370 			 */
    371 			printf("%s: unable to wake up from power state D3\n",
    372 			    sc->sc_dev.dv_xname);
    373 			return;
    374 		}
    375 		if (pmode != PCI_PMCSR_STATE_D0) {
    376 			printf("%s: waking up from power state D%d\n",
    377 			    sc->sc_dev.dv_xname, pmode);
    378 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
    379 			    PCI_PMCSR_STATE_D0);
    380 		}
    381 	}
    382 
    383 	/*
    384 	 * Map and establish our interrupt.
    385 	 */
    386 	if (pci_intr_map(pa, &ih)) {
    387 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    388 		return;
    389 	}
    390 	intrstr = pci_intr_string(pc, ih);
    391 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
    392 	if (sc->sc_ih == NULL) {
    393 		printf("%s: unable to establish interrupt",
    394 		    sc->sc_dev.dv_xname);
    395 		if (intrstr != NULL)
    396 			printf(" at %s", intrstr);
    397 		printf("\n");
    398 		return;
    399 	}
    400 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    401 
    402 	/*
    403 	 * Allocate the control data structures, and create and load the
    404 	 * DMA map for it.
    405 	 */
    406 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    407 	    sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    408 	    0)) != 0) {
    409 		printf("%s: unable to allocate control data, error = %d\n",
    410 		    sc->sc_dev.dv_xname, error);
    411 		goto fail_0;
    412 	}
    413 
    414 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    415 	    sizeof(struct ste_control_data), (caddr_t *)&sc->sc_control_data,
    416 	    BUS_DMA_COHERENT)) != 0) {
    417 		printf("%s: unable to map control data, error = %d\n",
    418 		    sc->sc_dev.dv_xname, error);
    419 		goto fail_1;
    420 	}
    421 
    422 	if ((error = bus_dmamap_create(sc->sc_dmat,
    423 	    sizeof(struct ste_control_data), 1,
    424 	    sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    425 		printf("%s: unable to create control data DMA map, "
    426 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    427 		goto fail_2;
    428 	}
    429 
    430 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    431 	    sc->sc_control_data, sizeof(struct ste_control_data), NULL,
    432 	    0)) != 0) {
    433 		printf("%s: unable to load control data DMA map, error = %d\n",
    434 		    sc->sc_dev.dv_xname, error);
    435 		goto fail_3;
    436 	}
    437 
    438 	/*
    439 	 * Create the transmit buffer DMA maps.
    440 	 */
    441 	for (i = 0; i < STE_NTXDESC; i++) {
    442 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    443 		    STE_NTXFRAGS, MCLBYTES, 0, 0,
    444 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
    445 			printf("%s: unable to create tx DMA map %d, "
    446 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    447 			goto fail_4;
    448 		}
    449 	}
    450 
    451 	/*
    452 	 * Create the receive buffer DMA maps.
    453 	 */
    454 	for (i = 0; i < STE_NRXDESC; i++) {
    455 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    456 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
    457 			printf("%s: unable to create rx DMA map %d, "
    458 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    459 			goto fail_5;
    460 		}
    461 		sc->sc_rxsoft[i].ds_mbuf = NULL;
    462 	}
    463 
    464 	/*
    465 	 * Reset the chip to a known state.
    466 	 */
    467 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
    468 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
    469 
    470 	/*
    471 	 * Read the Ethernet address from the EEPROM.
    472 	 */
    473 	for (i = 0; i < 3; i++) {
    474 		ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
    475 		myea[i] = le16toh(myea[i]);
    476 	}
    477 	memcpy(enaddr, myea, sizeof(enaddr));
    478 
    479 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    480 	    ether_sprintf(enaddr));
    481 
    482 	/*
    483 	 * Initialize our media structures and probe the MII.
    484 	 */
    485 	sc->sc_mii.mii_ifp = ifp;
    486 	sc->sc_mii.mii_readreg = ste_mii_readreg;
    487 	sc->sc_mii.mii_writereg = ste_mii_writereg;
    488 	sc->sc_mii.mii_statchg = ste_mii_statchg;
    489 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ste_mediachange,
    490 	    ste_mediastatus);
    491 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    492 	    MII_OFFSET_ANY, 0);
    493 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    494 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    495 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    496 	} else
    497 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    498 
    499 	ifp = &sc->sc_ethercom.ec_if;
    500 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    501 	ifp->if_softc = sc;
    502 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    503 	ifp->if_ioctl = ste_ioctl;
    504 	ifp->if_start = ste_start;
    505 	ifp->if_watchdog = ste_watchdog;
    506 	ifp->if_init = ste_init;
    507 	ifp->if_stop = ste_stop;
    508 	IFQ_SET_READY(&ifp->if_snd);
    509 
    510 	/*
    511 	 * Default the transmit threshold to 128 bytes.
    512 	 */
    513 	sc->sc_txthresh = 128;
    514 
    515 	/*
    516 	 * Disable MWI if the PCI layer tells us to.
    517 	 */
    518 	sc->sc_DMACtrl = 0;
    519 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
    520 		sc->sc_DMACtrl |= DC_MWIDisable;
    521 
    522 	/*
    523 	 * We can support 802.1Q VLAN-sized frames.
    524 	 */
    525 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    526 
    527 	/*
    528 	 * Attach the interface.
    529 	 */
    530 	if_attach(ifp);
    531 	ether_ifattach(ifp, enaddr);
    532 
    533 	/*
    534 	 * Make sure the interface is shutdown during reboot.
    535 	 */
    536 	sc->sc_sdhook = shutdownhook_establish(ste_shutdown, sc);
    537 	if (sc->sc_sdhook == NULL)
    538 		printf("%s: WARNING: unable to establish shutdown hook\n",
    539 		    sc->sc_dev.dv_xname);
    540 	return;
    541 
    542 	/*
    543 	 * Free any resources we've allocated during the failed attach
    544 	 * attempt.  Do this in reverse order and fall through.
    545 	 */
    546  fail_5:
    547 	for (i = 0; i < STE_NRXDESC; i++) {
    548 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
    549 			bus_dmamap_destroy(sc->sc_dmat,
    550 			    sc->sc_rxsoft[i].ds_dmamap);
    551 	}
    552  fail_4:
    553 	for (i = 0; i < STE_NTXDESC; i++) {
    554 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
    555 			bus_dmamap_destroy(sc->sc_dmat,
    556 			    sc->sc_txsoft[i].ds_dmamap);
    557 	}
    558 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    559  fail_3:
    560 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    561  fail_2:
    562 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    563 	    sizeof(struct ste_control_data));
    564  fail_1:
    565 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    566  fail_0:
    567 	return;
    568 }
    569 
    570 /*
    571  * ste_shutdown:
    572  *
    573  *	Make sure the interface is stopped at reboot time.
    574  */
    575 void
    576 ste_shutdown(void *arg)
    577 {
    578 	struct ste_softc *sc = arg;
    579 
    580 	ste_stop(&sc->sc_ethercom.ec_if, 1);
    581 }
    582 
    583 static void
    584 ste_dmahalt_wait(struct ste_softc *sc)
    585 {
    586 	int i;
    587 
    588 	for (i = 0; i < STE_TIMEOUT; i++) {
    589 		delay(2);
    590 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
    591 		     DC_DMAHaltBusy) == 0)
    592 			break;
    593 	}
    594 
    595 	if (i == STE_TIMEOUT)
    596 		printf("%s: DMA halt timed out\n", sc->sc_dev.dv_xname);
    597 }
    598 
    599 /*
    600  * ste_start:		[ifnet interface function]
    601  *
    602  *	Start packet transmission on the interface.
    603  */
    604 void
    605 ste_start(struct ifnet *ifp)
    606 {
    607 	struct ste_softc *sc = ifp->if_softc;
    608 	struct mbuf *m0, *m;
    609 	struct ste_descsoft *ds;
    610 	struct ste_tfd *tfd;
    611 	bus_dmamap_t dmamap;
    612 	int error, olasttx, nexttx, opending, seg, totlen;
    613 
    614 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    615 		return;
    616 
    617 	/*
    618 	 * Remember the previous number of pending transmissions
    619 	 * and the current last descriptor in the list.
    620 	 */
    621 	opending = sc->sc_txpending;
    622 	olasttx = sc->sc_txlast;
    623 
    624 	/*
    625 	 * Loop through the send queue, setting up transmit descriptors
    626 	 * until we drain the queue, or use up all available transmit
    627 	 * descriptors.
    628 	 */
    629 	while (sc->sc_txpending < STE_NTXDESC) {
    630 		/*
    631 		 * Grab a packet off the queue.
    632 		 */
    633 		IFQ_POLL(&ifp->if_snd, m0);
    634 		if (m0 == NULL)
    635 			break;
    636 		m = NULL;
    637 
    638 		/*
    639 		 * Get the last and next available transmit descriptor.
    640 		 */
    641 		nexttx = STE_NEXTTX(sc->sc_txlast);
    642 		tfd = &sc->sc_txdescs[nexttx];
    643 		ds = &sc->sc_txsoft[nexttx];
    644 
    645 		dmamap = ds->ds_dmamap;
    646 
    647 		/*
    648 		 * Load the DMA map.  If this fails, the packet either
    649 		 * didn't fit in the alloted number of segments, or we
    650 		 * were short on resources.  In this case, we'll copy
    651 		 * and try again.
    652 		 */
    653 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    654 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
    655 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    656 			if (m == NULL) {
    657 				printf("%s: unable to allocate Tx mbuf\n",
    658 				    sc->sc_dev.dv_xname);
    659 				break;
    660 			}
    661 			if (m0->m_pkthdr.len > MHLEN) {
    662 				MCLGET(m, M_DONTWAIT);
    663 				if ((m->m_flags & M_EXT) == 0) {
    664 					printf("%s: unable to allocate Tx "
    665 					    "cluster\n", sc->sc_dev.dv_xname);
    666 					m_freem(m);
    667 					break;
    668 				}
    669 			}
    670 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
    671 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    672 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    673 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
    674 			if (error) {
    675 				printf("%s: unable to load Tx buffer, "
    676 				    "error = %d\n", sc->sc_dev.dv_xname, error);
    677 				break;
    678 			}
    679 		}
    680 
    681 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    682 		if (m != NULL) {
    683 			m_freem(m0);
    684 			m0 = m;
    685 		}
    686 
    687 		/*
    688 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    689 		 */
    690 
    691 		/* Sync the DMA map. */
    692 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    693 		    BUS_DMASYNC_PREWRITE);
    694 
    695 		/* Initialize the fragment list. */
    696 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
    697 			tfd->tfd_frags[seg].frag_addr =
    698 			    htole32(dmamap->dm_segs[seg].ds_addr);
    699 			tfd->tfd_frags[seg].frag_len =
    700 			    htole32(dmamap->dm_segs[seg].ds_len);
    701 			totlen += dmamap->dm_segs[seg].ds_len;
    702 		}
    703 		tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
    704 
    705 		/* Initialize the descriptor. */
    706 		tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
    707 		tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
    708 
    709 		/* Sync the descriptor. */
    710 		STE_CDTXSYNC(sc, nexttx,
    711 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    712 
    713 		/*
    714 		 * Store a pointer to the packet so we can free it later,
    715 		 * and remember what txdirty will be once the packet is
    716 		 * done.
    717 		 */
    718 		ds->ds_mbuf = m0;
    719 
    720 		/* Advance the tx pointer. */
    721 		sc->sc_txpending++;
    722 		sc->sc_txlast = nexttx;
    723 
    724 #if NBPFILTER > 0
    725 		/*
    726 		 * Pass the packet to any BPF listeners.
    727 		 */
    728 		if (ifp->if_bpf)
    729 			bpf_mtap(ifp->if_bpf, m0);
    730 #endif /* NBPFILTER > 0 */
    731 	}
    732 
    733 	if (sc->sc_txpending == STE_NTXDESC) {
    734 		/* No more slots left; notify upper layer. */
    735 		ifp->if_flags |= IFF_OACTIVE;
    736 	}
    737 
    738 	if (sc->sc_txpending != opending) {
    739 		/*
    740 		 * We enqueued packets.  If the transmitter was idle,
    741 		 * reset the txdirty pointer.
    742 		 */
    743 		if (opending == 0)
    744 			sc->sc_txdirty = STE_NEXTTX(olasttx);
    745 
    746 		/*
    747 		 * Cause a descriptor interrupt to happen on the
    748 		 * last packet we enqueued, and also cause the
    749 		 * DMA engine to wait after is has finished processing
    750 		 * it.
    751 		 */
    752 		sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
    753 		sc->sc_txdescs[sc->sc_txlast].tfd_control |=
    754 		    htole32(TFD_TxDMAIndicate);
    755 		STE_CDTXSYNC(sc, sc->sc_txlast,
    756 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    757 
    758 		/*
    759 		 * Link up the new chain of descriptors to the
    760 		 * last.
    761 		 */
    762 		sc->sc_txdescs[olasttx].tfd_next =
    763 		    htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
    764 		STE_CDTXSYNC(sc, olasttx,
    765 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    766 
    767 		/*
    768 		 * Kick the transmit DMA logic.  Note that since we're
    769 		 * using auto-polling, reading the Tx desc pointer will
    770 		 * give it the nudge it needs to get going.
    771 		 */
    772 		if (bus_space_read_4(sc->sc_st, sc->sc_sh,
    773 		    STE_TxDMAListPtr) == 0) {
    774 			bus_space_write_4(sc->sc_st, sc->sc_sh,
    775 			    STE_DMACtrl, DC_TxDMAHalt);
    776 			ste_dmahalt_wait(sc);
    777 			bus_space_write_4(sc->sc_st, sc->sc_sh,
    778 			    STE_TxDMAListPtr,
    779 			    STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
    780 			bus_space_write_4(sc->sc_st, sc->sc_sh,
    781 			    STE_DMACtrl, DC_TxDMAResume);
    782 		}
    783 
    784 		/* Set a watchdog timer in case the chip flakes out. */
    785 		ifp->if_timer = 5;
    786 	}
    787 }
    788 
    789 /*
    790  * ste_watchdog:	[ifnet interface function]
    791  *
    792  *	Watchdog timer handler.
    793  */
    794 void
    795 ste_watchdog(struct ifnet *ifp)
    796 {
    797 	struct ste_softc *sc = ifp->if_softc;
    798 
    799 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
    800 	ifp->if_oerrors++;
    801 
    802 	(void) ste_init(ifp);
    803 
    804 	/* Try to get more packets going. */
    805 	ste_start(ifp);
    806 }
    807 
    808 /*
    809  * ste_ioctl:		[ifnet interface function]
    810  *
    811  *	Handle control requests from the operator.
    812  */
    813 int
    814 ste_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
    815 {
    816 	struct ste_softc *sc = ifp->if_softc;
    817 	struct ifreq *ifr = (struct ifreq *)data;
    818 	int s, error;
    819 
    820 	s = splnet();
    821 
    822 	switch (cmd) {
    823 	case SIOCSIFMEDIA:
    824 	case SIOCGIFMEDIA:
    825 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
    826 		break;
    827 
    828 	default:
    829 		error = ether_ioctl(ifp, cmd, data);
    830 		if (error == ENETRESET) {
    831 			/*
    832 			 * Multicast list has changed; set the hardware filter
    833 			 * accordingly.
    834 			 */
    835 			ste_set_filter(sc);
    836 			error = 0;
    837 		}
    838 		break;
    839 	}
    840 
    841 	/* Try to get more packets going. */
    842 	ste_start(ifp);
    843 
    844 	splx(s);
    845 	return (error);
    846 }
    847 
    848 /*
    849  * ste_intr:
    850  *
    851  *	Interrupt service routine.
    852  */
    853 int
    854 ste_intr(void *arg)
    855 {
    856 	struct ste_softc *sc = arg;
    857 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    858 	uint16_t isr;
    859 	uint8_t txstat;
    860 	int wantinit;
    861 
    862 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
    863 	     IS_InterruptStatus) == 0)
    864 		return (0);
    865 
    866 	for (wantinit = 0; wantinit == 0;) {
    867 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
    868 		if ((isr & sc->sc_IntEnable) == 0)
    869 			break;
    870 
    871 		/* Receive interrupts. */
    872 		if (isr & IE_RxDMAComplete)
    873 			ste_rxintr(sc);
    874 
    875 		/* Transmit interrupts. */
    876 		if (isr & (IE_TxDMAComplete|IE_TxComplete))
    877 			ste_txintr(sc);
    878 
    879 		/* Statistics overflow. */
    880 		if (isr & IE_UpdateStats)
    881 			ste_stats_update(sc);
    882 
    883 		/* Transmission errors. */
    884 		if (isr & IE_TxComplete) {
    885 			for (;;) {
    886 				txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
    887 				    STE_TxStatus);
    888 				if ((txstat & TS_TxComplete) == 0)
    889 					break;
    890 				if (txstat & TS_TxUnderrun) {
    891 					sc->sc_txthresh += 32;
    892 					if (sc->sc_txthresh > 0x1ffc)
    893 						sc->sc_txthresh = 0x1ffc;
    894 					printf("%s: transmit underrun, new "
    895 					    "threshold: %d bytes\n",
    896 					    sc->sc_dev.dv_xname,
    897 					    sc->sc_txthresh);
    898 					ste_reset(sc, AC_TxReset | AC_DMA |
    899 					    AC_FIFO | AC_Network);
    900 					ste_setthresh(sc);
    901 					bus_space_write_1(sc->sc_st, sc->sc_sh,
    902 					    STE_TxDMAPollPeriod, 127);
    903 					ste_txrestart(sc,
    904 					    bus_space_read_1(sc->sc_st,
    905 						sc->sc_sh, STE_TxFrameId));
    906 				}
    907 				if (txstat & TS_TxReleaseError) {
    908 					printf("%s: Tx FIFO release error\n",
    909 					    sc->sc_dev.dv_xname);
    910 					wantinit = 1;
    911 				}
    912 				if (txstat & TS_MaxCollisions) {
    913 					printf("%s: excessive collisions\n",
    914 					    sc->sc_dev.dv_xname);
    915 					wantinit = 1;
    916 				}
    917 				if (txstat & TS_TxStatusOverflow) {
    918 					printf("%s: status overflow\n",
    919 					    sc->sc_dev.dv_xname);
    920 					wantinit = 1;
    921 				}
    922 				bus_space_write_2(sc->sc_st, sc->sc_sh,
    923 				    STE_TxStatus, 0);
    924 			}
    925 		}
    926 
    927 		/* Host interface errors. */
    928 		if (isr & IE_HostError) {
    929 			printf("%s: Host interface error\n",
    930 			    sc->sc_dev.dv_xname);
    931 			wantinit = 1;
    932 		}
    933 	}
    934 
    935 	if (wantinit)
    936 		ste_init(ifp);
    937 
    938 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
    939 	    sc->sc_IntEnable);
    940 
    941 	/* Try to get more packets going. */
    942 	ste_start(ifp);
    943 
    944 	return (1);
    945 }
    946 
    947 /*
    948  * ste_txintr:
    949  *
    950  *	Helper; handle transmit interrupts.
    951  */
    952 void
    953 ste_txintr(struct ste_softc *sc)
    954 {
    955 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    956 	struct ste_descsoft *ds;
    957 	uint32_t control;
    958 	int i;
    959 
    960 	ifp->if_flags &= ~IFF_OACTIVE;
    961 
    962 	/*
    963 	 * Go through our Tx list and free mbufs for those
    964 	 * frames which have been transmitted.
    965 	 */
    966 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
    967 	     i = STE_NEXTTX(i), sc->sc_txpending--) {
    968 		ds = &sc->sc_txsoft[i];
    969 
    970 		STE_CDTXSYNC(sc, i,
    971 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    972 
    973 		control = le32toh(sc->sc_txdescs[i].tfd_control);
    974 		if ((control & TFD_TxDMAComplete) == 0)
    975 			break;
    976 
    977 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
    978 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    979 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
    980 		m_freem(ds->ds_mbuf);
    981 		ds->ds_mbuf = NULL;
    982 	}
    983 
    984 	/* Update the dirty transmit buffer pointer. */
    985 	sc->sc_txdirty = i;
    986 
    987 	/*
    988 	 * If there are no more pending transmissions, cancel the watchdog
    989 	 * timer.
    990 	 */
    991 	if (sc->sc_txpending == 0)
    992 		ifp->if_timer = 0;
    993 }
    994 
    995 /*
    996  * ste_rxintr:
    997  *
    998  *	Helper; handle receive interrupts.
    999  */
   1000 void
   1001 ste_rxintr(struct ste_softc *sc)
   1002 {
   1003 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1004 	struct ste_descsoft *ds;
   1005 	struct mbuf *m;
   1006 	uint32_t status;
   1007 	int i, len;
   1008 
   1009 	for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
   1010 		ds = &sc->sc_rxsoft[i];
   1011 
   1012 		STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1013 
   1014 		status = le32toh(sc->sc_rxdescs[i].rfd_status);
   1015 
   1016 		if ((status & RFD_RxDMAComplete) == 0)
   1017 			break;
   1018 
   1019 		/*
   1020 		 * If the packet had an error, simply recycle the
   1021 		 * buffer.  Note, we count the error later in the
   1022 		 * periodic stats update.
   1023 		 */
   1024 		if (status & RFD_RxFrameError) {
   1025 			STE_INIT_RXDESC(sc, i);
   1026 			continue;
   1027 		}
   1028 
   1029 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1030 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1031 
   1032 		/*
   1033 		 * No errors; receive the packet.  Note, we have
   1034 		 * configured the chip to not include the CRC at
   1035 		 * the end of the packet.
   1036 		 */
   1037 		len = RFD_RxDMAFrameLen(status);
   1038 
   1039 		/*
   1040 		 * If the packet is small enough to fit in a
   1041 		 * single header mbuf, allocate one and copy
   1042 		 * the data into it.  This greatly reduces
   1043 		 * memory consumption when we receive lots
   1044 		 * of small packets.
   1045 		 *
   1046 		 * Otherwise, we add a new buffer to the receive
   1047 		 * chain.  If this fails, we drop the packet and
   1048 		 * recycle the old buffer.
   1049 		 */
   1050 		if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
   1051 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1052 			if (m == NULL)
   1053 				goto dropit;
   1054 			m->m_data += 2;
   1055 			memcpy(mtod(m, caddr_t),
   1056 			    mtod(ds->ds_mbuf, caddr_t), len);
   1057 			STE_INIT_RXDESC(sc, i);
   1058 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1059 			    ds->ds_dmamap->dm_mapsize,
   1060 			    BUS_DMASYNC_PREREAD);
   1061 		} else {
   1062 			m = ds->ds_mbuf;
   1063 			if (ste_add_rxbuf(sc, i) != 0) {
   1064  dropit:
   1065 				ifp->if_ierrors++;
   1066 				STE_INIT_RXDESC(sc, i);
   1067 				bus_dmamap_sync(sc->sc_dmat,
   1068 				    ds->ds_dmamap, 0,
   1069 				    ds->ds_dmamap->dm_mapsize,
   1070 				    BUS_DMASYNC_PREREAD);
   1071 				continue;
   1072 			}
   1073 		}
   1074 
   1075 		m->m_pkthdr.rcvif = ifp;
   1076 		m->m_pkthdr.len = m->m_len = len;
   1077 
   1078 #if NBPFILTER > 0
   1079 		/*
   1080 		 * Pass this up to any BPF listeners, but only
   1081 		 * pass if up the stack if it's for us.
   1082 		 */
   1083 		if (ifp->if_bpf)
   1084 			bpf_mtap(ifp->if_bpf, m);
   1085 #endif /* NBPFILTER > 0 */
   1086 
   1087 		/* Pass it on. */
   1088 		(*ifp->if_input)(ifp, m);
   1089 	}
   1090 
   1091 	/* Update the receive pointer. */
   1092 	sc->sc_rxptr = i;
   1093 }
   1094 
   1095 /*
   1096  * ste_tick:
   1097  *
   1098  *	One second timer, used to tick the MII.
   1099  */
   1100 void
   1101 ste_tick(void *arg)
   1102 {
   1103 	struct ste_softc *sc = arg;
   1104 	int s;
   1105 
   1106 	s = splnet();
   1107 	mii_tick(&sc->sc_mii);
   1108 	ste_stats_update(sc);
   1109 	splx(s);
   1110 
   1111 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
   1112 }
   1113 
   1114 /*
   1115  * ste_stats_update:
   1116  *
   1117  *	Read the ST-201 statistics counters.
   1118  */
   1119 void
   1120 ste_stats_update(struct ste_softc *sc)
   1121 {
   1122 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1123 	bus_space_tag_t st = sc->sc_st;
   1124 	bus_space_handle_t sh = sc->sc_sh;
   1125 
   1126 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
   1127 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
   1128 
   1129 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
   1130 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
   1131 
   1132 	ifp->if_opackets +=
   1133 	    (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
   1134 	ifp->if_ipackets +=
   1135 	    (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
   1136 
   1137 	ifp->if_collisions +=
   1138 	    (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
   1139 	    (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
   1140 	    (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
   1141 
   1142 	(void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
   1143 
   1144 	ifp->if_ierrors +=
   1145 	    (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
   1146 
   1147 	ifp->if_oerrors +=
   1148 	    (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
   1149 	    (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
   1150 	    bus_space_read_1(st, sh, STE_CarrierSenseErrors);
   1151 
   1152 	(void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
   1153 	(void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
   1154 	(void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
   1155 	(void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
   1156 }
   1157 
   1158 /*
   1159  * ste_reset:
   1160  *
   1161  *	Perform a soft reset on the ST-201.
   1162  */
   1163 void
   1164 ste_reset(struct ste_softc *sc, u_int32_t rstbits)
   1165 {
   1166 	uint32_t ac;
   1167 	int i;
   1168 
   1169 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
   1170 
   1171 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
   1172 
   1173 	delay(50000);
   1174 
   1175 	for (i = 0; i < STE_TIMEOUT; i++) {
   1176 		delay(1000);
   1177 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
   1178 		     AC_ResetBusy) == 0)
   1179 			break;
   1180 	}
   1181 
   1182 	if (i == STE_TIMEOUT)
   1183 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   1184 
   1185 	delay(1000);
   1186 }
   1187 
   1188 /*
   1189  * ste_setthresh:
   1190  *
   1191  * 	set the various transmit threshold registers
   1192  */
   1193 void
   1194 ste_setthresh(struct ste_softc *sc)
   1195 {
   1196 	/* set the TX threhold */
   1197 	bus_space_write_2(sc->sc_st, sc->sc_sh,
   1198 	    STE_TxStartThresh, sc->sc_txthresh);
   1199 	/* Urgent threshold: set to sc_txthresh / 2 */
   1200 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
   1201 	    sc->sc_txthresh >> 6);
   1202 	/* Burst threshold: use default value (256 bytes) */
   1203 }
   1204 
   1205 /*
   1206  * restart TX at the given frame ID in the transmitter ring
   1207  */
   1208 
   1209 void
   1210 ste_txrestart(struct ste_softc *sc, u_int8_t id)
   1211 {
   1212 	u_int32_t control;
   1213 
   1214 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1215 	control = le32toh(sc->sc_txdescs[id].tfd_control);
   1216 	control &= ~TFD_TxDMAComplete;
   1217 	sc->sc_txdescs[id].tfd_control = htole32(control);
   1218 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1219 
   1220 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
   1221 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
   1222 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
   1223 	ste_dmahalt_wait(sc);
   1224 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
   1225 	    STE_CDTXADDR(sc, id));
   1226 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
   1227 }
   1228 
   1229 /*
   1230  * ste_init:		[ ifnet interface function ]
   1231  *
   1232  *	Initialize the interface.  Must be called at splnet().
   1233  */
   1234 int
   1235 ste_init(struct ifnet *ifp)
   1236 {
   1237 	struct ste_softc *sc = ifp->if_softc;
   1238 	bus_space_tag_t st = sc->sc_st;
   1239 	bus_space_handle_t sh = sc->sc_sh;
   1240 	struct ste_descsoft *ds;
   1241 	int i, error = 0;
   1242 
   1243 	/*
   1244 	 * Cancel any pending I/O.
   1245 	 */
   1246 	ste_stop(ifp, 0);
   1247 
   1248 	/*
   1249 	 * Reset the chip to a known state.
   1250 	 */
   1251 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
   1252 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
   1253 
   1254 	/*
   1255 	 * Initialize the transmit descriptor ring.
   1256 	 */
   1257 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1258 	sc->sc_txpending = 0;
   1259 	sc->sc_txdirty = 0;
   1260 	sc->sc_txlast = STE_NTXDESC - 1;
   1261 
   1262 	/*
   1263 	 * Initialize the receive descriptor and receive job
   1264 	 * descriptor rings.
   1265 	 */
   1266 	for (i = 0; i < STE_NRXDESC; i++) {
   1267 		ds = &sc->sc_rxsoft[i];
   1268 		if (ds->ds_mbuf == NULL) {
   1269 			if ((error = ste_add_rxbuf(sc, i)) != 0) {
   1270 				printf("%s: unable to allocate or map rx "
   1271 				    "buffer %d, error = %d\n",
   1272 				    sc->sc_dev.dv_xname, i, error);
   1273 				/*
   1274 				 * XXX Should attempt to run with fewer receive
   1275 				 * XXX buffers instead of just failing.
   1276 				 */
   1277 				ste_rxdrain(sc);
   1278 				goto out;
   1279 			}
   1280 		} else
   1281 			STE_INIT_RXDESC(sc, i);
   1282 	}
   1283 	sc->sc_rxptr = 0;
   1284 
   1285 	/* Set the station address. */
   1286 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1287 		bus_space_write_1(st, sh, STE_StationAddress0 + 1,
   1288 		    LLADDR(ifp->if_sadl)[i]);
   1289 
   1290 	/* Set up the receive filter. */
   1291 	ste_set_filter(sc);
   1292 
   1293 	/*
   1294 	 * Give the receive ring to the chip.
   1295 	 */
   1296 	bus_space_write_4(st, sh, STE_RxDMAListPtr,
   1297 	    STE_CDRXADDR(sc, sc->sc_rxptr));
   1298 
   1299 	/*
   1300 	 * We defer giving the transmit ring to the chip until we
   1301 	 * transmit the first packet.
   1302 	 */
   1303 
   1304 	/*
   1305 	 * Initialize the Tx auto-poll period.  It's OK to make this number
   1306 	 * large (127 is the max) -- we explicitly kick the transmit engine
   1307 	 * when there's actually a packet.  We are using auto-polling only
   1308 	 * to make the interface to the transmit engine not suck.
   1309 	 */
   1310 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
   1311 
   1312 	/* ..and the Rx auto-poll period. */
   1313 	bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
   1314 
   1315 	/* Initialize the Tx start threshold. */
   1316 	ste_setthresh(sc);
   1317 
   1318 	/* Set the FIFO release threshold to 512 bytes. */
   1319 	bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
   1320 
   1321 	/*
   1322 	 * Initialize the interrupt mask.
   1323 	 */
   1324 	sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
   1325 	    IE_TxDMAComplete | IE_RxDMAComplete;
   1326 
   1327 	bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
   1328 	bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
   1329 
   1330 	/*
   1331 	 * Start the receive DMA engine.
   1332 	 */
   1333 	bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
   1334 
   1335 	/*
   1336 	 * Initialize MacCtrl0 -- do it before setting the media,
   1337 	 * as setting the media will actually program the register.
   1338 	 */
   1339 	sc->sc_MacCtrl0 = MC0_IFSSelect(0);
   1340 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   1341 		sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
   1342 
   1343 	/*
   1344 	 * Set the current media.
   1345 	 */
   1346 	mii_mediachg(&sc->sc_mii);
   1347 
   1348 	/*
   1349 	 * Start the MAC.
   1350 	 */
   1351 	bus_space_write_2(st, sh, STE_MacCtrl1,
   1352 	    MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
   1353 
   1354 	/*
   1355 	 * Start the one second MII clock.
   1356 	 */
   1357 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
   1358 
   1359 	/*
   1360 	 * ...all done!
   1361 	 */
   1362 	ifp->if_flags |= IFF_RUNNING;
   1363 	ifp->if_flags &= ~IFF_OACTIVE;
   1364 
   1365  out:
   1366 	if (error)
   1367 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1368 	return (error);
   1369 }
   1370 
   1371 /*
   1372  * ste_drain:
   1373  *
   1374  *	Drain the receive queue.
   1375  */
   1376 void
   1377 ste_rxdrain(struct ste_softc *sc)
   1378 {
   1379 	struct ste_descsoft *ds;
   1380 	int i;
   1381 
   1382 	for (i = 0; i < STE_NRXDESC; i++) {
   1383 		ds = &sc->sc_rxsoft[i];
   1384 		if (ds->ds_mbuf != NULL) {
   1385 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1386 			m_freem(ds->ds_mbuf);
   1387 			ds->ds_mbuf = NULL;
   1388 		}
   1389 	}
   1390 }
   1391 
   1392 /*
   1393  * ste_stop:		[ ifnet interface function ]
   1394  *
   1395  *	Stop transmission on the interface.
   1396  */
   1397 void
   1398 ste_stop(struct ifnet *ifp, int disable)
   1399 {
   1400 	struct ste_softc *sc = ifp->if_softc;
   1401 	struct ste_descsoft *ds;
   1402 	int i;
   1403 
   1404 	/*
   1405 	 * Stop the one second clock.
   1406 	 */
   1407 	callout_stop(&sc->sc_tick_ch);
   1408 
   1409 	/* Down the MII. */
   1410 	mii_down(&sc->sc_mii);
   1411 
   1412 	/*
   1413 	 * Disable interrupts.
   1414 	 */
   1415 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
   1416 
   1417 	/*
   1418 	 * Stop receiver, transmitter, and stats update.
   1419 	 */
   1420 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
   1421 	    MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
   1422 
   1423 	/*
   1424 	 * Stop the transmit and receive DMA.
   1425 	 */
   1426 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
   1427 	    DC_RxDMAHalt | DC_TxDMAHalt);
   1428 	ste_dmahalt_wait(sc);
   1429 
   1430 	/*
   1431 	 * Release any queued transmit buffers.
   1432 	 */
   1433 	for (i = 0; i < STE_NTXDESC; i++) {
   1434 		ds = &sc->sc_txsoft[i];
   1435 		if (ds->ds_mbuf != NULL) {
   1436 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1437 			m_freem(ds->ds_mbuf);
   1438 			ds->ds_mbuf = NULL;
   1439 		}
   1440 	}
   1441 
   1442 	if (disable)
   1443 		ste_rxdrain(sc);
   1444 
   1445 	/*
   1446 	 * Mark the interface down and cancel the watchdog timer.
   1447 	 */
   1448 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1449 	ifp->if_timer = 0;
   1450 }
   1451 
   1452 static int
   1453 ste_eeprom_wait(struct ste_softc *sc)
   1454 {
   1455 	int i;
   1456 
   1457 	for (i = 0; i < STE_TIMEOUT; i++) {
   1458 		delay(1000);
   1459 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
   1460 		     EC_EepromBusy) == 0)
   1461 			return (0);
   1462 	}
   1463 	return (1);
   1464 }
   1465 
   1466 /*
   1467  * ste_read_eeprom:
   1468  *
   1469  *	Read data from the serial EEPROM.
   1470  */
   1471 void
   1472 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
   1473 {
   1474 
   1475 	if (ste_eeprom_wait(sc))
   1476 		printf("%s: EEPROM failed to come ready\n",
   1477 		    sc->sc_dev.dv_xname);
   1478 
   1479 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
   1480 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
   1481 	if (ste_eeprom_wait(sc))
   1482 		printf("%s: EEPROM read timed out\n",
   1483 		    sc->sc_dev.dv_xname);
   1484 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
   1485 }
   1486 
   1487 /*
   1488  * ste_add_rxbuf:
   1489  *
   1490  *	Add a receive buffer to the indicated descriptor.
   1491  */
   1492 int
   1493 ste_add_rxbuf(struct ste_softc *sc, int idx)
   1494 {
   1495 	struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
   1496 	struct mbuf *m;
   1497 	int error;
   1498 
   1499 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1500 	if (m == NULL)
   1501 		return (ENOBUFS);
   1502 
   1503 	MCLGET(m, M_DONTWAIT);
   1504 	if ((m->m_flags & M_EXT) == 0) {
   1505 		m_freem(m);
   1506 		return (ENOBUFS);
   1507 	}
   1508 
   1509 	if (ds->ds_mbuf != NULL)
   1510 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1511 
   1512 	ds->ds_mbuf = m;
   1513 
   1514 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
   1515 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1516 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1517 	if (error) {
   1518 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1519 		    sc->sc_dev.dv_xname, idx, error);
   1520 		panic("ste_add_rxbuf");		/* XXX */
   1521 	}
   1522 
   1523 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1524 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1525 
   1526 	STE_INIT_RXDESC(sc, idx);
   1527 
   1528 	return (0);
   1529 }
   1530 
   1531 /*
   1532  * ste_set_filter:
   1533  *
   1534  *	Set up the receive filter.
   1535  */
   1536 void
   1537 ste_set_filter(struct ste_softc *sc)
   1538 {
   1539 	struct ethercom *ec = &sc->sc_ethercom;
   1540 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1541 	struct ether_multi *enm;
   1542 	struct ether_multistep step;
   1543 	uint32_t crc;
   1544 	uint16_t mchash[4];
   1545 
   1546 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
   1547 	if (ifp->if_flags & IFF_BROADCAST)
   1548 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
   1549 
   1550 	if (ifp->if_flags & IFF_PROMISC) {
   1551 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
   1552 		goto allmulti;
   1553 	}
   1554 
   1555 	/*
   1556 	 * Set up the multicast address filter by passing all multicast
   1557 	 * addresses through a CRC generator, and then using the low-order
   1558 	 * 6 bits as an index into the 64 bit multicast hash table.  The
   1559 	 * high order bits select the register, while the rest of the bits
   1560 	 * select the bit within the register.
   1561 	 */
   1562 
   1563 	memset(mchash, 0, sizeof(mchash));
   1564 
   1565 	ETHER_FIRST_MULTI(step, ec, enm);
   1566 	if (enm == NULL)
   1567 		goto done;
   1568 
   1569 	while (enm != NULL) {
   1570 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1571 			/*
   1572 			 * We must listen to a range of multicast addresses.
   1573 			 * For now, just accept all multicasts, rather than
   1574 			 * trying to set only those filter bits needed to match
   1575 			 * the range.  (At this time, the only use of address
   1576 			 * ranges is for IP multicast routing, for which the
   1577 			 * range is big enough to require all bits set.)
   1578 			 */
   1579 			goto allmulti;
   1580 		}
   1581 
   1582 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1583 
   1584 		/* Just want the 6 least significant bits. */
   1585 		crc &= 0x3f;
   1586 
   1587 		/* Set the corresponding bit in the hash table. */
   1588 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   1589 
   1590 		ETHER_NEXT_MULTI(step, enm);
   1591 	}
   1592 
   1593 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
   1594 
   1595 	ifp->if_flags &= ~IFF_ALLMULTI;
   1596 	goto done;
   1597 
   1598  allmulti:
   1599 	ifp->if_flags |= IFF_ALLMULTI;
   1600 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
   1601 
   1602  done:
   1603 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1604 		/*
   1605 		 * Program the multicast hash table.
   1606 		 */
   1607 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
   1608 		    mchash[0]);
   1609 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
   1610 		    mchash[1]);
   1611 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
   1612 		    mchash[2]);
   1613 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
   1614 		    mchash[3]);
   1615 	}
   1616 
   1617 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
   1618 	    sc->sc_ReceiveMode);
   1619 }
   1620 
   1621 /*
   1622  * ste_mii_readreg:	[mii interface function]
   1623  *
   1624  *	Read a PHY register on the MII of the ST-201.
   1625  */
   1626 int
   1627 ste_mii_readreg(struct device *self, int phy, int reg)
   1628 {
   1629 
   1630 	return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
   1631 }
   1632 
   1633 /*
   1634  * ste_mii_writereg:	[mii interface function]
   1635  *
   1636  *	Write a PHY register on the MII of the ST-201.
   1637  */
   1638 void
   1639 ste_mii_writereg(struct device *self, int phy, int reg, int val)
   1640 {
   1641 
   1642 	mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
   1643 }
   1644 
   1645 /*
   1646  * ste_mii_statchg:	[mii interface function]
   1647  *
   1648  *	Callback from MII layer when media changes.
   1649  */
   1650 void
   1651 ste_mii_statchg(struct device *self)
   1652 {
   1653 	struct ste_softc *sc = (struct ste_softc *) self;
   1654 
   1655 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   1656 		sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
   1657 	else
   1658 		sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
   1659 
   1660 	/* XXX 802.1x flow-control? */
   1661 
   1662 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
   1663 }
   1664 
   1665 /*
   1666  * ste_mii_bitbang_read: [mii bit-bang interface function]
   1667  *
   1668  *	Read the MII serial port for the MII bit-bang module.
   1669  */
   1670 uint32_t
   1671 ste_mii_bitbang_read(struct device *self)
   1672 {
   1673 	struct ste_softc *sc = (void *) self;
   1674 
   1675 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
   1676 }
   1677 
   1678 /*
   1679  * ste_mii_bitbang_write: [mii big-bang interface function]
   1680  *
   1681  *	Write the MII serial port for the MII bit-bang module.
   1682  */
   1683 void
   1684 ste_mii_bitbang_write(struct device *self, uint32_t val)
   1685 {
   1686 	struct ste_softc *sc = (void *) self;
   1687 
   1688 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
   1689 }
   1690 
   1691 /*
   1692  * ste_mediastatus:	[ifmedia interface function]
   1693  *
   1694  *	Get the current interface media status.
   1695  */
   1696 void
   1697 ste_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   1698 {
   1699 	struct ste_softc *sc = ifp->if_softc;
   1700 
   1701 	mii_pollstat(&sc->sc_mii);
   1702 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   1703 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   1704 }
   1705 
   1706 /*
   1707  * ste_mediachange:	[ifmedia interface function]
   1708  *
   1709  *	Set hardware to newly-selected media.
   1710  */
   1711 int
   1712 ste_mediachange(struct ifnet *ifp)
   1713 {
   1714 	struct ste_softc *sc = ifp->if_softc;
   1715 
   1716 	if (ifp->if_flags & IFF_UP)
   1717 		mii_mediachg(&sc->sc_mii);
   1718 	return (0);
   1719 }
   1720