if_ste.c revision 1.20 1 /* $NetBSD: if_ste.c,v 1.20 2004/10/30 18:09:22 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the Sundance Tech. ST-201 10/100
41 * Ethernet controller.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.20 2004/10/30 18:09:22 thorpej Exp $");
46
47 #include "bpfilter.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/socket.h>
56 #include <sys/ioctl.h>
57 #include <sys/errno.h>
58 #include <sys/device.h>
59 #include <sys/queue.h>
60
61 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
62
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_ether.h>
67
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71
72 #include <machine/bus.h>
73 #include <machine/intr.h>
74
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 #include <dev/mii/mii_bitbang.h>
78
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 #include <dev/pci/pcidevs.h>
82
83 #include <dev/pci/if_stereg.h>
84
85 /*
86 * Transmit descriptor list size.
87 */
88 #define STE_NTXDESC 256
89 #define STE_NTXDESC_MASK (STE_NTXDESC - 1)
90 #define STE_NEXTTX(x) (((x) + 1) & STE_NTXDESC_MASK)
91
92 /*
93 * Receive descriptor list size.
94 */
95 #define STE_NRXDESC 128
96 #define STE_NRXDESC_MASK (STE_NRXDESC - 1)
97 #define STE_NEXTRX(x) (((x) + 1) & STE_NRXDESC_MASK)
98
99 /*
100 * Control structures are DMA'd to the ST-201 chip. We allocate them in
101 * a single clump that maps to a single DMA segment to make several things
102 * easier.
103 */
104 struct ste_control_data {
105 /*
106 * The transmit descriptors.
107 */
108 struct ste_tfd scd_txdescs[STE_NTXDESC];
109
110 /*
111 * The receive descriptors.
112 */
113 struct ste_rfd scd_rxdescs[STE_NRXDESC];
114 };
115
116 #define STE_CDOFF(x) offsetof(struct ste_control_data, x)
117 #define STE_CDTXOFF(x) STE_CDOFF(scd_txdescs[(x)])
118 #define STE_CDRXOFF(x) STE_CDOFF(scd_rxdescs[(x)])
119
120 /*
121 * Software state for transmit and receive jobs.
122 */
123 struct ste_descsoft {
124 struct mbuf *ds_mbuf; /* head of our mbuf chain */
125 bus_dmamap_t ds_dmamap; /* our DMA map */
126 };
127
128 /*
129 * Software state per device.
130 */
131 struct ste_softc {
132 struct device sc_dev; /* generic device information */
133 bus_space_tag_t sc_st; /* bus space tag */
134 bus_space_handle_t sc_sh; /* bus space handle */
135 bus_dma_tag_t sc_dmat; /* bus DMA tag */
136 struct ethercom sc_ethercom; /* ethernet common data */
137 void *sc_sdhook; /* shutdown hook */
138
139 void *sc_ih; /* interrupt cookie */
140
141 struct mii_data sc_mii; /* MII/media information */
142
143 struct callout sc_tick_ch; /* tick callout */
144
145 bus_dmamap_t sc_cddmamap; /* control data DMA map */
146 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
147
148 /*
149 * Software state for transmit and receive descriptors.
150 */
151 struct ste_descsoft sc_txsoft[STE_NTXDESC];
152 struct ste_descsoft sc_rxsoft[STE_NRXDESC];
153
154 /*
155 * Control data structures.
156 */
157 struct ste_control_data *sc_control_data;
158 #define sc_txdescs sc_control_data->scd_txdescs
159 #define sc_rxdescs sc_control_data->scd_rxdescs
160
161 int sc_txpending; /* number of Tx requests pending */
162 int sc_txdirty; /* first dirty Tx descriptor */
163 int sc_txlast; /* last used Tx descriptor */
164
165 int sc_rxptr; /* next ready Rx descriptor/descsoft */
166
167 int sc_txthresh; /* Tx threshold */
168 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
169 uint16_t sc_IntEnable; /* prototype IntEnable register */
170 uint16_t sc_MacCtrl0; /* prototype MacCtrl0 register */
171 uint8_t sc_ReceiveMode; /* prototype ReceiveMode register */
172 };
173
174 #define STE_CDTXADDR(sc, x) ((sc)->sc_cddma + STE_CDTXOFF((x)))
175 #define STE_CDRXADDR(sc, x) ((sc)->sc_cddma + STE_CDRXOFF((x)))
176
177 #define STE_CDTXSYNC(sc, x, ops) \
178 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
179 STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
180
181 #define STE_CDRXSYNC(sc, x, ops) \
182 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
183 STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
184
185 #define STE_INIT_RXDESC(sc, x) \
186 do { \
187 struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
188 struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
189 struct mbuf *__m = __ds->ds_mbuf; \
190 \
191 /* \
192 * Note: We scoot the packet forward 2 bytes in the buffer \
193 * so that the payload after the Ethernet header is aligned \
194 * to a 4-byte boundary. \
195 */ \
196 __m->m_data = __m->m_ext.ext_buf + 2; \
197 __rfd->rfd_frag.frag_addr = \
198 htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2); \
199 __rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST); \
200 __rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x)))); \
201 __rfd->rfd_status = 0; \
202 STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
203 } while (/*CONSTCOND*/0)
204
205 #define STE_TIMEOUT 1000
206
207 static void ste_start(struct ifnet *);
208 static void ste_watchdog(struct ifnet *);
209 static int ste_ioctl(struct ifnet *, u_long, caddr_t);
210 static int ste_init(struct ifnet *);
211 static void ste_stop(struct ifnet *, int);
212
213 static void ste_shutdown(void *);
214
215 static void ste_reset(struct ste_softc *, u_int32_t);
216 static void ste_setthresh(struct ste_softc *);
217 static void ste_txrestart(struct ste_softc *, u_int8_t);
218 static void ste_rxdrain(struct ste_softc *);
219 static int ste_add_rxbuf(struct ste_softc *, int);
220 static void ste_read_eeprom(struct ste_softc *, int, uint16_t *);
221 static void ste_tick(void *);
222
223 static void ste_stats_update(struct ste_softc *);
224
225 static void ste_set_filter(struct ste_softc *);
226
227 static int ste_intr(void *);
228 static void ste_txintr(struct ste_softc *);
229 static void ste_rxintr(struct ste_softc *);
230
231 static int ste_mii_readreg(struct device *, int, int);
232 static void ste_mii_writereg(struct device *, int, int, int);
233 static void ste_mii_statchg(struct device *);
234
235 static int ste_mediachange(struct ifnet *);
236 static void ste_mediastatus(struct ifnet *, struct ifmediareq *);
237
238 static int ste_match(struct device *, struct cfdata *, void *);
239 static void ste_attach(struct device *, struct device *, void *);
240
241 int ste_copy_small = 0;
242
243 CFATTACH_DECL(ste, sizeof(struct ste_softc),
244 ste_match, ste_attach, NULL, NULL);
245
246 static uint32_t ste_mii_bitbang_read(struct device *);
247 static void ste_mii_bitbang_write(struct device *, uint32_t);
248
249 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
250 ste_mii_bitbang_read,
251 ste_mii_bitbang_write,
252 {
253 PC_MgmtData, /* MII_BIT_MDO */
254 PC_MgmtData, /* MII_BIT_MDI */
255 PC_MgmtClk, /* MII_BIT_MDC */
256 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
257 0, /* MII_BIT_DIR_PHY_HOST */
258 }
259 };
260
261 /*
262 * Devices supported by this driver.
263 */
264 static const struct ste_product {
265 pci_vendor_id_t ste_vendor;
266 pci_product_id_t ste_product;
267 const char *ste_name;
268 } ste_products[] = {
269 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST201,
270 "Sundance ST-201 10/100 Ethernet" },
271
272 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL1002,
273 "D-Link DL-1002 10/100 Ethernet" },
274
275 { 0, 0,
276 NULL },
277 };
278
279 static const struct ste_product *
280 ste_lookup(const struct pci_attach_args *pa)
281 {
282 const struct ste_product *sp;
283
284 for (sp = ste_products; sp->ste_name != NULL; sp++) {
285 if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
286 PCI_PRODUCT(pa->pa_id) == sp->ste_product)
287 return (sp);
288 }
289 return (NULL);
290 }
291
292 static int
293 ste_match(struct device *parent, struct cfdata *cf, void *aux)
294 {
295 struct pci_attach_args *pa = aux;
296
297 if (ste_lookup(pa) != NULL)
298 return (1);
299
300 return (0);
301 }
302
303 static void
304 ste_attach(struct device *parent, struct device *self, void *aux)
305 {
306 struct ste_softc *sc = (struct ste_softc *) self;
307 struct pci_attach_args *pa = aux;
308 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
309 pci_chipset_tag_t pc = pa->pa_pc;
310 pci_intr_handle_t ih;
311 const char *intrstr = NULL;
312 bus_space_tag_t iot, memt;
313 bus_space_handle_t ioh, memh;
314 bus_dma_segment_t seg;
315 int ioh_valid, memh_valid;
316 int i, rseg, error;
317 const struct ste_product *sp;
318 pcireg_t pmode;
319 uint8_t enaddr[ETHER_ADDR_LEN];
320 uint16_t myea[ETHER_ADDR_LEN / 2];
321 int pmreg;
322
323 callout_init(&sc->sc_tick_ch);
324
325 sp = ste_lookup(pa);
326 if (sp == NULL) {
327 printf("\n");
328 panic("ste_attach: impossible");
329 }
330
331 printf(": %s\n", sp->ste_name);
332
333 /*
334 * Map the device.
335 */
336 ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
337 PCI_MAPREG_TYPE_IO, 0,
338 &iot, &ioh, NULL, NULL) == 0);
339 memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
340 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
341 &memt, &memh, NULL, NULL) == 0);
342
343 if (memh_valid) {
344 sc->sc_st = memt;
345 sc->sc_sh = memh;
346 } else if (ioh_valid) {
347 sc->sc_st = iot;
348 sc->sc_sh = ioh;
349 } else {
350 printf("%s: unable to map device registers\n",
351 sc->sc_dev.dv_xname);
352 return;
353 }
354
355 sc->sc_dmat = pa->pa_dmat;
356
357 /* Enable bus mastering. */
358 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
359 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
360 PCI_COMMAND_MASTER_ENABLE);
361
362 /* Get it out of power save mode if needed. */
363 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
364 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
365 PCI_PMCSR_STATE_MASK;
366 if (pmode == PCI_PMCSR_STATE_D3) {
367 /*
368 * The card has lost all configuration data in
369 * this state, so punt.
370 */
371 printf("%s: unable to wake up from power state D3\n",
372 sc->sc_dev.dv_xname);
373 return;
374 }
375 if (pmode != PCI_PMCSR_STATE_D0) {
376 printf("%s: waking up from power state D%d\n",
377 sc->sc_dev.dv_xname, pmode);
378 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
379 PCI_PMCSR_STATE_D0);
380 }
381 }
382
383 /*
384 * Map and establish our interrupt.
385 */
386 if (pci_intr_map(pa, &ih)) {
387 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
388 return;
389 }
390 intrstr = pci_intr_string(pc, ih);
391 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
392 if (sc->sc_ih == NULL) {
393 printf("%s: unable to establish interrupt",
394 sc->sc_dev.dv_xname);
395 if (intrstr != NULL)
396 printf(" at %s", intrstr);
397 printf("\n");
398 return;
399 }
400 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
401
402 /*
403 * Allocate the control data structures, and create and load the
404 * DMA map for it.
405 */
406 if ((error = bus_dmamem_alloc(sc->sc_dmat,
407 sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
408 0)) != 0) {
409 printf("%s: unable to allocate control data, error = %d\n",
410 sc->sc_dev.dv_xname, error);
411 goto fail_0;
412 }
413
414 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
415 sizeof(struct ste_control_data), (caddr_t *)&sc->sc_control_data,
416 BUS_DMA_COHERENT)) != 0) {
417 printf("%s: unable to map control data, error = %d\n",
418 sc->sc_dev.dv_xname, error);
419 goto fail_1;
420 }
421
422 if ((error = bus_dmamap_create(sc->sc_dmat,
423 sizeof(struct ste_control_data), 1,
424 sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
425 printf("%s: unable to create control data DMA map, "
426 "error = %d\n", sc->sc_dev.dv_xname, error);
427 goto fail_2;
428 }
429
430 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
431 sc->sc_control_data, sizeof(struct ste_control_data), NULL,
432 0)) != 0) {
433 printf("%s: unable to load control data DMA map, error = %d\n",
434 sc->sc_dev.dv_xname, error);
435 goto fail_3;
436 }
437
438 /*
439 * Create the transmit buffer DMA maps.
440 */
441 for (i = 0; i < STE_NTXDESC; i++) {
442 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
443 STE_NTXFRAGS, MCLBYTES, 0, 0,
444 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
445 printf("%s: unable to create tx DMA map %d, "
446 "error = %d\n", sc->sc_dev.dv_xname, i, error);
447 goto fail_4;
448 }
449 }
450
451 /*
452 * Create the receive buffer DMA maps.
453 */
454 for (i = 0; i < STE_NRXDESC; i++) {
455 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
456 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
457 printf("%s: unable to create rx DMA map %d, "
458 "error = %d\n", sc->sc_dev.dv_xname, i, error);
459 goto fail_5;
460 }
461 sc->sc_rxsoft[i].ds_mbuf = NULL;
462 }
463
464 /*
465 * Reset the chip to a known state.
466 */
467 ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
468 AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
469
470 /*
471 * Read the Ethernet address from the EEPROM.
472 */
473 for (i = 0; i < 3; i++) {
474 ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
475 myea[i] = le16toh(myea[i]);
476 }
477 memcpy(enaddr, myea, sizeof(enaddr));
478
479 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
480 ether_sprintf(enaddr));
481
482 /*
483 * Initialize our media structures and probe the MII.
484 */
485 sc->sc_mii.mii_ifp = ifp;
486 sc->sc_mii.mii_readreg = ste_mii_readreg;
487 sc->sc_mii.mii_writereg = ste_mii_writereg;
488 sc->sc_mii.mii_statchg = ste_mii_statchg;
489 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ste_mediachange,
490 ste_mediastatus);
491 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
492 MII_OFFSET_ANY, 0);
493 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
494 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
495 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
496 } else
497 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
498
499 ifp = &sc->sc_ethercom.ec_if;
500 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
501 ifp->if_softc = sc;
502 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
503 ifp->if_ioctl = ste_ioctl;
504 ifp->if_start = ste_start;
505 ifp->if_watchdog = ste_watchdog;
506 ifp->if_init = ste_init;
507 ifp->if_stop = ste_stop;
508 IFQ_SET_READY(&ifp->if_snd);
509
510 /*
511 * Default the transmit threshold to 128 bytes.
512 */
513 sc->sc_txthresh = 128;
514
515 /*
516 * Disable MWI if the PCI layer tells us to.
517 */
518 sc->sc_DMACtrl = 0;
519 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
520 sc->sc_DMACtrl |= DC_MWIDisable;
521
522 /*
523 * We can support 802.1Q VLAN-sized frames.
524 */
525 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
526
527 /*
528 * Attach the interface.
529 */
530 if_attach(ifp);
531 ether_ifattach(ifp, enaddr);
532
533 /*
534 * Make sure the interface is shutdown during reboot.
535 */
536 sc->sc_sdhook = shutdownhook_establish(ste_shutdown, sc);
537 if (sc->sc_sdhook == NULL)
538 printf("%s: WARNING: unable to establish shutdown hook\n",
539 sc->sc_dev.dv_xname);
540 return;
541
542 /*
543 * Free any resources we've allocated during the failed attach
544 * attempt. Do this in reverse order and fall through.
545 */
546 fail_5:
547 for (i = 0; i < STE_NRXDESC; i++) {
548 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
549 bus_dmamap_destroy(sc->sc_dmat,
550 sc->sc_rxsoft[i].ds_dmamap);
551 }
552 fail_4:
553 for (i = 0; i < STE_NTXDESC; i++) {
554 if (sc->sc_txsoft[i].ds_dmamap != NULL)
555 bus_dmamap_destroy(sc->sc_dmat,
556 sc->sc_txsoft[i].ds_dmamap);
557 }
558 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
559 fail_3:
560 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
561 fail_2:
562 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
563 sizeof(struct ste_control_data));
564 fail_1:
565 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
566 fail_0:
567 return;
568 }
569
570 /*
571 * ste_shutdown:
572 *
573 * Make sure the interface is stopped at reboot time.
574 */
575 static void
576 ste_shutdown(void *arg)
577 {
578 struct ste_softc *sc = arg;
579
580 ste_stop(&sc->sc_ethercom.ec_if, 1);
581 }
582
583 static void
584 ste_dmahalt_wait(struct ste_softc *sc)
585 {
586 int i;
587
588 for (i = 0; i < STE_TIMEOUT; i++) {
589 delay(2);
590 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
591 DC_DMAHaltBusy) == 0)
592 break;
593 }
594
595 if (i == STE_TIMEOUT)
596 printf("%s: DMA halt timed out\n", sc->sc_dev.dv_xname);
597 }
598
599 /*
600 * ste_start: [ifnet interface function]
601 *
602 * Start packet transmission on the interface.
603 */
604 static void
605 ste_start(struct ifnet *ifp)
606 {
607 struct ste_softc *sc = ifp->if_softc;
608 struct mbuf *m0, *m;
609 struct ste_descsoft *ds;
610 struct ste_tfd *tfd;
611 bus_dmamap_t dmamap;
612 int error, olasttx, nexttx, opending, seg, totlen;
613
614 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
615 return;
616
617 /*
618 * Remember the previous number of pending transmissions
619 * and the current last descriptor in the list.
620 */
621 opending = sc->sc_txpending;
622 olasttx = sc->sc_txlast;
623
624 /*
625 * Loop through the send queue, setting up transmit descriptors
626 * until we drain the queue, or use up all available transmit
627 * descriptors.
628 */
629 while (sc->sc_txpending < STE_NTXDESC) {
630 /*
631 * Grab a packet off the queue.
632 */
633 IFQ_POLL(&ifp->if_snd, m0);
634 if (m0 == NULL)
635 break;
636 m = NULL;
637
638 /*
639 * Get the last and next available transmit descriptor.
640 */
641 nexttx = STE_NEXTTX(sc->sc_txlast);
642 tfd = &sc->sc_txdescs[nexttx];
643 ds = &sc->sc_txsoft[nexttx];
644
645 dmamap = ds->ds_dmamap;
646
647 /*
648 * Load the DMA map. If this fails, the packet either
649 * didn't fit in the alloted number of segments, or we
650 * were short on resources. In this case, we'll copy
651 * and try again.
652 */
653 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
654 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
655 MGETHDR(m, M_DONTWAIT, MT_DATA);
656 if (m == NULL) {
657 printf("%s: unable to allocate Tx mbuf\n",
658 sc->sc_dev.dv_xname);
659 break;
660 }
661 if (m0->m_pkthdr.len > MHLEN) {
662 MCLGET(m, M_DONTWAIT);
663 if ((m->m_flags & M_EXT) == 0) {
664 printf("%s: unable to allocate Tx "
665 "cluster\n", sc->sc_dev.dv_xname);
666 m_freem(m);
667 break;
668 }
669 }
670 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
671 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
672 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
673 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
674 if (error) {
675 printf("%s: unable to load Tx buffer, "
676 "error = %d\n", sc->sc_dev.dv_xname, error);
677 break;
678 }
679 }
680
681 IFQ_DEQUEUE(&ifp->if_snd, m0);
682 if (m != NULL) {
683 m_freem(m0);
684 m0 = m;
685 }
686
687 /*
688 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
689 */
690
691 /* Sync the DMA map. */
692 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
693 BUS_DMASYNC_PREWRITE);
694
695 /* Initialize the fragment list. */
696 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
697 tfd->tfd_frags[seg].frag_addr =
698 htole32(dmamap->dm_segs[seg].ds_addr);
699 tfd->tfd_frags[seg].frag_len =
700 htole32(dmamap->dm_segs[seg].ds_len);
701 totlen += dmamap->dm_segs[seg].ds_len;
702 }
703 tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
704
705 /* Initialize the descriptor. */
706 tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
707 tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
708
709 /* Sync the descriptor. */
710 STE_CDTXSYNC(sc, nexttx,
711 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
712
713 /*
714 * Store a pointer to the packet so we can free it later,
715 * and remember what txdirty will be once the packet is
716 * done.
717 */
718 ds->ds_mbuf = m0;
719
720 /* Advance the tx pointer. */
721 sc->sc_txpending++;
722 sc->sc_txlast = nexttx;
723
724 #if NBPFILTER > 0
725 /*
726 * Pass the packet to any BPF listeners.
727 */
728 if (ifp->if_bpf)
729 bpf_mtap(ifp->if_bpf, m0);
730 #endif /* NBPFILTER > 0 */
731 }
732
733 if (sc->sc_txpending == STE_NTXDESC) {
734 /* No more slots left; notify upper layer. */
735 ifp->if_flags |= IFF_OACTIVE;
736 }
737
738 if (sc->sc_txpending != opending) {
739 /*
740 * We enqueued packets. If the transmitter was idle,
741 * reset the txdirty pointer.
742 */
743 if (opending == 0)
744 sc->sc_txdirty = STE_NEXTTX(olasttx);
745
746 /*
747 * Cause a descriptor interrupt to happen on the
748 * last packet we enqueued, and also cause the
749 * DMA engine to wait after is has finished processing
750 * it.
751 */
752 sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
753 sc->sc_txdescs[sc->sc_txlast].tfd_control |=
754 htole32(TFD_TxDMAIndicate);
755 STE_CDTXSYNC(sc, sc->sc_txlast,
756 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
757
758 /*
759 * Link up the new chain of descriptors to the
760 * last.
761 */
762 sc->sc_txdescs[olasttx].tfd_next =
763 htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
764 STE_CDTXSYNC(sc, olasttx,
765 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
766
767 /*
768 * Kick the transmit DMA logic. Note that since we're
769 * using auto-polling, reading the Tx desc pointer will
770 * give it the nudge it needs to get going.
771 */
772 if (bus_space_read_4(sc->sc_st, sc->sc_sh,
773 STE_TxDMAListPtr) == 0) {
774 bus_space_write_4(sc->sc_st, sc->sc_sh,
775 STE_DMACtrl, DC_TxDMAHalt);
776 ste_dmahalt_wait(sc);
777 bus_space_write_4(sc->sc_st, sc->sc_sh,
778 STE_TxDMAListPtr,
779 STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
780 bus_space_write_4(sc->sc_st, sc->sc_sh,
781 STE_DMACtrl, DC_TxDMAResume);
782 }
783
784 /* Set a watchdog timer in case the chip flakes out. */
785 ifp->if_timer = 5;
786 }
787 }
788
789 /*
790 * ste_watchdog: [ifnet interface function]
791 *
792 * Watchdog timer handler.
793 */
794 static void
795 ste_watchdog(struct ifnet *ifp)
796 {
797 struct ste_softc *sc = ifp->if_softc;
798
799 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
800 ifp->if_oerrors++;
801
802 (void) ste_init(ifp);
803
804 /* Try to get more packets going. */
805 ste_start(ifp);
806 }
807
808 /*
809 * ste_ioctl: [ifnet interface function]
810 *
811 * Handle control requests from the operator.
812 */
813 static int
814 ste_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
815 {
816 struct ste_softc *sc = ifp->if_softc;
817 struct ifreq *ifr = (struct ifreq *)data;
818 int s, error;
819
820 s = splnet();
821
822 switch (cmd) {
823 case SIOCSIFMEDIA:
824 case SIOCGIFMEDIA:
825 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
826 break;
827
828 default:
829 error = ether_ioctl(ifp, cmd, data);
830 if (error == ENETRESET) {
831 /*
832 * Multicast list has changed; set the hardware filter
833 * accordingly.
834 */
835 if (ifp->if_flags & IFF_RUNNING)
836 ste_set_filter(sc);
837 error = 0;
838 }
839 break;
840 }
841
842 /* Try to get more packets going. */
843 ste_start(ifp);
844
845 splx(s);
846 return (error);
847 }
848
849 /*
850 * ste_intr:
851 *
852 * Interrupt service routine.
853 */
854 static int
855 ste_intr(void *arg)
856 {
857 struct ste_softc *sc = arg;
858 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
859 uint16_t isr;
860 uint8_t txstat;
861 int wantinit;
862
863 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
864 IS_InterruptStatus) == 0)
865 return (0);
866
867 for (wantinit = 0; wantinit == 0;) {
868 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
869 if ((isr & sc->sc_IntEnable) == 0)
870 break;
871
872 /* Receive interrupts. */
873 if (isr & IE_RxDMAComplete)
874 ste_rxintr(sc);
875
876 /* Transmit interrupts. */
877 if (isr & (IE_TxDMAComplete|IE_TxComplete))
878 ste_txintr(sc);
879
880 /* Statistics overflow. */
881 if (isr & IE_UpdateStats)
882 ste_stats_update(sc);
883
884 /* Transmission errors. */
885 if (isr & IE_TxComplete) {
886 for (;;) {
887 txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
888 STE_TxStatus);
889 if ((txstat & TS_TxComplete) == 0)
890 break;
891 if (txstat & TS_TxUnderrun) {
892 sc->sc_txthresh += 32;
893 if (sc->sc_txthresh > 0x1ffc)
894 sc->sc_txthresh = 0x1ffc;
895 printf("%s: transmit underrun, new "
896 "threshold: %d bytes\n",
897 sc->sc_dev.dv_xname,
898 sc->sc_txthresh);
899 ste_reset(sc, AC_TxReset | AC_DMA |
900 AC_FIFO | AC_Network);
901 ste_setthresh(sc);
902 bus_space_write_1(sc->sc_st, sc->sc_sh,
903 STE_TxDMAPollPeriod, 127);
904 ste_txrestart(sc,
905 bus_space_read_1(sc->sc_st,
906 sc->sc_sh, STE_TxFrameId));
907 }
908 if (txstat & TS_TxReleaseError) {
909 printf("%s: Tx FIFO release error\n",
910 sc->sc_dev.dv_xname);
911 wantinit = 1;
912 }
913 if (txstat & TS_MaxCollisions) {
914 printf("%s: excessive collisions\n",
915 sc->sc_dev.dv_xname);
916 wantinit = 1;
917 }
918 if (txstat & TS_TxStatusOverflow) {
919 printf("%s: status overflow\n",
920 sc->sc_dev.dv_xname);
921 wantinit = 1;
922 }
923 bus_space_write_2(sc->sc_st, sc->sc_sh,
924 STE_TxStatus, 0);
925 }
926 }
927
928 /* Host interface errors. */
929 if (isr & IE_HostError) {
930 printf("%s: Host interface error\n",
931 sc->sc_dev.dv_xname);
932 wantinit = 1;
933 }
934 }
935
936 if (wantinit)
937 ste_init(ifp);
938
939 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
940 sc->sc_IntEnable);
941
942 /* Try to get more packets going. */
943 ste_start(ifp);
944
945 return (1);
946 }
947
948 /*
949 * ste_txintr:
950 *
951 * Helper; handle transmit interrupts.
952 */
953 static void
954 ste_txintr(struct ste_softc *sc)
955 {
956 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
957 struct ste_descsoft *ds;
958 uint32_t control;
959 int i;
960
961 ifp->if_flags &= ~IFF_OACTIVE;
962
963 /*
964 * Go through our Tx list and free mbufs for those
965 * frames which have been transmitted.
966 */
967 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
968 i = STE_NEXTTX(i), sc->sc_txpending--) {
969 ds = &sc->sc_txsoft[i];
970
971 STE_CDTXSYNC(sc, i,
972 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
973
974 control = le32toh(sc->sc_txdescs[i].tfd_control);
975 if ((control & TFD_TxDMAComplete) == 0)
976 break;
977
978 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
979 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
980 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
981 m_freem(ds->ds_mbuf);
982 ds->ds_mbuf = NULL;
983 }
984
985 /* Update the dirty transmit buffer pointer. */
986 sc->sc_txdirty = i;
987
988 /*
989 * If there are no more pending transmissions, cancel the watchdog
990 * timer.
991 */
992 if (sc->sc_txpending == 0)
993 ifp->if_timer = 0;
994 }
995
996 /*
997 * ste_rxintr:
998 *
999 * Helper; handle receive interrupts.
1000 */
1001 static void
1002 ste_rxintr(struct ste_softc *sc)
1003 {
1004 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1005 struct ste_descsoft *ds;
1006 struct mbuf *m;
1007 uint32_t status;
1008 int i, len;
1009
1010 for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
1011 ds = &sc->sc_rxsoft[i];
1012
1013 STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1014
1015 status = le32toh(sc->sc_rxdescs[i].rfd_status);
1016
1017 if ((status & RFD_RxDMAComplete) == 0)
1018 break;
1019
1020 /*
1021 * If the packet had an error, simply recycle the
1022 * buffer. Note, we count the error later in the
1023 * periodic stats update.
1024 */
1025 if (status & RFD_RxFrameError) {
1026 STE_INIT_RXDESC(sc, i);
1027 continue;
1028 }
1029
1030 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1031 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1032
1033 /*
1034 * No errors; receive the packet. Note, we have
1035 * configured the chip to not include the CRC at
1036 * the end of the packet.
1037 */
1038 len = RFD_RxDMAFrameLen(status);
1039
1040 /*
1041 * If the packet is small enough to fit in a
1042 * single header mbuf, allocate one and copy
1043 * the data into it. This greatly reduces
1044 * memory consumption when we receive lots
1045 * of small packets.
1046 *
1047 * Otherwise, we add a new buffer to the receive
1048 * chain. If this fails, we drop the packet and
1049 * recycle the old buffer.
1050 */
1051 if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
1052 MGETHDR(m, M_DONTWAIT, MT_DATA);
1053 if (m == NULL)
1054 goto dropit;
1055 m->m_data += 2;
1056 memcpy(mtod(m, caddr_t),
1057 mtod(ds->ds_mbuf, caddr_t), len);
1058 STE_INIT_RXDESC(sc, i);
1059 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1060 ds->ds_dmamap->dm_mapsize,
1061 BUS_DMASYNC_PREREAD);
1062 } else {
1063 m = ds->ds_mbuf;
1064 if (ste_add_rxbuf(sc, i) != 0) {
1065 dropit:
1066 ifp->if_ierrors++;
1067 STE_INIT_RXDESC(sc, i);
1068 bus_dmamap_sync(sc->sc_dmat,
1069 ds->ds_dmamap, 0,
1070 ds->ds_dmamap->dm_mapsize,
1071 BUS_DMASYNC_PREREAD);
1072 continue;
1073 }
1074 }
1075
1076 m->m_pkthdr.rcvif = ifp;
1077 m->m_pkthdr.len = m->m_len = len;
1078
1079 #if NBPFILTER > 0
1080 /*
1081 * Pass this up to any BPF listeners, but only
1082 * pass if up the stack if it's for us.
1083 */
1084 if (ifp->if_bpf)
1085 bpf_mtap(ifp->if_bpf, m);
1086 #endif /* NBPFILTER > 0 */
1087
1088 /* Pass it on. */
1089 (*ifp->if_input)(ifp, m);
1090 }
1091
1092 /* Update the receive pointer. */
1093 sc->sc_rxptr = i;
1094 }
1095
1096 /*
1097 * ste_tick:
1098 *
1099 * One second timer, used to tick the MII.
1100 */
1101 static void
1102 ste_tick(void *arg)
1103 {
1104 struct ste_softc *sc = arg;
1105 int s;
1106
1107 s = splnet();
1108 mii_tick(&sc->sc_mii);
1109 ste_stats_update(sc);
1110 splx(s);
1111
1112 callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1113 }
1114
1115 /*
1116 * ste_stats_update:
1117 *
1118 * Read the ST-201 statistics counters.
1119 */
1120 static void
1121 ste_stats_update(struct ste_softc *sc)
1122 {
1123 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1124 bus_space_tag_t st = sc->sc_st;
1125 bus_space_handle_t sh = sc->sc_sh;
1126
1127 (void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
1128 (void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
1129
1130 (void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
1131 (void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
1132
1133 ifp->if_opackets +=
1134 (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
1135 ifp->if_ipackets +=
1136 (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
1137
1138 ifp->if_collisions +=
1139 (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
1140 (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
1141 (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
1142
1143 (void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
1144
1145 ifp->if_ierrors +=
1146 (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
1147
1148 ifp->if_oerrors +=
1149 (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
1150 (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
1151 bus_space_read_1(st, sh, STE_CarrierSenseErrors);
1152
1153 (void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
1154 (void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
1155 (void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
1156 (void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
1157 }
1158
1159 /*
1160 * ste_reset:
1161 *
1162 * Perform a soft reset on the ST-201.
1163 */
1164 static void
1165 ste_reset(struct ste_softc *sc, u_int32_t rstbits)
1166 {
1167 uint32_t ac;
1168 int i;
1169
1170 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
1171
1172 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
1173
1174 delay(50000);
1175
1176 for (i = 0; i < STE_TIMEOUT; i++) {
1177 delay(1000);
1178 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
1179 AC_ResetBusy) == 0)
1180 break;
1181 }
1182
1183 if (i == STE_TIMEOUT)
1184 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1185
1186 delay(1000);
1187 }
1188
1189 /*
1190 * ste_setthresh:
1191 *
1192 * set the various transmit threshold registers
1193 */
1194 static void
1195 ste_setthresh(struct ste_softc *sc)
1196 {
1197 /* set the TX threhold */
1198 bus_space_write_2(sc->sc_st, sc->sc_sh,
1199 STE_TxStartThresh, sc->sc_txthresh);
1200 /* Urgent threshold: set to sc_txthresh / 2 */
1201 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
1202 sc->sc_txthresh >> 6);
1203 /* Burst threshold: use default value (256 bytes) */
1204 }
1205
1206 /*
1207 * restart TX at the given frame ID in the transmitter ring
1208 */
1209 static void
1210 ste_txrestart(struct ste_softc *sc, u_int8_t id)
1211 {
1212 u_int32_t control;
1213
1214 STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1215 control = le32toh(sc->sc_txdescs[id].tfd_control);
1216 control &= ~TFD_TxDMAComplete;
1217 sc->sc_txdescs[id].tfd_control = htole32(control);
1218 STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1219
1220 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
1221 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
1222 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
1223 ste_dmahalt_wait(sc);
1224 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
1225 STE_CDTXADDR(sc, id));
1226 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
1227 }
1228
1229 /*
1230 * ste_init: [ ifnet interface function ]
1231 *
1232 * Initialize the interface. Must be called at splnet().
1233 */
1234 static int
1235 ste_init(struct ifnet *ifp)
1236 {
1237 struct ste_softc *sc = ifp->if_softc;
1238 bus_space_tag_t st = sc->sc_st;
1239 bus_space_handle_t sh = sc->sc_sh;
1240 struct ste_descsoft *ds;
1241 int i, error = 0;
1242
1243 /*
1244 * Cancel any pending I/O.
1245 */
1246 ste_stop(ifp, 0);
1247
1248 /*
1249 * Reset the chip to a known state.
1250 */
1251 ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
1252 AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
1253
1254 /*
1255 * Initialize the transmit descriptor ring.
1256 */
1257 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1258 sc->sc_txpending = 0;
1259 sc->sc_txdirty = 0;
1260 sc->sc_txlast = STE_NTXDESC - 1;
1261
1262 /*
1263 * Initialize the receive descriptor and receive job
1264 * descriptor rings.
1265 */
1266 for (i = 0; i < STE_NRXDESC; i++) {
1267 ds = &sc->sc_rxsoft[i];
1268 if (ds->ds_mbuf == NULL) {
1269 if ((error = ste_add_rxbuf(sc, i)) != 0) {
1270 printf("%s: unable to allocate or map rx "
1271 "buffer %d, error = %d\n",
1272 sc->sc_dev.dv_xname, i, error);
1273 /*
1274 * XXX Should attempt to run with fewer receive
1275 * XXX buffers instead of just failing.
1276 */
1277 ste_rxdrain(sc);
1278 goto out;
1279 }
1280 } else
1281 STE_INIT_RXDESC(sc, i);
1282 }
1283 sc->sc_rxptr = 0;
1284
1285 /* Set the station address. */
1286 for (i = 0; i < ETHER_ADDR_LEN; i++)
1287 bus_space_write_1(st, sh, STE_StationAddress0 + 1,
1288 LLADDR(ifp->if_sadl)[i]);
1289
1290 /* Set up the receive filter. */
1291 ste_set_filter(sc);
1292
1293 /*
1294 * Give the receive ring to the chip.
1295 */
1296 bus_space_write_4(st, sh, STE_RxDMAListPtr,
1297 STE_CDRXADDR(sc, sc->sc_rxptr));
1298
1299 /*
1300 * We defer giving the transmit ring to the chip until we
1301 * transmit the first packet.
1302 */
1303
1304 /*
1305 * Initialize the Tx auto-poll period. It's OK to make this number
1306 * large (127 is the max) -- we explicitly kick the transmit engine
1307 * when there's actually a packet. We are using auto-polling only
1308 * to make the interface to the transmit engine not suck.
1309 */
1310 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
1311
1312 /* ..and the Rx auto-poll period. */
1313 bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
1314
1315 /* Initialize the Tx start threshold. */
1316 ste_setthresh(sc);
1317
1318 /* Set the FIFO release threshold to 512 bytes. */
1319 bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
1320
1321 /* Set maximum packet size for VLAN. */
1322 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1323 bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN + 4);
1324 else
1325 bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN);
1326
1327 /*
1328 * Initialize the interrupt mask.
1329 */
1330 sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1331 IE_TxDMAComplete | IE_RxDMAComplete;
1332
1333 bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
1334 bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
1335
1336 /*
1337 * Start the receive DMA engine.
1338 */
1339 bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
1340
1341 /*
1342 * Initialize MacCtrl0 -- do it before setting the media,
1343 * as setting the media will actually program the register.
1344 */
1345 sc->sc_MacCtrl0 = MC0_IFSSelect(0);
1346 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1347 sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
1348
1349 /*
1350 * Set the current media.
1351 */
1352 mii_mediachg(&sc->sc_mii);
1353
1354 /*
1355 * Start the MAC.
1356 */
1357 bus_space_write_2(st, sh, STE_MacCtrl1,
1358 MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
1359
1360 /*
1361 * Start the one second MII clock.
1362 */
1363 callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1364
1365 /*
1366 * ...all done!
1367 */
1368 ifp->if_flags |= IFF_RUNNING;
1369 ifp->if_flags &= ~IFF_OACTIVE;
1370
1371 out:
1372 if (error)
1373 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1374 return (error);
1375 }
1376
1377 /*
1378 * ste_drain:
1379 *
1380 * Drain the receive queue.
1381 */
1382 static void
1383 ste_rxdrain(struct ste_softc *sc)
1384 {
1385 struct ste_descsoft *ds;
1386 int i;
1387
1388 for (i = 0; i < STE_NRXDESC; i++) {
1389 ds = &sc->sc_rxsoft[i];
1390 if (ds->ds_mbuf != NULL) {
1391 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1392 m_freem(ds->ds_mbuf);
1393 ds->ds_mbuf = NULL;
1394 }
1395 }
1396 }
1397
1398 /*
1399 * ste_stop: [ ifnet interface function ]
1400 *
1401 * Stop transmission on the interface.
1402 */
1403 static void
1404 ste_stop(struct ifnet *ifp, int disable)
1405 {
1406 struct ste_softc *sc = ifp->if_softc;
1407 struct ste_descsoft *ds;
1408 int i;
1409
1410 /*
1411 * Stop the one second clock.
1412 */
1413 callout_stop(&sc->sc_tick_ch);
1414
1415 /* Down the MII. */
1416 mii_down(&sc->sc_mii);
1417
1418 /*
1419 * Disable interrupts.
1420 */
1421 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
1422
1423 /*
1424 * Stop receiver, transmitter, and stats update.
1425 */
1426 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
1427 MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
1428
1429 /*
1430 * Stop the transmit and receive DMA.
1431 */
1432 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
1433 DC_RxDMAHalt | DC_TxDMAHalt);
1434 ste_dmahalt_wait(sc);
1435
1436 /*
1437 * Release any queued transmit buffers.
1438 */
1439 for (i = 0; i < STE_NTXDESC; i++) {
1440 ds = &sc->sc_txsoft[i];
1441 if (ds->ds_mbuf != NULL) {
1442 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1443 m_freem(ds->ds_mbuf);
1444 ds->ds_mbuf = NULL;
1445 }
1446 }
1447
1448 if (disable)
1449 ste_rxdrain(sc);
1450
1451 /*
1452 * Mark the interface down and cancel the watchdog timer.
1453 */
1454 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1455 ifp->if_timer = 0;
1456 }
1457
1458 static int
1459 ste_eeprom_wait(struct ste_softc *sc)
1460 {
1461 int i;
1462
1463 for (i = 0; i < STE_TIMEOUT; i++) {
1464 delay(1000);
1465 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
1466 EC_EepromBusy) == 0)
1467 return (0);
1468 }
1469 return (1);
1470 }
1471
1472 /*
1473 * ste_read_eeprom:
1474 *
1475 * Read data from the serial EEPROM.
1476 */
1477 static void
1478 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
1479 {
1480
1481 if (ste_eeprom_wait(sc))
1482 printf("%s: EEPROM failed to come ready\n",
1483 sc->sc_dev.dv_xname);
1484
1485 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
1486 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
1487 if (ste_eeprom_wait(sc))
1488 printf("%s: EEPROM read timed out\n",
1489 sc->sc_dev.dv_xname);
1490 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
1491 }
1492
1493 /*
1494 * ste_add_rxbuf:
1495 *
1496 * Add a receive buffer to the indicated descriptor.
1497 */
1498 static int
1499 ste_add_rxbuf(struct ste_softc *sc, int idx)
1500 {
1501 struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
1502 struct mbuf *m;
1503 int error;
1504
1505 MGETHDR(m, M_DONTWAIT, MT_DATA);
1506 if (m == NULL)
1507 return (ENOBUFS);
1508
1509 MCLGET(m, M_DONTWAIT);
1510 if ((m->m_flags & M_EXT) == 0) {
1511 m_freem(m);
1512 return (ENOBUFS);
1513 }
1514
1515 if (ds->ds_mbuf != NULL)
1516 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1517
1518 ds->ds_mbuf = m;
1519
1520 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1521 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1522 BUS_DMA_READ|BUS_DMA_NOWAIT);
1523 if (error) {
1524 printf("%s: can't load rx DMA map %d, error = %d\n",
1525 sc->sc_dev.dv_xname, idx, error);
1526 panic("ste_add_rxbuf"); /* XXX */
1527 }
1528
1529 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1530 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1531
1532 STE_INIT_RXDESC(sc, idx);
1533
1534 return (0);
1535 }
1536
1537 /*
1538 * ste_set_filter:
1539 *
1540 * Set up the receive filter.
1541 */
1542 static void
1543 ste_set_filter(struct ste_softc *sc)
1544 {
1545 struct ethercom *ec = &sc->sc_ethercom;
1546 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1547 struct ether_multi *enm;
1548 struct ether_multistep step;
1549 uint32_t crc;
1550 uint16_t mchash[4];
1551
1552 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1553 if (ifp->if_flags & IFF_BROADCAST)
1554 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1555
1556 if (ifp->if_flags & IFF_PROMISC) {
1557 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1558 goto allmulti;
1559 }
1560
1561 /*
1562 * Set up the multicast address filter by passing all multicast
1563 * addresses through a CRC generator, and then using the low-order
1564 * 6 bits as an index into the 64 bit multicast hash table. The
1565 * high order bits select the register, while the rest of the bits
1566 * select the bit within the register.
1567 */
1568
1569 memset(mchash, 0, sizeof(mchash));
1570
1571 ETHER_FIRST_MULTI(step, ec, enm);
1572 if (enm == NULL)
1573 goto done;
1574
1575 while (enm != NULL) {
1576 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1577 /*
1578 * We must listen to a range of multicast addresses.
1579 * For now, just accept all multicasts, rather than
1580 * trying to set only those filter bits needed to match
1581 * the range. (At this time, the only use of address
1582 * ranges is for IP multicast routing, for which the
1583 * range is big enough to require all bits set.)
1584 */
1585 goto allmulti;
1586 }
1587
1588 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1589
1590 /* Just want the 6 least significant bits. */
1591 crc &= 0x3f;
1592
1593 /* Set the corresponding bit in the hash table. */
1594 mchash[crc >> 4] |= 1 << (crc & 0xf);
1595
1596 ETHER_NEXT_MULTI(step, enm);
1597 }
1598
1599 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1600
1601 ifp->if_flags &= ~IFF_ALLMULTI;
1602 goto done;
1603
1604 allmulti:
1605 ifp->if_flags |= IFF_ALLMULTI;
1606 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1607
1608 done:
1609 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1610 /*
1611 * Program the multicast hash table.
1612 */
1613 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
1614 mchash[0]);
1615 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
1616 mchash[1]);
1617 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
1618 mchash[2]);
1619 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
1620 mchash[3]);
1621 }
1622
1623 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
1624 sc->sc_ReceiveMode);
1625 }
1626
1627 /*
1628 * ste_mii_readreg: [mii interface function]
1629 *
1630 * Read a PHY register on the MII of the ST-201.
1631 */
1632 static int
1633 ste_mii_readreg(struct device *self, int phy, int reg)
1634 {
1635
1636 return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
1637 }
1638
1639 /*
1640 * ste_mii_writereg: [mii interface function]
1641 *
1642 * Write a PHY register on the MII of the ST-201.
1643 */
1644 static void
1645 ste_mii_writereg(struct device *self, int phy, int reg, int val)
1646 {
1647
1648 mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
1649 }
1650
1651 /*
1652 * ste_mii_statchg: [mii interface function]
1653 *
1654 * Callback from MII layer when media changes.
1655 */
1656 static void
1657 ste_mii_statchg(struct device *self)
1658 {
1659 struct ste_softc *sc = (struct ste_softc *) self;
1660
1661 if (sc->sc_mii.mii_media_active & IFM_FDX)
1662 sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
1663 else
1664 sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
1665
1666 /* XXX 802.1x flow-control? */
1667
1668 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
1669 }
1670
1671 /*
1672 * ste_mii_bitbang_read: [mii bit-bang interface function]
1673 *
1674 * Read the MII serial port for the MII bit-bang module.
1675 */
1676 static uint32_t
1677 ste_mii_bitbang_read(struct device *self)
1678 {
1679 struct ste_softc *sc = (void *) self;
1680
1681 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
1682 }
1683
1684 /*
1685 * ste_mii_bitbang_write: [mii big-bang interface function]
1686 *
1687 * Write the MII serial port for the MII bit-bang module.
1688 */
1689 static void
1690 ste_mii_bitbang_write(struct device *self, uint32_t val)
1691 {
1692 struct ste_softc *sc = (void *) self;
1693
1694 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
1695 }
1696
1697 /*
1698 * ste_mediastatus: [ifmedia interface function]
1699 *
1700 * Get the current interface media status.
1701 */
1702 static void
1703 ste_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1704 {
1705 struct ste_softc *sc = ifp->if_softc;
1706
1707 mii_pollstat(&sc->sc_mii);
1708 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1709 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1710 }
1711
1712 /*
1713 * ste_mediachange: [ifmedia interface function]
1714 *
1715 * Set hardware to newly-selected media.
1716 */
1717 static int
1718 ste_mediachange(struct ifnet *ifp)
1719 {
1720 struct ste_softc *sc = ifp->if_softc;
1721
1722 if (ifp->if_flags & IFF_UP)
1723 mii_mediachg(&sc->sc_mii);
1724 return (0);
1725 }
1726