Home | History | Annotate | Line # | Download | only in pci
if_ste.c revision 1.23
      1 /*	$NetBSD: if_ste.c,v 1.23 2006/06/17 23:34:27 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Device driver for the Sundance Tech. ST-201 10/100
     41  * Ethernet controller.
     42  */
     43 
     44 #include <sys/cdefs.h>
     45 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.23 2006/06/17 23:34:27 christos Exp $");
     46 
     47 #include "bpfilter.h"
     48 
     49 #include <sys/param.h>
     50 #include <sys/systm.h>
     51 #include <sys/callout.h>
     52 #include <sys/mbuf.h>
     53 #include <sys/malloc.h>
     54 #include <sys/kernel.h>
     55 #include <sys/socket.h>
     56 #include <sys/ioctl.h>
     57 #include <sys/errno.h>
     58 #include <sys/device.h>
     59 #include <sys/queue.h>
     60 
     61 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     62 
     63 #include <net/if.h>
     64 #include <net/if_dl.h>
     65 #include <net/if_media.h>
     66 #include <net/if_ether.h>
     67 
     68 #if NBPFILTER > 0
     69 #include <net/bpf.h>
     70 #endif
     71 
     72 #include <machine/bus.h>
     73 #include <machine/intr.h>
     74 
     75 #include <dev/mii/mii.h>
     76 #include <dev/mii/miivar.h>
     77 #include <dev/mii/mii_bitbang.h>
     78 
     79 #include <dev/pci/pcireg.h>
     80 #include <dev/pci/pcivar.h>
     81 #include <dev/pci/pcidevs.h>
     82 
     83 #include <dev/pci/if_stereg.h>
     84 
     85 /*
     86  * Transmit descriptor list size.
     87  */
     88 #define	STE_NTXDESC		256
     89 #define	STE_NTXDESC_MASK	(STE_NTXDESC - 1)
     90 #define	STE_NEXTTX(x)		(((x) + 1) & STE_NTXDESC_MASK)
     91 
     92 /*
     93  * Receive descriptor list size.
     94  */
     95 #define	STE_NRXDESC		128
     96 #define	STE_NRXDESC_MASK	(STE_NRXDESC - 1)
     97 #define	STE_NEXTRX(x)		(((x) + 1) & STE_NRXDESC_MASK)
     98 
     99 /*
    100  * Control structures are DMA'd to the ST-201 chip.  We allocate them in
    101  * a single clump that maps to a single DMA segment to make several things
    102  * easier.
    103  */
    104 struct ste_control_data {
    105 	/*
    106 	 * The transmit descriptors.
    107 	 */
    108 	struct ste_tfd scd_txdescs[STE_NTXDESC];
    109 
    110 	/*
    111 	 * The receive descriptors.
    112 	 */
    113 	struct ste_rfd scd_rxdescs[STE_NRXDESC];
    114 };
    115 
    116 #define	STE_CDOFF(x)	offsetof(struct ste_control_data, x)
    117 #define	STE_CDTXOFF(x)	STE_CDOFF(scd_txdescs[(x)])
    118 #define	STE_CDRXOFF(x)	STE_CDOFF(scd_rxdescs[(x)])
    119 
    120 /*
    121  * Software state for transmit and receive jobs.
    122  */
    123 struct ste_descsoft {
    124 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
    125 	bus_dmamap_t ds_dmamap;		/* our DMA map */
    126 };
    127 
    128 /*
    129  * Software state per device.
    130  */
    131 struct ste_softc {
    132 	struct device sc_dev;		/* generic device information */
    133 	bus_space_tag_t sc_st;		/* bus space tag */
    134 	bus_space_handle_t sc_sh;	/* bus space handle */
    135 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    136 	struct ethercom sc_ethercom;	/* ethernet common data */
    137 	void *sc_sdhook;		/* shutdown hook */
    138 
    139 	void *sc_ih;			/* interrupt cookie */
    140 
    141 	struct mii_data sc_mii;		/* MII/media information */
    142 
    143 	struct callout sc_tick_ch;	/* tick callout */
    144 
    145 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    146 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    147 
    148 	/*
    149 	 * Software state for transmit and receive descriptors.
    150 	 */
    151 	struct ste_descsoft sc_txsoft[STE_NTXDESC];
    152 	struct ste_descsoft sc_rxsoft[STE_NRXDESC];
    153 
    154 	/*
    155 	 * Control data structures.
    156 	 */
    157 	struct ste_control_data *sc_control_data;
    158 #define	sc_txdescs	sc_control_data->scd_txdescs
    159 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    160 
    161 	int	sc_txpending;		/* number of Tx requests pending */
    162 	int	sc_txdirty;		/* first dirty Tx descriptor */
    163 	int	sc_txlast;		/* last used Tx descriptor */
    164 
    165 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    166 
    167 	int	sc_txthresh;		/* Tx threshold */
    168 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
    169 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
    170 	uint16_t sc_MacCtrl0;		/* prototype MacCtrl0 register */
    171 	uint8_t	sc_ReceiveMode;		/* prototype ReceiveMode register */
    172 };
    173 
    174 #define	STE_CDTXADDR(sc, x)	((sc)->sc_cddma + STE_CDTXOFF((x)))
    175 #define	STE_CDRXADDR(sc, x)	((sc)->sc_cddma + STE_CDRXOFF((x)))
    176 
    177 #define	STE_CDTXSYNC(sc, x, ops)					\
    178 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    179 	    STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
    180 
    181 #define	STE_CDRXSYNC(sc, x, ops)					\
    182 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    183 	    STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
    184 
    185 #define	STE_INIT_RXDESC(sc, x)						\
    186 do {									\
    187 	struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
    188 	struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)];			\
    189 	struct mbuf *__m = __ds->ds_mbuf;				\
    190 									\
    191 	/*								\
    192 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    193 	 * so that the payload after the Ethernet header is aligned	\
    194 	 * to a 4-byte boundary.					\
    195 	 */								\
    196 	__m->m_data = __m->m_ext.ext_buf + 2;				\
    197 	__rfd->rfd_frag.frag_addr =					\
    198 	    htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2);		\
    199 	__rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST);	\
    200 	__rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x))));	\
    201 	__rfd->rfd_status = 0;						\
    202 	STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    203 } while (/*CONSTCOND*/0)
    204 
    205 #define STE_TIMEOUT 1000
    206 
    207 static void	ste_start(struct ifnet *);
    208 static void	ste_watchdog(struct ifnet *);
    209 static int	ste_ioctl(struct ifnet *, u_long, caddr_t);
    210 static int	ste_init(struct ifnet *);
    211 static void	ste_stop(struct ifnet *, int);
    212 
    213 static void	ste_shutdown(void *);
    214 
    215 static void	ste_reset(struct ste_softc *, u_int32_t);
    216 static void	ste_setthresh(struct ste_softc *);
    217 static void	ste_txrestart(struct ste_softc *, u_int8_t);
    218 static void	ste_rxdrain(struct ste_softc *);
    219 static int	ste_add_rxbuf(struct ste_softc *, int);
    220 static void	ste_read_eeprom(struct ste_softc *, int, uint16_t *);
    221 static void	ste_tick(void *);
    222 
    223 static void	ste_stats_update(struct ste_softc *);
    224 
    225 static void	ste_set_filter(struct ste_softc *);
    226 
    227 static int	ste_intr(void *);
    228 static void	ste_txintr(struct ste_softc *);
    229 static void	ste_rxintr(struct ste_softc *);
    230 
    231 static int	ste_mii_readreg(struct device *, int, int);
    232 static void	ste_mii_writereg(struct device *, int, int, int);
    233 static void	ste_mii_statchg(struct device *);
    234 
    235 static int	ste_mediachange(struct ifnet *);
    236 static void	ste_mediastatus(struct ifnet *, struct ifmediareq *);
    237 
    238 static int	ste_match(struct device *, struct cfdata *, void *);
    239 static void	ste_attach(struct device *, struct device *, void *);
    240 
    241 int	ste_copy_small = 0;
    242 
    243 CFATTACH_DECL(ste, sizeof(struct ste_softc),
    244     ste_match, ste_attach, NULL, NULL);
    245 
    246 static uint32_t ste_mii_bitbang_read(struct device *);
    247 static void	ste_mii_bitbang_write(struct device *, uint32_t);
    248 
    249 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
    250 	ste_mii_bitbang_read,
    251 	ste_mii_bitbang_write,
    252 	{
    253 		PC_MgmtData,		/* MII_BIT_MDO */
    254 		PC_MgmtData,		/* MII_BIT_MDI */
    255 		PC_MgmtClk,		/* MII_BIT_MDC */
    256 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
    257 		0,			/* MII_BIT_DIR_PHY_HOST */
    258 	}
    259 };
    260 
    261 /*
    262  * Devices supported by this driver.
    263  */
    264 static const struct ste_product {
    265 	pci_vendor_id_t		ste_vendor;
    266 	pci_product_id_t	ste_product;
    267 	const char		*ste_name;
    268 } ste_products[] = {
    269 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST201,
    270 	  "Sundance ST-201 10/100 Ethernet" },
    271 
    272 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL1002,
    273 	  "D-Link DL-1002 10/100 Ethernet" },
    274 
    275 	{ 0,				0,
    276 	  NULL },
    277 };
    278 
    279 static const struct ste_product *
    280 ste_lookup(const struct pci_attach_args *pa)
    281 {
    282 	const struct ste_product *sp;
    283 
    284 	for (sp = ste_products; sp->ste_name != NULL; sp++) {
    285 		if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
    286 		    PCI_PRODUCT(pa->pa_id) == sp->ste_product)
    287 			return (sp);
    288 	}
    289 	return (NULL);
    290 }
    291 
    292 static int
    293 ste_match(struct device *parent, struct cfdata *cf, void *aux)
    294 {
    295 	struct pci_attach_args *pa = aux;
    296 
    297 	if (ste_lookup(pa) != NULL)
    298 		return (1);
    299 
    300 	return (0);
    301 }
    302 
    303 static void
    304 ste_attach(struct device *parent, struct device *self, void *aux)
    305 {
    306 	struct ste_softc *sc = (struct ste_softc *) self;
    307 	struct pci_attach_args *pa = aux;
    308 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    309 	pci_chipset_tag_t pc = pa->pa_pc;
    310 	pci_intr_handle_t ih;
    311 	const char *intrstr = NULL;
    312 	bus_space_tag_t iot, memt;
    313 	bus_space_handle_t ioh, memh;
    314 	bus_dma_segment_t seg;
    315 	int ioh_valid, memh_valid;
    316 	int i, rseg, error;
    317 	const struct ste_product *sp;
    318 	uint8_t enaddr[ETHER_ADDR_LEN];
    319 	uint16_t myea[ETHER_ADDR_LEN / 2];
    320 
    321 	callout_init(&sc->sc_tick_ch);
    322 
    323 	sp = ste_lookup(pa);
    324 	if (sp == NULL) {
    325 		printf("\n");
    326 		panic("ste_attach: impossible");
    327 	}
    328 
    329 	printf(": %s\n", sp->ste_name);
    330 
    331 	/*
    332 	 * Map the device.
    333 	 */
    334 	ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
    335 	    PCI_MAPREG_TYPE_IO, 0,
    336 	    &iot, &ioh, NULL, NULL) == 0);
    337 	memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
    338 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    339 	    &memt, &memh, NULL, NULL) == 0);
    340 
    341 	if (memh_valid) {
    342 		sc->sc_st = memt;
    343 		sc->sc_sh = memh;
    344 	} else if (ioh_valid) {
    345 		sc->sc_st = iot;
    346 		sc->sc_sh = ioh;
    347 	} else {
    348 		printf("%s: unable to map device registers\n",
    349 		    sc->sc_dev.dv_xname);
    350 		return;
    351 	}
    352 
    353 	sc->sc_dmat = pa->pa_dmat;
    354 
    355 	/* Enable bus mastering. */
    356 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    357 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    358 	    PCI_COMMAND_MASTER_ENABLE);
    359 
    360 	/* power up chip */
    361 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
    362 	    NULL)) && error != EOPNOTSUPP) {
    363 		aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
    364 		    error);
    365 		return;
    366 	}
    367 
    368 	/*
    369 	 * Map and establish our interrupt.
    370 	 */
    371 	if (pci_intr_map(pa, &ih)) {
    372 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    373 		return;
    374 	}
    375 	intrstr = pci_intr_string(pc, ih);
    376 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
    377 	if (sc->sc_ih == NULL) {
    378 		printf("%s: unable to establish interrupt",
    379 		    sc->sc_dev.dv_xname);
    380 		if (intrstr != NULL)
    381 			printf(" at %s", intrstr);
    382 		printf("\n");
    383 		return;
    384 	}
    385 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    386 
    387 	/*
    388 	 * Allocate the control data structures, and create and load the
    389 	 * DMA map for it.
    390 	 */
    391 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    392 	    sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    393 	    0)) != 0) {
    394 		printf("%s: unable to allocate control data, error = %d\n",
    395 		    sc->sc_dev.dv_xname, error);
    396 		goto fail_0;
    397 	}
    398 
    399 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    400 	    sizeof(struct ste_control_data), (caddr_t *)&sc->sc_control_data,
    401 	    BUS_DMA_COHERENT)) != 0) {
    402 		printf("%s: unable to map control data, error = %d\n",
    403 		    sc->sc_dev.dv_xname, error);
    404 		goto fail_1;
    405 	}
    406 
    407 	if ((error = bus_dmamap_create(sc->sc_dmat,
    408 	    sizeof(struct ste_control_data), 1,
    409 	    sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    410 		printf("%s: unable to create control data DMA map, "
    411 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    412 		goto fail_2;
    413 	}
    414 
    415 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    416 	    sc->sc_control_data, sizeof(struct ste_control_data), NULL,
    417 	    0)) != 0) {
    418 		printf("%s: unable to load control data DMA map, error = %d\n",
    419 		    sc->sc_dev.dv_xname, error);
    420 		goto fail_3;
    421 	}
    422 
    423 	/*
    424 	 * Create the transmit buffer DMA maps.
    425 	 */
    426 	for (i = 0; i < STE_NTXDESC; i++) {
    427 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    428 		    STE_NTXFRAGS, MCLBYTES, 0, 0,
    429 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
    430 			printf("%s: unable to create tx DMA map %d, "
    431 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    432 			goto fail_4;
    433 		}
    434 	}
    435 
    436 	/*
    437 	 * Create the receive buffer DMA maps.
    438 	 */
    439 	for (i = 0; i < STE_NRXDESC; i++) {
    440 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    441 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
    442 			printf("%s: unable to create rx DMA map %d, "
    443 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    444 			goto fail_5;
    445 		}
    446 		sc->sc_rxsoft[i].ds_mbuf = NULL;
    447 	}
    448 
    449 	/*
    450 	 * Reset the chip to a known state.
    451 	 */
    452 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
    453 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
    454 
    455 	/*
    456 	 * Read the Ethernet address from the EEPROM.
    457 	 */
    458 	for (i = 0; i < 3; i++) {
    459 		ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
    460 		myea[i] = le16toh(myea[i]);
    461 	}
    462 	memcpy(enaddr, myea, sizeof(enaddr));
    463 
    464 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    465 	    ether_sprintf(enaddr));
    466 
    467 	/*
    468 	 * Initialize our media structures and probe the MII.
    469 	 */
    470 	sc->sc_mii.mii_ifp = ifp;
    471 	sc->sc_mii.mii_readreg = ste_mii_readreg;
    472 	sc->sc_mii.mii_writereg = ste_mii_writereg;
    473 	sc->sc_mii.mii_statchg = ste_mii_statchg;
    474 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ste_mediachange,
    475 	    ste_mediastatus);
    476 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    477 	    MII_OFFSET_ANY, 0);
    478 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    479 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    480 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    481 	} else
    482 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    483 
    484 	ifp = &sc->sc_ethercom.ec_if;
    485 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    486 	ifp->if_softc = sc;
    487 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    488 	ifp->if_ioctl = ste_ioctl;
    489 	ifp->if_start = ste_start;
    490 	ifp->if_watchdog = ste_watchdog;
    491 	ifp->if_init = ste_init;
    492 	ifp->if_stop = ste_stop;
    493 	IFQ_SET_READY(&ifp->if_snd);
    494 
    495 	/*
    496 	 * Default the transmit threshold to 128 bytes.
    497 	 */
    498 	sc->sc_txthresh = 128;
    499 
    500 	/*
    501 	 * Disable MWI if the PCI layer tells us to.
    502 	 */
    503 	sc->sc_DMACtrl = 0;
    504 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
    505 		sc->sc_DMACtrl |= DC_MWIDisable;
    506 
    507 	/*
    508 	 * We can support 802.1Q VLAN-sized frames.
    509 	 */
    510 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    511 
    512 	/*
    513 	 * Attach the interface.
    514 	 */
    515 	if_attach(ifp);
    516 	ether_ifattach(ifp, enaddr);
    517 
    518 	/*
    519 	 * Make sure the interface is shutdown during reboot.
    520 	 */
    521 	sc->sc_sdhook = shutdownhook_establish(ste_shutdown, sc);
    522 	if (sc->sc_sdhook == NULL)
    523 		printf("%s: WARNING: unable to establish shutdown hook\n",
    524 		    sc->sc_dev.dv_xname);
    525 	return;
    526 
    527 	/*
    528 	 * Free any resources we've allocated during the failed attach
    529 	 * attempt.  Do this in reverse order and fall through.
    530 	 */
    531  fail_5:
    532 	for (i = 0; i < STE_NRXDESC; i++) {
    533 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
    534 			bus_dmamap_destroy(sc->sc_dmat,
    535 			    sc->sc_rxsoft[i].ds_dmamap);
    536 	}
    537  fail_4:
    538 	for (i = 0; i < STE_NTXDESC; i++) {
    539 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
    540 			bus_dmamap_destroy(sc->sc_dmat,
    541 			    sc->sc_txsoft[i].ds_dmamap);
    542 	}
    543 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    544  fail_3:
    545 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    546  fail_2:
    547 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    548 	    sizeof(struct ste_control_data));
    549  fail_1:
    550 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    551  fail_0:
    552 	return;
    553 }
    554 
    555 /*
    556  * ste_shutdown:
    557  *
    558  *	Make sure the interface is stopped at reboot time.
    559  */
    560 static void
    561 ste_shutdown(void *arg)
    562 {
    563 	struct ste_softc *sc = arg;
    564 
    565 	ste_stop(&sc->sc_ethercom.ec_if, 1);
    566 }
    567 
    568 static void
    569 ste_dmahalt_wait(struct ste_softc *sc)
    570 {
    571 	int i;
    572 
    573 	for (i = 0; i < STE_TIMEOUT; i++) {
    574 		delay(2);
    575 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
    576 		     DC_DMAHaltBusy) == 0)
    577 			break;
    578 	}
    579 
    580 	if (i == STE_TIMEOUT)
    581 		printf("%s: DMA halt timed out\n", sc->sc_dev.dv_xname);
    582 }
    583 
    584 /*
    585  * ste_start:		[ifnet interface function]
    586  *
    587  *	Start packet transmission on the interface.
    588  */
    589 static void
    590 ste_start(struct ifnet *ifp)
    591 {
    592 	struct ste_softc *sc = ifp->if_softc;
    593 	struct mbuf *m0, *m;
    594 	struct ste_descsoft *ds;
    595 	struct ste_tfd *tfd;
    596 	bus_dmamap_t dmamap;
    597 	int error, olasttx, nexttx, opending, seg, totlen;
    598 
    599 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    600 		return;
    601 
    602 	/*
    603 	 * Remember the previous number of pending transmissions
    604 	 * and the current last descriptor in the list.
    605 	 */
    606 	opending = sc->sc_txpending;
    607 	olasttx = sc->sc_txlast;
    608 
    609 	/*
    610 	 * Loop through the send queue, setting up transmit descriptors
    611 	 * until we drain the queue, or use up all available transmit
    612 	 * descriptors.
    613 	 */
    614 	while (sc->sc_txpending < STE_NTXDESC) {
    615 		/*
    616 		 * Grab a packet off the queue.
    617 		 */
    618 		IFQ_POLL(&ifp->if_snd, m0);
    619 		if (m0 == NULL)
    620 			break;
    621 		m = NULL;
    622 
    623 		/*
    624 		 * Get the last and next available transmit descriptor.
    625 		 */
    626 		nexttx = STE_NEXTTX(sc->sc_txlast);
    627 		tfd = &sc->sc_txdescs[nexttx];
    628 		ds = &sc->sc_txsoft[nexttx];
    629 
    630 		dmamap = ds->ds_dmamap;
    631 
    632 		/*
    633 		 * Load the DMA map.  If this fails, the packet either
    634 		 * didn't fit in the alloted number of segments, or we
    635 		 * were short on resources.  In this case, we'll copy
    636 		 * and try again.
    637 		 */
    638 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    639 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
    640 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    641 			if (m == NULL) {
    642 				printf("%s: unable to allocate Tx mbuf\n",
    643 				    sc->sc_dev.dv_xname);
    644 				break;
    645 			}
    646 			if (m0->m_pkthdr.len > MHLEN) {
    647 				MCLGET(m, M_DONTWAIT);
    648 				if ((m->m_flags & M_EXT) == 0) {
    649 					printf("%s: unable to allocate Tx "
    650 					    "cluster\n", sc->sc_dev.dv_xname);
    651 					m_freem(m);
    652 					break;
    653 				}
    654 			}
    655 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
    656 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    657 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    658 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
    659 			if (error) {
    660 				printf("%s: unable to load Tx buffer, "
    661 				    "error = %d\n", sc->sc_dev.dv_xname, error);
    662 				break;
    663 			}
    664 		}
    665 
    666 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    667 		if (m != NULL) {
    668 			m_freem(m0);
    669 			m0 = m;
    670 		}
    671 
    672 		/*
    673 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    674 		 */
    675 
    676 		/* Sync the DMA map. */
    677 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    678 		    BUS_DMASYNC_PREWRITE);
    679 
    680 		/* Initialize the fragment list. */
    681 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
    682 			tfd->tfd_frags[seg].frag_addr =
    683 			    htole32(dmamap->dm_segs[seg].ds_addr);
    684 			tfd->tfd_frags[seg].frag_len =
    685 			    htole32(dmamap->dm_segs[seg].ds_len);
    686 			totlen += dmamap->dm_segs[seg].ds_len;
    687 		}
    688 		tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
    689 
    690 		/* Initialize the descriptor. */
    691 		tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
    692 		tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
    693 
    694 		/* Sync the descriptor. */
    695 		STE_CDTXSYNC(sc, nexttx,
    696 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    697 
    698 		/*
    699 		 * Store a pointer to the packet so we can free it later,
    700 		 * and remember what txdirty will be once the packet is
    701 		 * done.
    702 		 */
    703 		ds->ds_mbuf = m0;
    704 
    705 		/* Advance the tx pointer. */
    706 		sc->sc_txpending++;
    707 		sc->sc_txlast = nexttx;
    708 
    709 #if NBPFILTER > 0
    710 		/*
    711 		 * Pass the packet to any BPF listeners.
    712 		 */
    713 		if (ifp->if_bpf)
    714 			bpf_mtap(ifp->if_bpf, m0);
    715 #endif /* NBPFILTER > 0 */
    716 	}
    717 
    718 	if (sc->sc_txpending == STE_NTXDESC) {
    719 		/* No more slots left; notify upper layer. */
    720 		ifp->if_flags |= IFF_OACTIVE;
    721 	}
    722 
    723 	if (sc->sc_txpending != opending) {
    724 		/*
    725 		 * We enqueued packets.  If the transmitter was idle,
    726 		 * reset the txdirty pointer.
    727 		 */
    728 		if (opending == 0)
    729 			sc->sc_txdirty = STE_NEXTTX(olasttx);
    730 
    731 		/*
    732 		 * Cause a descriptor interrupt to happen on the
    733 		 * last packet we enqueued, and also cause the
    734 		 * DMA engine to wait after is has finished processing
    735 		 * it.
    736 		 */
    737 		sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
    738 		sc->sc_txdescs[sc->sc_txlast].tfd_control |=
    739 		    htole32(TFD_TxDMAIndicate);
    740 		STE_CDTXSYNC(sc, sc->sc_txlast,
    741 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    742 
    743 		/*
    744 		 * Link up the new chain of descriptors to the
    745 		 * last.
    746 		 */
    747 		sc->sc_txdescs[olasttx].tfd_next =
    748 		    htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
    749 		STE_CDTXSYNC(sc, olasttx,
    750 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    751 
    752 		/*
    753 		 * Kick the transmit DMA logic.  Note that since we're
    754 		 * using auto-polling, reading the Tx desc pointer will
    755 		 * give it the nudge it needs to get going.
    756 		 */
    757 		if (bus_space_read_4(sc->sc_st, sc->sc_sh,
    758 		    STE_TxDMAListPtr) == 0) {
    759 			bus_space_write_4(sc->sc_st, sc->sc_sh,
    760 			    STE_DMACtrl, DC_TxDMAHalt);
    761 			ste_dmahalt_wait(sc);
    762 			bus_space_write_4(sc->sc_st, sc->sc_sh,
    763 			    STE_TxDMAListPtr,
    764 			    STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
    765 			bus_space_write_4(sc->sc_st, sc->sc_sh,
    766 			    STE_DMACtrl, DC_TxDMAResume);
    767 		}
    768 
    769 		/* Set a watchdog timer in case the chip flakes out. */
    770 		ifp->if_timer = 5;
    771 	}
    772 }
    773 
    774 /*
    775  * ste_watchdog:	[ifnet interface function]
    776  *
    777  *	Watchdog timer handler.
    778  */
    779 static void
    780 ste_watchdog(struct ifnet *ifp)
    781 {
    782 	struct ste_softc *sc = ifp->if_softc;
    783 
    784 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
    785 	ifp->if_oerrors++;
    786 
    787 	(void) ste_init(ifp);
    788 
    789 	/* Try to get more packets going. */
    790 	ste_start(ifp);
    791 }
    792 
    793 /*
    794  * ste_ioctl:		[ifnet interface function]
    795  *
    796  *	Handle control requests from the operator.
    797  */
    798 static int
    799 ste_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
    800 {
    801 	struct ste_softc *sc = ifp->if_softc;
    802 	struct ifreq *ifr = (struct ifreq *)data;
    803 	int s, error;
    804 
    805 	s = splnet();
    806 
    807 	switch (cmd) {
    808 	case SIOCSIFMEDIA:
    809 	case SIOCGIFMEDIA:
    810 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
    811 		break;
    812 
    813 	default:
    814 		error = ether_ioctl(ifp, cmd, data);
    815 		if (error == ENETRESET) {
    816 			/*
    817 			 * Multicast list has changed; set the hardware filter
    818 			 * accordingly.
    819 			 */
    820 			if (ifp->if_flags & IFF_RUNNING)
    821 				ste_set_filter(sc);
    822 			error = 0;
    823 		}
    824 		break;
    825 	}
    826 
    827 	/* Try to get more packets going. */
    828 	ste_start(ifp);
    829 
    830 	splx(s);
    831 	return (error);
    832 }
    833 
    834 /*
    835  * ste_intr:
    836  *
    837  *	Interrupt service routine.
    838  */
    839 static int
    840 ste_intr(void *arg)
    841 {
    842 	struct ste_softc *sc = arg;
    843 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    844 	uint16_t isr;
    845 	uint8_t txstat;
    846 	int wantinit;
    847 
    848 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
    849 	     IS_InterruptStatus) == 0)
    850 		return (0);
    851 
    852 	for (wantinit = 0; wantinit == 0;) {
    853 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
    854 		if ((isr & sc->sc_IntEnable) == 0)
    855 			break;
    856 
    857 		/* Receive interrupts. */
    858 		if (isr & IE_RxDMAComplete)
    859 			ste_rxintr(sc);
    860 
    861 		/* Transmit interrupts. */
    862 		if (isr & (IE_TxDMAComplete|IE_TxComplete))
    863 			ste_txintr(sc);
    864 
    865 		/* Statistics overflow. */
    866 		if (isr & IE_UpdateStats)
    867 			ste_stats_update(sc);
    868 
    869 		/* Transmission errors. */
    870 		if (isr & IE_TxComplete) {
    871 			for (;;) {
    872 				txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
    873 				    STE_TxStatus);
    874 				if ((txstat & TS_TxComplete) == 0)
    875 					break;
    876 				if (txstat & TS_TxUnderrun) {
    877 					sc->sc_txthresh += 32;
    878 					if (sc->sc_txthresh > 0x1ffc)
    879 						sc->sc_txthresh = 0x1ffc;
    880 					printf("%s: transmit underrun, new "
    881 					    "threshold: %d bytes\n",
    882 					    sc->sc_dev.dv_xname,
    883 					    sc->sc_txthresh);
    884 					ste_reset(sc, AC_TxReset | AC_DMA |
    885 					    AC_FIFO | AC_Network);
    886 					ste_setthresh(sc);
    887 					bus_space_write_1(sc->sc_st, sc->sc_sh,
    888 					    STE_TxDMAPollPeriod, 127);
    889 					ste_txrestart(sc,
    890 					    bus_space_read_1(sc->sc_st,
    891 						sc->sc_sh, STE_TxFrameId));
    892 				}
    893 				if (txstat & TS_TxReleaseError) {
    894 					printf("%s: Tx FIFO release error\n",
    895 					    sc->sc_dev.dv_xname);
    896 					wantinit = 1;
    897 				}
    898 				if (txstat & TS_MaxCollisions) {
    899 					printf("%s: excessive collisions\n",
    900 					    sc->sc_dev.dv_xname);
    901 					wantinit = 1;
    902 				}
    903 				if (txstat & TS_TxStatusOverflow) {
    904 					printf("%s: status overflow\n",
    905 					    sc->sc_dev.dv_xname);
    906 					wantinit = 1;
    907 				}
    908 				bus_space_write_2(sc->sc_st, sc->sc_sh,
    909 				    STE_TxStatus, 0);
    910 			}
    911 		}
    912 
    913 		/* Host interface errors. */
    914 		if (isr & IE_HostError) {
    915 			printf("%s: Host interface error\n",
    916 			    sc->sc_dev.dv_xname);
    917 			wantinit = 1;
    918 		}
    919 	}
    920 
    921 	if (wantinit)
    922 		ste_init(ifp);
    923 
    924 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
    925 	    sc->sc_IntEnable);
    926 
    927 	/* Try to get more packets going. */
    928 	ste_start(ifp);
    929 
    930 	return (1);
    931 }
    932 
    933 /*
    934  * ste_txintr:
    935  *
    936  *	Helper; handle transmit interrupts.
    937  */
    938 static void
    939 ste_txintr(struct ste_softc *sc)
    940 {
    941 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    942 	struct ste_descsoft *ds;
    943 	uint32_t control;
    944 	int i;
    945 
    946 	ifp->if_flags &= ~IFF_OACTIVE;
    947 
    948 	/*
    949 	 * Go through our Tx list and free mbufs for those
    950 	 * frames which have been transmitted.
    951 	 */
    952 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
    953 	     i = STE_NEXTTX(i), sc->sc_txpending--) {
    954 		ds = &sc->sc_txsoft[i];
    955 
    956 		STE_CDTXSYNC(sc, i,
    957 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    958 
    959 		control = le32toh(sc->sc_txdescs[i].tfd_control);
    960 		if ((control & TFD_TxDMAComplete) == 0)
    961 			break;
    962 
    963 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
    964 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    965 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
    966 		m_freem(ds->ds_mbuf);
    967 		ds->ds_mbuf = NULL;
    968 	}
    969 
    970 	/* Update the dirty transmit buffer pointer. */
    971 	sc->sc_txdirty = i;
    972 
    973 	/*
    974 	 * If there are no more pending transmissions, cancel the watchdog
    975 	 * timer.
    976 	 */
    977 	if (sc->sc_txpending == 0)
    978 		ifp->if_timer = 0;
    979 }
    980 
    981 /*
    982  * ste_rxintr:
    983  *
    984  *	Helper; handle receive interrupts.
    985  */
    986 static void
    987 ste_rxintr(struct ste_softc *sc)
    988 {
    989 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    990 	struct ste_descsoft *ds;
    991 	struct mbuf *m;
    992 	uint32_t status;
    993 	int i, len;
    994 
    995 	for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
    996 		ds = &sc->sc_rxsoft[i];
    997 
    998 		STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    999 
   1000 		status = le32toh(sc->sc_rxdescs[i].rfd_status);
   1001 
   1002 		if ((status & RFD_RxDMAComplete) == 0)
   1003 			break;
   1004 
   1005 		/*
   1006 		 * If the packet had an error, simply recycle the
   1007 		 * buffer.  Note, we count the error later in the
   1008 		 * periodic stats update.
   1009 		 */
   1010 		if (status & RFD_RxFrameError) {
   1011 			STE_INIT_RXDESC(sc, i);
   1012 			continue;
   1013 		}
   1014 
   1015 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1016 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1017 
   1018 		/*
   1019 		 * No errors; receive the packet.  Note, we have
   1020 		 * configured the chip to not include the CRC at
   1021 		 * the end of the packet.
   1022 		 */
   1023 		len = RFD_RxDMAFrameLen(status);
   1024 
   1025 		/*
   1026 		 * If the packet is small enough to fit in a
   1027 		 * single header mbuf, allocate one and copy
   1028 		 * the data into it.  This greatly reduces
   1029 		 * memory consumption when we receive lots
   1030 		 * of small packets.
   1031 		 *
   1032 		 * Otherwise, we add a new buffer to the receive
   1033 		 * chain.  If this fails, we drop the packet and
   1034 		 * recycle the old buffer.
   1035 		 */
   1036 		if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
   1037 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1038 			if (m == NULL)
   1039 				goto dropit;
   1040 			m->m_data += 2;
   1041 			memcpy(mtod(m, caddr_t),
   1042 			    mtod(ds->ds_mbuf, caddr_t), len);
   1043 			STE_INIT_RXDESC(sc, i);
   1044 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1045 			    ds->ds_dmamap->dm_mapsize,
   1046 			    BUS_DMASYNC_PREREAD);
   1047 		} else {
   1048 			m = ds->ds_mbuf;
   1049 			if (ste_add_rxbuf(sc, i) != 0) {
   1050  dropit:
   1051 				ifp->if_ierrors++;
   1052 				STE_INIT_RXDESC(sc, i);
   1053 				bus_dmamap_sync(sc->sc_dmat,
   1054 				    ds->ds_dmamap, 0,
   1055 				    ds->ds_dmamap->dm_mapsize,
   1056 				    BUS_DMASYNC_PREREAD);
   1057 				continue;
   1058 			}
   1059 		}
   1060 
   1061 		m->m_pkthdr.rcvif = ifp;
   1062 		m->m_pkthdr.len = m->m_len = len;
   1063 
   1064 #if NBPFILTER > 0
   1065 		/*
   1066 		 * Pass this up to any BPF listeners, but only
   1067 		 * pass if up the stack if it's for us.
   1068 		 */
   1069 		if (ifp->if_bpf)
   1070 			bpf_mtap(ifp->if_bpf, m);
   1071 #endif /* NBPFILTER > 0 */
   1072 
   1073 		/* Pass it on. */
   1074 		(*ifp->if_input)(ifp, m);
   1075 	}
   1076 
   1077 	/* Update the receive pointer. */
   1078 	sc->sc_rxptr = i;
   1079 }
   1080 
   1081 /*
   1082  * ste_tick:
   1083  *
   1084  *	One second timer, used to tick the MII.
   1085  */
   1086 static void
   1087 ste_tick(void *arg)
   1088 {
   1089 	struct ste_softc *sc = arg;
   1090 	int s;
   1091 
   1092 	s = splnet();
   1093 	mii_tick(&sc->sc_mii);
   1094 	ste_stats_update(sc);
   1095 	splx(s);
   1096 
   1097 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
   1098 }
   1099 
   1100 /*
   1101  * ste_stats_update:
   1102  *
   1103  *	Read the ST-201 statistics counters.
   1104  */
   1105 static void
   1106 ste_stats_update(struct ste_softc *sc)
   1107 {
   1108 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1109 	bus_space_tag_t st = sc->sc_st;
   1110 	bus_space_handle_t sh = sc->sc_sh;
   1111 
   1112 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
   1113 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
   1114 
   1115 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
   1116 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
   1117 
   1118 	ifp->if_opackets +=
   1119 	    (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
   1120 	ifp->if_ipackets +=
   1121 	    (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
   1122 
   1123 	ifp->if_collisions +=
   1124 	    (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
   1125 	    (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
   1126 	    (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
   1127 
   1128 	(void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
   1129 
   1130 	ifp->if_ierrors +=
   1131 	    (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
   1132 
   1133 	ifp->if_oerrors +=
   1134 	    (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
   1135 	    (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
   1136 	    bus_space_read_1(st, sh, STE_CarrierSenseErrors);
   1137 
   1138 	(void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
   1139 	(void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
   1140 	(void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
   1141 	(void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
   1142 }
   1143 
   1144 /*
   1145  * ste_reset:
   1146  *
   1147  *	Perform a soft reset on the ST-201.
   1148  */
   1149 static void
   1150 ste_reset(struct ste_softc *sc, u_int32_t rstbits)
   1151 {
   1152 	uint32_t ac;
   1153 	int i;
   1154 
   1155 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
   1156 
   1157 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
   1158 
   1159 	delay(50000);
   1160 
   1161 	for (i = 0; i < STE_TIMEOUT; i++) {
   1162 		delay(1000);
   1163 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
   1164 		     AC_ResetBusy) == 0)
   1165 			break;
   1166 	}
   1167 
   1168 	if (i == STE_TIMEOUT)
   1169 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   1170 
   1171 	delay(1000);
   1172 }
   1173 
   1174 /*
   1175  * ste_setthresh:
   1176  *
   1177  * 	set the various transmit threshold registers
   1178  */
   1179 static void
   1180 ste_setthresh(struct ste_softc *sc)
   1181 {
   1182 	/* set the TX threhold */
   1183 	bus_space_write_2(sc->sc_st, sc->sc_sh,
   1184 	    STE_TxStartThresh, sc->sc_txthresh);
   1185 	/* Urgent threshold: set to sc_txthresh / 2 */
   1186 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
   1187 	    sc->sc_txthresh >> 6);
   1188 	/* Burst threshold: use default value (256 bytes) */
   1189 }
   1190 
   1191 /*
   1192  * restart TX at the given frame ID in the transmitter ring
   1193  */
   1194 static void
   1195 ste_txrestart(struct ste_softc *sc, u_int8_t id)
   1196 {
   1197 	u_int32_t control;
   1198 
   1199 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1200 	control = le32toh(sc->sc_txdescs[id].tfd_control);
   1201 	control &= ~TFD_TxDMAComplete;
   1202 	sc->sc_txdescs[id].tfd_control = htole32(control);
   1203 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1204 
   1205 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
   1206 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
   1207 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
   1208 	ste_dmahalt_wait(sc);
   1209 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
   1210 	    STE_CDTXADDR(sc, id));
   1211 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
   1212 }
   1213 
   1214 /*
   1215  * ste_init:		[ ifnet interface function ]
   1216  *
   1217  *	Initialize the interface.  Must be called at splnet().
   1218  */
   1219 static int
   1220 ste_init(struct ifnet *ifp)
   1221 {
   1222 	struct ste_softc *sc = ifp->if_softc;
   1223 	bus_space_tag_t st = sc->sc_st;
   1224 	bus_space_handle_t sh = sc->sc_sh;
   1225 	struct ste_descsoft *ds;
   1226 	int i, error = 0;
   1227 
   1228 	/*
   1229 	 * Cancel any pending I/O.
   1230 	 */
   1231 	ste_stop(ifp, 0);
   1232 
   1233 	/*
   1234 	 * Reset the chip to a known state.
   1235 	 */
   1236 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
   1237 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
   1238 
   1239 	/*
   1240 	 * Initialize the transmit descriptor ring.
   1241 	 */
   1242 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1243 	sc->sc_txpending = 0;
   1244 	sc->sc_txdirty = 0;
   1245 	sc->sc_txlast = STE_NTXDESC - 1;
   1246 
   1247 	/*
   1248 	 * Initialize the receive descriptor and receive job
   1249 	 * descriptor rings.
   1250 	 */
   1251 	for (i = 0; i < STE_NRXDESC; i++) {
   1252 		ds = &sc->sc_rxsoft[i];
   1253 		if (ds->ds_mbuf == NULL) {
   1254 			if ((error = ste_add_rxbuf(sc, i)) != 0) {
   1255 				printf("%s: unable to allocate or map rx "
   1256 				    "buffer %d, error = %d\n",
   1257 				    sc->sc_dev.dv_xname, i, error);
   1258 				/*
   1259 				 * XXX Should attempt to run with fewer receive
   1260 				 * XXX buffers instead of just failing.
   1261 				 */
   1262 				ste_rxdrain(sc);
   1263 				goto out;
   1264 			}
   1265 		} else
   1266 			STE_INIT_RXDESC(sc, i);
   1267 	}
   1268 	sc->sc_rxptr = 0;
   1269 
   1270 	/* Set the station address. */
   1271 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1272 		bus_space_write_1(st, sh, STE_StationAddress0 + 1,
   1273 		    LLADDR(ifp->if_sadl)[i]);
   1274 
   1275 	/* Set up the receive filter. */
   1276 	ste_set_filter(sc);
   1277 
   1278 	/*
   1279 	 * Give the receive ring to the chip.
   1280 	 */
   1281 	bus_space_write_4(st, sh, STE_RxDMAListPtr,
   1282 	    STE_CDRXADDR(sc, sc->sc_rxptr));
   1283 
   1284 	/*
   1285 	 * We defer giving the transmit ring to the chip until we
   1286 	 * transmit the first packet.
   1287 	 */
   1288 
   1289 	/*
   1290 	 * Initialize the Tx auto-poll period.  It's OK to make this number
   1291 	 * large (127 is the max) -- we explicitly kick the transmit engine
   1292 	 * when there's actually a packet.  We are using auto-polling only
   1293 	 * to make the interface to the transmit engine not suck.
   1294 	 */
   1295 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
   1296 
   1297 	/* ..and the Rx auto-poll period. */
   1298 	bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
   1299 
   1300 	/* Initialize the Tx start threshold. */
   1301 	ste_setthresh(sc);
   1302 
   1303 	/* Set the FIFO release threshold to 512 bytes. */
   1304 	bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
   1305 
   1306 	/* Set maximum packet size for VLAN. */
   1307 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   1308 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN + 4);
   1309 	else
   1310 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN);
   1311 
   1312 	/*
   1313 	 * Initialize the interrupt mask.
   1314 	 */
   1315 	sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
   1316 	    IE_TxDMAComplete | IE_RxDMAComplete;
   1317 
   1318 	bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
   1319 	bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
   1320 
   1321 	/*
   1322 	 * Start the receive DMA engine.
   1323 	 */
   1324 	bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
   1325 
   1326 	/*
   1327 	 * Initialize MacCtrl0 -- do it before setting the media,
   1328 	 * as setting the media will actually program the register.
   1329 	 */
   1330 	sc->sc_MacCtrl0 = MC0_IFSSelect(0);
   1331 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   1332 		sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
   1333 
   1334 	/*
   1335 	 * Set the current media.
   1336 	 */
   1337 	mii_mediachg(&sc->sc_mii);
   1338 
   1339 	/*
   1340 	 * Start the MAC.
   1341 	 */
   1342 	bus_space_write_2(st, sh, STE_MacCtrl1,
   1343 	    MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
   1344 
   1345 	/*
   1346 	 * Start the one second MII clock.
   1347 	 */
   1348 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
   1349 
   1350 	/*
   1351 	 * ...all done!
   1352 	 */
   1353 	ifp->if_flags |= IFF_RUNNING;
   1354 	ifp->if_flags &= ~IFF_OACTIVE;
   1355 
   1356  out:
   1357 	if (error)
   1358 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1359 	return (error);
   1360 }
   1361 
   1362 /*
   1363  * ste_drain:
   1364  *
   1365  *	Drain the receive queue.
   1366  */
   1367 static void
   1368 ste_rxdrain(struct ste_softc *sc)
   1369 {
   1370 	struct ste_descsoft *ds;
   1371 	int i;
   1372 
   1373 	for (i = 0; i < STE_NRXDESC; i++) {
   1374 		ds = &sc->sc_rxsoft[i];
   1375 		if (ds->ds_mbuf != NULL) {
   1376 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1377 			m_freem(ds->ds_mbuf);
   1378 			ds->ds_mbuf = NULL;
   1379 		}
   1380 	}
   1381 }
   1382 
   1383 /*
   1384  * ste_stop:		[ ifnet interface function ]
   1385  *
   1386  *	Stop transmission on the interface.
   1387  */
   1388 static void
   1389 ste_stop(struct ifnet *ifp, int disable)
   1390 {
   1391 	struct ste_softc *sc = ifp->if_softc;
   1392 	struct ste_descsoft *ds;
   1393 	int i;
   1394 
   1395 	/*
   1396 	 * Stop the one second clock.
   1397 	 */
   1398 	callout_stop(&sc->sc_tick_ch);
   1399 
   1400 	/* Down the MII. */
   1401 	mii_down(&sc->sc_mii);
   1402 
   1403 	/*
   1404 	 * Disable interrupts.
   1405 	 */
   1406 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
   1407 
   1408 	/*
   1409 	 * Stop receiver, transmitter, and stats update.
   1410 	 */
   1411 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
   1412 	    MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
   1413 
   1414 	/*
   1415 	 * Stop the transmit and receive DMA.
   1416 	 */
   1417 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
   1418 	    DC_RxDMAHalt | DC_TxDMAHalt);
   1419 	ste_dmahalt_wait(sc);
   1420 
   1421 	/*
   1422 	 * Release any queued transmit buffers.
   1423 	 */
   1424 	for (i = 0; i < STE_NTXDESC; i++) {
   1425 		ds = &sc->sc_txsoft[i];
   1426 		if (ds->ds_mbuf != NULL) {
   1427 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1428 			m_freem(ds->ds_mbuf);
   1429 			ds->ds_mbuf = NULL;
   1430 		}
   1431 	}
   1432 
   1433 	if (disable)
   1434 		ste_rxdrain(sc);
   1435 
   1436 	/*
   1437 	 * Mark the interface down and cancel the watchdog timer.
   1438 	 */
   1439 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1440 	ifp->if_timer = 0;
   1441 }
   1442 
   1443 static int
   1444 ste_eeprom_wait(struct ste_softc *sc)
   1445 {
   1446 	int i;
   1447 
   1448 	for (i = 0; i < STE_TIMEOUT; i++) {
   1449 		delay(1000);
   1450 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
   1451 		     EC_EepromBusy) == 0)
   1452 			return (0);
   1453 	}
   1454 	return (1);
   1455 }
   1456 
   1457 /*
   1458  * ste_read_eeprom:
   1459  *
   1460  *	Read data from the serial EEPROM.
   1461  */
   1462 static void
   1463 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
   1464 {
   1465 
   1466 	if (ste_eeprom_wait(sc))
   1467 		printf("%s: EEPROM failed to come ready\n",
   1468 		    sc->sc_dev.dv_xname);
   1469 
   1470 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
   1471 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
   1472 	if (ste_eeprom_wait(sc))
   1473 		printf("%s: EEPROM read timed out\n",
   1474 		    sc->sc_dev.dv_xname);
   1475 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
   1476 }
   1477 
   1478 /*
   1479  * ste_add_rxbuf:
   1480  *
   1481  *	Add a receive buffer to the indicated descriptor.
   1482  */
   1483 static int
   1484 ste_add_rxbuf(struct ste_softc *sc, int idx)
   1485 {
   1486 	struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
   1487 	struct mbuf *m;
   1488 	int error;
   1489 
   1490 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1491 	if (m == NULL)
   1492 		return (ENOBUFS);
   1493 
   1494 	MCLGET(m, M_DONTWAIT);
   1495 	if ((m->m_flags & M_EXT) == 0) {
   1496 		m_freem(m);
   1497 		return (ENOBUFS);
   1498 	}
   1499 
   1500 	if (ds->ds_mbuf != NULL)
   1501 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1502 
   1503 	ds->ds_mbuf = m;
   1504 
   1505 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
   1506 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1507 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1508 	if (error) {
   1509 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1510 		    sc->sc_dev.dv_xname, idx, error);
   1511 		panic("ste_add_rxbuf");		/* XXX */
   1512 	}
   1513 
   1514 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1515 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1516 
   1517 	STE_INIT_RXDESC(sc, idx);
   1518 
   1519 	return (0);
   1520 }
   1521 
   1522 /*
   1523  * ste_set_filter:
   1524  *
   1525  *	Set up the receive filter.
   1526  */
   1527 static void
   1528 ste_set_filter(struct ste_softc *sc)
   1529 {
   1530 	struct ethercom *ec = &sc->sc_ethercom;
   1531 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1532 	struct ether_multi *enm;
   1533 	struct ether_multistep step;
   1534 	uint32_t crc;
   1535 	uint16_t mchash[4];
   1536 
   1537 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
   1538 	if (ifp->if_flags & IFF_BROADCAST)
   1539 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
   1540 
   1541 	if (ifp->if_flags & IFF_PROMISC) {
   1542 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
   1543 		goto allmulti;
   1544 	}
   1545 
   1546 	/*
   1547 	 * Set up the multicast address filter by passing all multicast
   1548 	 * addresses through a CRC generator, and then using the low-order
   1549 	 * 6 bits as an index into the 64 bit multicast hash table.  The
   1550 	 * high order bits select the register, while the rest of the bits
   1551 	 * select the bit within the register.
   1552 	 */
   1553 
   1554 	memset(mchash, 0, sizeof(mchash));
   1555 
   1556 	ETHER_FIRST_MULTI(step, ec, enm);
   1557 	if (enm == NULL)
   1558 		goto done;
   1559 
   1560 	while (enm != NULL) {
   1561 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1562 			/*
   1563 			 * We must listen to a range of multicast addresses.
   1564 			 * For now, just accept all multicasts, rather than
   1565 			 * trying to set only those filter bits needed to match
   1566 			 * the range.  (At this time, the only use of address
   1567 			 * ranges is for IP multicast routing, for which the
   1568 			 * range is big enough to require all bits set.)
   1569 			 */
   1570 			goto allmulti;
   1571 		}
   1572 
   1573 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1574 
   1575 		/* Just want the 6 least significant bits. */
   1576 		crc &= 0x3f;
   1577 
   1578 		/* Set the corresponding bit in the hash table. */
   1579 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   1580 
   1581 		ETHER_NEXT_MULTI(step, enm);
   1582 	}
   1583 
   1584 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
   1585 
   1586 	ifp->if_flags &= ~IFF_ALLMULTI;
   1587 	goto done;
   1588 
   1589  allmulti:
   1590 	ifp->if_flags |= IFF_ALLMULTI;
   1591 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
   1592 
   1593  done:
   1594 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1595 		/*
   1596 		 * Program the multicast hash table.
   1597 		 */
   1598 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
   1599 		    mchash[0]);
   1600 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
   1601 		    mchash[1]);
   1602 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
   1603 		    mchash[2]);
   1604 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
   1605 		    mchash[3]);
   1606 	}
   1607 
   1608 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
   1609 	    sc->sc_ReceiveMode);
   1610 }
   1611 
   1612 /*
   1613  * ste_mii_readreg:	[mii interface function]
   1614  *
   1615  *	Read a PHY register on the MII of the ST-201.
   1616  */
   1617 static int
   1618 ste_mii_readreg(struct device *self, int phy, int reg)
   1619 {
   1620 
   1621 	return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
   1622 }
   1623 
   1624 /*
   1625  * ste_mii_writereg:	[mii interface function]
   1626  *
   1627  *	Write a PHY register on the MII of the ST-201.
   1628  */
   1629 static void
   1630 ste_mii_writereg(struct device *self, int phy, int reg, int val)
   1631 {
   1632 
   1633 	mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
   1634 }
   1635 
   1636 /*
   1637  * ste_mii_statchg:	[mii interface function]
   1638  *
   1639  *	Callback from MII layer when media changes.
   1640  */
   1641 static void
   1642 ste_mii_statchg(struct device *self)
   1643 {
   1644 	struct ste_softc *sc = (struct ste_softc *) self;
   1645 
   1646 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   1647 		sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
   1648 	else
   1649 		sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
   1650 
   1651 	/* XXX 802.1x flow-control? */
   1652 
   1653 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
   1654 }
   1655 
   1656 /*
   1657  * ste_mii_bitbang_read: [mii bit-bang interface function]
   1658  *
   1659  *	Read the MII serial port for the MII bit-bang module.
   1660  */
   1661 static uint32_t
   1662 ste_mii_bitbang_read(struct device *self)
   1663 {
   1664 	struct ste_softc *sc = (void *) self;
   1665 
   1666 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
   1667 }
   1668 
   1669 /*
   1670  * ste_mii_bitbang_write: [mii big-bang interface function]
   1671  *
   1672  *	Write the MII serial port for the MII bit-bang module.
   1673  */
   1674 static void
   1675 ste_mii_bitbang_write(struct device *self, uint32_t val)
   1676 {
   1677 	struct ste_softc *sc = (void *) self;
   1678 
   1679 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
   1680 }
   1681 
   1682 /*
   1683  * ste_mediastatus:	[ifmedia interface function]
   1684  *
   1685  *	Get the current interface media status.
   1686  */
   1687 static void
   1688 ste_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   1689 {
   1690 	struct ste_softc *sc = ifp->if_softc;
   1691 
   1692 	mii_pollstat(&sc->sc_mii);
   1693 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   1694 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   1695 }
   1696 
   1697 /*
   1698  * ste_mediachange:	[ifmedia interface function]
   1699  *
   1700  *	Set hardware to newly-selected media.
   1701  */
   1702 static int
   1703 ste_mediachange(struct ifnet *ifp)
   1704 {
   1705 	struct ste_softc *sc = ifp->if_softc;
   1706 
   1707 	if (ifp->if_flags & IFF_UP)
   1708 		mii_mediachg(&sc->sc_mii);
   1709 	return (0);
   1710 }
   1711