if_ste.c revision 1.23 1 /* $NetBSD: if_ste.c,v 1.23 2006/06/17 23:34:27 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the Sundance Tech. ST-201 10/100
41 * Ethernet controller.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.23 2006/06/17 23:34:27 christos Exp $");
46
47 #include "bpfilter.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/socket.h>
56 #include <sys/ioctl.h>
57 #include <sys/errno.h>
58 #include <sys/device.h>
59 #include <sys/queue.h>
60
61 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
62
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_ether.h>
67
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71
72 #include <machine/bus.h>
73 #include <machine/intr.h>
74
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 #include <dev/mii/mii_bitbang.h>
78
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 #include <dev/pci/pcidevs.h>
82
83 #include <dev/pci/if_stereg.h>
84
85 /*
86 * Transmit descriptor list size.
87 */
88 #define STE_NTXDESC 256
89 #define STE_NTXDESC_MASK (STE_NTXDESC - 1)
90 #define STE_NEXTTX(x) (((x) + 1) & STE_NTXDESC_MASK)
91
92 /*
93 * Receive descriptor list size.
94 */
95 #define STE_NRXDESC 128
96 #define STE_NRXDESC_MASK (STE_NRXDESC - 1)
97 #define STE_NEXTRX(x) (((x) + 1) & STE_NRXDESC_MASK)
98
99 /*
100 * Control structures are DMA'd to the ST-201 chip. We allocate them in
101 * a single clump that maps to a single DMA segment to make several things
102 * easier.
103 */
104 struct ste_control_data {
105 /*
106 * The transmit descriptors.
107 */
108 struct ste_tfd scd_txdescs[STE_NTXDESC];
109
110 /*
111 * The receive descriptors.
112 */
113 struct ste_rfd scd_rxdescs[STE_NRXDESC];
114 };
115
116 #define STE_CDOFF(x) offsetof(struct ste_control_data, x)
117 #define STE_CDTXOFF(x) STE_CDOFF(scd_txdescs[(x)])
118 #define STE_CDRXOFF(x) STE_CDOFF(scd_rxdescs[(x)])
119
120 /*
121 * Software state for transmit and receive jobs.
122 */
123 struct ste_descsoft {
124 struct mbuf *ds_mbuf; /* head of our mbuf chain */
125 bus_dmamap_t ds_dmamap; /* our DMA map */
126 };
127
128 /*
129 * Software state per device.
130 */
131 struct ste_softc {
132 struct device sc_dev; /* generic device information */
133 bus_space_tag_t sc_st; /* bus space tag */
134 bus_space_handle_t sc_sh; /* bus space handle */
135 bus_dma_tag_t sc_dmat; /* bus DMA tag */
136 struct ethercom sc_ethercom; /* ethernet common data */
137 void *sc_sdhook; /* shutdown hook */
138
139 void *sc_ih; /* interrupt cookie */
140
141 struct mii_data sc_mii; /* MII/media information */
142
143 struct callout sc_tick_ch; /* tick callout */
144
145 bus_dmamap_t sc_cddmamap; /* control data DMA map */
146 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
147
148 /*
149 * Software state for transmit and receive descriptors.
150 */
151 struct ste_descsoft sc_txsoft[STE_NTXDESC];
152 struct ste_descsoft sc_rxsoft[STE_NRXDESC];
153
154 /*
155 * Control data structures.
156 */
157 struct ste_control_data *sc_control_data;
158 #define sc_txdescs sc_control_data->scd_txdescs
159 #define sc_rxdescs sc_control_data->scd_rxdescs
160
161 int sc_txpending; /* number of Tx requests pending */
162 int sc_txdirty; /* first dirty Tx descriptor */
163 int sc_txlast; /* last used Tx descriptor */
164
165 int sc_rxptr; /* next ready Rx descriptor/descsoft */
166
167 int sc_txthresh; /* Tx threshold */
168 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
169 uint16_t sc_IntEnable; /* prototype IntEnable register */
170 uint16_t sc_MacCtrl0; /* prototype MacCtrl0 register */
171 uint8_t sc_ReceiveMode; /* prototype ReceiveMode register */
172 };
173
174 #define STE_CDTXADDR(sc, x) ((sc)->sc_cddma + STE_CDTXOFF((x)))
175 #define STE_CDRXADDR(sc, x) ((sc)->sc_cddma + STE_CDRXOFF((x)))
176
177 #define STE_CDTXSYNC(sc, x, ops) \
178 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
179 STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
180
181 #define STE_CDRXSYNC(sc, x, ops) \
182 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
183 STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
184
185 #define STE_INIT_RXDESC(sc, x) \
186 do { \
187 struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
188 struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
189 struct mbuf *__m = __ds->ds_mbuf; \
190 \
191 /* \
192 * Note: We scoot the packet forward 2 bytes in the buffer \
193 * so that the payload after the Ethernet header is aligned \
194 * to a 4-byte boundary. \
195 */ \
196 __m->m_data = __m->m_ext.ext_buf + 2; \
197 __rfd->rfd_frag.frag_addr = \
198 htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2); \
199 __rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST); \
200 __rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x)))); \
201 __rfd->rfd_status = 0; \
202 STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
203 } while (/*CONSTCOND*/0)
204
205 #define STE_TIMEOUT 1000
206
207 static void ste_start(struct ifnet *);
208 static void ste_watchdog(struct ifnet *);
209 static int ste_ioctl(struct ifnet *, u_long, caddr_t);
210 static int ste_init(struct ifnet *);
211 static void ste_stop(struct ifnet *, int);
212
213 static void ste_shutdown(void *);
214
215 static void ste_reset(struct ste_softc *, u_int32_t);
216 static void ste_setthresh(struct ste_softc *);
217 static void ste_txrestart(struct ste_softc *, u_int8_t);
218 static void ste_rxdrain(struct ste_softc *);
219 static int ste_add_rxbuf(struct ste_softc *, int);
220 static void ste_read_eeprom(struct ste_softc *, int, uint16_t *);
221 static void ste_tick(void *);
222
223 static void ste_stats_update(struct ste_softc *);
224
225 static void ste_set_filter(struct ste_softc *);
226
227 static int ste_intr(void *);
228 static void ste_txintr(struct ste_softc *);
229 static void ste_rxintr(struct ste_softc *);
230
231 static int ste_mii_readreg(struct device *, int, int);
232 static void ste_mii_writereg(struct device *, int, int, int);
233 static void ste_mii_statchg(struct device *);
234
235 static int ste_mediachange(struct ifnet *);
236 static void ste_mediastatus(struct ifnet *, struct ifmediareq *);
237
238 static int ste_match(struct device *, struct cfdata *, void *);
239 static void ste_attach(struct device *, struct device *, void *);
240
241 int ste_copy_small = 0;
242
243 CFATTACH_DECL(ste, sizeof(struct ste_softc),
244 ste_match, ste_attach, NULL, NULL);
245
246 static uint32_t ste_mii_bitbang_read(struct device *);
247 static void ste_mii_bitbang_write(struct device *, uint32_t);
248
249 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
250 ste_mii_bitbang_read,
251 ste_mii_bitbang_write,
252 {
253 PC_MgmtData, /* MII_BIT_MDO */
254 PC_MgmtData, /* MII_BIT_MDI */
255 PC_MgmtClk, /* MII_BIT_MDC */
256 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
257 0, /* MII_BIT_DIR_PHY_HOST */
258 }
259 };
260
261 /*
262 * Devices supported by this driver.
263 */
264 static const struct ste_product {
265 pci_vendor_id_t ste_vendor;
266 pci_product_id_t ste_product;
267 const char *ste_name;
268 } ste_products[] = {
269 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST201,
270 "Sundance ST-201 10/100 Ethernet" },
271
272 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL1002,
273 "D-Link DL-1002 10/100 Ethernet" },
274
275 { 0, 0,
276 NULL },
277 };
278
279 static const struct ste_product *
280 ste_lookup(const struct pci_attach_args *pa)
281 {
282 const struct ste_product *sp;
283
284 for (sp = ste_products; sp->ste_name != NULL; sp++) {
285 if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
286 PCI_PRODUCT(pa->pa_id) == sp->ste_product)
287 return (sp);
288 }
289 return (NULL);
290 }
291
292 static int
293 ste_match(struct device *parent, struct cfdata *cf, void *aux)
294 {
295 struct pci_attach_args *pa = aux;
296
297 if (ste_lookup(pa) != NULL)
298 return (1);
299
300 return (0);
301 }
302
303 static void
304 ste_attach(struct device *parent, struct device *self, void *aux)
305 {
306 struct ste_softc *sc = (struct ste_softc *) self;
307 struct pci_attach_args *pa = aux;
308 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
309 pci_chipset_tag_t pc = pa->pa_pc;
310 pci_intr_handle_t ih;
311 const char *intrstr = NULL;
312 bus_space_tag_t iot, memt;
313 bus_space_handle_t ioh, memh;
314 bus_dma_segment_t seg;
315 int ioh_valid, memh_valid;
316 int i, rseg, error;
317 const struct ste_product *sp;
318 uint8_t enaddr[ETHER_ADDR_LEN];
319 uint16_t myea[ETHER_ADDR_LEN / 2];
320
321 callout_init(&sc->sc_tick_ch);
322
323 sp = ste_lookup(pa);
324 if (sp == NULL) {
325 printf("\n");
326 panic("ste_attach: impossible");
327 }
328
329 printf(": %s\n", sp->ste_name);
330
331 /*
332 * Map the device.
333 */
334 ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
335 PCI_MAPREG_TYPE_IO, 0,
336 &iot, &ioh, NULL, NULL) == 0);
337 memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
338 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
339 &memt, &memh, NULL, NULL) == 0);
340
341 if (memh_valid) {
342 sc->sc_st = memt;
343 sc->sc_sh = memh;
344 } else if (ioh_valid) {
345 sc->sc_st = iot;
346 sc->sc_sh = ioh;
347 } else {
348 printf("%s: unable to map device registers\n",
349 sc->sc_dev.dv_xname);
350 return;
351 }
352
353 sc->sc_dmat = pa->pa_dmat;
354
355 /* Enable bus mastering. */
356 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
357 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
358 PCI_COMMAND_MASTER_ENABLE);
359
360 /* power up chip */
361 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
362 NULL)) && error != EOPNOTSUPP) {
363 aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
364 error);
365 return;
366 }
367
368 /*
369 * Map and establish our interrupt.
370 */
371 if (pci_intr_map(pa, &ih)) {
372 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
373 return;
374 }
375 intrstr = pci_intr_string(pc, ih);
376 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
377 if (sc->sc_ih == NULL) {
378 printf("%s: unable to establish interrupt",
379 sc->sc_dev.dv_xname);
380 if (intrstr != NULL)
381 printf(" at %s", intrstr);
382 printf("\n");
383 return;
384 }
385 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
386
387 /*
388 * Allocate the control data structures, and create and load the
389 * DMA map for it.
390 */
391 if ((error = bus_dmamem_alloc(sc->sc_dmat,
392 sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
393 0)) != 0) {
394 printf("%s: unable to allocate control data, error = %d\n",
395 sc->sc_dev.dv_xname, error);
396 goto fail_0;
397 }
398
399 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
400 sizeof(struct ste_control_data), (caddr_t *)&sc->sc_control_data,
401 BUS_DMA_COHERENT)) != 0) {
402 printf("%s: unable to map control data, error = %d\n",
403 sc->sc_dev.dv_xname, error);
404 goto fail_1;
405 }
406
407 if ((error = bus_dmamap_create(sc->sc_dmat,
408 sizeof(struct ste_control_data), 1,
409 sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
410 printf("%s: unable to create control data DMA map, "
411 "error = %d\n", sc->sc_dev.dv_xname, error);
412 goto fail_2;
413 }
414
415 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
416 sc->sc_control_data, sizeof(struct ste_control_data), NULL,
417 0)) != 0) {
418 printf("%s: unable to load control data DMA map, error = %d\n",
419 sc->sc_dev.dv_xname, error);
420 goto fail_3;
421 }
422
423 /*
424 * Create the transmit buffer DMA maps.
425 */
426 for (i = 0; i < STE_NTXDESC; i++) {
427 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
428 STE_NTXFRAGS, MCLBYTES, 0, 0,
429 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
430 printf("%s: unable to create tx DMA map %d, "
431 "error = %d\n", sc->sc_dev.dv_xname, i, error);
432 goto fail_4;
433 }
434 }
435
436 /*
437 * Create the receive buffer DMA maps.
438 */
439 for (i = 0; i < STE_NRXDESC; i++) {
440 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
441 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
442 printf("%s: unable to create rx DMA map %d, "
443 "error = %d\n", sc->sc_dev.dv_xname, i, error);
444 goto fail_5;
445 }
446 sc->sc_rxsoft[i].ds_mbuf = NULL;
447 }
448
449 /*
450 * Reset the chip to a known state.
451 */
452 ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
453 AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
454
455 /*
456 * Read the Ethernet address from the EEPROM.
457 */
458 for (i = 0; i < 3; i++) {
459 ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
460 myea[i] = le16toh(myea[i]);
461 }
462 memcpy(enaddr, myea, sizeof(enaddr));
463
464 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
465 ether_sprintf(enaddr));
466
467 /*
468 * Initialize our media structures and probe the MII.
469 */
470 sc->sc_mii.mii_ifp = ifp;
471 sc->sc_mii.mii_readreg = ste_mii_readreg;
472 sc->sc_mii.mii_writereg = ste_mii_writereg;
473 sc->sc_mii.mii_statchg = ste_mii_statchg;
474 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ste_mediachange,
475 ste_mediastatus);
476 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
477 MII_OFFSET_ANY, 0);
478 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
479 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
480 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
481 } else
482 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
483
484 ifp = &sc->sc_ethercom.ec_if;
485 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
486 ifp->if_softc = sc;
487 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
488 ifp->if_ioctl = ste_ioctl;
489 ifp->if_start = ste_start;
490 ifp->if_watchdog = ste_watchdog;
491 ifp->if_init = ste_init;
492 ifp->if_stop = ste_stop;
493 IFQ_SET_READY(&ifp->if_snd);
494
495 /*
496 * Default the transmit threshold to 128 bytes.
497 */
498 sc->sc_txthresh = 128;
499
500 /*
501 * Disable MWI if the PCI layer tells us to.
502 */
503 sc->sc_DMACtrl = 0;
504 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
505 sc->sc_DMACtrl |= DC_MWIDisable;
506
507 /*
508 * We can support 802.1Q VLAN-sized frames.
509 */
510 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
511
512 /*
513 * Attach the interface.
514 */
515 if_attach(ifp);
516 ether_ifattach(ifp, enaddr);
517
518 /*
519 * Make sure the interface is shutdown during reboot.
520 */
521 sc->sc_sdhook = shutdownhook_establish(ste_shutdown, sc);
522 if (sc->sc_sdhook == NULL)
523 printf("%s: WARNING: unable to establish shutdown hook\n",
524 sc->sc_dev.dv_xname);
525 return;
526
527 /*
528 * Free any resources we've allocated during the failed attach
529 * attempt. Do this in reverse order and fall through.
530 */
531 fail_5:
532 for (i = 0; i < STE_NRXDESC; i++) {
533 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
534 bus_dmamap_destroy(sc->sc_dmat,
535 sc->sc_rxsoft[i].ds_dmamap);
536 }
537 fail_4:
538 for (i = 0; i < STE_NTXDESC; i++) {
539 if (sc->sc_txsoft[i].ds_dmamap != NULL)
540 bus_dmamap_destroy(sc->sc_dmat,
541 sc->sc_txsoft[i].ds_dmamap);
542 }
543 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
544 fail_3:
545 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
546 fail_2:
547 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
548 sizeof(struct ste_control_data));
549 fail_1:
550 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
551 fail_0:
552 return;
553 }
554
555 /*
556 * ste_shutdown:
557 *
558 * Make sure the interface is stopped at reboot time.
559 */
560 static void
561 ste_shutdown(void *arg)
562 {
563 struct ste_softc *sc = arg;
564
565 ste_stop(&sc->sc_ethercom.ec_if, 1);
566 }
567
568 static void
569 ste_dmahalt_wait(struct ste_softc *sc)
570 {
571 int i;
572
573 for (i = 0; i < STE_TIMEOUT; i++) {
574 delay(2);
575 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
576 DC_DMAHaltBusy) == 0)
577 break;
578 }
579
580 if (i == STE_TIMEOUT)
581 printf("%s: DMA halt timed out\n", sc->sc_dev.dv_xname);
582 }
583
584 /*
585 * ste_start: [ifnet interface function]
586 *
587 * Start packet transmission on the interface.
588 */
589 static void
590 ste_start(struct ifnet *ifp)
591 {
592 struct ste_softc *sc = ifp->if_softc;
593 struct mbuf *m0, *m;
594 struct ste_descsoft *ds;
595 struct ste_tfd *tfd;
596 bus_dmamap_t dmamap;
597 int error, olasttx, nexttx, opending, seg, totlen;
598
599 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
600 return;
601
602 /*
603 * Remember the previous number of pending transmissions
604 * and the current last descriptor in the list.
605 */
606 opending = sc->sc_txpending;
607 olasttx = sc->sc_txlast;
608
609 /*
610 * Loop through the send queue, setting up transmit descriptors
611 * until we drain the queue, or use up all available transmit
612 * descriptors.
613 */
614 while (sc->sc_txpending < STE_NTXDESC) {
615 /*
616 * Grab a packet off the queue.
617 */
618 IFQ_POLL(&ifp->if_snd, m0);
619 if (m0 == NULL)
620 break;
621 m = NULL;
622
623 /*
624 * Get the last and next available transmit descriptor.
625 */
626 nexttx = STE_NEXTTX(sc->sc_txlast);
627 tfd = &sc->sc_txdescs[nexttx];
628 ds = &sc->sc_txsoft[nexttx];
629
630 dmamap = ds->ds_dmamap;
631
632 /*
633 * Load the DMA map. If this fails, the packet either
634 * didn't fit in the alloted number of segments, or we
635 * were short on resources. In this case, we'll copy
636 * and try again.
637 */
638 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
639 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
640 MGETHDR(m, M_DONTWAIT, MT_DATA);
641 if (m == NULL) {
642 printf("%s: unable to allocate Tx mbuf\n",
643 sc->sc_dev.dv_xname);
644 break;
645 }
646 if (m0->m_pkthdr.len > MHLEN) {
647 MCLGET(m, M_DONTWAIT);
648 if ((m->m_flags & M_EXT) == 0) {
649 printf("%s: unable to allocate Tx "
650 "cluster\n", sc->sc_dev.dv_xname);
651 m_freem(m);
652 break;
653 }
654 }
655 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
656 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
657 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
658 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
659 if (error) {
660 printf("%s: unable to load Tx buffer, "
661 "error = %d\n", sc->sc_dev.dv_xname, error);
662 break;
663 }
664 }
665
666 IFQ_DEQUEUE(&ifp->if_snd, m0);
667 if (m != NULL) {
668 m_freem(m0);
669 m0 = m;
670 }
671
672 /*
673 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
674 */
675
676 /* Sync the DMA map. */
677 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
678 BUS_DMASYNC_PREWRITE);
679
680 /* Initialize the fragment list. */
681 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
682 tfd->tfd_frags[seg].frag_addr =
683 htole32(dmamap->dm_segs[seg].ds_addr);
684 tfd->tfd_frags[seg].frag_len =
685 htole32(dmamap->dm_segs[seg].ds_len);
686 totlen += dmamap->dm_segs[seg].ds_len;
687 }
688 tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
689
690 /* Initialize the descriptor. */
691 tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
692 tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
693
694 /* Sync the descriptor. */
695 STE_CDTXSYNC(sc, nexttx,
696 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
697
698 /*
699 * Store a pointer to the packet so we can free it later,
700 * and remember what txdirty will be once the packet is
701 * done.
702 */
703 ds->ds_mbuf = m0;
704
705 /* Advance the tx pointer. */
706 sc->sc_txpending++;
707 sc->sc_txlast = nexttx;
708
709 #if NBPFILTER > 0
710 /*
711 * Pass the packet to any BPF listeners.
712 */
713 if (ifp->if_bpf)
714 bpf_mtap(ifp->if_bpf, m0);
715 #endif /* NBPFILTER > 0 */
716 }
717
718 if (sc->sc_txpending == STE_NTXDESC) {
719 /* No more slots left; notify upper layer. */
720 ifp->if_flags |= IFF_OACTIVE;
721 }
722
723 if (sc->sc_txpending != opending) {
724 /*
725 * We enqueued packets. If the transmitter was idle,
726 * reset the txdirty pointer.
727 */
728 if (opending == 0)
729 sc->sc_txdirty = STE_NEXTTX(olasttx);
730
731 /*
732 * Cause a descriptor interrupt to happen on the
733 * last packet we enqueued, and also cause the
734 * DMA engine to wait after is has finished processing
735 * it.
736 */
737 sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
738 sc->sc_txdescs[sc->sc_txlast].tfd_control |=
739 htole32(TFD_TxDMAIndicate);
740 STE_CDTXSYNC(sc, sc->sc_txlast,
741 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
742
743 /*
744 * Link up the new chain of descriptors to the
745 * last.
746 */
747 sc->sc_txdescs[olasttx].tfd_next =
748 htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
749 STE_CDTXSYNC(sc, olasttx,
750 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
751
752 /*
753 * Kick the transmit DMA logic. Note that since we're
754 * using auto-polling, reading the Tx desc pointer will
755 * give it the nudge it needs to get going.
756 */
757 if (bus_space_read_4(sc->sc_st, sc->sc_sh,
758 STE_TxDMAListPtr) == 0) {
759 bus_space_write_4(sc->sc_st, sc->sc_sh,
760 STE_DMACtrl, DC_TxDMAHalt);
761 ste_dmahalt_wait(sc);
762 bus_space_write_4(sc->sc_st, sc->sc_sh,
763 STE_TxDMAListPtr,
764 STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
765 bus_space_write_4(sc->sc_st, sc->sc_sh,
766 STE_DMACtrl, DC_TxDMAResume);
767 }
768
769 /* Set a watchdog timer in case the chip flakes out. */
770 ifp->if_timer = 5;
771 }
772 }
773
774 /*
775 * ste_watchdog: [ifnet interface function]
776 *
777 * Watchdog timer handler.
778 */
779 static void
780 ste_watchdog(struct ifnet *ifp)
781 {
782 struct ste_softc *sc = ifp->if_softc;
783
784 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
785 ifp->if_oerrors++;
786
787 (void) ste_init(ifp);
788
789 /* Try to get more packets going. */
790 ste_start(ifp);
791 }
792
793 /*
794 * ste_ioctl: [ifnet interface function]
795 *
796 * Handle control requests from the operator.
797 */
798 static int
799 ste_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
800 {
801 struct ste_softc *sc = ifp->if_softc;
802 struct ifreq *ifr = (struct ifreq *)data;
803 int s, error;
804
805 s = splnet();
806
807 switch (cmd) {
808 case SIOCSIFMEDIA:
809 case SIOCGIFMEDIA:
810 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
811 break;
812
813 default:
814 error = ether_ioctl(ifp, cmd, data);
815 if (error == ENETRESET) {
816 /*
817 * Multicast list has changed; set the hardware filter
818 * accordingly.
819 */
820 if (ifp->if_flags & IFF_RUNNING)
821 ste_set_filter(sc);
822 error = 0;
823 }
824 break;
825 }
826
827 /* Try to get more packets going. */
828 ste_start(ifp);
829
830 splx(s);
831 return (error);
832 }
833
834 /*
835 * ste_intr:
836 *
837 * Interrupt service routine.
838 */
839 static int
840 ste_intr(void *arg)
841 {
842 struct ste_softc *sc = arg;
843 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
844 uint16_t isr;
845 uint8_t txstat;
846 int wantinit;
847
848 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
849 IS_InterruptStatus) == 0)
850 return (0);
851
852 for (wantinit = 0; wantinit == 0;) {
853 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
854 if ((isr & sc->sc_IntEnable) == 0)
855 break;
856
857 /* Receive interrupts. */
858 if (isr & IE_RxDMAComplete)
859 ste_rxintr(sc);
860
861 /* Transmit interrupts. */
862 if (isr & (IE_TxDMAComplete|IE_TxComplete))
863 ste_txintr(sc);
864
865 /* Statistics overflow. */
866 if (isr & IE_UpdateStats)
867 ste_stats_update(sc);
868
869 /* Transmission errors. */
870 if (isr & IE_TxComplete) {
871 for (;;) {
872 txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
873 STE_TxStatus);
874 if ((txstat & TS_TxComplete) == 0)
875 break;
876 if (txstat & TS_TxUnderrun) {
877 sc->sc_txthresh += 32;
878 if (sc->sc_txthresh > 0x1ffc)
879 sc->sc_txthresh = 0x1ffc;
880 printf("%s: transmit underrun, new "
881 "threshold: %d bytes\n",
882 sc->sc_dev.dv_xname,
883 sc->sc_txthresh);
884 ste_reset(sc, AC_TxReset | AC_DMA |
885 AC_FIFO | AC_Network);
886 ste_setthresh(sc);
887 bus_space_write_1(sc->sc_st, sc->sc_sh,
888 STE_TxDMAPollPeriod, 127);
889 ste_txrestart(sc,
890 bus_space_read_1(sc->sc_st,
891 sc->sc_sh, STE_TxFrameId));
892 }
893 if (txstat & TS_TxReleaseError) {
894 printf("%s: Tx FIFO release error\n",
895 sc->sc_dev.dv_xname);
896 wantinit = 1;
897 }
898 if (txstat & TS_MaxCollisions) {
899 printf("%s: excessive collisions\n",
900 sc->sc_dev.dv_xname);
901 wantinit = 1;
902 }
903 if (txstat & TS_TxStatusOverflow) {
904 printf("%s: status overflow\n",
905 sc->sc_dev.dv_xname);
906 wantinit = 1;
907 }
908 bus_space_write_2(sc->sc_st, sc->sc_sh,
909 STE_TxStatus, 0);
910 }
911 }
912
913 /* Host interface errors. */
914 if (isr & IE_HostError) {
915 printf("%s: Host interface error\n",
916 sc->sc_dev.dv_xname);
917 wantinit = 1;
918 }
919 }
920
921 if (wantinit)
922 ste_init(ifp);
923
924 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
925 sc->sc_IntEnable);
926
927 /* Try to get more packets going. */
928 ste_start(ifp);
929
930 return (1);
931 }
932
933 /*
934 * ste_txintr:
935 *
936 * Helper; handle transmit interrupts.
937 */
938 static void
939 ste_txintr(struct ste_softc *sc)
940 {
941 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
942 struct ste_descsoft *ds;
943 uint32_t control;
944 int i;
945
946 ifp->if_flags &= ~IFF_OACTIVE;
947
948 /*
949 * Go through our Tx list and free mbufs for those
950 * frames which have been transmitted.
951 */
952 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
953 i = STE_NEXTTX(i), sc->sc_txpending--) {
954 ds = &sc->sc_txsoft[i];
955
956 STE_CDTXSYNC(sc, i,
957 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
958
959 control = le32toh(sc->sc_txdescs[i].tfd_control);
960 if ((control & TFD_TxDMAComplete) == 0)
961 break;
962
963 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
964 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
965 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
966 m_freem(ds->ds_mbuf);
967 ds->ds_mbuf = NULL;
968 }
969
970 /* Update the dirty transmit buffer pointer. */
971 sc->sc_txdirty = i;
972
973 /*
974 * If there are no more pending transmissions, cancel the watchdog
975 * timer.
976 */
977 if (sc->sc_txpending == 0)
978 ifp->if_timer = 0;
979 }
980
981 /*
982 * ste_rxintr:
983 *
984 * Helper; handle receive interrupts.
985 */
986 static void
987 ste_rxintr(struct ste_softc *sc)
988 {
989 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
990 struct ste_descsoft *ds;
991 struct mbuf *m;
992 uint32_t status;
993 int i, len;
994
995 for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
996 ds = &sc->sc_rxsoft[i];
997
998 STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
999
1000 status = le32toh(sc->sc_rxdescs[i].rfd_status);
1001
1002 if ((status & RFD_RxDMAComplete) == 0)
1003 break;
1004
1005 /*
1006 * If the packet had an error, simply recycle the
1007 * buffer. Note, we count the error later in the
1008 * periodic stats update.
1009 */
1010 if (status & RFD_RxFrameError) {
1011 STE_INIT_RXDESC(sc, i);
1012 continue;
1013 }
1014
1015 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1016 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1017
1018 /*
1019 * No errors; receive the packet. Note, we have
1020 * configured the chip to not include the CRC at
1021 * the end of the packet.
1022 */
1023 len = RFD_RxDMAFrameLen(status);
1024
1025 /*
1026 * If the packet is small enough to fit in a
1027 * single header mbuf, allocate one and copy
1028 * the data into it. This greatly reduces
1029 * memory consumption when we receive lots
1030 * of small packets.
1031 *
1032 * Otherwise, we add a new buffer to the receive
1033 * chain. If this fails, we drop the packet and
1034 * recycle the old buffer.
1035 */
1036 if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
1037 MGETHDR(m, M_DONTWAIT, MT_DATA);
1038 if (m == NULL)
1039 goto dropit;
1040 m->m_data += 2;
1041 memcpy(mtod(m, caddr_t),
1042 mtod(ds->ds_mbuf, caddr_t), len);
1043 STE_INIT_RXDESC(sc, i);
1044 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1045 ds->ds_dmamap->dm_mapsize,
1046 BUS_DMASYNC_PREREAD);
1047 } else {
1048 m = ds->ds_mbuf;
1049 if (ste_add_rxbuf(sc, i) != 0) {
1050 dropit:
1051 ifp->if_ierrors++;
1052 STE_INIT_RXDESC(sc, i);
1053 bus_dmamap_sync(sc->sc_dmat,
1054 ds->ds_dmamap, 0,
1055 ds->ds_dmamap->dm_mapsize,
1056 BUS_DMASYNC_PREREAD);
1057 continue;
1058 }
1059 }
1060
1061 m->m_pkthdr.rcvif = ifp;
1062 m->m_pkthdr.len = m->m_len = len;
1063
1064 #if NBPFILTER > 0
1065 /*
1066 * Pass this up to any BPF listeners, but only
1067 * pass if up the stack if it's for us.
1068 */
1069 if (ifp->if_bpf)
1070 bpf_mtap(ifp->if_bpf, m);
1071 #endif /* NBPFILTER > 0 */
1072
1073 /* Pass it on. */
1074 (*ifp->if_input)(ifp, m);
1075 }
1076
1077 /* Update the receive pointer. */
1078 sc->sc_rxptr = i;
1079 }
1080
1081 /*
1082 * ste_tick:
1083 *
1084 * One second timer, used to tick the MII.
1085 */
1086 static void
1087 ste_tick(void *arg)
1088 {
1089 struct ste_softc *sc = arg;
1090 int s;
1091
1092 s = splnet();
1093 mii_tick(&sc->sc_mii);
1094 ste_stats_update(sc);
1095 splx(s);
1096
1097 callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1098 }
1099
1100 /*
1101 * ste_stats_update:
1102 *
1103 * Read the ST-201 statistics counters.
1104 */
1105 static void
1106 ste_stats_update(struct ste_softc *sc)
1107 {
1108 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1109 bus_space_tag_t st = sc->sc_st;
1110 bus_space_handle_t sh = sc->sc_sh;
1111
1112 (void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
1113 (void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
1114
1115 (void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
1116 (void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
1117
1118 ifp->if_opackets +=
1119 (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
1120 ifp->if_ipackets +=
1121 (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
1122
1123 ifp->if_collisions +=
1124 (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
1125 (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
1126 (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
1127
1128 (void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
1129
1130 ifp->if_ierrors +=
1131 (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
1132
1133 ifp->if_oerrors +=
1134 (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
1135 (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
1136 bus_space_read_1(st, sh, STE_CarrierSenseErrors);
1137
1138 (void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
1139 (void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
1140 (void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
1141 (void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
1142 }
1143
1144 /*
1145 * ste_reset:
1146 *
1147 * Perform a soft reset on the ST-201.
1148 */
1149 static void
1150 ste_reset(struct ste_softc *sc, u_int32_t rstbits)
1151 {
1152 uint32_t ac;
1153 int i;
1154
1155 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
1156
1157 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
1158
1159 delay(50000);
1160
1161 for (i = 0; i < STE_TIMEOUT; i++) {
1162 delay(1000);
1163 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
1164 AC_ResetBusy) == 0)
1165 break;
1166 }
1167
1168 if (i == STE_TIMEOUT)
1169 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1170
1171 delay(1000);
1172 }
1173
1174 /*
1175 * ste_setthresh:
1176 *
1177 * set the various transmit threshold registers
1178 */
1179 static void
1180 ste_setthresh(struct ste_softc *sc)
1181 {
1182 /* set the TX threhold */
1183 bus_space_write_2(sc->sc_st, sc->sc_sh,
1184 STE_TxStartThresh, sc->sc_txthresh);
1185 /* Urgent threshold: set to sc_txthresh / 2 */
1186 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
1187 sc->sc_txthresh >> 6);
1188 /* Burst threshold: use default value (256 bytes) */
1189 }
1190
1191 /*
1192 * restart TX at the given frame ID in the transmitter ring
1193 */
1194 static void
1195 ste_txrestart(struct ste_softc *sc, u_int8_t id)
1196 {
1197 u_int32_t control;
1198
1199 STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1200 control = le32toh(sc->sc_txdescs[id].tfd_control);
1201 control &= ~TFD_TxDMAComplete;
1202 sc->sc_txdescs[id].tfd_control = htole32(control);
1203 STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1204
1205 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
1206 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
1207 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
1208 ste_dmahalt_wait(sc);
1209 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
1210 STE_CDTXADDR(sc, id));
1211 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
1212 }
1213
1214 /*
1215 * ste_init: [ ifnet interface function ]
1216 *
1217 * Initialize the interface. Must be called at splnet().
1218 */
1219 static int
1220 ste_init(struct ifnet *ifp)
1221 {
1222 struct ste_softc *sc = ifp->if_softc;
1223 bus_space_tag_t st = sc->sc_st;
1224 bus_space_handle_t sh = sc->sc_sh;
1225 struct ste_descsoft *ds;
1226 int i, error = 0;
1227
1228 /*
1229 * Cancel any pending I/O.
1230 */
1231 ste_stop(ifp, 0);
1232
1233 /*
1234 * Reset the chip to a known state.
1235 */
1236 ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
1237 AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
1238
1239 /*
1240 * Initialize the transmit descriptor ring.
1241 */
1242 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1243 sc->sc_txpending = 0;
1244 sc->sc_txdirty = 0;
1245 sc->sc_txlast = STE_NTXDESC - 1;
1246
1247 /*
1248 * Initialize the receive descriptor and receive job
1249 * descriptor rings.
1250 */
1251 for (i = 0; i < STE_NRXDESC; i++) {
1252 ds = &sc->sc_rxsoft[i];
1253 if (ds->ds_mbuf == NULL) {
1254 if ((error = ste_add_rxbuf(sc, i)) != 0) {
1255 printf("%s: unable to allocate or map rx "
1256 "buffer %d, error = %d\n",
1257 sc->sc_dev.dv_xname, i, error);
1258 /*
1259 * XXX Should attempt to run with fewer receive
1260 * XXX buffers instead of just failing.
1261 */
1262 ste_rxdrain(sc);
1263 goto out;
1264 }
1265 } else
1266 STE_INIT_RXDESC(sc, i);
1267 }
1268 sc->sc_rxptr = 0;
1269
1270 /* Set the station address. */
1271 for (i = 0; i < ETHER_ADDR_LEN; i++)
1272 bus_space_write_1(st, sh, STE_StationAddress0 + 1,
1273 LLADDR(ifp->if_sadl)[i]);
1274
1275 /* Set up the receive filter. */
1276 ste_set_filter(sc);
1277
1278 /*
1279 * Give the receive ring to the chip.
1280 */
1281 bus_space_write_4(st, sh, STE_RxDMAListPtr,
1282 STE_CDRXADDR(sc, sc->sc_rxptr));
1283
1284 /*
1285 * We defer giving the transmit ring to the chip until we
1286 * transmit the first packet.
1287 */
1288
1289 /*
1290 * Initialize the Tx auto-poll period. It's OK to make this number
1291 * large (127 is the max) -- we explicitly kick the transmit engine
1292 * when there's actually a packet. We are using auto-polling only
1293 * to make the interface to the transmit engine not suck.
1294 */
1295 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
1296
1297 /* ..and the Rx auto-poll period. */
1298 bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
1299
1300 /* Initialize the Tx start threshold. */
1301 ste_setthresh(sc);
1302
1303 /* Set the FIFO release threshold to 512 bytes. */
1304 bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
1305
1306 /* Set maximum packet size for VLAN. */
1307 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1308 bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN + 4);
1309 else
1310 bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN);
1311
1312 /*
1313 * Initialize the interrupt mask.
1314 */
1315 sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1316 IE_TxDMAComplete | IE_RxDMAComplete;
1317
1318 bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
1319 bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
1320
1321 /*
1322 * Start the receive DMA engine.
1323 */
1324 bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
1325
1326 /*
1327 * Initialize MacCtrl0 -- do it before setting the media,
1328 * as setting the media will actually program the register.
1329 */
1330 sc->sc_MacCtrl0 = MC0_IFSSelect(0);
1331 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1332 sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
1333
1334 /*
1335 * Set the current media.
1336 */
1337 mii_mediachg(&sc->sc_mii);
1338
1339 /*
1340 * Start the MAC.
1341 */
1342 bus_space_write_2(st, sh, STE_MacCtrl1,
1343 MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
1344
1345 /*
1346 * Start the one second MII clock.
1347 */
1348 callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1349
1350 /*
1351 * ...all done!
1352 */
1353 ifp->if_flags |= IFF_RUNNING;
1354 ifp->if_flags &= ~IFF_OACTIVE;
1355
1356 out:
1357 if (error)
1358 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1359 return (error);
1360 }
1361
1362 /*
1363 * ste_drain:
1364 *
1365 * Drain the receive queue.
1366 */
1367 static void
1368 ste_rxdrain(struct ste_softc *sc)
1369 {
1370 struct ste_descsoft *ds;
1371 int i;
1372
1373 for (i = 0; i < STE_NRXDESC; i++) {
1374 ds = &sc->sc_rxsoft[i];
1375 if (ds->ds_mbuf != NULL) {
1376 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1377 m_freem(ds->ds_mbuf);
1378 ds->ds_mbuf = NULL;
1379 }
1380 }
1381 }
1382
1383 /*
1384 * ste_stop: [ ifnet interface function ]
1385 *
1386 * Stop transmission on the interface.
1387 */
1388 static void
1389 ste_stop(struct ifnet *ifp, int disable)
1390 {
1391 struct ste_softc *sc = ifp->if_softc;
1392 struct ste_descsoft *ds;
1393 int i;
1394
1395 /*
1396 * Stop the one second clock.
1397 */
1398 callout_stop(&sc->sc_tick_ch);
1399
1400 /* Down the MII. */
1401 mii_down(&sc->sc_mii);
1402
1403 /*
1404 * Disable interrupts.
1405 */
1406 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
1407
1408 /*
1409 * Stop receiver, transmitter, and stats update.
1410 */
1411 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
1412 MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
1413
1414 /*
1415 * Stop the transmit and receive DMA.
1416 */
1417 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
1418 DC_RxDMAHalt | DC_TxDMAHalt);
1419 ste_dmahalt_wait(sc);
1420
1421 /*
1422 * Release any queued transmit buffers.
1423 */
1424 for (i = 0; i < STE_NTXDESC; i++) {
1425 ds = &sc->sc_txsoft[i];
1426 if (ds->ds_mbuf != NULL) {
1427 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1428 m_freem(ds->ds_mbuf);
1429 ds->ds_mbuf = NULL;
1430 }
1431 }
1432
1433 if (disable)
1434 ste_rxdrain(sc);
1435
1436 /*
1437 * Mark the interface down and cancel the watchdog timer.
1438 */
1439 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1440 ifp->if_timer = 0;
1441 }
1442
1443 static int
1444 ste_eeprom_wait(struct ste_softc *sc)
1445 {
1446 int i;
1447
1448 for (i = 0; i < STE_TIMEOUT; i++) {
1449 delay(1000);
1450 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
1451 EC_EepromBusy) == 0)
1452 return (0);
1453 }
1454 return (1);
1455 }
1456
1457 /*
1458 * ste_read_eeprom:
1459 *
1460 * Read data from the serial EEPROM.
1461 */
1462 static void
1463 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
1464 {
1465
1466 if (ste_eeprom_wait(sc))
1467 printf("%s: EEPROM failed to come ready\n",
1468 sc->sc_dev.dv_xname);
1469
1470 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
1471 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
1472 if (ste_eeprom_wait(sc))
1473 printf("%s: EEPROM read timed out\n",
1474 sc->sc_dev.dv_xname);
1475 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
1476 }
1477
1478 /*
1479 * ste_add_rxbuf:
1480 *
1481 * Add a receive buffer to the indicated descriptor.
1482 */
1483 static int
1484 ste_add_rxbuf(struct ste_softc *sc, int idx)
1485 {
1486 struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
1487 struct mbuf *m;
1488 int error;
1489
1490 MGETHDR(m, M_DONTWAIT, MT_DATA);
1491 if (m == NULL)
1492 return (ENOBUFS);
1493
1494 MCLGET(m, M_DONTWAIT);
1495 if ((m->m_flags & M_EXT) == 0) {
1496 m_freem(m);
1497 return (ENOBUFS);
1498 }
1499
1500 if (ds->ds_mbuf != NULL)
1501 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1502
1503 ds->ds_mbuf = m;
1504
1505 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1506 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1507 BUS_DMA_READ|BUS_DMA_NOWAIT);
1508 if (error) {
1509 printf("%s: can't load rx DMA map %d, error = %d\n",
1510 sc->sc_dev.dv_xname, idx, error);
1511 panic("ste_add_rxbuf"); /* XXX */
1512 }
1513
1514 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1515 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1516
1517 STE_INIT_RXDESC(sc, idx);
1518
1519 return (0);
1520 }
1521
1522 /*
1523 * ste_set_filter:
1524 *
1525 * Set up the receive filter.
1526 */
1527 static void
1528 ste_set_filter(struct ste_softc *sc)
1529 {
1530 struct ethercom *ec = &sc->sc_ethercom;
1531 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1532 struct ether_multi *enm;
1533 struct ether_multistep step;
1534 uint32_t crc;
1535 uint16_t mchash[4];
1536
1537 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1538 if (ifp->if_flags & IFF_BROADCAST)
1539 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1540
1541 if (ifp->if_flags & IFF_PROMISC) {
1542 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1543 goto allmulti;
1544 }
1545
1546 /*
1547 * Set up the multicast address filter by passing all multicast
1548 * addresses through a CRC generator, and then using the low-order
1549 * 6 bits as an index into the 64 bit multicast hash table. The
1550 * high order bits select the register, while the rest of the bits
1551 * select the bit within the register.
1552 */
1553
1554 memset(mchash, 0, sizeof(mchash));
1555
1556 ETHER_FIRST_MULTI(step, ec, enm);
1557 if (enm == NULL)
1558 goto done;
1559
1560 while (enm != NULL) {
1561 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1562 /*
1563 * We must listen to a range of multicast addresses.
1564 * For now, just accept all multicasts, rather than
1565 * trying to set only those filter bits needed to match
1566 * the range. (At this time, the only use of address
1567 * ranges is for IP multicast routing, for which the
1568 * range is big enough to require all bits set.)
1569 */
1570 goto allmulti;
1571 }
1572
1573 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1574
1575 /* Just want the 6 least significant bits. */
1576 crc &= 0x3f;
1577
1578 /* Set the corresponding bit in the hash table. */
1579 mchash[crc >> 4] |= 1 << (crc & 0xf);
1580
1581 ETHER_NEXT_MULTI(step, enm);
1582 }
1583
1584 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1585
1586 ifp->if_flags &= ~IFF_ALLMULTI;
1587 goto done;
1588
1589 allmulti:
1590 ifp->if_flags |= IFF_ALLMULTI;
1591 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1592
1593 done:
1594 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1595 /*
1596 * Program the multicast hash table.
1597 */
1598 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
1599 mchash[0]);
1600 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
1601 mchash[1]);
1602 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
1603 mchash[2]);
1604 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
1605 mchash[3]);
1606 }
1607
1608 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
1609 sc->sc_ReceiveMode);
1610 }
1611
1612 /*
1613 * ste_mii_readreg: [mii interface function]
1614 *
1615 * Read a PHY register on the MII of the ST-201.
1616 */
1617 static int
1618 ste_mii_readreg(struct device *self, int phy, int reg)
1619 {
1620
1621 return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
1622 }
1623
1624 /*
1625 * ste_mii_writereg: [mii interface function]
1626 *
1627 * Write a PHY register on the MII of the ST-201.
1628 */
1629 static void
1630 ste_mii_writereg(struct device *self, int phy, int reg, int val)
1631 {
1632
1633 mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
1634 }
1635
1636 /*
1637 * ste_mii_statchg: [mii interface function]
1638 *
1639 * Callback from MII layer when media changes.
1640 */
1641 static void
1642 ste_mii_statchg(struct device *self)
1643 {
1644 struct ste_softc *sc = (struct ste_softc *) self;
1645
1646 if (sc->sc_mii.mii_media_active & IFM_FDX)
1647 sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
1648 else
1649 sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
1650
1651 /* XXX 802.1x flow-control? */
1652
1653 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
1654 }
1655
1656 /*
1657 * ste_mii_bitbang_read: [mii bit-bang interface function]
1658 *
1659 * Read the MII serial port for the MII bit-bang module.
1660 */
1661 static uint32_t
1662 ste_mii_bitbang_read(struct device *self)
1663 {
1664 struct ste_softc *sc = (void *) self;
1665
1666 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
1667 }
1668
1669 /*
1670 * ste_mii_bitbang_write: [mii big-bang interface function]
1671 *
1672 * Write the MII serial port for the MII bit-bang module.
1673 */
1674 static void
1675 ste_mii_bitbang_write(struct device *self, uint32_t val)
1676 {
1677 struct ste_softc *sc = (void *) self;
1678
1679 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
1680 }
1681
1682 /*
1683 * ste_mediastatus: [ifmedia interface function]
1684 *
1685 * Get the current interface media status.
1686 */
1687 static void
1688 ste_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1689 {
1690 struct ste_softc *sc = ifp->if_softc;
1691
1692 mii_pollstat(&sc->sc_mii);
1693 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1694 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1695 }
1696
1697 /*
1698 * ste_mediachange: [ifmedia interface function]
1699 *
1700 * Set hardware to newly-selected media.
1701 */
1702 static int
1703 ste_mediachange(struct ifnet *ifp)
1704 {
1705 struct ste_softc *sc = ifp->if_softc;
1706
1707 if (ifp->if_flags & IFF_UP)
1708 mii_mediachg(&sc->sc_mii);
1709 return (0);
1710 }
1711