if_ste.c revision 1.31 1 /* $NetBSD: if_ste.c,v 1.31 2007/10/19 12:00:48 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the Sundance Tech. ST-201 10/100
41 * Ethernet controller.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.31 2007/10/19 12:00:48 ad Exp $");
46
47 #include "bpfilter.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/socket.h>
56 #include <sys/ioctl.h>
57 #include <sys/errno.h>
58 #include <sys/device.h>
59 #include <sys/queue.h>
60
61 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
62
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_ether.h>
67
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71
72 #include <sys/bus.h>
73 #include <sys/intr.h>
74
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 #include <dev/mii/mii_bitbang.h>
78
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 #include <dev/pci/pcidevs.h>
82
83 #include <dev/pci/if_stereg.h>
84
85 /*
86 * Transmit descriptor list size.
87 */
88 #define STE_NTXDESC 256
89 #define STE_NTXDESC_MASK (STE_NTXDESC - 1)
90 #define STE_NEXTTX(x) (((x) + 1) & STE_NTXDESC_MASK)
91
92 /*
93 * Receive descriptor list size.
94 */
95 #define STE_NRXDESC 128
96 #define STE_NRXDESC_MASK (STE_NRXDESC - 1)
97 #define STE_NEXTRX(x) (((x) + 1) & STE_NRXDESC_MASK)
98
99 /*
100 * Control structures are DMA'd to the ST-201 chip. We allocate them in
101 * a single clump that maps to a single DMA segment to make several things
102 * easier.
103 */
104 struct ste_control_data {
105 /*
106 * The transmit descriptors.
107 */
108 struct ste_tfd scd_txdescs[STE_NTXDESC];
109
110 /*
111 * The receive descriptors.
112 */
113 struct ste_rfd scd_rxdescs[STE_NRXDESC];
114 };
115
116 #define STE_CDOFF(x) offsetof(struct ste_control_data, x)
117 #define STE_CDTXOFF(x) STE_CDOFF(scd_txdescs[(x)])
118 #define STE_CDRXOFF(x) STE_CDOFF(scd_rxdescs[(x)])
119
120 /*
121 * Software state for transmit and receive jobs.
122 */
123 struct ste_descsoft {
124 struct mbuf *ds_mbuf; /* head of our mbuf chain */
125 bus_dmamap_t ds_dmamap; /* our DMA map */
126 };
127
128 /*
129 * Software state per device.
130 */
131 struct ste_softc {
132 struct device sc_dev; /* generic device information */
133 bus_space_tag_t sc_st; /* bus space tag */
134 bus_space_handle_t sc_sh; /* bus space handle */
135 bus_dma_tag_t sc_dmat; /* bus DMA tag */
136 struct ethercom sc_ethercom; /* ethernet common data */
137 void *sc_sdhook; /* shutdown hook */
138
139 void *sc_ih; /* interrupt cookie */
140
141 struct mii_data sc_mii; /* MII/media information */
142
143 callout_t sc_tick_ch; /* tick callout */
144
145 bus_dmamap_t sc_cddmamap; /* control data DMA map */
146 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
147
148 /*
149 * Software state for transmit and receive descriptors.
150 */
151 struct ste_descsoft sc_txsoft[STE_NTXDESC];
152 struct ste_descsoft sc_rxsoft[STE_NRXDESC];
153
154 /*
155 * Control data structures.
156 */
157 struct ste_control_data *sc_control_data;
158 #define sc_txdescs sc_control_data->scd_txdescs
159 #define sc_rxdescs sc_control_data->scd_rxdescs
160
161 int sc_txpending; /* number of Tx requests pending */
162 int sc_txdirty; /* first dirty Tx descriptor */
163 int sc_txlast; /* last used Tx descriptor */
164
165 int sc_rxptr; /* next ready Rx descriptor/descsoft */
166
167 int sc_txthresh; /* Tx threshold */
168 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
169 uint16_t sc_IntEnable; /* prototype IntEnable register */
170 uint16_t sc_MacCtrl0; /* prototype MacCtrl0 register */
171 uint8_t sc_ReceiveMode; /* prototype ReceiveMode register */
172 };
173
174 #define STE_CDTXADDR(sc, x) ((sc)->sc_cddma + STE_CDTXOFF((x)))
175 #define STE_CDRXADDR(sc, x) ((sc)->sc_cddma + STE_CDRXOFF((x)))
176
177 #define STE_CDTXSYNC(sc, x, ops) \
178 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
179 STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
180
181 #define STE_CDRXSYNC(sc, x, ops) \
182 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
183 STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
184
185 #define STE_INIT_RXDESC(sc, x) \
186 do { \
187 struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
188 struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
189 struct mbuf *__m = __ds->ds_mbuf; \
190 \
191 /* \
192 * Note: We scoot the packet forward 2 bytes in the buffer \
193 * so that the payload after the Ethernet header is aligned \
194 * to a 4-byte boundary. \
195 */ \
196 __m->m_data = __m->m_ext.ext_buf + 2; \
197 __rfd->rfd_frag.frag_addr = \
198 htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2); \
199 __rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST); \
200 __rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x)))); \
201 __rfd->rfd_status = 0; \
202 STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
203 } while (/*CONSTCOND*/0)
204
205 #define STE_TIMEOUT 1000
206
207 static void ste_start(struct ifnet *);
208 static void ste_watchdog(struct ifnet *);
209 static int ste_ioctl(struct ifnet *, u_long, void *);
210 static int ste_init(struct ifnet *);
211 static void ste_stop(struct ifnet *, int);
212
213 static void ste_shutdown(void *);
214
215 static void ste_reset(struct ste_softc *, u_int32_t);
216 static void ste_setthresh(struct ste_softc *);
217 static void ste_txrestart(struct ste_softc *, u_int8_t);
218 static void ste_rxdrain(struct ste_softc *);
219 static int ste_add_rxbuf(struct ste_softc *, int);
220 static void ste_read_eeprom(struct ste_softc *, int, uint16_t *);
221 static void ste_tick(void *);
222
223 static void ste_stats_update(struct ste_softc *);
224
225 static void ste_set_filter(struct ste_softc *);
226
227 static int ste_intr(void *);
228 static void ste_txintr(struct ste_softc *);
229 static void ste_rxintr(struct ste_softc *);
230
231 static int ste_mii_readreg(struct device *, int, int);
232 static void ste_mii_writereg(struct device *, int, int, int);
233 static void ste_mii_statchg(struct device *);
234
235 static int ste_mediachange(struct ifnet *);
236 static void ste_mediastatus(struct ifnet *, struct ifmediareq *);
237
238 static int ste_match(struct device *, struct cfdata *, void *);
239 static void ste_attach(struct device *, struct device *, void *);
240
241 int ste_copy_small = 0;
242
243 CFATTACH_DECL(ste, sizeof(struct ste_softc),
244 ste_match, ste_attach, NULL, NULL);
245
246 static uint32_t ste_mii_bitbang_read(struct device *);
247 static void ste_mii_bitbang_write(struct device *, uint32_t);
248
249 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
250 ste_mii_bitbang_read,
251 ste_mii_bitbang_write,
252 {
253 PC_MgmtData, /* MII_BIT_MDO */
254 PC_MgmtData, /* MII_BIT_MDI */
255 PC_MgmtClk, /* MII_BIT_MDC */
256 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
257 0, /* MII_BIT_DIR_PHY_HOST */
258 }
259 };
260
261 /*
262 * Devices supported by this driver.
263 */
264 static const struct ste_product {
265 pci_vendor_id_t ste_vendor;
266 pci_product_id_t ste_product;
267 const char *ste_name;
268 } ste_products[] = {
269 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_IP100A,
270 "IC Plus Corp. IP00A 10/100 Fast Ethernet Adapter" },
271
272 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST201,
273 "Sundance ST-201 10/100 Ethernet" },
274
275 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL1002,
276 "D-Link DL-1002 10/100 Ethernet" },
277
278 { 0, 0,
279 NULL },
280 };
281
282 static const struct ste_product *
283 ste_lookup(const struct pci_attach_args *pa)
284 {
285 const struct ste_product *sp;
286
287 for (sp = ste_products; sp->ste_name != NULL; sp++) {
288 if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
289 PCI_PRODUCT(pa->pa_id) == sp->ste_product)
290 return (sp);
291 }
292 return (NULL);
293 }
294
295 static int
296 ste_match(struct device *parent, struct cfdata *cf, void *aux)
297 {
298 struct pci_attach_args *pa = aux;
299
300 if (ste_lookup(pa) != NULL)
301 return (1);
302
303 return (0);
304 }
305
306 static void
307 ste_attach(struct device *parent, struct device *self, void *aux)
308 {
309 struct ste_softc *sc = (struct ste_softc *) self;
310 struct pci_attach_args *pa = aux;
311 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
312 pci_chipset_tag_t pc = pa->pa_pc;
313 pci_intr_handle_t ih;
314 const char *intrstr = NULL;
315 bus_space_tag_t iot, memt;
316 bus_space_handle_t ioh, memh;
317 bus_dma_segment_t seg;
318 int ioh_valid, memh_valid;
319 int i, rseg, error;
320 const struct ste_product *sp;
321 uint8_t enaddr[ETHER_ADDR_LEN];
322 uint16_t myea[ETHER_ADDR_LEN / 2];
323
324 callout_init(&sc->sc_tick_ch, 0);
325
326 sp = ste_lookup(pa);
327 if (sp == NULL) {
328 printf("\n");
329 panic("ste_attach: impossible");
330 }
331
332 printf(": %s\n", sp->ste_name);
333
334 /*
335 * Map the device.
336 */
337 ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
338 PCI_MAPREG_TYPE_IO, 0,
339 &iot, &ioh, NULL, NULL) == 0);
340 memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
341 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
342 &memt, &memh, NULL, NULL) == 0);
343
344 if (memh_valid) {
345 sc->sc_st = memt;
346 sc->sc_sh = memh;
347 } else if (ioh_valid) {
348 sc->sc_st = iot;
349 sc->sc_sh = ioh;
350 } else {
351 printf("%s: unable to map device registers\n",
352 sc->sc_dev.dv_xname);
353 return;
354 }
355
356 sc->sc_dmat = pa->pa_dmat;
357
358 /* Enable bus mastering. */
359 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
360 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
361 PCI_COMMAND_MASTER_ENABLE);
362
363 /* power up chip */
364 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
365 NULL)) && error != EOPNOTSUPP) {
366 aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
367 error);
368 return;
369 }
370
371 /*
372 * Map and establish our interrupt.
373 */
374 if (pci_intr_map(pa, &ih)) {
375 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
376 return;
377 }
378 intrstr = pci_intr_string(pc, ih);
379 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
380 if (sc->sc_ih == NULL) {
381 printf("%s: unable to establish interrupt",
382 sc->sc_dev.dv_xname);
383 if (intrstr != NULL)
384 printf(" at %s", intrstr);
385 printf("\n");
386 return;
387 }
388 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
389
390 /*
391 * Allocate the control data structures, and create and load the
392 * DMA map for it.
393 */
394 if ((error = bus_dmamem_alloc(sc->sc_dmat,
395 sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
396 0)) != 0) {
397 printf("%s: unable to allocate control data, error = %d\n",
398 sc->sc_dev.dv_xname, error);
399 goto fail_0;
400 }
401
402 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
403 sizeof(struct ste_control_data), (void **)&sc->sc_control_data,
404 BUS_DMA_COHERENT)) != 0) {
405 printf("%s: unable to map control data, error = %d\n",
406 sc->sc_dev.dv_xname, error);
407 goto fail_1;
408 }
409
410 if ((error = bus_dmamap_create(sc->sc_dmat,
411 sizeof(struct ste_control_data), 1,
412 sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
413 printf("%s: unable to create control data DMA map, "
414 "error = %d\n", sc->sc_dev.dv_xname, error);
415 goto fail_2;
416 }
417
418 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
419 sc->sc_control_data, sizeof(struct ste_control_data), NULL,
420 0)) != 0) {
421 printf("%s: unable to load control data DMA map, error = %d\n",
422 sc->sc_dev.dv_xname, error);
423 goto fail_3;
424 }
425
426 /*
427 * Create the transmit buffer DMA maps.
428 */
429 for (i = 0; i < STE_NTXDESC; i++) {
430 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
431 STE_NTXFRAGS, MCLBYTES, 0, 0,
432 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
433 printf("%s: unable to create tx DMA map %d, "
434 "error = %d\n", sc->sc_dev.dv_xname, i, error);
435 goto fail_4;
436 }
437 }
438
439 /*
440 * Create the receive buffer DMA maps.
441 */
442 for (i = 0; i < STE_NRXDESC; i++) {
443 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
444 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
445 printf("%s: unable to create rx DMA map %d, "
446 "error = %d\n", sc->sc_dev.dv_xname, i, error);
447 goto fail_5;
448 }
449 sc->sc_rxsoft[i].ds_mbuf = NULL;
450 }
451
452 /*
453 * Reset the chip to a known state.
454 */
455 ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
456 AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
457
458 /*
459 * Read the Ethernet address from the EEPROM.
460 */
461 for (i = 0; i < 3; i++) {
462 ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
463 myea[i] = le16toh(myea[i]);
464 }
465 memcpy(enaddr, myea, sizeof(enaddr));
466
467 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
468 ether_sprintf(enaddr));
469
470 /*
471 * Initialize our media structures and probe the MII.
472 */
473 sc->sc_mii.mii_ifp = ifp;
474 sc->sc_mii.mii_readreg = ste_mii_readreg;
475 sc->sc_mii.mii_writereg = ste_mii_writereg;
476 sc->sc_mii.mii_statchg = ste_mii_statchg;
477 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ste_mediachange,
478 ste_mediastatus);
479 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
480 MII_OFFSET_ANY, 0);
481 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
482 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
483 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
484 } else
485 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
486
487 ifp = &sc->sc_ethercom.ec_if;
488 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
489 ifp->if_softc = sc;
490 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
491 ifp->if_ioctl = ste_ioctl;
492 ifp->if_start = ste_start;
493 ifp->if_watchdog = ste_watchdog;
494 ifp->if_init = ste_init;
495 ifp->if_stop = ste_stop;
496 IFQ_SET_READY(&ifp->if_snd);
497
498 /*
499 * Default the transmit threshold to 128 bytes.
500 */
501 sc->sc_txthresh = 128;
502
503 /*
504 * Disable MWI if the PCI layer tells us to.
505 */
506 sc->sc_DMACtrl = 0;
507 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
508 sc->sc_DMACtrl |= DC_MWIDisable;
509
510 /*
511 * We can support 802.1Q VLAN-sized frames.
512 */
513 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
514
515 /*
516 * Attach the interface.
517 */
518 if_attach(ifp);
519 ether_ifattach(ifp, enaddr);
520
521 /*
522 * Make sure the interface is shutdown during reboot.
523 */
524 sc->sc_sdhook = shutdownhook_establish(ste_shutdown, sc);
525 if (sc->sc_sdhook == NULL)
526 printf("%s: WARNING: unable to establish shutdown hook\n",
527 sc->sc_dev.dv_xname);
528 return;
529
530 /*
531 * Free any resources we've allocated during the failed attach
532 * attempt. Do this in reverse order and fall through.
533 */
534 fail_5:
535 for (i = 0; i < STE_NRXDESC; i++) {
536 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
537 bus_dmamap_destroy(sc->sc_dmat,
538 sc->sc_rxsoft[i].ds_dmamap);
539 }
540 fail_4:
541 for (i = 0; i < STE_NTXDESC; i++) {
542 if (sc->sc_txsoft[i].ds_dmamap != NULL)
543 bus_dmamap_destroy(sc->sc_dmat,
544 sc->sc_txsoft[i].ds_dmamap);
545 }
546 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
547 fail_3:
548 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
549 fail_2:
550 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
551 sizeof(struct ste_control_data));
552 fail_1:
553 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
554 fail_0:
555 return;
556 }
557
558 /*
559 * ste_shutdown:
560 *
561 * Make sure the interface is stopped at reboot time.
562 */
563 static void
564 ste_shutdown(void *arg)
565 {
566 struct ste_softc *sc = arg;
567
568 ste_stop(&sc->sc_ethercom.ec_if, 1);
569 }
570
571 static void
572 ste_dmahalt_wait(struct ste_softc *sc)
573 {
574 int i;
575
576 for (i = 0; i < STE_TIMEOUT; i++) {
577 delay(2);
578 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
579 DC_DMAHaltBusy) == 0)
580 break;
581 }
582
583 if (i == STE_TIMEOUT)
584 printf("%s: DMA halt timed out\n", sc->sc_dev.dv_xname);
585 }
586
587 /*
588 * ste_start: [ifnet interface function]
589 *
590 * Start packet transmission on the interface.
591 */
592 static void
593 ste_start(struct ifnet *ifp)
594 {
595 struct ste_softc *sc = ifp->if_softc;
596 struct mbuf *m0, *m;
597 struct ste_descsoft *ds;
598 struct ste_tfd *tfd;
599 bus_dmamap_t dmamap;
600 int error, olasttx, nexttx, opending, seg, totlen;
601
602 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
603 return;
604
605 /*
606 * Remember the previous number of pending transmissions
607 * and the current last descriptor in the list.
608 */
609 opending = sc->sc_txpending;
610 olasttx = sc->sc_txlast;
611
612 /*
613 * Loop through the send queue, setting up transmit descriptors
614 * until we drain the queue, or use up all available transmit
615 * descriptors.
616 */
617 while (sc->sc_txpending < STE_NTXDESC) {
618 /*
619 * Grab a packet off the queue.
620 */
621 IFQ_POLL(&ifp->if_snd, m0);
622 if (m0 == NULL)
623 break;
624 m = NULL;
625
626 /*
627 * Get the last and next available transmit descriptor.
628 */
629 nexttx = STE_NEXTTX(sc->sc_txlast);
630 tfd = &sc->sc_txdescs[nexttx];
631 ds = &sc->sc_txsoft[nexttx];
632
633 dmamap = ds->ds_dmamap;
634
635 /*
636 * Load the DMA map. If this fails, the packet either
637 * didn't fit in the alloted number of segments, or we
638 * were short on resources. In this case, we'll copy
639 * and try again.
640 */
641 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
642 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
643 MGETHDR(m, M_DONTWAIT, MT_DATA);
644 if (m == NULL) {
645 printf("%s: unable to allocate Tx mbuf\n",
646 sc->sc_dev.dv_xname);
647 break;
648 }
649 if (m0->m_pkthdr.len > MHLEN) {
650 MCLGET(m, M_DONTWAIT);
651 if ((m->m_flags & M_EXT) == 0) {
652 printf("%s: unable to allocate Tx "
653 "cluster\n", sc->sc_dev.dv_xname);
654 m_freem(m);
655 break;
656 }
657 }
658 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
659 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
660 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
661 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
662 if (error) {
663 printf("%s: unable to load Tx buffer, "
664 "error = %d\n", sc->sc_dev.dv_xname, error);
665 break;
666 }
667 }
668
669 IFQ_DEQUEUE(&ifp->if_snd, m0);
670 if (m != NULL) {
671 m_freem(m0);
672 m0 = m;
673 }
674
675 /*
676 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
677 */
678
679 /* Sync the DMA map. */
680 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
681 BUS_DMASYNC_PREWRITE);
682
683 /* Initialize the fragment list. */
684 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
685 tfd->tfd_frags[seg].frag_addr =
686 htole32(dmamap->dm_segs[seg].ds_addr);
687 tfd->tfd_frags[seg].frag_len =
688 htole32(dmamap->dm_segs[seg].ds_len);
689 totlen += dmamap->dm_segs[seg].ds_len;
690 }
691 tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
692
693 /* Initialize the descriptor. */
694 tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
695 tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
696
697 /* Sync the descriptor. */
698 STE_CDTXSYNC(sc, nexttx,
699 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
700
701 /*
702 * Store a pointer to the packet so we can free it later,
703 * and remember what txdirty will be once the packet is
704 * done.
705 */
706 ds->ds_mbuf = m0;
707
708 /* Advance the tx pointer. */
709 sc->sc_txpending++;
710 sc->sc_txlast = nexttx;
711
712 #if NBPFILTER > 0
713 /*
714 * Pass the packet to any BPF listeners.
715 */
716 if (ifp->if_bpf)
717 bpf_mtap(ifp->if_bpf, m0);
718 #endif /* NBPFILTER > 0 */
719 }
720
721 if (sc->sc_txpending == STE_NTXDESC) {
722 /* No more slots left; notify upper layer. */
723 ifp->if_flags |= IFF_OACTIVE;
724 }
725
726 if (sc->sc_txpending != opending) {
727 /*
728 * We enqueued packets. If the transmitter was idle,
729 * reset the txdirty pointer.
730 */
731 if (opending == 0)
732 sc->sc_txdirty = STE_NEXTTX(olasttx);
733
734 /*
735 * Cause a descriptor interrupt to happen on the
736 * last packet we enqueued, and also cause the
737 * DMA engine to wait after is has finished processing
738 * it.
739 */
740 sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
741 sc->sc_txdescs[sc->sc_txlast].tfd_control |=
742 htole32(TFD_TxDMAIndicate);
743 STE_CDTXSYNC(sc, sc->sc_txlast,
744 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
745
746 /*
747 * Link up the new chain of descriptors to the
748 * last.
749 */
750 sc->sc_txdescs[olasttx].tfd_next =
751 htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
752 STE_CDTXSYNC(sc, olasttx,
753 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
754
755 /*
756 * Kick the transmit DMA logic. Note that since we're
757 * using auto-polling, reading the Tx desc pointer will
758 * give it the nudge it needs to get going.
759 */
760 if (bus_space_read_4(sc->sc_st, sc->sc_sh,
761 STE_TxDMAListPtr) == 0) {
762 bus_space_write_4(sc->sc_st, sc->sc_sh,
763 STE_DMACtrl, DC_TxDMAHalt);
764 ste_dmahalt_wait(sc);
765 bus_space_write_4(sc->sc_st, sc->sc_sh,
766 STE_TxDMAListPtr,
767 STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
768 bus_space_write_4(sc->sc_st, sc->sc_sh,
769 STE_DMACtrl, DC_TxDMAResume);
770 }
771
772 /* Set a watchdog timer in case the chip flakes out. */
773 ifp->if_timer = 5;
774 }
775 }
776
777 /*
778 * ste_watchdog: [ifnet interface function]
779 *
780 * Watchdog timer handler.
781 */
782 static void
783 ste_watchdog(struct ifnet *ifp)
784 {
785 struct ste_softc *sc = ifp->if_softc;
786
787 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
788 ifp->if_oerrors++;
789
790 ste_txintr(sc);
791 ste_rxintr(sc);
792 (void) ste_init(ifp);
793
794 /* Try to get more packets going. */
795 ste_start(ifp);
796 }
797
798 /*
799 * ste_ioctl: [ifnet interface function]
800 *
801 * Handle control requests from the operator.
802 */
803 static int
804 ste_ioctl(struct ifnet *ifp, u_long cmd, void *data)
805 {
806 struct ste_softc *sc = ifp->if_softc;
807 struct ifreq *ifr = (struct ifreq *)data;
808 int s, error;
809
810 s = splnet();
811
812 switch (cmd) {
813 case SIOCSIFMEDIA:
814 case SIOCGIFMEDIA:
815 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
816 break;
817
818 default:
819 error = ether_ioctl(ifp, cmd, data);
820 if (error == ENETRESET) {
821 /*
822 * Multicast list has changed; set the hardware filter
823 * accordingly.
824 */
825 if (ifp->if_flags & IFF_RUNNING)
826 ste_set_filter(sc);
827 error = 0;
828 }
829 break;
830 }
831
832 /* Try to get more packets going. */
833 ste_start(ifp);
834
835 splx(s);
836 return (error);
837 }
838
839 /*
840 * ste_intr:
841 *
842 * Interrupt service routine.
843 */
844 static int
845 ste_intr(void *arg)
846 {
847 struct ste_softc *sc = arg;
848 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
849 uint16_t isr;
850 uint8_t txstat;
851 int wantinit;
852
853 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
854 IS_InterruptStatus) == 0)
855 return (0);
856
857 for (wantinit = 0; wantinit == 0;) {
858 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
859 if ((isr & sc->sc_IntEnable) == 0)
860 break;
861
862 /* Receive interrupts. */
863 if (isr & IE_RxDMAComplete)
864 ste_rxintr(sc);
865
866 /* Transmit interrupts. */
867 if (isr & (IE_TxDMAComplete|IE_TxComplete))
868 ste_txintr(sc);
869
870 /* Statistics overflow. */
871 if (isr & IE_UpdateStats)
872 ste_stats_update(sc);
873
874 /* Transmission errors. */
875 if (isr & IE_TxComplete) {
876 for (;;) {
877 txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
878 STE_TxStatus);
879 if ((txstat & TS_TxComplete) == 0)
880 break;
881 if (txstat & TS_TxUnderrun) {
882 sc->sc_txthresh += 32;
883 if (sc->sc_txthresh > 0x1ffc)
884 sc->sc_txthresh = 0x1ffc;
885 printf("%s: transmit underrun, new "
886 "threshold: %d bytes\n",
887 sc->sc_dev.dv_xname,
888 sc->sc_txthresh);
889 ste_reset(sc, AC_TxReset | AC_DMA |
890 AC_FIFO | AC_Network);
891 ste_setthresh(sc);
892 bus_space_write_1(sc->sc_st, sc->sc_sh,
893 STE_TxDMAPollPeriod, 127);
894 ste_txrestart(sc,
895 bus_space_read_1(sc->sc_st,
896 sc->sc_sh, STE_TxFrameId));
897 }
898 if (txstat & TS_TxReleaseError) {
899 printf("%s: Tx FIFO release error\n",
900 sc->sc_dev.dv_xname);
901 wantinit = 1;
902 }
903 if (txstat & TS_MaxCollisions) {
904 printf("%s: excessive collisions\n",
905 sc->sc_dev.dv_xname);
906 wantinit = 1;
907 }
908 if (txstat & TS_TxStatusOverflow) {
909 printf("%s: status overflow\n",
910 sc->sc_dev.dv_xname);
911 wantinit = 1;
912 }
913 bus_space_write_2(sc->sc_st, sc->sc_sh,
914 STE_TxStatus, 0);
915 }
916 }
917
918 /* Host interface errors. */
919 if (isr & IE_HostError) {
920 printf("%s: Host interface error\n",
921 sc->sc_dev.dv_xname);
922 wantinit = 1;
923 }
924 }
925
926 if (wantinit)
927 ste_init(ifp);
928
929 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
930 sc->sc_IntEnable);
931
932 /* Try to get more packets going. */
933 ste_start(ifp);
934
935 return (1);
936 }
937
938 /*
939 * ste_txintr:
940 *
941 * Helper; handle transmit interrupts.
942 */
943 static void
944 ste_txintr(struct ste_softc *sc)
945 {
946 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
947 struct ste_descsoft *ds;
948 uint32_t control;
949 int i;
950
951 ifp->if_flags &= ~IFF_OACTIVE;
952
953 /*
954 * Go through our Tx list and free mbufs for those
955 * frames which have been transmitted.
956 */
957 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
958 i = STE_NEXTTX(i), sc->sc_txpending--) {
959 ds = &sc->sc_txsoft[i];
960
961 STE_CDTXSYNC(sc, i,
962 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
963
964 control = le32toh(sc->sc_txdescs[i].tfd_control);
965 if ((control & TFD_TxDMAComplete) == 0)
966 break;
967
968 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
969 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
970 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
971 m_freem(ds->ds_mbuf);
972 ds->ds_mbuf = NULL;
973 }
974
975 /* Update the dirty transmit buffer pointer. */
976 sc->sc_txdirty = i;
977
978 /*
979 * If there are no more pending transmissions, cancel the watchdog
980 * timer.
981 */
982 if (sc->sc_txpending == 0)
983 ifp->if_timer = 0;
984 }
985
986 /*
987 * ste_rxintr:
988 *
989 * Helper; handle receive interrupts.
990 */
991 static void
992 ste_rxintr(struct ste_softc *sc)
993 {
994 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
995 struct ste_descsoft *ds;
996 struct mbuf *m;
997 uint32_t status;
998 int i, len;
999
1000 for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
1001 ds = &sc->sc_rxsoft[i];
1002
1003 STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1004
1005 status = le32toh(sc->sc_rxdescs[i].rfd_status);
1006
1007 if ((status & RFD_RxDMAComplete) == 0)
1008 break;
1009
1010 /*
1011 * If the packet had an error, simply recycle the
1012 * buffer. Note, we count the error later in the
1013 * periodic stats update.
1014 */
1015 if (status & RFD_RxFrameError) {
1016 STE_INIT_RXDESC(sc, i);
1017 continue;
1018 }
1019
1020 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1021 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1022
1023 /*
1024 * No errors; receive the packet. Note, we have
1025 * configured the chip to not include the CRC at
1026 * the end of the packet.
1027 */
1028 len = RFD_RxDMAFrameLen(status);
1029
1030 /*
1031 * If the packet is small enough to fit in a
1032 * single header mbuf, allocate one and copy
1033 * the data into it. This greatly reduces
1034 * memory consumption when we receive lots
1035 * of small packets.
1036 *
1037 * Otherwise, we add a new buffer to the receive
1038 * chain. If this fails, we drop the packet and
1039 * recycle the old buffer.
1040 */
1041 if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
1042 MGETHDR(m, M_DONTWAIT, MT_DATA);
1043 if (m == NULL)
1044 goto dropit;
1045 m->m_data += 2;
1046 memcpy(mtod(m, void *),
1047 mtod(ds->ds_mbuf, void *), len);
1048 STE_INIT_RXDESC(sc, i);
1049 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1050 ds->ds_dmamap->dm_mapsize,
1051 BUS_DMASYNC_PREREAD);
1052 } else {
1053 m = ds->ds_mbuf;
1054 if (ste_add_rxbuf(sc, i) != 0) {
1055 dropit:
1056 ifp->if_ierrors++;
1057 STE_INIT_RXDESC(sc, i);
1058 bus_dmamap_sync(sc->sc_dmat,
1059 ds->ds_dmamap, 0,
1060 ds->ds_dmamap->dm_mapsize,
1061 BUS_DMASYNC_PREREAD);
1062 continue;
1063 }
1064 }
1065
1066 m->m_pkthdr.rcvif = ifp;
1067 m->m_pkthdr.len = m->m_len = len;
1068
1069 #if NBPFILTER > 0
1070 /*
1071 * Pass this up to any BPF listeners, but only
1072 * pass if up the stack if it's for us.
1073 */
1074 if (ifp->if_bpf)
1075 bpf_mtap(ifp->if_bpf, m);
1076 #endif /* NBPFILTER > 0 */
1077
1078 /* Pass it on. */
1079 (*ifp->if_input)(ifp, m);
1080 }
1081
1082 /* Update the receive pointer. */
1083 sc->sc_rxptr = i;
1084 }
1085
1086 /*
1087 * ste_tick:
1088 *
1089 * One second timer, used to tick the MII.
1090 */
1091 static void
1092 ste_tick(void *arg)
1093 {
1094 struct ste_softc *sc = arg;
1095 int s;
1096
1097 s = splnet();
1098 mii_tick(&sc->sc_mii);
1099 ste_stats_update(sc);
1100 splx(s);
1101
1102 callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1103 }
1104
1105 /*
1106 * ste_stats_update:
1107 *
1108 * Read the ST-201 statistics counters.
1109 */
1110 static void
1111 ste_stats_update(struct ste_softc *sc)
1112 {
1113 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1114 bus_space_tag_t st = sc->sc_st;
1115 bus_space_handle_t sh = sc->sc_sh;
1116
1117 (void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
1118 (void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
1119
1120 (void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
1121 (void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
1122
1123 ifp->if_opackets +=
1124 (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
1125 ifp->if_ipackets +=
1126 (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
1127
1128 ifp->if_collisions +=
1129 (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
1130 (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
1131 (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
1132
1133 (void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
1134
1135 ifp->if_ierrors +=
1136 (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
1137
1138 ifp->if_oerrors +=
1139 (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
1140 (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
1141 bus_space_read_1(st, sh, STE_CarrierSenseErrors);
1142
1143 (void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
1144 (void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
1145 (void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
1146 (void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
1147 }
1148
1149 /*
1150 * ste_reset:
1151 *
1152 * Perform a soft reset on the ST-201.
1153 */
1154 static void
1155 ste_reset(struct ste_softc *sc, u_int32_t rstbits)
1156 {
1157 uint32_t ac;
1158 int i;
1159
1160 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
1161
1162 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
1163
1164 delay(50000);
1165
1166 for (i = 0; i < STE_TIMEOUT; i++) {
1167 delay(1000);
1168 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
1169 AC_ResetBusy) == 0)
1170 break;
1171 }
1172
1173 if (i == STE_TIMEOUT)
1174 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1175
1176 delay(1000);
1177 }
1178
1179 /*
1180 * ste_setthresh:
1181 *
1182 * set the various transmit threshold registers
1183 */
1184 static void
1185 ste_setthresh(struct ste_softc *sc)
1186 {
1187 /* set the TX threhold */
1188 bus_space_write_2(sc->sc_st, sc->sc_sh,
1189 STE_TxStartThresh, sc->sc_txthresh);
1190 /* Urgent threshold: set to sc_txthresh / 2 */
1191 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
1192 sc->sc_txthresh >> 6);
1193 /* Burst threshold: use default value (256 bytes) */
1194 }
1195
1196 /*
1197 * restart TX at the given frame ID in the transmitter ring
1198 */
1199 static void
1200 ste_txrestart(struct ste_softc *sc, u_int8_t id)
1201 {
1202 u_int32_t control;
1203
1204 STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1205 control = le32toh(sc->sc_txdescs[id].tfd_control);
1206 control &= ~TFD_TxDMAComplete;
1207 sc->sc_txdescs[id].tfd_control = htole32(control);
1208 STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1209
1210 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
1211 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
1212 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
1213 ste_dmahalt_wait(sc);
1214 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
1215 STE_CDTXADDR(sc, id));
1216 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
1217 }
1218
1219 /*
1220 * ste_init: [ ifnet interface function ]
1221 *
1222 * Initialize the interface. Must be called at splnet().
1223 */
1224 static int
1225 ste_init(struct ifnet *ifp)
1226 {
1227 struct ste_softc *sc = ifp->if_softc;
1228 bus_space_tag_t st = sc->sc_st;
1229 bus_space_handle_t sh = sc->sc_sh;
1230 struct ste_descsoft *ds;
1231 int i, error = 0;
1232
1233 /*
1234 * Cancel any pending I/O.
1235 */
1236 ste_stop(ifp, 0);
1237
1238 /*
1239 * Reset the chip to a known state.
1240 */
1241 ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
1242 AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
1243
1244 /*
1245 * Initialize the transmit descriptor ring.
1246 */
1247 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1248 sc->sc_txpending = 0;
1249 sc->sc_txdirty = 0;
1250 sc->sc_txlast = STE_NTXDESC - 1;
1251
1252 /*
1253 * Initialize the receive descriptor and receive job
1254 * descriptor rings.
1255 */
1256 for (i = 0; i < STE_NRXDESC; i++) {
1257 ds = &sc->sc_rxsoft[i];
1258 if (ds->ds_mbuf == NULL) {
1259 if ((error = ste_add_rxbuf(sc, i)) != 0) {
1260 printf("%s: unable to allocate or map rx "
1261 "buffer %d, error = %d\n",
1262 sc->sc_dev.dv_xname, i, error);
1263 /*
1264 * XXX Should attempt to run with fewer receive
1265 * XXX buffers instead of just failing.
1266 */
1267 ste_rxdrain(sc);
1268 goto out;
1269 }
1270 } else
1271 STE_INIT_RXDESC(sc, i);
1272 }
1273 sc->sc_rxptr = 0;
1274
1275 /* Set the station address. */
1276 for (i = 0; i < ETHER_ADDR_LEN; i++)
1277 bus_space_write_1(st, sh, STE_StationAddress0 + 1,
1278 CLLADDR(ifp->if_sadl)[i]);
1279
1280 /* Set up the receive filter. */
1281 ste_set_filter(sc);
1282
1283 /*
1284 * Give the receive ring to the chip.
1285 */
1286 bus_space_write_4(st, sh, STE_RxDMAListPtr,
1287 STE_CDRXADDR(sc, sc->sc_rxptr));
1288
1289 /*
1290 * We defer giving the transmit ring to the chip until we
1291 * transmit the first packet.
1292 */
1293
1294 /*
1295 * Initialize the Tx auto-poll period. It's OK to make this number
1296 * large (127 is the max) -- we explicitly kick the transmit engine
1297 * when there's actually a packet. We are using auto-polling only
1298 * to make the interface to the transmit engine not suck.
1299 */
1300 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
1301
1302 /* ..and the Rx auto-poll period. */
1303 bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
1304
1305 /* Initialize the Tx start threshold. */
1306 ste_setthresh(sc);
1307
1308 /* Set the FIFO release threshold to 512 bytes. */
1309 bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
1310
1311 /* Set maximum packet size for VLAN. */
1312 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1313 bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN + 4);
1314 else
1315 bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN);
1316
1317 /*
1318 * Initialize the interrupt mask.
1319 */
1320 sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1321 IE_TxDMAComplete | IE_RxDMAComplete;
1322
1323 bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
1324 bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
1325
1326 /*
1327 * Start the receive DMA engine.
1328 */
1329 bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
1330
1331 /*
1332 * Initialize MacCtrl0 -- do it before setting the media,
1333 * as setting the media will actually program the register.
1334 */
1335 sc->sc_MacCtrl0 = MC0_IFSSelect(0);
1336 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1337 sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
1338
1339 /*
1340 * Set the current media.
1341 */
1342 mii_mediachg(&sc->sc_mii);
1343
1344 /*
1345 * Start the MAC.
1346 */
1347 bus_space_write_2(st, sh, STE_MacCtrl1,
1348 MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
1349
1350 /*
1351 * Start the one second MII clock.
1352 */
1353 callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1354
1355 /*
1356 * ...all done!
1357 */
1358 ifp->if_flags |= IFF_RUNNING;
1359 ifp->if_flags &= ~IFF_OACTIVE;
1360
1361 out:
1362 if (error)
1363 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1364 return (error);
1365 }
1366
1367 /*
1368 * ste_drain:
1369 *
1370 * Drain the receive queue.
1371 */
1372 static void
1373 ste_rxdrain(struct ste_softc *sc)
1374 {
1375 struct ste_descsoft *ds;
1376 int i;
1377
1378 for (i = 0; i < STE_NRXDESC; i++) {
1379 ds = &sc->sc_rxsoft[i];
1380 if (ds->ds_mbuf != NULL) {
1381 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1382 m_freem(ds->ds_mbuf);
1383 ds->ds_mbuf = NULL;
1384 }
1385 }
1386 }
1387
1388 /*
1389 * ste_stop: [ ifnet interface function ]
1390 *
1391 * Stop transmission on the interface.
1392 */
1393 static void
1394 ste_stop(struct ifnet *ifp, int disable)
1395 {
1396 struct ste_softc *sc = ifp->if_softc;
1397 struct ste_descsoft *ds;
1398 int i;
1399
1400 /*
1401 * Stop the one second clock.
1402 */
1403 callout_stop(&sc->sc_tick_ch);
1404
1405 /* Down the MII. */
1406 mii_down(&sc->sc_mii);
1407
1408 /*
1409 * Disable interrupts.
1410 */
1411 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
1412
1413 /*
1414 * Stop receiver, transmitter, and stats update.
1415 */
1416 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
1417 MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
1418
1419 /*
1420 * Stop the transmit and receive DMA.
1421 */
1422 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
1423 DC_RxDMAHalt | DC_TxDMAHalt);
1424 ste_dmahalt_wait(sc);
1425
1426 /*
1427 * Release any queued transmit buffers.
1428 */
1429 for (i = 0; i < STE_NTXDESC; i++) {
1430 ds = &sc->sc_txsoft[i];
1431 if (ds->ds_mbuf != NULL) {
1432 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1433 m_freem(ds->ds_mbuf);
1434 ds->ds_mbuf = NULL;
1435 }
1436 }
1437
1438 if (disable)
1439 ste_rxdrain(sc);
1440
1441 /*
1442 * Mark the interface down and cancel the watchdog timer.
1443 */
1444 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1445 ifp->if_timer = 0;
1446 }
1447
1448 static int
1449 ste_eeprom_wait(struct ste_softc *sc)
1450 {
1451 int i;
1452
1453 for (i = 0; i < STE_TIMEOUT; i++) {
1454 delay(1000);
1455 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
1456 EC_EepromBusy) == 0)
1457 return (0);
1458 }
1459 return (1);
1460 }
1461
1462 /*
1463 * ste_read_eeprom:
1464 *
1465 * Read data from the serial EEPROM.
1466 */
1467 static void
1468 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
1469 {
1470
1471 if (ste_eeprom_wait(sc))
1472 printf("%s: EEPROM failed to come ready\n",
1473 sc->sc_dev.dv_xname);
1474
1475 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
1476 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
1477 if (ste_eeprom_wait(sc))
1478 printf("%s: EEPROM read timed out\n",
1479 sc->sc_dev.dv_xname);
1480 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
1481 }
1482
1483 /*
1484 * ste_add_rxbuf:
1485 *
1486 * Add a receive buffer to the indicated descriptor.
1487 */
1488 static int
1489 ste_add_rxbuf(struct ste_softc *sc, int idx)
1490 {
1491 struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
1492 struct mbuf *m;
1493 int error;
1494
1495 MGETHDR(m, M_DONTWAIT, MT_DATA);
1496 if (m == NULL)
1497 return (ENOBUFS);
1498
1499 MCLGET(m, M_DONTWAIT);
1500 if ((m->m_flags & M_EXT) == 0) {
1501 m_freem(m);
1502 return (ENOBUFS);
1503 }
1504
1505 if (ds->ds_mbuf != NULL)
1506 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1507
1508 ds->ds_mbuf = m;
1509
1510 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1511 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1512 BUS_DMA_READ|BUS_DMA_NOWAIT);
1513 if (error) {
1514 printf("%s: can't load rx DMA map %d, error = %d\n",
1515 sc->sc_dev.dv_xname, idx, error);
1516 panic("ste_add_rxbuf"); /* XXX */
1517 }
1518
1519 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1520 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1521
1522 STE_INIT_RXDESC(sc, idx);
1523
1524 return (0);
1525 }
1526
1527 /*
1528 * ste_set_filter:
1529 *
1530 * Set up the receive filter.
1531 */
1532 static void
1533 ste_set_filter(struct ste_softc *sc)
1534 {
1535 struct ethercom *ec = &sc->sc_ethercom;
1536 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1537 struct ether_multi *enm;
1538 struct ether_multistep step;
1539 uint32_t crc;
1540 uint16_t mchash[4];
1541
1542 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1543 if (ifp->if_flags & IFF_BROADCAST)
1544 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1545
1546 if (ifp->if_flags & IFF_PROMISC) {
1547 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1548 goto allmulti;
1549 }
1550
1551 /*
1552 * Set up the multicast address filter by passing all multicast
1553 * addresses through a CRC generator, and then using the low-order
1554 * 6 bits as an index into the 64 bit multicast hash table. The
1555 * high order bits select the register, while the rest of the bits
1556 * select the bit within the register.
1557 */
1558
1559 memset(mchash, 0, sizeof(mchash));
1560
1561 ETHER_FIRST_MULTI(step, ec, enm);
1562 if (enm == NULL)
1563 goto done;
1564
1565 while (enm != NULL) {
1566 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1567 /*
1568 * We must listen to a range of multicast addresses.
1569 * For now, just accept all multicasts, rather than
1570 * trying to set only those filter bits needed to match
1571 * the range. (At this time, the only use of address
1572 * ranges is for IP multicast routing, for which the
1573 * range is big enough to require all bits set.)
1574 */
1575 goto allmulti;
1576 }
1577
1578 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1579
1580 /* Just want the 6 least significant bits. */
1581 crc &= 0x3f;
1582
1583 /* Set the corresponding bit in the hash table. */
1584 mchash[crc >> 4] |= 1 << (crc & 0xf);
1585
1586 ETHER_NEXT_MULTI(step, enm);
1587 }
1588
1589 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1590
1591 ifp->if_flags &= ~IFF_ALLMULTI;
1592 goto done;
1593
1594 allmulti:
1595 ifp->if_flags |= IFF_ALLMULTI;
1596 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1597
1598 done:
1599 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1600 /*
1601 * Program the multicast hash table.
1602 */
1603 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
1604 mchash[0]);
1605 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
1606 mchash[1]);
1607 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
1608 mchash[2]);
1609 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
1610 mchash[3]);
1611 }
1612
1613 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
1614 sc->sc_ReceiveMode);
1615 }
1616
1617 /*
1618 * ste_mii_readreg: [mii interface function]
1619 *
1620 * Read a PHY register on the MII of the ST-201.
1621 */
1622 static int
1623 ste_mii_readreg(struct device *self, int phy, int reg)
1624 {
1625
1626 return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
1627 }
1628
1629 /*
1630 * ste_mii_writereg: [mii interface function]
1631 *
1632 * Write a PHY register on the MII of the ST-201.
1633 */
1634 static void
1635 ste_mii_writereg(struct device *self, int phy, int reg, int val)
1636 {
1637
1638 mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
1639 }
1640
1641 /*
1642 * ste_mii_statchg: [mii interface function]
1643 *
1644 * Callback from MII layer when media changes.
1645 */
1646 static void
1647 ste_mii_statchg(struct device *self)
1648 {
1649 struct ste_softc *sc = (struct ste_softc *) self;
1650
1651 if (sc->sc_mii.mii_media_active & IFM_FDX)
1652 sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
1653 else
1654 sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
1655
1656 /* XXX 802.1x flow-control? */
1657
1658 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
1659 }
1660
1661 /*
1662 * ste_mii_bitbang_read: [mii bit-bang interface function]
1663 *
1664 * Read the MII serial port for the MII bit-bang module.
1665 */
1666 static uint32_t
1667 ste_mii_bitbang_read(struct device *self)
1668 {
1669 struct ste_softc *sc = (void *) self;
1670
1671 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
1672 }
1673
1674 /*
1675 * ste_mii_bitbang_write: [mii big-bang interface function]
1676 *
1677 * Write the MII serial port for the MII bit-bang module.
1678 */
1679 static void
1680 ste_mii_bitbang_write(struct device *self, uint32_t val)
1681 {
1682 struct ste_softc *sc = (void *) self;
1683
1684 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
1685 }
1686
1687 /*
1688 * ste_mediastatus: [ifmedia interface function]
1689 *
1690 * Get the current interface media status.
1691 */
1692 static void
1693 ste_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1694 {
1695 struct ste_softc *sc = ifp->if_softc;
1696
1697 mii_pollstat(&sc->sc_mii);
1698 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1699 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1700 }
1701
1702 /*
1703 * ste_mediachange: [ifmedia interface function]
1704 *
1705 * Set hardware to newly-selected media.
1706 */
1707 static int
1708 ste_mediachange(struct ifnet *ifp)
1709 {
1710 struct ste_softc *sc = ifp->if_softc;
1711
1712 if (ifp->if_flags & IFF_UP)
1713 mii_mediachg(&sc->sc_mii);
1714 return (0);
1715 }
1716