if_ste.c revision 1.34 1 /* $NetBSD: if_ste.c,v 1.34 2008/03/21 07:47:43 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the Sundance Tech. ST-201 10/100
41 * Ethernet controller.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.34 2008/03/21 07:47:43 dyoung Exp $");
46
47 #include "bpfilter.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/socket.h>
56 #include <sys/ioctl.h>
57 #include <sys/errno.h>
58 #include <sys/device.h>
59 #include <sys/queue.h>
60
61 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
62
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_ether.h>
67
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71
72 #include <sys/bus.h>
73 #include <sys/intr.h>
74
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 #include <dev/mii/mii_bitbang.h>
78
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 #include <dev/pci/pcidevs.h>
82
83 #include <dev/pci/if_stereg.h>
84
85 /*
86 * Transmit descriptor list size.
87 */
88 #define STE_NTXDESC 256
89 #define STE_NTXDESC_MASK (STE_NTXDESC - 1)
90 #define STE_NEXTTX(x) (((x) + 1) & STE_NTXDESC_MASK)
91
92 /*
93 * Receive descriptor list size.
94 */
95 #define STE_NRXDESC 128
96 #define STE_NRXDESC_MASK (STE_NRXDESC - 1)
97 #define STE_NEXTRX(x) (((x) + 1) & STE_NRXDESC_MASK)
98
99 /*
100 * Control structures are DMA'd to the ST-201 chip. We allocate them in
101 * a single clump that maps to a single DMA segment to make several things
102 * easier.
103 */
104 struct ste_control_data {
105 /*
106 * The transmit descriptors.
107 */
108 struct ste_tfd scd_txdescs[STE_NTXDESC];
109
110 /*
111 * The receive descriptors.
112 */
113 struct ste_rfd scd_rxdescs[STE_NRXDESC];
114 };
115
116 #define STE_CDOFF(x) offsetof(struct ste_control_data, x)
117 #define STE_CDTXOFF(x) STE_CDOFF(scd_txdescs[(x)])
118 #define STE_CDRXOFF(x) STE_CDOFF(scd_rxdescs[(x)])
119
120 /*
121 * Software state for transmit and receive jobs.
122 */
123 struct ste_descsoft {
124 struct mbuf *ds_mbuf; /* head of our mbuf chain */
125 bus_dmamap_t ds_dmamap; /* our DMA map */
126 };
127
128 /*
129 * Software state per device.
130 */
131 struct ste_softc {
132 struct device sc_dev; /* generic device information */
133 bus_space_tag_t sc_st; /* bus space tag */
134 bus_space_handle_t sc_sh; /* bus space handle */
135 bus_dma_tag_t sc_dmat; /* bus DMA tag */
136 struct ethercom sc_ethercom; /* ethernet common data */
137 void *sc_sdhook; /* shutdown hook */
138
139 void *sc_ih; /* interrupt cookie */
140
141 struct mii_data sc_mii; /* MII/media information */
142
143 callout_t sc_tick_ch; /* tick callout */
144
145 bus_dmamap_t sc_cddmamap; /* control data DMA map */
146 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
147
148 /*
149 * Software state for transmit and receive descriptors.
150 */
151 struct ste_descsoft sc_txsoft[STE_NTXDESC];
152 struct ste_descsoft sc_rxsoft[STE_NRXDESC];
153
154 /*
155 * Control data structures.
156 */
157 struct ste_control_data *sc_control_data;
158 #define sc_txdescs sc_control_data->scd_txdescs
159 #define sc_rxdescs sc_control_data->scd_rxdescs
160
161 int sc_txpending; /* number of Tx requests pending */
162 int sc_txdirty; /* first dirty Tx descriptor */
163 int sc_txlast; /* last used Tx descriptor */
164
165 int sc_rxptr; /* next ready Rx descriptor/descsoft */
166
167 int sc_txthresh; /* Tx threshold */
168 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
169 uint16_t sc_IntEnable; /* prototype IntEnable register */
170 uint16_t sc_MacCtrl0; /* prototype MacCtrl0 register */
171 uint8_t sc_ReceiveMode; /* prototype ReceiveMode register */
172 };
173
174 #define STE_CDTXADDR(sc, x) ((sc)->sc_cddma + STE_CDTXOFF((x)))
175 #define STE_CDRXADDR(sc, x) ((sc)->sc_cddma + STE_CDRXOFF((x)))
176
177 #define STE_CDTXSYNC(sc, x, ops) \
178 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
179 STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
180
181 #define STE_CDRXSYNC(sc, x, ops) \
182 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
183 STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
184
185 #define STE_INIT_RXDESC(sc, x) \
186 do { \
187 struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
188 struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
189 struct mbuf *__m = __ds->ds_mbuf; \
190 \
191 /* \
192 * Note: We scoot the packet forward 2 bytes in the buffer \
193 * so that the payload after the Ethernet header is aligned \
194 * to a 4-byte boundary. \
195 */ \
196 __m->m_data = __m->m_ext.ext_buf + 2; \
197 __rfd->rfd_frag.frag_addr = \
198 htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2); \
199 __rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST); \
200 __rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x)))); \
201 __rfd->rfd_status = 0; \
202 STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
203 } while (/*CONSTCOND*/0)
204
205 #define STE_TIMEOUT 1000
206
207 static void ste_start(struct ifnet *);
208 static void ste_watchdog(struct ifnet *);
209 static int ste_ioctl(struct ifnet *, u_long, void *);
210 static int ste_init(struct ifnet *);
211 static void ste_stop(struct ifnet *, int);
212
213 static void ste_shutdown(void *);
214
215 static void ste_reset(struct ste_softc *, u_int32_t);
216 static void ste_setthresh(struct ste_softc *);
217 static void ste_txrestart(struct ste_softc *, u_int8_t);
218 static void ste_rxdrain(struct ste_softc *);
219 static int ste_add_rxbuf(struct ste_softc *, int);
220 static void ste_read_eeprom(struct ste_softc *, int, uint16_t *);
221 static void ste_tick(void *);
222
223 static void ste_stats_update(struct ste_softc *);
224
225 static void ste_set_filter(struct ste_softc *);
226
227 static int ste_intr(void *);
228 static void ste_txintr(struct ste_softc *);
229 static void ste_rxintr(struct ste_softc *);
230
231 static int ste_mii_readreg(device_t, int, int);
232 static void ste_mii_writereg(device_t, int, int, int);
233 static void ste_mii_statchg(device_t);
234
235 static int ste_match(device_t, struct cfdata *, void *);
236 static void ste_attach(device_t, device_t, void *);
237
238 int ste_copy_small = 0;
239
240 CFATTACH_DECL(ste, sizeof(struct ste_softc),
241 ste_match, ste_attach, NULL, NULL);
242
243 static uint32_t ste_mii_bitbang_read(device_t);
244 static void ste_mii_bitbang_write(device_t, uint32_t);
245
246 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
247 ste_mii_bitbang_read,
248 ste_mii_bitbang_write,
249 {
250 PC_MgmtData, /* MII_BIT_MDO */
251 PC_MgmtData, /* MII_BIT_MDI */
252 PC_MgmtClk, /* MII_BIT_MDC */
253 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
254 0, /* MII_BIT_DIR_PHY_HOST */
255 }
256 };
257
258 /*
259 * Devices supported by this driver.
260 */
261 static const struct ste_product {
262 pci_vendor_id_t ste_vendor;
263 pci_product_id_t ste_product;
264 const char *ste_name;
265 } ste_products[] = {
266 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_IP100A,
267 "IC Plus Corp. IP00A 10/100 Fast Ethernet Adapter" },
268
269 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST201,
270 "Sundance ST-201 10/100 Ethernet" },
271
272 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL1002,
273 "D-Link DL-1002 10/100 Ethernet" },
274
275 { 0, 0,
276 NULL },
277 };
278
279 static const struct ste_product *
280 ste_lookup(const struct pci_attach_args *pa)
281 {
282 const struct ste_product *sp;
283
284 for (sp = ste_products; sp->ste_name != NULL; sp++) {
285 if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
286 PCI_PRODUCT(pa->pa_id) == sp->ste_product)
287 return (sp);
288 }
289 return (NULL);
290 }
291
292 static int
293 ste_match(device_t parent, struct cfdata *cf, void *aux)
294 {
295 struct pci_attach_args *pa = aux;
296
297 if (ste_lookup(pa) != NULL)
298 return (1);
299
300 return (0);
301 }
302
303 static void
304 ste_attach(device_t parent, device_t self, void *aux)
305 {
306 struct ste_softc *sc = device_private(self);
307 struct pci_attach_args *pa = aux;
308 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
309 pci_chipset_tag_t pc = pa->pa_pc;
310 pci_intr_handle_t ih;
311 const char *intrstr = NULL;
312 bus_space_tag_t iot, memt;
313 bus_space_handle_t ioh, memh;
314 bus_dma_segment_t seg;
315 int ioh_valid, memh_valid;
316 int i, rseg, error;
317 const struct ste_product *sp;
318 uint8_t enaddr[ETHER_ADDR_LEN];
319 uint16_t myea[ETHER_ADDR_LEN / 2];
320
321 callout_init(&sc->sc_tick_ch, 0);
322
323 sp = ste_lookup(pa);
324 if (sp == NULL) {
325 printf("\n");
326 panic("ste_attach: impossible");
327 }
328
329 printf(": %s\n", sp->ste_name);
330
331 /*
332 * Map the device.
333 */
334 ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
335 PCI_MAPREG_TYPE_IO, 0,
336 &iot, &ioh, NULL, NULL) == 0);
337 memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
338 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
339 &memt, &memh, NULL, NULL) == 0);
340
341 if (memh_valid) {
342 sc->sc_st = memt;
343 sc->sc_sh = memh;
344 } else if (ioh_valid) {
345 sc->sc_st = iot;
346 sc->sc_sh = ioh;
347 } else {
348 printf("%s: unable to map device registers\n",
349 sc->sc_dev.dv_xname);
350 return;
351 }
352
353 sc->sc_dmat = pa->pa_dmat;
354
355 /* Enable bus mastering. */
356 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
357 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
358 PCI_COMMAND_MASTER_ENABLE);
359
360 /* power up chip */
361 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
362 NULL)) && error != EOPNOTSUPP) {
363 aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
364 error);
365 return;
366 }
367
368 /*
369 * Map and establish our interrupt.
370 */
371 if (pci_intr_map(pa, &ih)) {
372 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
373 return;
374 }
375 intrstr = pci_intr_string(pc, ih);
376 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
377 if (sc->sc_ih == NULL) {
378 printf("%s: unable to establish interrupt",
379 sc->sc_dev.dv_xname);
380 if (intrstr != NULL)
381 printf(" at %s", intrstr);
382 printf("\n");
383 return;
384 }
385 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
386
387 /*
388 * Allocate the control data structures, and create and load the
389 * DMA map for it.
390 */
391 if ((error = bus_dmamem_alloc(sc->sc_dmat,
392 sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
393 0)) != 0) {
394 printf("%s: unable to allocate control data, error = %d\n",
395 sc->sc_dev.dv_xname, error);
396 goto fail_0;
397 }
398
399 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
400 sizeof(struct ste_control_data), (void **)&sc->sc_control_data,
401 BUS_DMA_COHERENT)) != 0) {
402 printf("%s: unable to map control data, error = %d\n",
403 sc->sc_dev.dv_xname, error);
404 goto fail_1;
405 }
406
407 if ((error = bus_dmamap_create(sc->sc_dmat,
408 sizeof(struct ste_control_data), 1,
409 sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
410 printf("%s: unable to create control data DMA map, "
411 "error = %d\n", sc->sc_dev.dv_xname, error);
412 goto fail_2;
413 }
414
415 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
416 sc->sc_control_data, sizeof(struct ste_control_data), NULL,
417 0)) != 0) {
418 printf("%s: unable to load control data DMA map, error = %d\n",
419 sc->sc_dev.dv_xname, error);
420 goto fail_3;
421 }
422
423 /*
424 * Create the transmit buffer DMA maps.
425 */
426 for (i = 0; i < STE_NTXDESC; i++) {
427 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
428 STE_NTXFRAGS, MCLBYTES, 0, 0,
429 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
430 printf("%s: unable to create tx DMA map %d, "
431 "error = %d\n", sc->sc_dev.dv_xname, i, error);
432 goto fail_4;
433 }
434 }
435
436 /*
437 * Create the receive buffer DMA maps.
438 */
439 for (i = 0; i < STE_NRXDESC; i++) {
440 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
441 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
442 printf("%s: unable to create rx DMA map %d, "
443 "error = %d\n", sc->sc_dev.dv_xname, i, error);
444 goto fail_5;
445 }
446 sc->sc_rxsoft[i].ds_mbuf = NULL;
447 }
448
449 /*
450 * Reset the chip to a known state.
451 */
452 ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
453 AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
454
455 /*
456 * Read the Ethernet address from the EEPROM.
457 */
458 for (i = 0; i < 3; i++) {
459 ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
460 myea[i] = le16toh(myea[i]);
461 }
462 memcpy(enaddr, myea, sizeof(enaddr));
463
464 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
465 ether_sprintf(enaddr));
466
467 /*
468 * Initialize our media structures and probe the MII.
469 */
470 sc->sc_mii.mii_ifp = ifp;
471 sc->sc_mii.mii_readreg = ste_mii_readreg;
472 sc->sc_mii.mii_writereg = ste_mii_writereg;
473 sc->sc_mii.mii_statchg = ste_mii_statchg;
474 sc->sc_ethercom.ec_mii = &sc->sc_mii;
475 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
476 ether_mediastatus);
477 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
478 MII_OFFSET_ANY, 0);
479 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
480 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
481 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
482 } else
483 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
484
485 ifp = &sc->sc_ethercom.ec_if;
486 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
487 ifp->if_softc = sc;
488 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
489 ifp->if_ioctl = ste_ioctl;
490 ifp->if_start = ste_start;
491 ifp->if_watchdog = ste_watchdog;
492 ifp->if_init = ste_init;
493 ifp->if_stop = ste_stop;
494 IFQ_SET_READY(&ifp->if_snd);
495
496 /*
497 * Default the transmit threshold to 128 bytes.
498 */
499 sc->sc_txthresh = 128;
500
501 /*
502 * Disable MWI if the PCI layer tells us to.
503 */
504 sc->sc_DMACtrl = 0;
505 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
506 sc->sc_DMACtrl |= DC_MWIDisable;
507
508 /*
509 * We can support 802.1Q VLAN-sized frames.
510 */
511 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
512
513 /*
514 * Attach the interface.
515 */
516 if_attach(ifp);
517 ether_ifattach(ifp, enaddr);
518
519 /*
520 * Make sure the interface is shutdown during reboot.
521 */
522 sc->sc_sdhook = shutdownhook_establish(ste_shutdown, sc);
523 if (sc->sc_sdhook == NULL)
524 printf("%s: WARNING: unable to establish shutdown hook\n",
525 sc->sc_dev.dv_xname);
526 return;
527
528 /*
529 * Free any resources we've allocated during the failed attach
530 * attempt. Do this in reverse order and fall through.
531 */
532 fail_5:
533 for (i = 0; i < STE_NRXDESC; i++) {
534 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
535 bus_dmamap_destroy(sc->sc_dmat,
536 sc->sc_rxsoft[i].ds_dmamap);
537 }
538 fail_4:
539 for (i = 0; i < STE_NTXDESC; i++) {
540 if (sc->sc_txsoft[i].ds_dmamap != NULL)
541 bus_dmamap_destroy(sc->sc_dmat,
542 sc->sc_txsoft[i].ds_dmamap);
543 }
544 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
545 fail_3:
546 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
547 fail_2:
548 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
549 sizeof(struct ste_control_data));
550 fail_1:
551 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
552 fail_0:
553 return;
554 }
555
556 /*
557 * ste_shutdown:
558 *
559 * Make sure the interface is stopped at reboot time.
560 */
561 static void
562 ste_shutdown(void *arg)
563 {
564 struct ste_softc *sc = arg;
565
566 ste_stop(&sc->sc_ethercom.ec_if, 1);
567 }
568
569 static void
570 ste_dmahalt_wait(struct ste_softc *sc)
571 {
572 int i;
573
574 for (i = 0; i < STE_TIMEOUT; i++) {
575 delay(2);
576 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
577 DC_DMAHaltBusy) == 0)
578 break;
579 }
580
581 if (i == STE_TIMEOUT)
582 printf("%s: DMA halt timed out\n", sc->sc_dev.dv_xname);
583 }
584
585 /*
586 * ste_start: [ifnet interface function]
587 *
588 * Start packet transmission on the interface.
589 */
590 static void
591 ste_start(struct ifnet *ifp)
592 {
593 struct ste_softc *sc = ifp->if_softc;
594 struct mbuf *m0, *m;
595 struct ste_descsoft *ds;
596 struct ste_tfd *tfd;
597 bus_dmamap_t dmamap;
598 int error, olasttx, nexttx, opending, seg, totlen;
599
600 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
601 return;
602
603 /*
604 * Remember the previous number of pending transmissions
605 * and the current last descriptor in the list.
606 */
607 opending = sc->sc_txpending;
608 olasttx = sc->sc_txlast;
609
610 /*
611 * Loop through the send queue, setting up transmit descriptors
612 * until we drain the queue, or use up all available transmit
613 * descriptors.
614 */
615 while (sc->sc_txpending < STE_NTXDESC) {
616 /*
617 * Grab a packet off the queue.
618 */
619 IFQ_POLL(&ifp->if_snd, m0);
620 if (m0 == NULL)
621 break;
622 m = NULL;
623
624 /*
625 * Get the last and next available transmit descriptor.
626 */
627 nexttx = STE_NEXTTX(sc->sc_txlast);
628 tfd = &sc->sc_txdescs[nexttx];
629 ds = &sc->sc_txsoft[nexttx];
630
631 dmamap = ds->ds_dmamap;
632
633 /*
634 * Load the DMA map. If this fails, the packet either
635 * didn't fit in the alloted number of segments, or we
636 * were short on resources. In this case, we'll copy
637 * and try again.
638 */
639 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
640 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
641 MGETHDR(m, M_DONTWAIT, MT_DATA);
642 if (m == NULL) {
643 printf("%s: unable to allocate Tx mbuf\n",
644 sc->sc_dev.dv_xname);
645 break;
646 }
647 if (m0->m_pkthdr.len > MHLEN) {
648 MCLGET(m, M_DONTWAIT);
649 if ((m->m_flags & M_EXT) == 0) {
650 printf("%s: unable to allocate Tx "
651 "cluster\n", sc->sc_dev.dv_xname);
652 m_freem(m);
653 break;
654 }
655 }
656 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
657 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
658 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
659 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
660 if (error) {
661 printf("%s: unable to load Tx buffer, "
662 "error = %d\n", sc->sc_dev.dv_xname, error);
663 break;
664 }
665 }
666
667 IFQ_DEQUEUE(&ifp->if_snd, m0);
668 if (m != NULL) {
669 m_freem(m0);
670 m0 = m;
671 }
672
673 /*
674 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
675 */
676
677 /* Sync the DMA map. */
678 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
679 BUS_DMASYNC_PREWRITE);
680
681 /* Initialize the fragment list. */
682 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
683 tfd->tfd_frags[seg].frag_addr =
684 htole32(dmamap->dm_segs[seg].ds_addr);
685 tfd->tfd_frags[seg].frag_len =
686 htole32(dmamap->dm_segs[seg].ds_len);
687 totlen += dmamap->dm_segs[seg].ds_len;
688 }
689 tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
690
691 /* Initialize the descriptor. */
692 tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
693 tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
694
695 /* Sync the descriptor. */
696 STE_CDTXSYNC(sc, nexttx,
697 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
698
699 /*
700 * Store a pointer to the packet so we can free it later,
701 * and remember what txdirty will be once the packet is
702 * done.
703 */
704 ds->ds_mbuf = m0;
705
706 /* Advance the tx pointer. */
707 sc->sc_txpending++;
708 sc->sc_txlast = nexttx;
709
710 #if NBPFILTER > 0
711 /*
712 * Pass the packet to any BPF listeners.
713 */
714 if (ifp->if_bpf)
715 bpf_mtap(ifp->if_bpf, m0);
716 #endif /* NBPFILTER > 0 */
717 }
718
719 if (sc->sc_txpending == STE_NTXDESC) {
720 /* No more slots left; notify upper layer. */
721 ifp->if_flags |= IFF_OACTIVE;
722 }
723
724 if (sc->sc_txpending != opending) {
725 /*
726 * We enqueued packets. If the transmitter was idle,
727 * reset the txdirty pointer.
728 */
729 if (opending == 0)
730 sc->sc_txdirty = STE_NEXTTX(olasttx);
731
732 /*
733 * Cause a descriptor interrupt to happen on the
734 * last packet we enqueued, and also cause the
735 * DMA engine to wait after is has finished processing
736 * it.
737 */
738 sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
739 sc->sc_txdescs[sc->sc_txlast].tfd_control |=
740 htole32(TFD_TxDMAIndicate);
741 STE_CDTXSYNC(sc, sc->sc_txlast,
742 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
743
744 /*
745 * Link up the new chain of descriptors to the
746 * last.
747 */
748 sc->sc_txdescs[olasttx].tfd_next =
749 htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
750 STE_CDTXSYNC(sc, olasttx,
751 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
752
753 /*
754 * Kick the transmit DMA logic. Note that since we're
755 * using auto-polling, reading the Tx desc pointer will
756 * give it the nudge it needs to get going.
757 */
758 if (bus_space_read_4(sc->sc_st, sc->sc_sh,
759 STE_TxDMAListPtr) == 0) {
760 bus_space_write_4(sc->sc_st, sc->sc_sh,
761 STE_DMACtrl, DC_TxDMAHalt);
762 ste_dmahalt_wait(sc);
763 bus_space_write_4(sc->sc_st, sc->sc_sh,
764 STE_TxDMAListPtr,
765 STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
766 bus_space_write_4(sc->sc_st, sc->sc_sh,
767 STE_DMACtrl, DC_TxDMAResume);
768 }
769
770 /* Set a watchdog timer in case the chip flakes out. */
771 ifp->if_timer = 5;
772 }
773 }
774
775 /*
776 * ste_watchdog: [ifnet interface function]
777 *
778 * Watchdog timer handler.
779 */
780 static void
781 ste_watchdog(struct ifnet *ifp)
782 {
783 struct ste_softc *sc = ifp->if_softc;
784
785 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
786 ifp->if_oerrors++;
787
788 ste_txintr(sc);
789 ste_rxintr(sc);
790 (void) ste_init(ifp);
791
792 /* Try to get more packets going. */
793 ste_start(ifp);
794 }
795
796 /*
797 * ste_ioctl: [ifnet interface function]
798 *
799 * Handle control requests from the operator.
800 */
801 static int
802 ste_ioctl(struct ifnet *ifp, u_long cmd, void *data)
803 {
804 struct ste_softc *sc = ifp->if_softc;
805 int s, error;
806
807 s = splnet();
808
809 error = ether_ioctl(ifp, cmd, data);
810 if (error == ENETRESET) {
811 /*
812 * Multicast list has changed; set the hardware filter
813 * accordingly.
814 */
815 if (ifp->if_flags & IFF_RUNNING)
816 ste_set_filter(sc);
817 error = 0;
818 }
819
820 /* Try to get more packets going. */
821 ste_start(ifp);
822
823 splx(s);
824 return (error);
825 }
826
827 /*
828 * ste_intr:
829 *
830 * Interrupt service routine.
831 */
832 static int
833 ste_intr(void *arg)
834 {
835 struct ste_softc *sc = arg;
836 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
837 uint16_t isr;
838 uint8_t txstat;
839 int wantinit;
840
841 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
842 IS_InterruptStatus) == 0)
843 return (0);
844
845 for (wantinit = 0; wantinit == 0;) {
846 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
847 if ((isr & sc->sc_IntEnable) == 0)
848 break;
849
850 /* Receive interrupts. */
851 if (isr & IE_RxDMAComplete)
852 ste_rxintr(sc);
853
854 /* Transmit interrupts. */
855 if (isr & (IE_TxDMAComplete|IE_TxComplete))
856 ste_txintr(sc);
857
858 /* Statistics overflow. */
859 if (isr & IE_UpdateStats)
860 ste_stats_update(sc);
861
862 /* Transmission errors. */
863 if (isr & IE_TxComplete) {
864 for (;;) {
865 txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
866 STE_TxStatus);
867 if ((txstat & TS_TxComplete) == 0)
868 break;
869 if (txstat & TS_TxUnderrun) {
870 sc->sc_txthresh += 32;
871 if (sc->sc_txthresh > 0x1ffc)
872 sc->sc_txthresh = 0x1ffc;
873 printf("%s: transmit underrun, new "
874 "threshold: %d bytes\n",
875 sc->sc_dev.dv_xname,
876 sc->sc_txthresh);
877 ste_reset(sc, AC_TxReset | AC_DMA |
878 AC_FIFO | AC_Network);
879 ste_setthresh(sc);
880 bus_space_write_1(sc->sc_st, sc->sc_sh,
881 STE_TxDMAPollPeriod, 127);
882 ste_txrestart(sc,
883 bus_space_read_1(sc->sc_st,
884 sc->sc_sh, STE_TxFrameId));
885 }
886 if (txstat & TS_TxReleaseError) {
887 printf("%s: Tx FIFO release error\n",
888 sc->sc_dev.dv_xname);
889 wantinit = 1;
890 }
891 if (txstat & TS_MaxCollisions) {
892 printf("%s: excessive collisions\n",
893 sc->sc_dev.dv_xname);
894 wantinit = 1;
895 }
896 if (txstat & TS_TxStatusOverflow) {
897 printf("%s: status overflow\n",
898 sc->sc_dev.dv_xname);
899 wantinit = 1;
900 }
901 bus_space_write_2(sc->sc_st, sc->sc_sh,
902 STE_TxStatus, 0);
903 }
904 }
905
906 /* Host interface errors. */
907 if (isr & IE_HostError) {
908 printf("%s: Host interface error\n",
909 sc->sc_dev.dv_xname);
910 wantinit = 1;
911 }
912 }
913
914 if (wantinit)
915 ste_init(ifp);
916
917 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
918 sc->sc_IntEnable);
919
920 /* Try to get more packets going. */
921 ste_start(ifp);
922
923 return (1);
924 }
925
926 /*
927 * ste_txintr:
928 *
929 * Helper; handle transmit interrupts.
930 */
931 static void
932 ste_txintr(struct ste_softc *sc)
933 {
934 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
935 struct ste_descsoft *ds;
936 uint32_t control;
937 int i;
938
939 ifp->if_flags &= ~IFF_OACTIVE;
940
941 /*
942 * Go through our Tx list and free mbufs for those
943 * frames which have been transmitted.
944 */
945 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
946 i = STE_NEXTTX(i), sc->sc_txpending--) {
947 ds = &sc->sc_txsoft[i];
948
949 STE_CDTXSYNC(sc, i,
950 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
951
952 control = le32toh(sc->sc_txdescs[i].tfd_control);
953 if ((control & TFD_TxDMAComplete) == 0)
954 break;
955
956 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
957 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
958 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
959 m_freem(ds->ds_mbuf);
960 ds->ds_mbuf = NULL;
961 }
962
963 /* Update the dirty transmit buffer pointer. */
964 sc->sc_txdirty = i;
965
966 /*
967 * If there are no more pending transmissions, cancel the watchdog
968 * timer.
969 */
970 if (sc->sc_txpending == 0)
971 ifp->if_timer = 0;
972 }
973
974 /*
975 * ste_rxintr:
976 *
977 * Helper; handle receive interrupts.
978 */
979 static void
980 ste_rxintr(struct ste_softc *sc)
981 {
982 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
983 struct ste_descsoft *ds;
984 struct mbuf *m;
985 uint32_t status;
986 int i, len;
987
988 for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
989 ds = &sc->sc_rxsoft[i];
990
991 STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
992
993 status = le32toh(sc->sc_rxdescs[i].rfd_status);
994
995 if ((status & RFD_RxDMAComplete) == 0)
996 break;
997
998 /*
999 * If the packet had an error, simply recycle the
1000 * buffer. Note, we count the error later in the
1001 * periodic stats update.
1002 */
1003 if (status & RFD_RxFrameError) {
1004 STE_INIT_RXDESC(sc, i);
1005 continue;
1006 }
1007
1008 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1009 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1010
1011 /*
1012 * No errors; receive the packet. Note, we have
1013 * configured the chip to not include the CRC at
1014 * the end of the packet.
1015 */
1016 len = RFD_RxDMAFrameLen(status);
1017
1018 /*
1019 * If the packet is small enough to fit in a
1020 * single header mbuf, allocate one and copy
1021 * the data into it. This greatly reduces
1022 * memory consumption when we receive lots
1023 * of small packets.
1024 *
1025 * Otherwise, we add a new buffer to the receive
1026 * chain. If this fails, we drop the packet and
1027 * recycle the old buffer.
1028 */
1029 if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
1030 MGETHDR(m, M_DONTWAIT, MT_DATA);
1031 if (m == NULL)
1032 goto dropit;
1033 m->m_data += 2;
1034 memcpy(mtod(m, void *),
1035 mtod(ds->ds_mbuf, void *), len);
1036 STE_INIT_RXDESC(sc, i);
1037 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1038 ds->ds_dmamap->dm_mapsize,
1039 BUS_DMASYNC_PREREAD);
1040 } else {
1041 m = ds->ds_mbuf;
1042 if (ste_add_rxbuf(sc, i) != 0) {
1043 dropit:
1044 ifp->if_ierrors++;
1045 STE_INIT_RXDESC(sc, i);
1046 bus_dmamap_sync(sc->sc_dmat,
1047 ds->ds_dmamap, 0,
1048 ds->ds_dmamap->dm_mapsize,
1049 BUS_DMASYNC_PREREAD);
1050 continue;
1051 }
1052 }
1053
1054 m->m_pkthdr.rcvif = ifp;
1055 m->m_pkthdr.len = m->m_len = len;
1056
1057 #if NBPFILTER > 0
1058 /*
1059 * Pass this up to any BPF listeners, but only
1060 * pass if up the stack if it's for us.
1061 */
1062 if (ifp->if_bpf)
1063 bpf_mtap(ifp->if_bpf, m);
1064 #endif /* NBPFILTER > 0 */
1065
1066 /* Pass it on. */
1067 (*ifp->if_input)(ifp, m);
1068 }
1069
1070 /* Update the receive pointer. */
1071 sc->sc_rxptr = i;
1072 }
1073
1074 /*
1075 * ste_tick:
1076 *
1077 * One second timer, used to tick the MII.
1078 */
1079 static void
1080 ste_tick(void *arg)
1081 {
1082 struct ste_softc *sc = arg;
1083 int s;
1084
1085 s = splnet();
1086 mii_tick(&sc->sc_mii);
1087 ste_stats_update(sc);
1088 splx(s);
1089
1090 callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1091 }
1092
1093 /*
1094 * ste_stats_update:
1095 *
1096 * Read the ST-201 statistics counters.
1097 */
1098 static void
1099 ste_stats_update(struct ste_softc *sc)
1100 {
1101 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1102 bus_space_tag_t st = sc->sc_st;
1103 bus_space_handle_t sh = sc->sc_sh;
1104
1105 (void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
1106 (void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
1107
1108 (void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
1109 (void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
1110
1111 ifp->if_opackets +=
1112 (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
1113 ifp->if_ipackets +=
1114 (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
1115
1116 ifp->if_collisions +=
1117 (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
1118 (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
1119 (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
1120
1121 (void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
1122
1123 ifp->if_ierrors +=
1124 (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
1125
1126 ifp->if_oerrors +=
1127 (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
1128 (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
1129 bus_space_read_1(st, sh, STE_CarrierSenseErrors);
1130
1131 (void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
1132 (void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
1133 (void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
1134 (void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
1135 }
1136
1137 /*
1138 * ste_reset:
1139 *
1140 * Perform a soft reset on the ST-201.
1141 */
1142 static void
1143 ste_reset(struct ste_softc *sc, u_int32_t rstbits)
1144 {
1145 uint32_t ac;
1146 int i;
1147
1148 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
1149
1150 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
1151
1152 delay(50000);
1153
1154 for (i = 0; i < STE_TIMEOUT; i++) {
1155 delay(1000);
1156 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
1157 AC_ResetBusy) == 0)
1158 break;
1159 }
1160
1161 if (i == STE_TIMEOUT)
1162 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1163
1164 delay(1000);
1165 }
1166
1167 /*
1168 * ste_setthresh:
1169 *
1170 * set the various transmit threshold registers
1171 */
1172 static void
1173 ste_setthresh(struct ste_softc *sc)
1174 {
1175 /* set the TX threhold */
1176 bus_space_write_2(sc->sc_st, sc->sc_sh,
1177 STE_TxStartThresh, sc->sc_txthresh);
1178 /* Urgent threshold: set to sc_txthresh / 2 */
1179 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
1180 sc->sc_txthresh >> 6);
1181 /* Burst threshold: use default value (256 bytes) */
1182 }
1183
1184 /*
1185 * restart TX at the given frame ID in the transmitter ring
1186 */
1187 static void
1188 ste_txrestart(struct ste_softc *sc, u_int8_t id)
1189 {
1190 u_int32_t control;
1191
1192 STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1193 control = le32toh(sc->sc_txdescs[id].tfd_control);
1194 control &= ~TFD_TxDMAComplete;
1195 sc->sc_txdescs[id].tfd_control = htole32(control);
1196 STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1197
1198 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
1199 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
1200 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
1201 ste_dmahalt_wait(sc);
1202 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
1203 STE_CDTXADDR(sc, id));
1204 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
1205 }
1206
1207 /*
1208 * ste_init: [ ifnet interface function ]
1209 *
1210 * Initialize the interface. Must be called at splnet().
1211 */
1212 static int
1213 ste_init(struct ifnet *ifp)
1214 {
1215 struct ste_softc *sc = ifp->if_softc;
1216 bus_space_tag_t st = sc->sc_st;
1217 bus_space_handle_t sh = sc->sc_sh;
1218 struct ste_descsoft *ds;
1219 int i, error = 0;
1220
1221 /*
1222 * Cancel any pending I/O.
1223 */
1224 ste_stop(ifp, 0);
1225
1226 /*
1227 * Reset the chip to a known state.
1228 */
1229 ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
1230 AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
1231
1232 /*
1233 * Initialize the transmit descriptor ring.
1234 */
1235 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1236 sc->sc_txpending = 0;
1237 sc->sc_txdirty = 0;
1238 sc->sc_txlast = STE_NTXDESC - 1;
1239
1240 /*
1241 * Initialize the receive descriptor and receive job
1242 * descriptor rings.
1243 */
1244 for (i = 0; i < STE_NRXDESC; i++) {
1245 ds = &sc->sc_rxsoft[i];
1246 if (ds->ds_mbuf == NULL) {
1247 if ((error = ste_add_rxbuf(sc, i)) != 0) {
1248 printf("%s: unable to allocate or map rx "
1249 "buffer %d, error = %d\n",
1250 sc->sc_dev.dv_xname, i, error);
1251 /*
1252 * XXX Should attempt to run with fewer receive
1253 * XXX buffers instead of just failing.
1254 */
1255 ste_rxdrain(sc);
1256 goto out;
1257 }
1258 } else
1259 STE_INIT_RXDESC(sc, i);
1260 }
1261 sc->sc_rxptr = 0;
1262
1263 /* Set the station address. */
1264 for (i = 0; i < ETHER_ADDR_LEN; i++)
1265 bus_space_write_1(st, sh, STE_StationAddress0 + 1,
1266 CLLADDR(ifp->if_sadl)[i]);
1267
1268 /* Set up the receive filter. */
1269 ste_set_filter(sc);
1270
1271 /*
1272 * Give the receive ring to the chip.
1273 */
1274 bus_space_write_4(st, sh, STE_RxDMAListPtr,
1275 STE_CDRXADDR(sc, sc->sc_rxptr));
1276
1277 /*
1278 * We defer giving the transmit ring to the chip until we
1279 * transmit the first packet.
1280 */
1281
1282 /*
1283 * Initialize the Tx auto-poll period. It's OK to make this number
1284 * large (127 is the max) -- we explicitly kick the transmit engine
1285 * when there's actually a packet. We are using auto-polling only
1286 * to make the interface to the transmit engine not suck.
1287 */
1288 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
1289
1290 /* ..and the Rx auto-poll period. */
1291 bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
1292
1293 /* Initialize the Tx start threshold. */
1294 ste_setthresh(sc);
1295
1296 /* Set the FIFO release threshold to 512 bytes. */
1297 bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
1298
1299 /* Set maximum packet size for VLAN. */
1300 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1301 bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN + 4);
1302 else
1303 bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN);
1304
1305 /*
1306 * Initialize the interrupt mask.
1307 */
1308 sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1309 IE_TxDMAComplete | IE_RxDMAComplete;
1310
1311 bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
1312 bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
1313
1314 /*
1315 * Start the receive DMA engine.
1316 */
1317 bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
1318
1319 /*
1320 * Initialize MacCtrl0 -- do it before setting the media,
1321 * as setting the media will actually program the register.
1322 */
1323 sc->sc_MacCtrl0 = MC0_IFSSelect(0);
1324 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1325 sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
1326
1327 /*
1328 * Set the current media.
1329 */
1330 if ((error = ether_mediachange(ifp)) != 0)
1331 goto out;
1332
1333 /*
1334 * Start the MAC.
1335 */
1336 bus_space_write_2(st, sh, STE_MacCtrl1,
1337 MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
1338
1339 /*
1340 * Start the one second MII clock.
1341 */
1342 callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1343
1344 /*
1345 * ...all done!
1346 */
1347 ifp->if_flags |= IFF_RUNNING;
1348 ifp->if_flags &= ~IFF_OACTIVE;
1349
1350 out:
1351 if (error)
1352 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1353 return (error);
1354 }
1355
1356 /*
1357 * ste_drain:
1358 *
1359 * Drain the receive queue.
1360 */
1361 static void
1362 ste_rxdrain(struct ste_softc *sc)
1363 {
1364 struct ste_descsoft *ds;
1365 int i;
1366
1367 for (i = 0; i < STE_NRXDESC; i++) {
1368 ds = &sc->sc_rxsoft[i];
1369 if (ds->ds_mbuf != NULL) {
1370 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1371 m_freem(ds->ds_mbuf);
1372 ds->ds_mbuf = NULL;
1373 }
1374 }
1375 }
1376
1377 /*
1378 * ste_stop: [ ifnet interface function ]
1379 *
1380 * Stop transmission on the interface.
1381 */
1382 static void
1383 ste_stop(struct ifnet *ifp, int disable)
1384 {
1385 struct ste_softc *sc = ifp->if_softc;
1386 struct ste_descsoft *ds;
1387 int i;
1388
1389 /*
1390 * Stop the one second clock.
1391 */
1392 callout_stop(&sc->sc_tick_ch);
1393
1394 /* Down the MII. */
1395 mii_down(&sc->sc_mii);
1396
1397 /*
1398 * Disable interrupts.
1399 */
1400 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
1401
1402 /*
1403 * Stop receiver, transmitter, and stats update.
1404 */
1405 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
1406 MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
1407
1408 /*
1409 * Stop the transmit and receive DMA.
1410 */
1411 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
1412 DC_RxDMAHalt | DC_TxDMAHalt);
1413 ste_dmahalt_wait(sc);
1414
1415 /*
1416 * Release any queued transmit buffers.
1417 */
1418 for (i = 0; i < STE_NTXDESC; i++) {
1419 ds = &sc->sc_txsoft[i];
1420 if (ds->ds_mbuf != NULL) {
1421 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1422 m_freem(ds->ds_mbuf);
1423 ds->ds_mbuf = NULL;
1424 }
1425 }
1426
1427 /*
1428 * Mark the interface down and cancel the watchdog timer.
1429 */
1430 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1431 ifp->if_timer = 0;
1432
1433 if (disable)
1434 ste_rxdrain(sc);
1435 }
1436
1437 static int
1438 ste_eeprom_wait(struct ste_softc *sc)
1439 {
1440 int i;
1441
1442 for (i = 0; i < STE_TIMEOUT; i++) {
1443 delay(1000);
1444 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
1445 EC_EepromBusy) == 0)
1446 return (0);
1447 }
1448 return (1);
1449 }
1450
1451 /*
1452 * ste_read_eeprom:
1453 *
1454 * Read data from the serial EEPROM.
1455 */
1456 static void
1457 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
1458 {
1459
1460 if (ste_eeprom_wait(sc))
1461 printf("%s: EEPROM failed to come ready\n",
1462 sc->sc_dev.dv_xname);
1463
1464 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
1465 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
1466 if (ste_eeprom_wait(sc))
1467 printf("%s: EEPROM read timed out\n",
1468 sc->sc_dev.dv_xname);
1469 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
1470 }
1471
1472 /*
1473 * ste_add_rxbuf:
1474 *
1475 * Add a receive buffer to the indicated descriptor.
1476 */
1477 static int
1478 ste_add_rxbuf(struct ste_softc *sc, int idx)
1479 {
1480 struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
1481 struct mbuf *m;
1482 int error;
1483
1484 MGETHDR(m, M_DONTWAIT, MT_DATA);
1485 if (m == NULL)
1486 return (ENOBUFS);
1487
1488 MCLGET(m, M_DONTWAIT);
1489 if ((m->m_flags & M_EXT) == 0) {
1490 m_freem(m);
1491 return (ENOBUFS);
1492 }
1493
1494 if (ds->ds_mbuf != NULL)
1495 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1496
1497 ds->ds_mbuf = m;
1498
1499 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1500 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1501 BUS_DMA_READ|BUS_DMA_NOWAIT);
1502 if (error) {
1503 printf("%s: can't load rx DMA map %d, error = %d\n",
1504 sc->sc_dev.dv_xname, idx, error);
1505 panic("ste_add_rxbuf"); /* XXX */
1506 }
1507
1508 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1509 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1510
1511 STE_INIT_RXDESC(sc, idx);
1512
1513 return (0);
1514 }
1515
1516 /*
1517 * ste_set_filter:
1518 *
1519 * Set up the receive filter.
1520 */
1521 static void
1522 ste_set_filter(struct ste_softc *sc)
1523 {
1524 struct ethercom *ec = &sc->sc_ethercom;
1525 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1526 struct ether_multi *enm;
1527 struct ether_multistep step;
1528 uint32_t crc;
1529 uint16_t mchash[4];
1530
1531 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1532 if (ifp->if_flags & IFF_BROADCAST)
1533 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1534
1535 if (ifp->if_flags & IFF_PROMISC) {
1536 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1537 goto allmulti;
1538 }
1539
1540 /*
1541 * Set up the multicast address filter by passing all multicast
1542 * addresses through a CRC generator, and then using the low-order
1543 * 6 bits as an index into the 64 bit multicast hash table. The
1544 * high order bits select the register, while the rest of the bits
1545 * select the bit within the register.
1546 */
1547
1548 memset(mchash, 0, sizeof(mchash));
1549
1550 ETHER_FIRST_MULTI(step, ec, enm);
1551 if (enm == NULL)
1552 goto done;
1553
1554 while (enm != NULL) {
1555 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1556 /*
1557 * We must listen to a range of multicast addresses.
1558 * For now, just accept all multicasts, rather than
1559 * trying to set only those filter bits needed to match
1560 * the range. (At this time, the only use of address
1561 * ranges is for IP multicast routing, for which the
1562 * range is big enough to require all bits set.)
1563 */
1564 goto allmulti;
1565 }
1566
1567 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1568
1569 /* Just want the 6 least significant bits. */
1570 crc &= 0x3f;
1571
1572 /* Set the corresponding bit in the hash table. */
1573 mchash[crc >> 4] |= 1 << (crc & 0xf);
1574
1575 ETHER_NEXT_MULTI(step, enm);
1576 }
1577
1578 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1579
1580 ifp->if_flags &= ~IFF_ALLMULTI;
1581 goto done;
1582
1583 allmulti:
1584 ifp->if_flags |= IFF_ALLMULTI;
1585 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1586
1587 done:
1588 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1589 /*
1590 * Program the multicast hash table.
1591 */
1592 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
1593 mchash[0]);
1594 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
1595 mchash[1]);
1596 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
1597 mchash[2]);
1598 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
1599 mchash[3]);
1600 }
1601
1602 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
1603 sc->sc_ReceiveMode);
1604 }
1605
1606 /*
1607 * ste_mii_readreg: [mii interface function]
1608 *
1609 * Read a PHY register on the MII of the ST-201.
1610 */
1611 static int
1612 ste_mii_readreg(device_t self, int phy, int reg)
1613 {
1614
1615 return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
1616 }
1617
1618 /*
1619 * ste_mii_writereg: [mii interface function]
1620 *
1621 * Write a PHY register on the MII of the ST-201.
1622 */
1623 static void
1624 ste_mii_writereg(device_t self, int phy, int reg, int val)
1625 {
1626
1627 mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
1628 }
1629
1630 /*
1631 * ste_mii_statchg: [mii interface function]
1632 *
1633 * Callback from MII layer when media changes.
1634 */
1635 static void
1636 ste_mii_statchg(device_t self)
1637 {
1638 struct ste_softc *sc = device_private(self);
1639
1640 if (sc->sc_mii.mii_media_active & IFM_FDX)
1641 sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
1642 else
1643 sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
1644
1645 /* XXX 802.1x flow-control? */
1646
1647 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
1648 }
1649
1650 /*
1651 * ste_mii_bitbang_read: [mii bit-bang interface function]
1652 *
1653 * Read the MII serial port for the MII bit-bang module.
1654 */
1655 static uint32_t
1656 ste_mii_bitbang_read(device_t self)
1657 {
1658 struct ste_softc *sc = device_private(self);
1659
1660 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
1661 }
1662
1663 /*
1664 * ste_mii_bitbang_write: [mii big-bang interface function]
1665 *
1666 * Write the MII serial port for the MII bit-bang module.
1667 */
1668 static void
1669 ste_mii_bitbang_write(device_t self, uint32_t val)
1670 {
1671 struct ste_softc *sc = device_private(self);
1672
1673 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
1674 }
1675