if_ste.c revision 1.37 1 /* $NetBSD: if_ste.c,v 1.37 2009/05/06 09:25:16 cegger Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the Sundance Tech. ST-201 10/100
34 * Ethernet controller.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.37 2009/05/06 09:25:16 cegger Exp $");
39
40 #include "bpfilter.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/ioctl.h>
50 #include <sys/errno.h>
51 #include <sys/device.h>
52 #include <sys/queue.h>
53
54 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
55
56 #include <net/if.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
60
61 #if NBPFILTER > 0
62 #include <net/bpf.h>
63 #endif
64
65 #include <sys/bus.h>
66 #include <sys/intr.h>
67
68 #include <dev/mii/mii.h>
69 #include <dev/mii/miivar.h>
70 #include <dev/mii/mii_bitbang.h>
71
72 #include <dev/pci/pcireg.h>
73 #include <dev/pci/pcivar.h>
74 #include <dev/pci/pcidevs.h>
75
76 #include <dev/pci/if_stereg.h>
77
78 /*
79 * Transmit descriptor list size.
80 */
81 #define STE_NTXDESC 256
82 #define STE_NTXDESC_MASK (STE_NTXDESC - 1)
83 #define STE_NEXTTX(x) (((x) + 1) & STE_NTXDESC_MASK)
84
85 /*
86 * Receive descriptor list size.
87 */
88 #define STE_NRXDESC 128
89 #define STE_NRXDESC_MASK (STE_NRXDESC - 1)
90 #define STE_NEXTRX(x) (((x) + 1) & STE_NRXDESC_MASK)
91
92 /*
93 * Control structures are DMA'd to the ST-201 chip. We allocate them in
94 * a single clump that maps to a single DMA segment to make several things
95 * easier.
96 */
97 struct ste_control_data {
98 /*
99 * The transmit descriptors.
100 */
101 struct ste_tfd scd_txdescs[STE_NTXDESC];
102
103 /*
104 * The receive descriptors.
105 */
106 struct ste_rfd scd_rxdescs[STE_NRXDESC];
107 };
108
109 #define STE_CDOFF(x) offsetof(struct ste_control_data, x)
110 #define STE_CDTXOFF(x) STE_CDOFF(scd_txdescs[(x)])
111 #define STE_CDRXOFF(x) STE_CDOFF(scd_rxdescs[(x)])
112
113 /*
114 * Software state for transmit and receive jobs.
115 */
116 struct ste_descsoft {
117 struct mbuf *ds_mbuf; /* head of our mbuf chain */
118 bus_dmamap_t ds_dmamap; /* our DMA map */
119 };
120
121 /*
122 * Software state per device.
123 */
124 struct ste_softc {
125 struct device sc_dev; /* generic device information */
126 bus_space_tag_t sc_st; /* bus space tag */
127 bus_space_handle_t sc_sh; /* bus space handle */
128 bus_dma_tag_t sc_dmat; /* bus DMA tag */
129 struct ethercom sc_ethercom; /* ethernet common data */
130 void *sc_sdhook; /* shutdown hook */
131
132 void *sc_ih; /* interrupt cookie */
133
134 struct mii_data sc_mii; /* MII/media information */
135
136 callout_t sc_tick_ch; /* tick callout */
137
138 bus_dmamap_t sc_cddmamap; /* control data DMA map */
139 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
140
141 /*
142 * Software state for transmit and receive descriptors.
143 */
144 struct ste_descsoft sc_txsoft[STE_NTXDESC];
145 struct ste_descsoft sc_rxsoft[STE_NRXDESC];
146
147 /*
148 * Control data structures.
149 */
150 struct ste_control_data *sc_control_data;
151 #define sc_txdescs sc_control_data->scd_txdescs
152 #define sc_rxdescs sc_control_data->scd_rxdescs
153
154 int sc_txpending; /* number of Tx requests pending */
155 int sc_txdirty; /* first dirty Tx descriptor */
156 int sc_txlast; /* last used Tx descriptor */
157
158 int sc_rxptr; /* next ready Rx descriptor/descsoft */
159
160 int sc_txthresh; /* Tx threshold */
161 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
162 uint16_t sc_IntEnable; /* prototype IntEnable register */
163 uint16_t sc_MacCtrl0; /* prototype MacCtrl0 register */
164 uint8_t sc_ReceiveMode; /* prototype ReceiveMode register */
165 };
166
167 #define STE_CDTXADDR(sc, x) ((sc)->sc_cddma + STE_CDTXOFF((x)))
168 #define STE_CDRXADDR(sc, x) ((sc)->sc_cddma + STE_CDRXOFF((x)))
169
170 #define STE_CDTXSYNC(sc, x, ops) \
171 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
172 STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
173
174 #define STE_CDRXSYNC(sc, x, ops) \
175 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
176 STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
177
178 #define STE_INIT_RXDESC(sc, x) \
179 do { \
180 struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
181 struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
182 struct mbuf *__m = __ds->ds_mbuf; \
183 \
184 /* \
185 * Note: We scoot the packet forward 2 bytes in the buffer \
186 * so that the payload after the Ethernet header is aligned \
187 * to a 4-byte boundary. \
188 */ \
189 __m->m_data = __m->m_ext.ext_buf + 2; \
190 __rfd->rfd_frag.frag_addr = \
191 htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2); \
192 __rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST); \
193 __rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x)))); \
194 __rfd->rfd_status = 0; \
195 STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
196 } while (/*CONSTCOND*/0)
197
198 #define STE_TIMEOUT 1000
199
200 static void ste_start(struct ifnet *);
201 static void ste_watchdog(struct ifnet *);
202 static int ste_ioctl(struct ifnet *, u_long, void *);
203 static int ste_init(struct ifnet *);
204 static void ste_stop(struct ifnet *, int);
205
206 static void ste_shutdown(void *);
207
208 static void ste_reset(struct ste_softc *, u_int32_t);
209 static void ste_setthresh(struct ste_softc *);
210 static void ste_txrestart(struct ste_softc *, u_int8_t);
211 static void ste_rxdrain(struct ste_softc *);
212 static int ste_add_rxbuf(struct ste_softc *, int);
213 static void ste_read_eeprom(struct ste_softc *, int, uint16_t *);
214 static void ste_tick(void *);
215
216 static void ste_stats_update(struct ste_softc *);
217
218 static void ste_set_filter(struct ste_softc *);
219
220 static int ste_intr(void *);
221 static void ste_txintr(struct ste_softc *);
222 static void ste_rxintr(struct ste_softc *);
223
224 static int ste_mii_readreg(device_t, int, int);
225 static void ste_mii_writereg(device_t, int, int, int);
226 static void ste_mii_statchg(device_t);
227
228 static int ste_match(device_t, cfdata_t, void *);
229 static void ste_attach(device_t, device_t, void *);
230
231 int ste_copy_small = 0;
232
233 CFATTACH_DECL(ste, sizeof(struct ste_softc),
234 ste_match, ste_attach, NULL, NULL);
235
236 static uint32_t ste_mii_bitbang_read(device_t);
237 static void ste_mii_bitbang_write(device_t, uint32_t);
238
239 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
240 ste_mii_bitbang_read,
241 ste_mii_bitbang_write,
242 {
243 PC_MgmtData, /* MII_BIT_MDO */
244 PC_MgmtData, /* MII_BIT_MDI */
245 PC_MgmtClk, /* MII_BIT_MDC */
246 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
247 0, /* MII_BIT_DIR_PHY_HOST */
248 }
249 };
250
251 /*
252 * Devices supported by this driver.
253 */
254 static const struct ste_product {
255 pci_vendor_id_t ste_vendor;
256 pci_product_id_t ste_product;
257 const char *ste_name;
258 } ste_products[] = {
259 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_IP100A,
260 "IC Plus Corp. IP00A 10/100 Fast Ethernet Adapter" },
261
262 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST201,
263 "Sundance ST-201 10/100 Ethernet" },
264
265 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL1002,
266 "D-Link DL-1002 10/100 Ethernet" },
267
268 { 0, 0,
269 NULL },
270 };
271
272 static const struct ste_product *
273 ste_lookup(const struct pci_attach_args *pa)
274 {
275 const struct ste_product *sp;
276
277 for (sp = ste_products; sp->ste_name != NULL; sp++) {
278 if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
279 PCI_PRODUCT(pa->pa_id) == sp->ste_product)
280 return (sp);
281 }
282 return (NULL);
283 }
284
285 static int
286 ste_match(device_t parent, cfdata_t cf, void *aux)
287 {
288 struct pci_attach_args *pa = aux;
289
290 if (ste_lookup(pa) != NULL)
291 return (1);
292
293 return (0);
294 }
295
296 static void
297 ste_attach(device_t parent, device_t self, void *aux)
298 {
299 struct ste_softc *sc = device_private(self);
300 struct pci_attach_args *pa = aux;
301 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
302 pci_chipset_tag_t pc = pa->pa_pc;
303 pci_intr_handle_t ih;
304 const char *intrstr = NULL;
305 bus_space_tag_t iot, memt;
306 bus_space_handle_t ioh, memh;
307 bus_dma_segment_t seg;
308 int ioh_valid, memh_valid;
309 int i, rseg, error;
310 const struct ste_product *sp;
311 uint8_t enaddr[ETHER_ADDR_LEN];
312 uint16_t myea[ETHER_ADDR_LEN / 2];
313
314 callout_init(&sc->sc_tick_ch, 0);
315
316 sp = ste_lookup(pa);
317 if (sp == NULL) {
318 printf("\n");
319 panic("ste_attach: impossible");
320 }
321
322 printf(": %s\n", sp->ste_name);
323
324 /*
325 * Map the device.
326 */
327 ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
328 PCI_MAPREG_TYPE_IO, 0,
329 &iot, &ioh, NULL, NULL) == 0);
330 memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
331 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
332 &memt, &memh, NULL, NULL) == 0);
333
334 if (memh_valid) {
335 sc->sc_st = memt;
336 sc->sc_sh = memh;
337 } else if (ioh_valid) {
338 sc->sc_st = iot;
339 sc->sc_sh = ioh;
340 } else {
341 aprint_error_dev(&sc->sc_dev, "unable to map device registers\n");
342 return;
343 }
344
345 sc->sc_dmat = pa->pa_dmat;
346
347 /* Enable bus mastering. */
348 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
349 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
350 PCI_COMMAND_MASTER_ENABLE);
351
352 /* power up chip */
353 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
354 NULL)) && error != EOPNOTSUPP) {
355 aprint_error_dev(&sc->sc_dev, "cannot activate %d\n",
356 error);
357 return;
358 }
359
360 /*
361 * Map and establish our interrupt.
362 */
363 if (pci_intr_map(pa, &ih)) {
364 aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
365 return;
366 }
367 intrstr = pci_intr_string(pc, ih);
368 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
369 if (sc->sc_ih == NULL) {
370 aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
371 if (intrstr != NULL)
372 printf(" at %s", intrstr);
373 printf("\n");
374 return;
375 }
376 printf("%s: interrupting at %s\n", device_xname(&sc->sc_dev), intrstr);
377
378 /*
379 * Allocate the control data structures, and create and load the
380 * DMA map for it.
381 */
382 if ((error = bus_dmamem_alloc(sc->sc_dmat,
383 sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
384 0)) != 0) {
385 aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n",
386 error);
387 goto fail_0;
388 }
389
390 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
391 sizeof(struct ste_control_data), (void **)&sc->sc_control_data,
392 BUS_DMA_COHERENT)) != 0) {
393 aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
394 error);
395 goto fail_1;
396 }
397
398 if ((error = bus_dmamap_create(sc->sc_dmat,
399 sizeof(struct ste_control_data), 1,
400 sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
401 aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
402 "error = %d\n", error);
403 goto fail_2;
404 }
405
406 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
407 sc->sc_control_data, sizeof(struct ste_control_data), NULL,
408 0)) != 0) {
409 aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
410 error);
411 goto fail_3;
412 }
413
414 /*
415 * Create the transmit buffer DMA maps.
416 */
417 for (i = 0; i < STE_NTXDESC; i++) {
418 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
419 STE_NTXFRAGS, MCLBYTES, 0, 0,
420 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
421 aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
422 "error = %d\n", i, error);
423 goto fail_4;
424 }
425 }
426
427 /*
428 * Create the receive buffer DMA maps.
429 */
430 for (i = 0; i < STE_NRXDESC; i++) {
431 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
432 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
433 aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
434 "error = %d\n", i, error);
435 goto fail_5;
436 }
437 sc->sc_rxsoft[i].ds_mbuf = NULL;
438 }
439
440 /*
441 * Reset the chip to a known state.
442 */
443 ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
444 AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
445
446 /*
447 * Read the Ethernet address from the EEPROM.
448 */
449 for (i = 0; i < 3; i++) {
450 ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
451 myea[i] = le16toh(myea[i]);
452 }
453 memcpy(enaddr, myea, sizeof(enaddr));
454
455 printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
456 ether_sprintf(enaddr));
457
458 /*
459 * Initialize our media structures and probe the MII.
460 */
461 sc->sc_mii.mii_ifp = ifp;
462 sc->sc_mii.mii_readreg = ste_mii_readreg;
463 sc->sc_mii.mii_writereg = ste_mii_writereg;
464 sc->sc_mii.mii_statchg = ste_mii_statchg;
465 sc->sc_ethercom.ec_mii = &sc->sc_mii;
466 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
467 ether_mediastatus);
468 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
469 MII_OFFSET_ANY, 0);
470 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
471 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
472 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
473 } else
474 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
475
476 ifp = &sc->sc_ethercom.ec_if;
477 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
478 ifp->if_softc = sc;
479 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
480 ifp->if_ioctl = ste_ioctl;
481 ifp->if_start = ste_start;
482 ifp->if_watchdog = ste_watchdog;
483 ifp->if_init = ste_init;
484 ifp->if_stop = ste_stop;
485 IFQ_SET_READY(&ifp->if_snd);
486
487 /*
488 * Default the transmit threshold to 128 bytes.
489 */
490 sc->sc_txthresh = 128;
491
492 /*
493 * Disable MWI if the PCI layer tells us to.
494 */
495 sc->sc_DMACtrl = 0;
496 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
497 sc->sc_DMACtrl |= DC_MWIDisable;
498
499 /*
500 * We can support 802.1Q VLAN-sized frames.
501 */
502 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
503
504 /*
505 * Attach the interface.
506 */
507 if_attach(ifp);
508 ether_ifattach(ifp, enaddr);
509
510 /*
511 * Make sure the interface is shutdown during reboot.
512 */
513 sc->sc_sdhook = shutdownhook_establish(ste_shutdown, sc);
514 if (sc->sc_sdhook == NULL)
515 printf("%s: WARNING: unable to establish shutdown hook\n",
516 device_xname(&sc->sc_dev));
517 return;
518
519 /*
520 * Free any resources we've allocated during the failed attach
521 * attempt. Do this in reverse order and fall through.
522 */
523 fail_5:
524 for (i = 0; i < STE_NRXDESC; i++) {
525 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
526 bus_dmamap_destroy(sc->sc_dmat,
527 sc->sc_rxsoft[i].ds_dmamap);
528 }
529 fail_4:
530 for (i = 0; i < STE_NTXDESC; i++) {
531 if (sc->sc_txsoft[i].ds_dmamap != NULL)
532 bus_dmamap_destroy(sc->sc_dmat,
533 sc->sc_txsoft[i].ds_dmamap);
534 }
535 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
536 fail_3:
537 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
538 fail_2:
539 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
540 sizeof(struct ste_control_data));
541 fail_1:
542 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
543 fail_0:
544 return;
545 }
546
547 /*
548 * ste_shutdown:
549 *
550 * Make sure the interface is stopped at reboot time.
551 */
552 static void
553 ste_shutdown(void *arg)
554 {
555 struct ste_softc *sc = arg;
556
557 ste_stop(&sc->sc_ethercom.ec_if, 1);
558 }
559
560 static void
561 ste_dmahalt_wait(struct ste_softc *sc)
562 {
563 int i;
564
565 for (i = 0; i < STE_TIMEOUT; i++) {
566 delay(2);
567 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
568 DC_DMAHaltBusy) == 0)
569 break;
570 }
571
572 if (i == STE_TIMEOUT)
573 printf("%s: DMA halt timed out\n", device_xname(&sc->sc_dev));
574 }
575
576 /*
577 * ste_start: [ifnet interface function]
578 *
579 * Start packet transmission on the interface.
580 */
581 static void
582 ste_start(struct ifnet *ifp)
583 {
584 struct ste_softc *sc = ifp->if_softc;
585 struct mbuf *m0, *m;
586 struct ste_descsoft *ds;
587 struct ste_tfd *tfd;
588 bus_dmamap_t dmamap;
589 int error, olasttx, nexttx, opending, seg, totlen;
590
591 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
592 return;
593
594 /*
595 * Remember the previous number of pending transmissions
596 * and the current last descriptor in the list.
597 */
598 opending = sc->sc_txpending;
599 olasttx = sc->sc_txlast;
600
601 /*
602 * Loop through the send queue, setting up transmit descriptors
603 * until we drain the queue, or use up all available transmit
604 * descriptors.
605 */
606 while (sc->sc_txpending < STE_NTXDESC) {
607 /*
608 * Grab a packet off the queue.
609 */
610 IFQ_POLL(&ifp->if_snd, m0);
611 if (m0 == NULL)
612 break;
613 m = NULL;
614
615 /*
616 * Get the last and next available transmit descriptor.
617 */
618 nexttx = STE_NEXTTX(sc->sc_txlast);
619 tfd = &sc->sc_txdescs[nexttx];
620 ds = &sc->sc_txsoft[nexttx];
621
622 dmamap = ds->ds_dmamap;
623
624 /*
625 * Load the DMA map. If this fails, the packet either
626 * didn't fit in the alloted number of segments, or we
627 * were short on resources. In this case, we'll copy
628 * and try again.
629 */
630 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
631 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
632 MGETHDR(m, M_DONTWAIT, MT_DATA);
633 if (m == NULL) {
634 printf("%s: unable to allocate Tx mbuf\n",
635 device_xname(&sc->sc_dev));
636 break;
637 }
638 if (m0->m_pkthdr.len > MHLEN) {
639 MCLGET(m, M_DONTWAIT);
640 if ((m->m_flags & M_EXT) == 0) {
641 printf("%s: unable to allocate Tx "
642 "cluster\n", device_xname(&sc->sc_dev));
643 m_freem(m);
644 break;
645 }
646 }
647 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
648 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
649 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
650 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
651 if (error) {
652 printf("%s: unable to load Tx buffer, "
653 "error = %d\n", device_xname(&sc->sc_dev), error);
654 break;
655 }
656 }
657
658 IFQ_DEQUEUE(&ifp->if_snd, m0);
659 if (m != NULL) {
660 m_freem(m0);
661 m0 = m;
662 }
663
664 /*
665 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
666 */
667
668 /* Sync the DMA map. */
669 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
670 BUS_DMASYNC_PREWRITE);
671
672 /* Initialize the fragment list. */
673 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
674 tfd->tfd_frags[seg].frag_addr =
675 htole32(dmamap->dm_segs[seg].ds_addr);
676 tfd->tfd_frags[seg].frag_len =
677 htole32(dmamap->dm_segs[seg].ds_len);
678 totlen += dmamap->dm_segs[seg].ds_len;
679 }
680 tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
681
682 /* Initialize the descriptor. */
683 tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
684 tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
685
686 /* Sync the descriptor. */
687 STE_CDTXSYNC(sc, nexttx,
688 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
689
690 /*
691 * Store a pointer to the packet so we can free it later,
692 * and remember what txdirty will be once the packet is
693 * done.
694 */
695 ds->ds_mbuf = m0;
696
697 /* Advance the tx pointer. */
698 sc->sc_txpending++;
699 sc->sc_txlast = nexttx;
700
701 #if NBPFILTER > 0
702 /*
703 * Pass the packet to any BPF listeners.
704 */
705 if (ifp->if_bpf)
706 bpf_mtap(ifp->if_bpf, m0);
707 #endif /* NBPFILTER > 0 */
708 }
709
710 if (sc->sc_txpending == STE_NTXDESC) {
711 /* No more slots left; notify upper layer. */
712 ifp->if_flags |= IFF_OACTIVE;
713 }
714
715 if (sc->sc_txpending != opending) {
716 /*
717 * We enqueued packets. If the transmitter was idle,
718 * reset the txdirty pointer.
719 */
720 if (opending == 0)
721 sc->sc_txdirty = STE_NEXTTX(olasttx);
722
723 /*
724 * Cause a descriptor interrupt to happen on the
725 * last packet we enqueued, and also cause the
726 * DMA engine to wait after is has finished processing
727 * it.
728 */
729 sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
730 sc->sc_txdescs[sc->sc_txlast].tfd_control |=
731 htole32(TFD_TxDMAIndicate);
732 STE_CDTXSYNC(sc, sc->sc_txlast,
733 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
734
735 /*
736 * Link up the new chain of descriptors to the
737 * last.
738 */
739 sc->sc_txdescs[olasttx].tfd_next =
740 htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
741 STE_CDTXSYNC(sc, olasttx,
742 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
743
744 /*
745 * Kick the transmit DMA logic. Note that since we're
746 * using auto-polling, reading the Tx desc pointer will
747 * give it the nudge it needs to get going.
748 */
749 if (bus_space_read_4(sc->sc_st, sc->sc_sh,
750 STE_TxDMAListPtr) == 0) {
751 bus_space_write_4(sc->sc_st, sc->sc_sh,
752 STE_DMACtrl, DC_TxDMAHalt);
753 ste_dmahalt_wait(sc);
754 bus_space_write_4(sc->sc_st, sc->sc_sh,
755 STE_TxDMAListPtr,
756 STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
757 bus_space_write_4(sc->sc_st, sc->sc_sh,
758 STE_DMACtrl, DC_TxDMAResume);
759 }
760
761 /* Set a watchdog timer in case the chip flakes out. */
762 ifp->if_timer = 5;
763 }
764 }
765
766 /*
767 * ste_watchdog: [ifnet interface function]
768 *
769 * Watchdog timer handler.
770 */
771 static void
772 ste_watchdog(struct ifnet *ifp)
773 {
774 struct ste_softc *sc = ifp->if_softc;
775
776 printf("%s: device timeout\n", device_xname(&sc->sc_dev));
777 ifp->if_oerrors++;
778
779 ste_txintr(sc);
780 ste_rxintr(sc);
781 (void) ste_init(ifp);
782
783 /* Try to get more packets going. */
784 ste_start(ifp);
785 }
786
787 /*
788 * ste_ioctl: [ifnet interface function]
789 *
790 * Handle control requests from the operator.
791 */
792 static int
793 ste_ioctl(struct ifnet *ifp, u_long cmd, void *data)
794 {
795 struct ste_softc *sc = ifp->if_softc;
796 int s, error;
797
798 s = splnet();
799
800 error = ether_ioctl(ifp, cmd, data);
801 if (error == ENETRESET) {
802 /*
803 * Multicast list has changed; set the hardware filter
804 * accordingly.
805 */
806 if (ifp->if_flags & IFF_RUNNING)
807 ste_set_filter(sc);
808 error = 0;
809 }
810
811 /* Try to get more packets going. */
812 ste_start(ifp);
813
814 splx(s);
815 return (error);
816 }
817
818 /*
819 * ste_intr:
820 *
821 * Interrupt service routine.
822 */
823 static int
824 ste_intr(void *arg)
825 {
826 struct ste_softc *sc = arg;
827 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
828 uint16_t isr;
829 uint8_t txstat;
830 int wantinit;
831
832 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
833 IS_InterruptStatus) == 0)
834 return (0);
835
836 for (wantinit = 0; wantinit == 0;) {
837 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
838 if ((isr & sc->sc_IntEnable) == 0)
839 break;
840
841 /* Receive interrupts. */
842 if (isr & IE_RxDMAComplete)
843 ste_rxintr(sc);
844
845 /* Transmit interrupts. */
846 if (isr & (IE_TxDMAComplete|IE_TxComplete))
847 ste_txintr(sc);
848
849 /* Statistics overflow. */
850 if (isr & IE_UpdateStats)
851 ste_stats_update(sc);
852
853 /* Transmission errors. */
854 if (isr & IE_TxComplete) {
855 for (;;) {
856 txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
857 STE_TxStatus);
858 if ((txstat & TS_TxComplete) == 0)
859 break;
860 if (txstat & TS_TxUnderrun) {
861 sc->sc_txthresh += 32;
862 if (sc->sc_txthresh > 0x1ffc)
863 sc->sc_txthresh = 0x1ffc;
864 printf("%s: transmit underrun, new "
865 "threshold: %d bytes\n",
866 device_xname(&sc->sc_dev),
867 sc->sc_txthresh);
868 ste_reset(sc, AC_TxReset | AC_DMA |
869 AC_FIFO | AC_Network);
870 ste_setthresh(sc);
871 bus_space_write_1(sc->sc_st, sc->sc_sh,
872 STE_TxDMAPollPeriod, 127);
873 ste_txrestart(sc,
874 bus_space_read_1(sc->sc_st,
875 sc->sc_sh, STE_TxFrameId));
876 }
877 if (txstat & TS_TxReleaseError) {
878 printf("%s: Tx FIFO release error\n",
879 device_xname(&sc->sc_dev));
880 wantinit = 1;
881 }
882 if (txstat & TS_MaxCollisions) {
883 printf("%s: excessive collisions\n",
884 device_xname(&sc->sc_dev));
885 wantinit = 1;
886 }
887 if (txstat & TS_TxStatusOverflow) {
888 printf("%s: status overflow\n",
889 device_xname(&sc->sc_dev));
890 wantinit = 1;
891 }
892 bus_space_write_2(sc->sc_st, sc->sc_sh,
893 STE_TxStatus, 0);
894 }
895 }
896
897 /* Host interface errors. */
898 if (isr & IE_HostError) {
899 printf("%s: Host interface error\n",
900 device_xname(&sc->sc_dev));
901 wantinit = 1;
902 }
903 }
904
905 if (wantinit)
906 ste_init(ifp);
907
908 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
909 sc->sc_IntEnable);
910
911 /* Try to get more packets going. */
912 ste_start(ifp);
913
914 return (1);
915 }
916
917 /*
918 * ste_txintr:
919 *
920 * Helper; handle transmit interrupts.
921 */
922 static void
923 ste_txintr(struct ste_softc *sc)
924 {
925 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
926 struct ste_descsoft *ds;
927 uint32_t control;
928 int i;
929
930 ifp->if_flags &= ~IFF_OACTIVE;
931
932 /*
933 * Go through our Tx list and free mbufs for those
934 * frames which have been transmitted.
935 */
936 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
937 i = STE_NEXTTX(i), sc->sc_txpending--) {
938 ds = &sc->sc_txsoft[i];
939
940 STE_CDTXSYNC(sc, i,
941 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
942
943 control = le32toh(sc->sc_txdescs[i].tfd_control);
944 if ((control & TFD_TxDMAComplete) == 0)
945 break;
946
947 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
948 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
949 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
950 m_freem(ds->ds_mbuf);
951 ds->ds_mbuf = NULL;
952 }
953
954 /* Update the dirty transmit buffer pointer. */
955 sc->sc_txdirty = i;
956
957 /*
958 * If there are no more pending transmissions, cancel the watchdog
959 * timer.
960 */
961 if (sc->sc_txpending == 0)
962 ifp->if_timer = 0;
963 }
964
965 /*
966 * ste_rxintr:
967 *
968 * Helper; handle receive interrupts.
969 */
970 static void
971 ste_rxintr(struct ste_softc *sc)
972 {
973 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
974 struct ste_descsoft *ds;
975 struct mbuf *m;
976 uint32_t status;
977 int i, len;
978
979 for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
980 ds = &sc->sc_rxsoft[i];
981
982 STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
983
984 status = le32toh(sc->sc_rxdescs[i].rfd_status);
985
986 if ((status & RFD_RxDMAComplete) == 0)
987 break;
988
989 /*
990 * If the packet had an error, simply recycle the
991 * buffer. Note, we count the error later in the
992 * periodic stats update.
993 */
994 if (status & RFD_RxFrameError) {
995 STE_INIT_RXDESC(sc, i);
996 continue;
997 }
998
999 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1000 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1001
1002 /*
1003 * No errors; receive the packet. Note, we have
1004 * configured the chip to not include the CRC at
1005 * the end of the packet.
1006 */
1007 len = RFD_RxDMAFrameLen(status);
1008
1009 /*
1010 * If the packet is small enough to fit in a
1011 * single header mbuf, allocate one and copy
1012 * the data into it. This greatly reduces
1013 * memory consumption when we receive lots
1014 * of small packets.
1015 *
1016 * Otherwise, we add a new buffer to the receive
1017 * chain. If this fails, we drop the packet and
1018 * recycle the old buffer.
1019 */
1020 if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
1021 MGETHDR(m, M_DONTWAIT, MT_DATA);
1022 if (m == NULL)
1023 goto dropit;
1024 m->m_data += 2;
1025 memcpy(mtod(m, void *),
1026 mtod(ds->ds_mbuf, void *), len);
1027 STE_INIT_RXDESC(sc, i);
1028 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1029 ds->ds_dmamap->dm_mapsize,
1030 BUS_DMASYNC_PREREAD);
1031 } else {
1032 m = ds->ds_mbuf;
1033 if (ste_add_rxbuf(sc, i) != 0) {
1034 dropit:
1035 ifp->if_ierrors++;
1036 STE_INIT_RXDESC(sc, i);
1037 bus_dmamap_sync(sc->sc_dmat,
1038 ds->ds_dmamap, 0,
1039 ds->ds_dmamap->dm_mapsize,
1040 BUS_DMASYNC_PREREAD);
1041 continue;
1042 }
1043 }
1044
1045 m->m_pkthdr.rcvif = ifp;
1046 m->m_pkthdr.len = m->m_len = len;
1047
1048 #if NBPFILTER > 0
1049 /*
1050 * Pass this up to any BPF listeners, but only
1051 * pass if up the stack if it's for us.
1052 */
1053 if (ifp->if_bpf)
1054 bpf_mtap(ifp->if_bpf, m);
1055 #endif /* NBPFILTER > 0 */
1056
1057 /* Pass it on. */
1058 (*ifp->if_input)(ifp, m);
1059 }
1060
1061 /* Update the receive pointer. */
1062 sc->sc_rxptr = i;
1063 }
1064
1065 /*
1066 * ste_tick:
1067 *
1068 * One second timer, used to tick the MII.
1069 */
1070 static void
1071 ste_tick(void *arg)
1072 {
1073 struct ste_softc *sc = arg;
1074 int s;
1075
1076 s = splnet();
1077 mii_tick(&sc->sc_mii);
1078 ste_stats_update(sc);
1079 splx(s);
1080
1081 callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1082 }
1083
1084 /*
1085 * ste_stats_update:
1086 *
1087 * Read the ST-201 statistics counters.
1088 */
1089 static void
1090 ste_stats_update(struct ste_softc *sc)
1091 {
1092 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1093 bus_space_tag_t st = sc->sc_st;
1094 bus_space_handle_t sh = sc->sc_sh;
1095
1096 (void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
1097 (void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
1098
1099 (void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
1100 (void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
1101
1102 ifp->if_opackets +=
1103 (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
1104 ifp->if_ipackets +=
1105 (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
1106
1107 ifp->if_collisions +=
1108 (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
1109 (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
1110 (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
1111
1112 (void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
1113
1114 ifp->if_ierrors +=
1115 (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
1116
1117 ifp->if_oerrors +=
1118 (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
1119 (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
1120 bus_space_read_1(st, sh, STE_CarrierSenseErrors);
1121
1122 (void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
1123 (void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
1124 (void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
1125 (void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
1126 }
1127
1128 /*
1129 * ste_reset:
1130 *
1131 * Perform a soft reset on the ST-201.
1132 */
1133 static void
1134 ste_reset(struct ste_softc *sc, u_int32_t rstbits)
1135 {
1136 uint32_t ac;
1137 int i;
1138
1139 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
1140
1141 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
1142
1143 delay(50000);
1144
1145 for (i = 0; i < STE_TIMEOUT; i++) {
1146 delay(1000);
1147 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
1148 AC_ResetBusy) == 0)
1149 break;
1150 }
1151
1152 if (i == STE_TIMEOUT)
1153 printf("%s: reset failed to complete\n", device_xname(&sc->sc_dev));
1154
1155 delay(1000);
1156 }
1157
1158 /*
1159 * ste_setthresh:
1160 *
1161 * set the various transmit threshold registers
1162 */
1163 static void
1164 ste_setthresh(struct ste_softc *sc)
1165 {
1166 /* set the TX threhold */
1167 bus_space_write_2(sc->sc_st, sc->sc_sh,
1168 STE_TxStartThresh, sc->sc_txthresh);
1169 /* Urgent threshold: set to sc_txthresh / 2 */
1170 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
1171 sc->sc_txthresh >> 6);
1172 /* Burst threshold: use default value (256 bytes) */
1173 }
1174
1175 /*
1176 * restart TX at the given frame ID in the transmitter ring
1177 */
1178 static void
1179 ste_txrestart(struct ste_softc *sc, u_int8_t id)
1180 {
1181 u_int32_t control;
1182
1183 STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1184 control = le32toh(sc->sc_txdescs[id].tfd_control);
1185 control &= ~TFD_TxDMAComplete;
1186 sc->sc_txdescs[id].tfd_control = htole32(control);
1187 STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1188
1189 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
1190 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
1191 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
1192 ste_dmahalt_wait(sc);
1193 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
1194 STE_CDTXADDR(sc, id));
1195 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
1196 }
1197
1198 /*
1199 * ste_init: [ ifnet interface function ]
1200 *
1201 * Initialize the interface. Must be called at splnet().
1202 */
1203 static int
1204 ste_init(struct ifnet *ifp)
1205 {
1206 struct ste_softc *sc = ifp->if_softc;
1207 bus_space_tag_t st = sc->sc_st;
1208 bus_space_handle_t sh = sc->sc_sh;
1209 struct ste_descsoft *ds;
1210 int i, error = 0;
1211
1212 /*
1213 * Cancel any pending I/O.
1214 */
1215 ste_stop(ifp, 0);
1216
1217 /*
1218 * Reset the chip to a known state.
1219 */
1220 ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
1221 AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
1222
1223 /*
1224 * Initialize the transmit descriptor ring.
1225 */
1226 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1227 sc->sc_txpending = 0;
1228 sc->sc_txdirty = 0;
1229 sc->sc_txlast = STE_NTXDESC - 1;
1230
1231 /*
1232 * Initialize the receive descriptor and receive job
1233 * descriptor rings.
1234 */
1235 for (i = 0; i < STE_NRXDESC; i++) {
1236 ds = &sc->sc_rxsoft[i];
1237 if (ds->ds_mbuf == NULL) {
1238 if ((error = ste_add_rxbuf(sc, i)) != 0) {
1239 printf("%s: unable to allocate or map rx "
1240 "buffer %d, error = %d\n",
1241 device_xname(&sc->sc_dev), i, error);
1242 /*
1243 * XXX Should attempt to run with fewer receive
1244 * XXX buffers instead of just failing.
1245 */
1246 ste_rxdrain(sc);
1247 goto out;
1248 }
1249 } else
1250 STE_INIT_RXDESC(sc, i);
1251 }
1252 sc->sc_rxptr = 0;
1253
1254 /* Set the station address. */
1255 for (i = 0; i < ETHER_ADDR_LEN; i++)
1256 bus_space_write_1(st, sh, STE_StationAddress0 + 1,
1257 CLLADDR(ifp->if_sadl)[i]);
1258
1259 /* Set up the receive filter. */
1260 ste_set_filter(sc);
1261
1262 /*
1263 * Give the receive ring to the chip.
1264 */
1265 bus_space_write_4(st, sh, STE_RxDMAListPtr,
1266 STE_CDRXADDR(sc, sc->sc_rxptr));
1267
1268 /*
1269 * We defer giving the transmit ring to the chip until we
1270 * transmit the first packet.
1271 */
1272
1273 /*
1274 * Initialize the Tx auto-poll period. It's OK to make this number
1275 * large (127 is the max) -- we explicitly kick the transmit engine
1276 * when there's actually a packet. We are using auto-polling only
1277 * to make the interface to the transmit engine not suck.
1278 */
1279 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
1280
1281 /* ..and the Rx auto-poll period. */
1282 bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
1283
1284 /* Initialize the Tx start threshold. */
1285 ste_setthresh(sc);
1286
1287 /* Set the FIFO release threshold to 512 bytes. */
1288 bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
1289
1290 /* Set maximum packet size for VLAN. */
1291 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1292 bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN + 4);
1293 else
1294 bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN);
1295
1296 /*
1297 * Initialize the interrupt mask.
1298 */
1299 sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1300 IE_TxDMAComplete | IE_RxDMAComplete;
1301
1302 bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
1303 bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
1304
1305 /*
1306 * Start the receive DMA engine.
1307 */
1308 bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
1309
1310 /*
1311 * Initialize MacCtrl0 -- do it before setting the media,
1312 * as setting the media will actually program the register.
1313 */
1314 sc->sc_MacCtrl0 = MC0_IFSSelect(0);
1315 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1316 sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
1317
1318 /*
1319 * Set the current media.
1320 */
1321 if ((error = ether_mediachange(ifp)) != 0)
1322 goto out;
1323
1324 /*
1325 * Start the MAC.
1326 */
1327 bus_space_write_2(st, sh, STE_MacCtrl1,
1328 MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
1329
1330 /*
1331 * Start the one second MII clock.
1332 */
1333 callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1334
1335 /*
1336 * ...all done!
1337 */
1338 ifp->if_flags |= IFF_RUNNING;
1339 ifp->if_flags &= ~IFF_OACTIVE;
1340
1341 out:
1342 if (error)
1343 printf("%s: interface not running\n", device_xname(&sc->sc_dev));
1344 return (error);
1345 }
1346
1347 /*
1348 * ste_drain:
1349 *
1350 * Drain the receive queue.
1351 */
1352 static void
1353 ste_rxdrain(struct ste_softc *sc)
1354 {
1355 struct ste_descsoft *ds;
1356 int i;
1357
1358 for (i = 0; i < STE_NRXDESC; i++) {
1359 ds = &sc->sc_rxsoft[i];
1360 if (ds->ds_mbuf != NULL) {
1361 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1362 m_freem(ds->ds_mbuf);
1363 ds->ds_mbuf = NULL;
1364 }
1365 }
1366 }
1367
1368 /*
1369 * ste_stop: [ ifnet interface function ]
1370 *
1371 * Stop transmission on the interface.
1372 */
1373 static void
1374 ste_stop(struct ifnet *ifp, int disable)
1375 {
1376 struct ste_softc *sc = ifp->if_softc;
1377 struct ste_descsoft *ds;
1378 int i;
1379
1380 /*
1381 * Stop the one second clock.
1382 */
1383 callout_stop(&sc->sc_tick_ch);
1384
1385 /* Down the MII. */
1386 mii_down(&sc->sc_mii);
1387
1388 /*
1389 * Disable interrupts.
1390 */
1391 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
1392
1393 /*
1394 * Stop receiver, transmitter, and stats update.
1395 */
1396 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
1397 MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
1398
1399 /*
1400 * Stop the transmit and receive DMA.
1401 */
1402 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
1403 DC_RxDMAHalt | DC_TxDMAHalt);
1404 ste_dmahalt_wait(sc);
1405
1406 /*
1407 * Release any queued transmit buffers.
1408 */
1409 for (i = 0; i < STE_NTXDESC; i++) {
1410 ds = &sc->sc_txsoft[i];
1411 if (ds->ds_mbuf != NULL) {
1412 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1413 m_freem(ds->ds_mbuf);
1414 ds->ds_mbuf = NULL;
1415 }
1416 }
1417
1418 /*
1419 * Mark the interface down and cancel the watchdog timer.
1420 */
1421 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1422 ifp->if_timer = 0;
1423
1424 if (disable)
1425 ste_rxdrain(sc);
1426 }
1427
1428 static int
1429 ste_eeprom_wait(struct ste_softc *sc)
1430 {
1431 int i;
1432
1433 for (i = 0; i < STE_TIMEOUT; i++) {
1434 delay(1000);
1435 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
1436 EC_EepromBusy) == 0)
1437 return (0);
1438 }
1439 return (1);
1440 }
1441
1442 /*
1443 * ste_read_eeprom:
1444 *
1445 * Read data from the serial EEPROM.
1446 */
1447 static void
1448 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
1449 {
1450
1451 if (ste_eeprom_wait(sc))
1452 printf("%s: EEPROM failed to come ready\n",
1453 device_xname(&sc->sc_dev));
1454
1455 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
1456 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
1457 if (ste_eeprom_wait(sc))
1458 printf("%s: EEPROM read timed out\n",
1459 device_xname(&sc->sc_dev));
1460 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
1461 }
1462
1463 /*
1464 * ste_add_rxbuf:
1465 *
1466 * Add a receive buffer to the indicated descriptor.
1467 */
1468 static int
1469 ste_add_rxbuf(struct ste_softc *sc, int idx)
1470 {
1471 struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
1472 struct mbuf *m;
1473 int error;
1474
1475 MGETHDR(m, M_DONTWAIT, MT_DATA);
1476 if (m == NULL)
1477 return (ENOBUFS);
1478
1479 MCLGET(m, M_DONTWAIT);
1480 if ((m->m_flags & M_EXT) == 0) {
1481 m_freem(m);
1482 return (ENOBUFS);
1483 }
1484
1485 if (ds->ds_mbuf != NULL)
1486 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1487
1488 ds->ds_mbuf = m;
1489
1490 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1491 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1492 BUS_DMA_READ|BUS_DMA_NOWAIT);
1493 if (error) {
1494 printf("%s: can't load rx DMA map %d, error = %d\n",
1495 device_xname(&sc->sc_dev), idx, error);
1496 panic("ste_add_rxbuf"); /* XXX */
1497 }
1498
1499 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1500 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1501
1502 STE_INIT_RXDESC(sc, idx);
1503
1504 return (0);
1505 }
1506
1507 /*
1508 * ste_set_filter:
1509 *
1510 * Set up the receive filter.
1511 */
1512 static void
1513 ste_set_filter(struct ste_softc *sc)
1514 {
1515 struct ethercom *ec = &sc->sc_ethercom;
1516 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1517 struct ether_multi *enm;
1518 struct ether_multistep step;
1519 uint32_t crc;
1520 uint16_t mchash[4];
1521
1522 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1523 if (ifp->if_flags & IFF_BROADCAST)
1524 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1525
1526 if (ifp->if_flags & IFF_PROMISC) {
1527 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1528 goto allmulti;
1529 }
1530
1531 /*
1532 * Set up the multicast address filter by passing all multicast
1533 * addresses through a CRC generator, and then using the low-order
1534 * 6 bits as an index into the 64 bit multicast hash table. The
1535 * high order bits select the register, while the rest of the bits
1536 * select the bit within the register.
1537 */
1538
1539 memset(mchash, 0, sizeof(mchash));
1540
1541 ETHER_FIRST_MULTI(step, ec, enm);
1542 if (enm == NULL)
1543 goto done;
1544
1545 while (enm != NULL) {
1546 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1547 /*
1548 * We must listen to a range of multicast addresses.
1549 * For now, just accept all multicasts, rather than
1550 * trying to set only those filter bits needed to match
1551 * the range. (At this time, the only use of address
1552 * ranges is for IP multicast routing, for which the
1553 * range is big enough to require all bits set.)
1554 */
1555 goto allmulti;
1556 }
1557
1558 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1559
1560 /* Just want the 6 least significant bits. */
1561 crc &= 0x3f;
1562
1563 /* Set the corresponding bit in the hash table. */
1564 mchash[crc >> 4] |= 1 << (crc & 0xf);
1565
1566 ETHER_NEXT_MULTI(step, enm);
1567 }
1568
1569 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1570
1571 ifp->if_flags &= ~IFF_ALLMULTI;
1572 goto done;
1573
1574 allmulti:
1575 ifp->if_flags |= IFF_ALLMULTI;
1576 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1577
1578 done:
1579 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1580 /*
1581 * Program the multicast hash table.
1582 */
1583 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
1584 mchash[0]);
1585 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
1586 mchash[1]);
1587 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
1588 mchash[2]);
1589 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
1590 mchash[3]);
1591 }
1592
1593 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
1594 sc->sc_ReceiveMode);
1595 }
1596
1597 /*
1598 * ste_mii_readreg: [mii interface function]
1599 *
1600 * Read a PHY register on the MII of the ST-201.
1601 */
1602 static int
1603 ste_mii_readreg(device_t self, int phy, int reg)
1604 {
1605
1606 return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
1607 }
1608
1609 /*
1610 * ste_mii_writereg: [mii interface function]
1611 *
1612 * Write a PHY register on the MII of the ST-201.
1613 */
1614 static void
1615 ste_mii_writereg(device_t self, int phy, int reg, int val)
1616 {
1617
1618 mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
1619 }
1620
1621 /*
1622 * ste_mii_statchg: [mii interface function]
1623 *
1624 * Callback from MII layer when media changes.
1625 */
1626 static void
1627 ste_mii_statchg(device_t self)
1628 {
1629 struct ste_softc *sc = device_private(self);
1630
1631 if (sc->sc_mii.mii_media_active & IFM_FDX)
1632 sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
1633 else
1634 sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
1635
1636 /* XXX 802.1x flow-control? */
1637
1638 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
1639 }
1640
1641 /*
1642 * ste_mii_bitbang_read: [mii bit-bang interface function]
1643 *
1644 * Read the MII serial port for the MII bit-bang module.
1645 */
1646 static uint32_t
1647 ste_mii_bitbang_read(device_t self)
1648 {
1649 struct ste_softc *sc = device_private(self);
1650
1651 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
1652 }
1653
1654 /*
1655 * ste_mii_bitbang_write: [mii big-bang interface function]
1656 *
1657 * Write the MII serial port for the MII bit-bang module.
1658 */
1659 static void
1660 ste_mii_bitbang_write(device_t self, uint32_t val)
1661 {
1662 struct ste_softc *sc = device_private(self);
1663
1664 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
1665 }
1666