Home | History | Annotate | Line # | Download | only in pci
if_ste.c revision 1.37
      1 /*	$NetBSD: if_ste.c,v 1.37 2009/05/06 09:25:16 cegger Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Device driver for the Sundance Tech. ST-201 10/100
     34  * Ethernet controller.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.37 2009/05/06 09:25:16 cegger Exp $");
     39 
     40 #include "bpfilter.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/callout.h>
     45 #include <sys/mbuf.h>
     46 #include <sys/malloc.h>
     47 #include <sys/kernel.h>
     48 #include <sys/socket.h>
     49 #include <sys/ioctl.h>
     50 #include <sys/errno.h>
     51 #include <sys/device.h>
     52 #include <sys/queue.h>
     53 
     54 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     55 
     56 #include <net/if.h>
     57 #include <net/if_dl.h>
     58 #include <net/if_media.h>
     59 #include <net/if_ether.h>
     60 
     61 #if NBPFILTER > 0
     62 #include <net/bpf.h>
     63 #endif
     64 
     65 #include <sys/bus.h>
     66 #include <sys/intr.h>
     67 
     68 #include <dev/mii/mii.h>
     69 #include <dev/mii/miivar.h>
     70 #include <dev/mii/mii_bitbang.h>
     71 
     72 #include <dev/pci/pcireg.h>
     73 #include <dev/pci/pcivar.h>
     74 #include <dev/pci/pcidevs.h>
     75 
     76 #include <dev/pci/if_stereg.h>
     77 
     78 /*
     79  * Transmit descriptor list size.
     80  */
     81 #define	STE_NTXDESC		256
     82 #define	STE_NTXDESC_MASK	(STE_NTXDESC - 1)
     83 #define	STE_NEXTTX(x)		(((x) + 1) & STE_NTXDESC_MASK)
     84 
     85 /*
     86  * Receive descriptor list size.
     87  */
     88 #define	STE_NRXDESC		128
     89 #define	STE_NRXDESC_MASK	(STE_NRXDESC - 1)
     90 #define	STE_NEXTRX(x)		(((x) + 1) & STE_NRXDESC_MASK)
     91 
     92 /*
     93  * Control structures are DMA'd to the ST-201 chip.  We allocate them in
     94  * a single clump that maps to a single DMA segment to make several things
     95  * easier.
     96  */
     97 struct ste_control_data {
     98 	/*
     99 	 * The transmit descriptors.
    100 	 */
    101 	struct ste_tfd scd_txdescs[STE_NTXDESC];
    102 
    103 	/*
    104 	 * The receive descriptors.
    105 	 */
    106 	struct ste_rfd scd_rxdescs[STE_NRXDESC];
    107 };
    108 
    109 #define	STE_CDOFF(x)	offsetof(struct ste_control_data, x)
    110 #define	STE_CDTXOFF(x)	STE_CDOFF(scd_txdescs[(x)])
    111 #define	STE_CDRXOFF(x)	STE_CDOFF(scd_rxdescs[(x)])
    112 
    113 /*
    114  * Software state for transmit and receive jobs.
    115  */
    116 struct ste_descsoft {
    117 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
    118 	bus_dmamap_t ds_dmamap;		/* our DMA map */
    119 };
    120 
    121 /*
    122  * Software state per device.
    123  */
    124 struct ste_softc {
    125 	struct device sc_dev;		/* generic device information */
    126 	bus_space_tag_t sc_st;		/* bus space tag */
    127 	bus_space_handle_t sc_sh;	/* bus space handle */
    128 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    129 	struct ethercom sc_ethercom;	/* ethernet common data */
    130 	void *sc_sdhook;		/* shutdown hook */
    131 
    132 	void *sc_ih;			/* interrupt cookie */
    133 
    134 	struct mii_data sc_mii;		/* MII/media information */
    135 
    136 	callout_t sc_tick_ch;		/* tick callout */
    137 
    138 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    139 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    140 
    141 	/*
    142 	 * Software state for transmit and receive descriptors.
    143 	 */
    144 	struct ste_descsoft sc_txsoft[STE_NTXDESC];
    145 	struct ste_descsoft sc_rxsoft[STE_NRXDESC];
    146 
    147 	/*
    148 	 * Control data structures.
    149 	 */
    150 	struct ste_control_data *sc_control_data;
    151 #define	sc_txdescs	sc_control_data->scd_txdescs
    152 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    153 
    154 	int	sc_txpending;		/* number of Tx requests pending */
    155 	int	sc_txdirty;		/* first dirty Tx descriptor */
    156 	int	sc_txlast;		/* last used Tx descriptor */
    157 
    158 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    159 
    160 	int	sc_txthresh;		/* Tx threshold */
    161 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
    162 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
    163 	uint16_t sc_MacCtrl0;		/* prototype MacCtrl0 register */
    164 	uint8_t	sc_ReceiveMode;		/* prototype ReceiveMode register */
    165 };
    166 
    167 #define	STE_CDTXADDR(sc, x)	((sc)->sc_cddma + STE_CDTXOFF((x)))
    168 #define	STE_CDRXADDR(sc, x)	((sc)->sc_cddma + STE_CDRXOFF((x)))
    169 
    170 #define	STE_CDTXSYNC(sc, x, ops)					\
    171 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    172 	    STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
    173 
    174 #define	STE_CDRXSYNC(sc, x, ops)					\
    175 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    176 	    STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
    177 
    178 #define	STE_INIT_RXDESC(sc, x)						\
    179 do {									\
    180 	struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
    181 	struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)];			\
    182 	struct mbuf *__m = __ds->ds_mbuf;				\
    183 									\
    184 	/*								\
    185 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    186 	 * so that the payload after the Ethernet header is aligned	\
    187 	 * to a 4-byte boundary.					\
    188 	 */								\
    189 	__m->m_data = __m->m_ext.ext_buf + 2;				\
    190 	__rfd->rfd_frag.frag_addr =					\
    191 	    htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2);		\
    192 	__rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST);	\
    193 	__rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x))));	\
    194 	__rfd->rfd_status = 0;						\
    195 	STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    196 } while (/*CONSTCOND*/0)
    197 
    198 #define STE_TIMEOUT 1000
    199 
    200 static void	ste_start(struct ifnet *);
    201 static void	ste_watchdog(struct ifnet *);
    202 static int	ste_ioctl(struct ifnet *, u_long, void *);
    203 static int	ste_init(struct ifnet *);
    204 static void	ste_stop(struct ifnet *, int);
    205 
    206 static void	ste_shutdown(void *);
    207 
    208 static void	ste_reset(struct ste_softc *, u_int32_t);
    209 static void	ste_setthresh(struct ste_softc *);
    210 static void	ste_txrestart(struct ste_softc *, u_int8_t);
    211 static void	ste_rxdrain(struct ste_softc *);
    212 static int	ste_add_rxbuf(struct ste_softc *, int);
    213 static void	ste_read_eeprom(struct ste_softc *, int, uint16_t *);
    214 static void	ste_tick(void *);
    215 
    216 static void	ste_stats_update(struct ste_softc *);
    217 
    218 static void	ste_set_filter(struct ste_softc *);
    219 
    220 static int	ste_intr(void *);
    221 static void	ste_txintr(struct ste_softc *);
    222 static void	ste_rxintr(struct ste_softc *);
    223 
    224 static int	ste_mii_readreg(device_t, int, int);
    225 static void	ste_mii_writereg(device_t, int, int, int);
    226 static void	ste_mii_statchg(device_t);
    227 
    228 static int	ste_match(device_t, cfdata_t, void *);
    229 static void	ste_attach(device_t, device_t, void *);
    230 
    231 int	ste_copy_small = 0;
    232 
    233 CFATTACH_DECL(ste, sizeof(struct ste_softc),
    234     ste_match, ste_attach, NULL, NULL);
    235 
    236 static uint32_t ste_mii_bitbang_read(device_t);
    237 static void	ste_mii_bitbang_write(device_t, uint32_t);
    238 
    239 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
    240 	ste_mii_bitbang_read,
    241 	ste_mii_bitbang_write,
    242 	{
    243 		PC_MgmtData,		/* MII_BIT_MDO */
    244 		PC_MgmtData,		/* MII_BIT_MDI */
    245 		PC_MgmtClk,		/* MII_BIT_MDC */
    246 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
    247 		0,			/* MII_BIT_DIR_PHY_HOST */
    248 	}
    249 };
    250 
    251 /*
    252  * Devices supported by this driver.
    253  */
    254 static const struct ste_product {
    255 	pci_vendor_id_t		ste_vendor;
    256 	pci_product_id_t	ste_product;
    257 	const char		*ste_name;
    258 } ste_products[] = {
    259 	{ PCI_VENDOR_SUNDANCETI, 	PCI_PRODUCT_SUNDANCETI_IP100A,
    260 	  "IC Plus Corp. IP00A 10/100 Fast Ethernet Adapter" },
    261 
    262 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST201,
    263 	  "Sundance ST-201 10/100 Ethernet" },
    264 
    265 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL1002,
    266 	  "D-Link DL-1002 10/100 Ethernet" },
    267 
    268 	{ 0,				0,
    269 	  NULL },
    270 };
    271 
    272 static const struct ste_product *
    273 ste_lookup(const struct pci_attach_args *pa)
    274 {
    275 	const struct ste_product *sp;
    276 
    277 	for (sp = ste_products; sp->ste_name != NULL; sp++) {
    278 		if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
    279 		    PCI_PRODUCT(pa->pa_id) == sp->ste_product)
    280 			return (sp);
    281 	}
    282 	return (NULL);
    283 }
    284 
    285 static int
    286 ste_match(device_t parent, cfdata_t cf, void *aux)
    287 {
    288 	struct pci_attach_args *pa = aux;
    289 
    290 	if (ste_lookup(pa) != NULL)
    291 		return (1);
    292 
    293 	return (0);
    294 }
    295 
    296 static void
    297 ste_attach(device_t parent, device_t self, void *aux)
    298 {
    299 	struct ste_softc *sc = device_private(self);
    300 	struct pci_attach_args *pa = aux;
    301 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    302 	pci_chipset_tag_t pc = pa->pa_pc;
    303 	pci_intr_handle_t ih;
    304 	const char *intrstr = NULL;
    305 	bus_space_tag_t iot, memt;
    306 	bus_space_handle_t ioh, memh;
    307 	bus_dma_segment_t seg;
    308 	int ioh_valid, memh_valid;
    309 	int i, rseg, error;
    310 	const struct ste_product *sp;
    311 	uint8_t enaddr[ETHER_ADDR_LEN];
    312 	uint16_t myea[ETHER_ADDR_LEN / 2];
    313 
    314 	callout_init(&sc->sc_tick_ch, 0);
    315 
    316 	sp = ste_lookup(pa);
    317 	if (sp == NULL) {
    318 		printf("\n");
    319 		panic("ste_attach: impossible");
    320 	}
    321 
    322 	printf(": %s\n", sp->ste_name);
    323 
    324 	/*
    325 	 * Map the device.
    326 	 */
    327 	ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
    328 	    PCI_MAPREG_TYPE_IO, 0,
    329 	    &iot, &ioh, NULL, NULL) == 0);
    330 	memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
    331 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    332 	    &memt, &memh, NULL, NULL) == 0);
    333 
    334 	if (memh_valid) {
    335 		sc->sc_st = memt;
    336 		sc->sc_sh = memh;
    337 	} else if (ioh_valid) {
    338 		sc->sc_st = iot;
    339 		sc->sc_sh = ioh;
    340 	} else {
    341 		aprint_error_dev(&sc->sc_dev, "unable to map device registers\n");
    342 		return;
    343 	}
    344 
    345 	sc->sc_dmat = pa->pa_dmat;
    346 
    347 	/* Enable bus mastering. */
    348 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    349 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    350 	    PCI_COMMAND_MASTER_ENABLE);
    351 
    352 	/* power up chip */
    353 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
    354 	    NULL)) && error != EOPNOTSUPP) {
    355 		aprint_error_dev(&sc->sc_dev, "cannot activate %d\n",
    356 		    error);
    357 		return;
    358 	}
    359 
    360 	/*
    361 	 * Map and establish our interrupt.
    362 	 */
    363 	if (pci_intr_map(pa, &ih)) {
    364 		aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
    365 		return;
    366 	}
    367 	intrstr = pci_intr_string(pc, ih);
    368 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
    369 	if (sc->sc_ih == NULL) {
    370 		aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
    371 		if (intrstr != NULL)
    372 			printf(" at %s", intrstr);
    373 		printf("\n");
    374 		return;
    375 	}
    376 	printf("%s: interrupting at %s\n", device_xname(&sc->sc_dev), intrstr);
    377 
    378 	/*
    379 	 * Allocate the control data structures, and create and load the
    380 	 * DMA map for it.
    381 	 */
    382 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    383 	    sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    384 	    0)) != 0) {
    385 		aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n",
    386 		    error);
    387 		goto fail_0;
    388 	}
    389 
    390 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    391 	    sizeof(struct ste_control_data), (void **)&sc->sc_control_data,
    392 	    BUS_DMA_COHERENT)) != 0) {
    393 		aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
    394 		    error);
    395 		goto fail_1;
    396 	}
    397 
    398 	if ((error = bus_dmamap_create(sc->sc_dmat,
    399 	    sizeof(struct ste_control_data), 1,
    400 	    sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    401 		aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
    402 		    "error = %d\n", error);
    403 		goto fail_2;
    404 	}
    405 
    406 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    407 	    sc->sc_control_data, sizeof(struct ste_control_data), NULL,
    408 	    0)) != 0) {
    409 		aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
    410 		    error);
    411 		goto fail_3;
    412 	}
    413 
    414 	/*
    415 	 * Create the transmit buffer DMA maps.
    416 	 */
    417 	for (i = 0; i < STE_NTXDESC; i++) {
    418 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    419 		    STE_NTXFRAGS, MCLBYTES, 0, 0,
    420 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
    421 			aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
    422 			    "error = %d\n", i, error);
    423 			goto fail_4;
    424 		}
    425 	}
    426 
    427 	/*
    428 	 * Create the receive buffer DMA maps.
    429 	 */
    430 	for (i = 0; i < STE_NRXDESC; i++) {
    431 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    432 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
    433 			aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
    434 			    "error = %d\n", i, error);
    435 			goto fail_5;
    436 		}
    437 		sc->sc_rxsoft[i].ds_mbuf = NULL;
    438 	}
    439 
    440 	/*
    441 	 * Reset the chip to a known state.
    442 	 */
    443 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
    444 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
    445 
    446 	/*
    447 	 * Read the Ethernet address from the EEPROM.
    448 	 */
    449 	for (i = 0; i < 3; i++) {
    450 		ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
    451 		myea[i] = le16toh(myea[i]);
    452 	}
    453 	memcpy(enaddr, myea, sizeof(enaddr));
    454 
    455 	printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
    456 	    ether_sprintf(enaddr));
    457 
    458 	/*
    459 	 * Initialize our media structures and probe the MII.
    460 	 */
    461 	sc->sc_mii.mii_ifp = ifp;
    462 	sc->sc_mii.mii_readreg = ste_mii_readreg;
    463 	sc->sc_mii.mii_writereg = ste_mii_writereg;
    464 	sc->sc_mii.mii_statchg = ste_mii_statchg;
    465 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
    466 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
    467 	    ether_mediastatus);
    468 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    469 	    MII_OFFSET_ANY, 0);
    470 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    471 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    472 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    473 	} else
    474 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    475 
    476 	ifp = &sc->sc_ethercom.ec_if;
    477 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
    478 	ifp->if_softc = sc;
    479 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    480 	ifp->if_ioctl = ste_ioctl;
    481 	ifp->if_start = ste_start;
    482 	ifp->if_watchdog = ste_watchdog;
    483 	ifp->if_init = ste_init;
    484 	ifp->if_stop = ste_stop;
    485 	IFQ_SET_READY(&ifp->if_snd);
    486 
    487 	/*
    488 	 * Default the transmit threshold to 128 bytes.
    489 	 */
    490 	sc->sc_txthresh = 128;
    491 
    492 	/*
    493 	 * Disable MWI if the PCI layer tells us to.
    494 	 */
    495 	sc->sc_DMACtrl = 0;
    496 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
    497 		sc->sc_DMACtrl |= DC_MWIDisable;
    498 
    499 	/*
    500 	 * We can support 802.1Q VLAN-sized frames.
    501 	 */
    502 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    503 
    504 	/*
    505 	 * Attach the interface.
    506 	 */
    507 	if_attach(ifp);
    508 	ether_ifattach(ifp, enaddr);
    509 
    510 	/*
    511 	 * Make sure the interface is shutdown during reboot.
    512 	 */
    513 	sc->sc_sdhook = shutdownhook_establish(ste_shutdown, sc);
    514 	if (sc->sc_sdhook == NULL)
    515 		printf("%s: WARNING: unable to establish shutdown hook\n",
    516 		    device_xname(&sc->sc_dev));
    517 	return;
    518 
    519 	/*
    520 	 * Free any resources we've allocated during the failed attach
    521 	 * attempt.  Do this in reverse order and fall through.
    522 	 */
    523  fail_5:
    524 	for (i = 0; i < STE_NRXDESC; i++) {
    525 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
    526 			bus_dmamap_destroy(sc->sc_dmat,
    527 			    sc->sc_rxsoft[i].ds_dmamap);
    528 	}
    529  fail_4:
    530 	for (i = 0; i < STE_NTXDESC; i++) {
    531 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
    532 			bus_dmamap_destroy(sc->sc_dmat,
    533 			    sc->sc_txsoft[i].ds_dmamap);
    534 	}
    535 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    536  fail_3:
    537 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    538  fail_2:
    539 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    540 	    sizeof(struct ste_control_data));
    541  fail_1:
    542 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    543  fail_0:
    544 	return;
    545 }
    546 
    547 /*
    548  * ste_shutdown:
    549  *
    550  *	Make sure the interface is stopped at reboot time.
    551  */
    552 static void
    553 ste_shutdown(void *arg)
    554 {
    555 	struct ste_softc *sc = arg;
    556 
    557 	ste_stop(&sc->sc_ethercom.ec_if, 1);
    558 }
    559 
    560 static void
    561 ste_dmahalt_wait(struct ste_softc *sc)
    562 {
    563 	int i;
    564 
    565 	for (i = 0; i < STE_TIMEOUT; i++) {
    566 		delay(2);
    567 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
    568 		     DC_DMAHaltBusy) == 0)
    569 			break;
    570 	}
    571 
    572 	if (i == STE_TIMEOUT)
    573 		printf("%s: DMA halt timed out\n", device_xname(&sc->sc_dev));
    574 }
    575 
    576 /*
    577  * ste_start:		[ifnet interface function]
    578  *
    579  *	Start packet transmission on the interface.
    580  */
    581 static void
    582 ste_start(struct ifnet *ifp)
    583 {
    584 	struct ste_softc *sc = ifp->if_softc;
    585 	struct mbuf *m0, *m;
    586 	struct ste_descsoft *ds;
    587 	struct ste_tfd *tfd;
    588 	bus_dmamap_t dmamap;
    589 	int error, olasttx, nexttx, opending, seg, totlen;
    590 
    591 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    592 		return;
    593 
    594 	/*
    595 	 * Remember the previous number of pending transmissions
    596 	 * and the current last descriptor in the list.
    597 	 */
    598 	opending = sc->sc_txpending;
    599 	olasttx = sc->sc_txlast;
    600 
    601 	/*
    602 	 * Loop through the send queue, setting up transmit descriptors
    603 	 * until we drain the queue, or use up all available transmit
    604 	 * descriptors.
    605 	 */
    606 	while (sc->sc_txpending < STE_NTXDESC) {
    607 		/*
    608 		 * Grab a packet off the queue.
    609 		 */
    610 		IFQ_POLL(&ifp->if_snd, m0);
    611 		if (m0 == NULL)
    612 			break;
    613 		m = NULL;
    614 
    615 		/*
    616 		 * Get the last and next available transmit descriptor.
    617 		 */
    618 		nexttx = STE_NEXTTX(sc->sc_txlast);
    619 		tfd = &sc->sc_txdescs[nexttx];
    620 		ds = &sc->sc_txsoft[nexttx];
    621 
    622 		dmamap = ds->ds_dmamap;
    623 
    624 		/*
    625 		 * Load the DMA map.  If this fails, the packet either
    626 		 * didn't fit in the alloted number of segments, or we
    627 		 * were short on resources.  In this case, we'll copy
    628 		 * and try again.
    629 		 */
    630 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    631 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
    632 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    633 			if (m == NULL) {
    634 				printf("%s: unable to allocate Tx mbuf\n",
    635 				    device_xname(&sc->sc_dev));
    636 				break;
    637 			}
    638 			if (m0->m_pkthdr.len > MHLEN) {
    639 				MCLGET(m, M_DONTWAIT);
    640 				if ((m->m_flags & M_EXT) == 0) {
    641 					printf("%s: unable to allocate Tx "
    642 					    "cluster\n", device_xname(&sc->sc_dev));
    643 					m_freem(m);
    644 					break;
    645 				}
    646 			}
    647 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
    648 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    649 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    650 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
    651 			if (error) {
    652 				printf("%s: unable to load Tx buffer, "
    653 				    "error = %d\n", device_xname(&sc->sc_dev), error);
    654 				break;
    655 			}
    656 		}
    657 
    658 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    659 		if (m != NULL) {
    660 			m_freem(m0);
    661 			m0 = m;
    662 		}
    663 
    664 		/*
    665 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    666 		 */
    667 
    668 		/* Sync the DMA map. */
    669 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    670 		    BUS_DMASYNC_PREWRITE);
    671 
    672 		/* Initialize the fragment list. */
    673 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
    674 			tfd->tfd_frags[seg].frag_addr =
    675 			    htole32(dmamap->dm_segs[seg].ds_addr);
    676 			tfd->tfd_frags[seg].frag_len =
    677 			    htole32(dmamap->dm_segs[seg].ds_len);
    678 			totlen += dmamap->dm_segs[seg].ds_len;
    679 		}
    680 		tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
    681 
    682 		/* Initialize the descriptor. */
    683 		tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
    684 		tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
    685 
    686 		/* Sync the descriptor. */
    687 		STE_CDTXSYNC(sc, nexttx,
    688 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    689 
    690 		/*
    691 		 * Store a pointer to the packet so we can free it later,
    692 		 * and remember what txdirty will be once the packet is
    693 		 * done.
    694 		 */
    695 		ds->ds_mbuf = m0;
    696 
    697 		/* Advance the tx pointer. */
    698 		sc->sc_txpending++;
    699 		sc->sc_txlast = nexttx;
    700 
    701 #if NBPFILTER > 0
    702 		/*
    703 		 * Pass the packet to any BPF listeners.
    704 		 */
    705 		if (ifp->if_bpf)
    706 			bpf_mtap(ifp->if_bpf, m0);
    707 #endif /* NBPFILTER > 0 */
    708 	}
    709 
    710 	if (sc->sc_txpending == STE_NTXDESC) {
    711 		/* No more slots left; notify upper layer. */
    712 		ifp->if_flags |= IFF_OACTIVE;
    713 	}
    714 
    715 	if (sc->sc_txpending != opending) {
    716 		/*
    717 		 * We enqueued packets.  If the transmitter was idle,
    718 		 * reset the txdirty pointer.
    719 		 */
    720 		if (opending == 0)
    721 			sc->sc_txdirty = STE_NEXTTX(olasttx);
    722 
    723 		/*
    724 		 * Cause a descriptor interrupt to happen on the
    725 		 * last packet we enqueued, and also cause the
    726 		 * DMA engine to wait after is has finished processing
    727 		 * it.
    728 		 */
    729 		sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
    730 		sc->sc_txdescs[sc->sc_txlast].tfd_control |=
    731 		    htole32(TFD_TxDMAIndicate);
    732 		STE_CDTXSYNC(sc, sc->sc_txlast,
    733 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    734 
    735 		/*
    736 		 * Link up the new chain of descriptors to the
    737 		 * last.
    738 		 */
    739 		sc->sc_txdescs[olasttx].tfd_next =
    740 		    htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
    741 		STE_CDTXSYNC(sc, olasttx,
    742 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    743 
    744 		/*
    745 		 * Kick the transmit DMA logic.  Note that since we're
    746 		 * using auto-polling, reading the Tx desc pointer will
    747 		 * give it the nudge it needs to get going.
    748 		 */
    749 		if (bus_space_read_4(sc->sc_st, sc->sc_sh,
    750 		    STE_TxDMAListPtr) == 0) {
    751 			bus_space_write_4(sc->sc_st, sc->sc_sh,
    752 			    STE_DMACtrl, DC_TxDMAHalt);
    753 			ste_dmahalt_wait(sc);
    754 			bus_space_write_4(sc->sc_st, sc->sc_sh,
    755 			    STE_TxDMAListPtr,
    756 			    STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
    757 			bus_space_write_4(sc->sc_st, sc->sc_sh,
    758 			    STE_DMACtrl, DC_TxDMAResume);
    759 		}
    760 
    761 		/* Set a watchdog timer in case the chip flakes out. */
    762 		ifp->if_timer = 5;
    763 	}
    764 }
    765 
    766 /*
    767  * ste_watchdog:	[ifnet interface function]
    768  *
    769  *	Watchdog timer handler.
    770  */
    771 static void
    772 ste_watchdog(struct ifnet *ifp)
    773 {
    774 	struct ste_softc *sc = ifp->if_softc;
    775 
    776 	printf("%s: device timeout\n", device_xname(&sc->sc_dev));
    777 	ifp->if_oerrors++;
    778 
    779 	ste_txintr(sc);
    780 	ste_rxintr(sc);
    781 	(void) ste_init(ifp);
    782 
    783 	/* Try to get more packets going. */
    784 	ste_start(ifp);
    785 }
    786 
    787 /*
    788  * ste_ioctl:		[ifnet interface function]
    789  *
    790  *	Handle control requests from the operator.
    791  */
    792 static int
    793 ste_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    794 {
    795 	struct ste_softc *sc = ifp->if_softc;
    796 	int s, error;
    797 
    798 	s = splnet();
    799 
    800 	error = ether_ioctl(ifp, cmd, data);
    801 	if (error == ENETRESET) {
    802 		/*
    803 		 * Multicast list has changed; set the hardware filter
    804 		 * accordingly.
    805 		 */
    806 		if (ifp->if_flags & IFF_RUNNING)
    807 			ste_set_filter(sc);
    808 		error = 0;
    809 	}
    810 
    811 	/* Try to get more packets going. */
    812 	ste_start(ifp);
    813 
    814 	splx(s);
    815 	return (error);
    816 }
    817 
    818 /*
    819  * ste_intr:
    820  *
    821  *	Interrupt service routine.
    822  */
    823 static int
    824 ste_intr(void *arg)
    825 {
    826 	struct ste_softc *sc = arg;
    827 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    828 	uint16_t isr;
    829 	uint8_t txstat;
    830 	int wantinit;
    831 
    832 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
    833 	     IS_InterruptStatus) == 0)
    834 		return (0);
    835 
    836 	for (wantinit = 0; wantinit == 0;) {
    837 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
    838 		if ((isr & sc->sc_IntEnable) == 0)
    839 			break;
    840 
    841 		/* Receive interrupts. */
    842 		if (isr & IE_RxDMAComplete)
    843 			ste_rxintr(sc);
    844 
    845 		/* Transmit interrupts. */
    846 		if (isr & (IE_TxDMAComplete|IE_TxComplete))
    847 			ste_txintr(sc);
    848 
    849 		/* Statistics overflow. */
    850 		if (isr & IE_UpdateStats)
    851 			ste_stats_update(sc);
    852 
    853 		/* Transmission errors. */
    854 		if (isr & IE_TxComplete) {
    855 			for (;;) {
    856 				txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
    857 				    STE_TxStatus);
    858 				if ((txstat & TS_TxComplete) == 0)
    859 					break;
    860 				if (txstat & TS_TxUnderrun) {
    861 					sc->sc_txthresh += 32;
    862 					if (sc->sc_txthresh > 0x1ffc)
    863 						sc->sc_txthresh = 0x1ffc;
    864 					printf("%s: transmit underrun, new "
    865 					    "threshold: %d bytes\n",
    866 					    device_xname(&sc->sc_dev),
    867 					    sc->sc_txthresh);
    868 					ste_reset(sc, AC_TxReset | AC_DMA |
    869 					    AC_FIFO | AC_Network);
    870 					ste_setthresh(sc);
    871 					bus_space_write_1(sc->sc_st, sc->sc_sh,
    872 					    STE_TxDMAPollPeriod, 127);
    873 					ste_txrestart(sc,
    874 					    bus_space_read_1(sc->sc_st,
    875 						sc->sc_sh, STE_TxFrameId));
    876 				}
    877 				if (txstat & TS_TxReleaseError) {
    878 					printf("%s: Tx FIFO release error\n",
    879 					    device_xname(&sc->sc_dev));
    880 					wantinit = 1;
    881 				}
    882 				if (txstat & TS_MaxCollisions) {
    883 					printf("%s: excessive collisions\n",
    884 					    device_xname(&sc->sc_dev));
    885 					wantinit = 1;
    886 				}
    887 				if (txstat & TS_TxStatusOverflow) {
    888 					printf("%s: status overflow\n",
    889 					    device_xname(&sc->sc_dev));
    890 					wantinit = 1;
    891 				}
    892 				bus_space_write_2(sc->sc_st, sc->sc_sh,
    893 				    STE_TxStatus, 0);
    894 			}
    895 		}
    896 
    897 		/* Host interface errors. */
    898 		if (isr & IE_HostError) {
    899 			printf("%s: Host interface error\n",
    900 			    device_xname(&sc->sc_dev));
    901 			wantinit = 1;
    902 		}
    903 	}
    904 
    905 	if (wantinit)
    906 		ste_init(ifp);
    907 
    908 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
    909 	    sc->sc_IntEnable);
    910 
    911 	/* Try to get more packets going. */
    912 	ste_start(ifp);
    913 
    914 	return (1);
    915 }
    916 
    917 /*
    918  * ste_txintr:
    919  *
    920  *	Helper; handle transmit interrupts.
    921  */
    922 static void
    923 ste_txintr(struct ste_softc *sc)
    924 {
    925 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    926 	struct ste_descsoft *ds;
    927 	uint32_t control;
    928 	int i;
    929 
    930 	ifp->if_flags &= ~IFF_OACTIVE;
    931 
    932 	/*
    933 	 * Go through our Tx list and free mbufs for those
    934 	 * frames which have been transmitted.
    935 	 */
    936 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
    937 	     i = STE_NEXTTX(i), sc->sc_txpending--) {
    938 		ds = &sc->sc_txsoft[i];
    939 
    940 		STE_CDTXSYNC(sc, i,
    941 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    942 
    943 		control = le32toh(sc->sc_txdescs[i].tfd_control);
    944 		if ((control & TFD_TxDMAComplete) == 0)
    945 			break;
    946 
    947 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
    948 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    949 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
    950 		m_freem(ds->ds_mbuf);
    951 		ds->ds_mbuf = NULL;
    952 	}
    953 
    954 	/* Update the dirty transmit buffer pointer. */
    955 	sc->sc_txdirty = i;
    956 
    957 	/*
    958 	 * If there are no more pending transmissions, cancel the watchdog
    959 	 * timer.
    960 	 */
    961 	if (sc->sc_txpending == 0)
    962 		ifp->if_timer = 0;
    963 }
    964 
    965 /*
    966  * ste_rxintr:
    967  *
    968  *	Helper; handle receive interrupts.
    969  */
    970 static void
    971 ste_rxintr(struct ste_softc *sc)
    972 {
    973 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    974 	struct ste_descsoft *ds;
    975 	struct mbuf *m;
    976 	uint32_t status;
    977 	int i, len;
    978 
    979 	for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
    980 		ds = &sc->sc_rxsoft[i];
    981 
    982 		STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    983 
    984 		status = le32toh(sc->sc_rxdescs[i].rfd_status);
    985 
    986 		if ((status & RFD_RxDMAComplete) == 0)
    987 			break;
    988 
    989 		/*
    990 		 * If the packet had an error, simply recycle the
    991 		 * buffer.  Note, we count the error later in the
    992 		 * periodic stats update.
    993 		 */
    994 		if (status & RFD_RxFrameError) {
    995 			STE_INIT_RXDESC(sc, i);
    996 			continue;
    997 		}
    998 
    999 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1000 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1001 
   1002 		/*
   1003 		 * No errors; receive the packet.  Note, we have
   1004 		 * configured the chip to not include the CRC at
   1005 		 * the end of the packet.
   1006 		 */
   1007 		len = RFD_RxDMAFrameLen(status);
   1008 
   1009 		/*
   1010 		 * If the packet is small enough to fit in a
   1011 		 * single header mbuf, allocate one and copy
   1012 		 * the data into it.  This greatly reduces
   1013 		 * memory consumption when we receive lots
   1014 		 * of small packets.
   1015 		 *
   1016 		 * Otherwise, we add a new buffer to the receive
   1017 		 * chain.  If this fails, we drop the packet and
   1018 		 * recycle the old buffer.
   1019 		 */
   1020 		if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
   1021 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1022 			if (m == NULL)
   1023 				goto dropit;
   1024 			m->m_data += 2;
   1025 			memcpy(mtod(m, void *),
   1026 			    mtod(ds->ds_mbuf, void *), len);
   1027 			STE_INIT_RXDESC(sc, i);
   1028 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1029 			    ds->ds_dmamap->dm_mapsize,
   1030 			    BUS_DMASYNC_PREREAD);
   1031 		} else {
   1032 			m = ds->ds_mbuf;
   1033 			if (ste_add_rxbuf(sc, i) != 0) {
   1034  dropit:
   1035 				ifp->if_ierrors++;
   1036 				STE_INIT_RXDESC(sc, i);
   1037 				bus_dmamap_sync(sc->sc_dmat,
   1038 				    ds->ds_dmamap, 0,
   1039 				    ds->ds_dmamap->dm_mapsize,
   1040 				    BUS_DMASYNC_PREREAD);
   1041 				continue;
   1042 			}
   1043 		}
   1044 
   1045 		m->m_pkthdr.rcvif = ifp;
   1046 		m->m_pkthdr.len = m->m_len = len;
   1047 
   1048 #if NBPFILTER > 0
   1049 		/*
   1050 		 * Pass this up to any BPF listeners, but only
   1051 		 * pass if up the stack if it's for us.
   1052 		 */
   1053 		if (ifp->if_bpf)
   1054 			bpf_mtap(ifp->if_bpf, m);
   1055 #endif /* NBPFILTER > 0 */
   1056 
   1057 		/* Pass it on. */
   1058 		(*ifp->if_input)(ifp, m);
   1059 	}
   1060 
   1061 	/* Update the receive pointer. */
   1062 	sc->sc_rxptr = i;
   1063 }
   1064 
   1065 /*
   1066  * ste_tick:
   1067  *
   1068  *	One second timer, used to tick the MII.
   1069  */
   1070 static void
   1071 ste_tick(void *arg)
   1072 {
   1073 	struct ste_softc *sc = arg;
   1074 	int s;
   1075 
   1076 	s = splnet();
   1077 	mii_tick(&sc->sc_mii);
   1078 	ste_stats_update(sc);
   1079 	splx(s);
   1080 
   1081 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
   1082 }
   1083 
   1084 /*
   1085  * ste_stats_update:
   1086  *
   1087  *	Read the ST-201 statistics counters.
   1088  */
   1089 static void
   1090 ste_stats_update(struct ste_softc *sc)
   1091 {
   1092 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1093 	bus_space_tag_t st = sc->sc_st;
   1094 	bus_space_handle_t sh = sc->sc_sh;
   1095 
   1096 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
   1097 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
   1098 
   1099 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
   1100 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
   1101 
   1102 	ifp->if_opackets +=
   1103 	    (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
   1104 	ifp->if_ipackets +=
   1105 	    (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
   1106 
   1107 	ifp->if_collisions +=
   1108 	    (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
   1109 	    (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
   1110 	    (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
   1111 
   1112 	(void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
   1113 
   1114 	ifp->if_ierrors +=
   1115 	    (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
   1116 
   1117 	ifp->if_oerrors +=
   1118 	    (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
   1119 	    (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
   1120 	    bus_space_read_1(st, sh, STE_CarrierSenseErrors);
   1121 
   1122 	(void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
   1123 	(void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
   1124 	(void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
   1125 	(void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
   1126 }
   1127 
   1128 /*
   1129  * ste_reset:
   1130  *
   1131  *	Perform a soft reset on the ST-201.
   1132  */
   1133 static void
   1134 ste_reset(struct ste_softc *sc, u_int32_t rstbits)
   1135 {
   1136 	uint32_t ac;
   1137 	int i;
   1138 
   1139 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
   1140 
   1141 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
   1142 
   1143 	delay(50000);
   1144 
   1145 	for (i = 0; i < STE_TIMEOUT; i++) {
   1146 		delay(1000);
   1147 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
   1148 		     AC_ResetBusy) == 0)
   1149 			break;
   1150 	}
   1151 
   1152 	if (i == STE_TIMEOUT)
   1153 		printf("%s: reset failed to complete\n", device_xname(&sc->sc_dev));
   1154 
   1155 	delay(1000);
   1156 }
   1157 
   1158 /*
   1159  * ste_setthresh:
   1160  *
   1161  * 	set the various transmit threshold registers
   1162  */
   1163 static void
   1164 ste_setthresh(struct ste_softc *sc)
   1165 {
   1166 	/* set the TX threhold */
   1167 	bus_space_write_2(sc->sc_st, sc->sc_sh,
   1168 	    STE_TxStartThresh, sc->sc_txthresh);
   1169 	/* Urgent threshold: set to sc_txthresh / 2 */
   1170 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
   1171 	    sc->sc_txthresh >> 6);
   1172 	/* Burst threshold: use default value (256 bytes) */
   1173 }
   1174 
   1175 /*
   1176  * restart TX at the given frame ID in the transmitter ring
   1177  */
   1178 static void
   1179 ste_txrestart(struct ste_softc *sc, u_int8_t id)
   1180 {
   1181 	u_int32_t control;
   1182 
   1183 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1184 	control = le32toh(sc->sc_txdescs[id].tfd_control);
   1185 	control &= ~TFD_TxDMAComplete;
   1186 	sc->sc_txdescs[id].tfd_control = htole32(control);
   1187 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1188 
   1189 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
   1190 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
   1191 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
   1192 	ste_dmahalt_wait(sc);
   1193 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
   1194 	    STE_CDTXADDR(sc, id));
   1195 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
   1196 }
   1197 
   1198 /*
   1199  * ste_init:		[ ifnet interface function ]
   1200  *
   1201  *	Initialize the interface.  Must be called at splnet().
   1202  */
   1203 static int
   1204 ste_init(struct ifnet *ifp)
   1205 {
   1206 	struct ste_softc *sc = ifp->if_softc;
   1207 	bus_space_tag_t st = sc->sc_st;
   1208 	bus_space_handle_t sh = sc->sc_sh;
   1209 	struct ste_descsoft *ds;
   1210 	int i, error = 0;
   1211 
   1212 	/*
   1213 	 * Cancel any pending I/O.
   1214 	 */
   1215 	ste_stop(ifp, 0);
   1216 
   1217 	/*
   1218 	 * Reset the chip to a known state.
   1219 	 */
   1220 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
   1221 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
   1222 
   1223 	/*
   1224 	 * Initialize the transmit descriptor ring.
   1225 	 */
   1226 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1227 	sc->sc_txpending = 0;
   1228 	sc->sc_txdirty = 0;
   1229 	sc->sc_txlast = STE_NTXDESC - 1;
   1230 
   1231 	/*
   1232 	 * Initialize the receive descriptor and receive job
   1233 	 * descriptor rings.
   1234 	 */
   1235 	for (i = 0; i < STE_NRXDESC; i++) {
   1236 		ds = &sc->sc_rxsoft[i];
   1237 		if (ds->ds_mbuf == NULL) {
   1238 			if ((error = ste_add_rxbuf(sc, i)) != 0) {
   1239 				printf("%s: unable to allocate or map rx "
   1240 				    "buffer %d, error = %d\n",
   1241 				    device_xname(&sc->sc_dev), i, error);
   1242 				/*
   1243 				 * XXX Should attempt to run with fewer receive
   1244 				 * XXX buffers instead of just failing.
   1245 				 */
   1246 				ste_rxdrain(sc);
   1247 				goto out;
   1248 			}
   1249 		} else
   1250 			STE_INIT_RXDESC(sc, i);
   1251 	}
   1252 	sc->sc_rxptr = 0;
   1253 
   1254 	/* Set the station address. */
   1255 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1256 		bus_space_write_1(st, sh, STE_StationAddress0 + 1,
   1257 		    CLLADDR(ifp->if_sadl)[i]);
   1258 
   1259 	/* Set up the receive filter. */
   1260 	ste_set_filter(sc);
   1261 
   1262 	/*
   1263 	 * Give the receive ring to the chip.
   1264 	 */
   1265 	bus_space_write_4(st, sh, STE_RxDMAListPtr,
   1266 	    STE_CDRXADDR(sc, sc->sc_rxptr));
   1267 
   1268 	/*
   1269 	 * We defer giving the transmit ring to the chip until we
   1270 	 * transmit the first packet.
   1271 	 */
   1272 
   1273 	/*
   1274 	 * Initialize the Tx auto-poll period.  It's OK to make this number
   1275 	 * large (127 is the max) -- we explicitly kick the transmit engine
   1276 	 * when there's actually a packet.  We are using auto-polling only
   1277 	 * to make the interface to the transmit engine not suck.
   1278 	 */
   1279 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
   1280 
   1281 	/* ..and the Rx auto-poll period. */
   1282 	bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
   1283 
   1284 	/* Initialize the Tx start threshold. */
   1285 	ste_setthresh(sc);
   1286 
   1287 	/* Set the FIFO release threshold to 512 bytes. */
   1288 	bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
   1289 
   1290 	/* Set maximum packet size for VLAN. */
   1291 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   1292 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN + 4);
   1293 	else
   1294 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN);
   1295 
   1296 	/*
   1297 	 * Initialize the interrupt mask.
   1298 	 */
   1299 	sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
   1300 	    IE_TxDMAComplete | IE_RxDMAComplete;
   1301 
   1302 	bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
   1303 	bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
   1304 
   1305 	/*
   1306 	 * Start the receive DMA engine.
   1307 	 */
   1308 	bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
   1309 
   1310 	/*
   1311 	 * Initialize MacCtrl0 -- do it before setting the media,
   1312 	 * as setting the media will actually program the register.
   1313 	 */
   1314 	sc->sc_MacCtrl0 = MC0_IFSSelect(0);
   1315 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   1316 		sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
   1317 
   1318 	/*
   1319 	 * Set the current media.
   1320 	 */
   1321 	if ((error = ether_mediachange(ifp)) != 0)
   1322 		goto out;
   1323 
   1324 	/*
   1325 	 * Start the MAC.
   1326 	 */
   1327 	bus_space_write_2(st, sh, STE_MacCtrl1,
   1328 	    MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
   1329 
   1330 	/*
   1331 	 * Start the one second MII clock.
   1332 	 */
   1333 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
   1334 
   1335 	/*
   1336 	 * ...all done!
   1337 	 */
   1338 	ifp->if_flags |= IFF_RUNNING;
   1339 	ifp->if_flags &= ~IFF_OACTIVE;
   1340 
   1341  out:
   1342 	if (error)
   1343 		printf("%s: interface not running\n", device_xname(&sc->sc_dev));
   1344 	return (error);
   1345 }
   1346 
   1347 /*
   1348  * ste_drain:
   1349  *
   1350  *	Drain the receive queue.
   1351  */
   1352 static void
   1353 ste_rxdrain(struct ste_softc *sc)
   1354 {
   1355 	struct ste_descsoft *ds;
   1356 	int i;
   1357 
   1358 	for (i = 0; i < STE_NRXDESC; i++) {
   1359 		ds = &sc->sc_rxsoft[i];
   1360 		if (ds->ds_mbuf != NULL) {
   1361 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1362 			m_freem(ds->ds_mbuf);
   1363 			ds->ds_mbuf = NULL;
   1364 		}
   1365 	}
   1366 }
   1367 
   1368 /*
   1369  * ste_stop:		[ ifnet interface function ]
   1370  *
   1371  *	Stop transmission on the interface.
   1372  */
   1373 static void
   1374 ste_stop(struct ifnet *ifp, int disable)
   1375 {
   1376 	struct ste_softc *sc = ifp->if_softc;
   1377 	struct ste_descsoft *ds;
   1378 	int i;
   1379 
   1380 	/*
   1381 	 * Stop the one second clock.
   1382 	 */
   1383 	callout_stop(&sc->sc_tick_ch);
   1384 
   1385 	/* Down the MII. */
   1386 	mii_down(&sc->sc_mii);
   1387 
   1388 	/*
   1389 	 * Disable interrupts.
   1390 	 */
   1391 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
   1392 
   1393 	/*
   1394 	 * Stop receiver, transmitter, and stats update.
   1395 	 */
   1396 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
   1397 	    MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
   1398 
   1399 	/*
   1400 	 * Stop the transmit and receive DMA.
   1401 	 */
   1402 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
   1403 	    DC_RxDMAHalt | DC_TxDMAHalt);
   1404 	ste_dmahalt_wait(sc);
   1405 
   1406 	/*
   1407 	 * Release any queued transmit buffers.
   1408 	 */
   1409 	for (i = 0; i < STE_NTXDESC; i++) {
   1410 		ds = &sc->sc_txsoft[i];
   1411 		if (ds->ds_mbuf != NULL) {
   1412 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1413 			m_freem(ds->ds_mbuf);
   1414 			ds->ds_mbuf = NULL;
   1415 		}
   1416 	}
   1417 
   1418 	/*
   1419 	 * Mark the interface down and cancel the watchdog timer.
   1420 	 */
   1421 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1422 	ifp->if_timer = 0;
   1423 
   1424 	if (disable)
   1425 		ste_rxdrain(sc);
   1426 }
   1427 
   1428 static int
   1429 ste_eeprom_wait(struct ste_softc *sc)
   1430 {
   1431 	int i;
   1432 
   1433 	for (i = 0; i < STE_TIMEOUT; i++) {
   1434 		delay(1000);
   1435 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
   1436 		     EC_EepromBusy) == 0)
   1437 			return (0);
   1438 	}
   1439 	return (1);
   1440 }
   1441 
   1442 /*
   1443  * ste_read_eeprom:
   1444  *
   1445  *	Read data from the serial EEPROM.
   1446  */
   1447 static void
   1448 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
   1449 {
   1450 
   1451 	if (ste_eeprom_wait(sc))
   1452 		printf("%s: EEPROM failed to come ready\n",
   1453 		    device_xname(&sc->sc_dev));
   1454 
   1455 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
   1456 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
   1457 	if (ste_eeprom_wait(sc))
   1458 		printf("%s: EEPROM read timed out\n",
   1459 		    device_xname(&sc->sc_dev));
   1460 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
   1461 }
   1462 
   1463 /*
   1464  * ste_add_rxbuf:
   1465  *
   1466  *	Add a receive buffer to the indicated descriptor.
   1467  */
   1468 static int
   1469 ste_add_rxbuf(struct ste_softc *sc, int idx)
   1470 {
   1471 	struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
   1472 	struct mbuf *m;
   1473 	int error;
   1474 
   1475 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1476 	if (m == NULL)
   1477 		return (ENOBUFS);
   1478 
   1479 	MCLGET(m, M_DONTWAIT);
   1480 	if ((m->m_flags & M_EXT) == 0) {
   1481 		m_freem(m);
   1482 		return (ENOBUFS);
   1483 	}
   1484 
   1485 	if (ds->ds_mbuf != NULL)
   1486 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1487 
   1488 	ds->ds_mbuf = m;
   1489 
   1490 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
   1491 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1492 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1493 	if (error) {
   1494 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1495 		    device_xname(&sc->sc_dev), idx, error);
   1496 		panic("ste_add_rxbuf");		/* XXX */
   1497 	}
   1498 
   1499 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1500 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1501 
   1502 	STE_INIT_RXDESC(sc, idx);
   1503 
   1504 	return (0);
   1505 }
   1506 
   1507 /*
   1508  * ste_set_filter:
   1509  *
   1510  *	Set up the receive filter.
   1511  */
   1512 static void
   1513 ste_set_filter(struct ste_softc *sc)
   1514 {
   1515 	struct ethercom *ec = &sc->sc_ethercom;
   1516 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1517 	struct ether_multi *enm;
   1518 	struct ether_multistep step;
   1519 	uint32_t crc;
   1520 	uint16_t mchash[4];
   1521 
   1522 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
   1523 	if (ifp->if_flags & IFF_BROADCAST)
   1524 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
   1525 
   1526 	if (ifp->if_flags & IFF_PROMISC) {
   1527 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
   1528 		goto allmulti;
   1529 	}
   1530 
   1531 	/*
   1532 	 * Set up the multicast address filter by passing all multicast
   1533 	 * addresses through a CRC generator, and then using the low-order
   1534 	 * 6 bits as an index into the 64 bit multicast hash table.  The
   1535 	 * high order bits select the register, while the rest of the bits
   1536 	 * select the bit within the register.
   1537 	 */
   1538 
   1539 	memset(mchash, 0, sizeof(mchash));
   1540 
   1541 	ETHER_FIRST_MULTI(step, ec, enm);
   1542 	if (enm == NULL)
   1543 		goto done;
   1544 
   1545 	while (enm != NULL) {
   1546 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1547 			/*
   1548 			 * We must listen to a range of multicast addresses.
   1549 			 * For now, just accept all multicasts, rather than
   1550 			 * trying to set only those filter bits needed to match
   1551 			 * the range.  (At this time, the only use of address
   1552 			 * ranges is for IP multicast routing, for which the
   1553 			 * range is big enough to require all bits set.)
   1554 			 */
   1555 			goto allmulti;
   1556 		}
   1557 
   1558 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1559 
   1560 		/* Just want the 6 least significant bits. */
   1561 		crc &= 0x3f;
   1562 
   1563 		/* Set the corresponding bit in the hash table. */
   1564 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   1565 
   1566 		ETHER_NEXT_MULTI(step, enm);
   1567 	}
   1568 
   1569 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
   1570 
   1571 	ifp->if_flags &= ~IFF_ALLMULTI;
   1572 	goto done;
   1573 
   1574  allmulti:
   1575 	ifp->if_flags |= IFF_ALLMULTI;
   1576 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
   1577 
   1578  done:
   1579 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1580 		/*
   1581 		 * Program the multicast hash table.
   1582 		 */
   1583 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
   1584 		    mchash[0]);
   1585 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
   1586 		    mchash[1]);
   1587 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
   1588 		    mchash[2]);
   1589 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
   1590 		    mchash[3]);
   1591 	}
   1592 
   1593 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
   1594 	    sc->sc_ReceiveMode);
   1595 }
   1596 
   1597 /*
   1598  * ste_mii_readreg:	[mii interface function]
   1599  *
   1600  *	Read a PHY register on the MII of the ST-201.
   1601  */
   1602 static int
   1603 ste_mii_readreg(device_t self, int phy, int reg)
   1604 {
   1605 
   1606 	return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
   1607 }
   1608 
   1609 /*
   1610  * ste_mii_writereg:	[mii interface function]
   1611  *
   1612  *	Write a PHY register on the MII of the ST-201.
   1613  */
   1614 static void
   1615 ste_mii_writereg(device_t self, int phy, int reg, int val)
   1616 {
   1617 
   1618 	mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
   1619 }
   1620 
   1621 /*
   1622  * ste_mii_statchg:	[mii interface function]
   1623  *
   1624  *	Callback from MII layer when media changes.
   1625  */
   1626 static void
   1627 ste_mii_statchg(device_t self)
   1628 {
   1629 	struct ste_softc *sc = device_private(self);
   1630 
   1631 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   1632 		sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
   1633 	else
   1634 		sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
   1635 
   1636 	/* XXX 802.1x flow-control? */
   1637 
   1638 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
   1639 }
   1640 
   1641 /*
   1642  * ste_mii_bitbang_read: [mii bit-bang interface function]
   1643  *
   1644  *	Read the MII serial port for the MII bit-bang module.
   1645  */
   1646 static uint32_t
   1647 ste_mii_bitbang_read(device_t self)
   1648 {
   1649 	struct ste_softc *sc = device_private(self);
   1650 
   1651 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
   1652 }
   1653 
   1654 /*
   1655  * ste_mii_bitbang_write: [mii big-bang interface function]
   1656  *
   1657  *	Write the MII serial port for the MII bit-bang module.
   1658  */
   1659 static void
   1660 ste_mii_bitbang_write(device_t self, uint32_t val)
   1661 {
   1662 	struct ste_softc *sc = device_private(self);
   1663 
   1664 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
   1665 }
   1666