Home | History | Annotate | Line # | Download | only in pci
if_ste.c revision 1.39
      1 /*	$NetBSD: if_ste.c,v 1.39 2009/11/26 15:17:10 njoly Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Device driver for the Sundance Tech. ST-201 10/100
     34  * Ethernet controller.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.39 2009/11/26 15:17:10 njoly Exp $");
     39 
     40 #include "bpfilter.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/callout.h>
     45 #include <sys/mbuf.h>
     46 #include <sys/malloc.h>
     47 #include <sys/kernel.h>
     48 #include <sys/socket.h>
     49 #include <sys/ioctl.h>
     50 #include <sys/errno.h>
     51 #include <sys/device.h>
     52 #include <sys/queue.h>
     53 
     54 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     55 
     56 #include <net/if.h>
     57 #include <net/if_dl.h>
     58 #include <net/if_media.h>
     59 #include <net/if_ether.h>
     60 
     61 #if NBPFILTER > 0
     62 #include <net/bpf.h>
     63 #endif
     64 
     65 #include <sys/bus.h>
     66 #include <sys/intr.h>
     67 
     68 #include <dev/mii/mii.h>
     69 #include <dev/mii/miivar.h>
     70 #include <dev/mii/mii_bitbang.h>
     71 
     72 #include <dev/pci/pcireg.h>
     73 #include <dev/pci/pcivar.h>
     74 #include <dev/pci/pcidevs.h>
     75 
     76 #include <dev/pci/if_stereg.h>
     77 
     78 /*
     79  * Transmit descriptor list size.
     80  */
     81 #define	STE_NTXDESC		256
     82 #define	STE_NTXDESC_MASK	(STE_NTXDESC - 1)
     83 #define	STE_NEXTTX(x)		(((x) + 1) & STE_NTXDESC_MASK)
     84 
     85 /*
     86  * Receive descriptor list size.
     87  */
     88 #define	STE_NRXDESC		128
     89 #define	STE_NRXDESC_MASK	(STE_NRXDESC - 1)
     90 #define	STE_NEXTRX(x)		(((x) + 1) & STE_NRXDESC_MASK)
     91 
     92 /*
     93  * Control structures are DMA'd to the ST-201 chip.  We allocate them in
     94  * a single clump that maps to a single DMA segment to make several things
     95  * easier.
     96  */
     97 struct ste_control_data {
     98 	/*
     99 	 * The transmit descriptors.
    100 	 */
    101 	struct ste_tfd scd_txdescs[STE_NTXDESC];
    102 
    103 	/*
    104 	 * The receive descriptors.
    105 	 */
    106 	struct ste_rfd scd_rxdescs[STE_NRXDESC];
    107 };
    108 
    109 #define	STE_CDOFF(x)	offsetof(struct ste_control_data, x)
    110 #define	STE_CDTXOFF(x)	STE_CDOFF(scd_txdescs[(x)])
    111 #define	STE_CDRXOFF(x)	STE_CDOFF(scd_rxdescs[(x)])
    112 
    113 /*
    114  * Software state for transmit and receive jobs.
    115  */
    116 struct ste_descsoft {
    117 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
    118 	bus_dmamap_t ds_dmamap;		/* our DMA map */
    119 };
    120 
    121 /*
    122  * Software state per device.
    123  */
    124 struct ste_softc {
    125 	struct device sc_dev;		/* generic device information */
    126 	bus_space_tag_t sc_st;		/* bus space tag */
    127 	bus_space_handle_t sc_sh;	/* bus space handle */
    128 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    129 	struct ethercom sc_ethercom;	/* ethernet common data */
    130 
    131 	void *sc_ih;			/* interrupt cookie */
    132 
    133 	struct mii_data sc_mii;		/* MII/media information */
    134 
    135 	callout_t sc_tick_ch;		/* tick callout */
    136 
    137 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    138 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    139 
    140 	/*
    141 	 * Software state for transmit and receive descriptors.
    142 	 */
    143 	struct ste_descsoft sc_txsoft[STE_NTXDESC];
    144 	struct ste_descsoft sc_rxsoft[STE_NRXDESC];
    145 
    146 	/*
    147 	 * Control data structures.
    148 	 */
    149 	struct ste_control_data *sc_control_data;
    150 #define	sc_txdescs	sc_control_data->scd_txdescs
    151 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    152 
    153 	int	sc_txpending;		/* number of Tx requests pending */
    154 	int	sc_txdirty;		/* first dirty Tx descriptor */
    155 	int	sc_txlast;		/* last used Tx descriptor */
    156 
    157 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    158 
    159 	int	sc_txthresh;		/* Tx threshold */
    160 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
    161 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
    162 	uint16_t sc_MacCtrl0;		/* prototype MacCtrl0 register */
    163 	uint8_t	sc_ReceiveMode;		/* prototype ReceiveMode register */
    164 };
    165 
    166 #define	STE_CDTXADDR(sc, x)	((sc)->sc_cddma + STE_CDTXOFF((x)))
    167 #define	STE_CDRXADDR(sc, x)	((sc)->sc_cddma + STE_CDRXOFF((x)))
    168 
    169 #define	STE_CDTXSYNC(sc, x, ops)					\
    170 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    171 	    STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
    172 
    173 #define	STE_CDRXSYNC(sc, x, ops)					\
    174 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    175 	    STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
    176 
    177 #define	STE_INIT_RXDESC(sc, x)						\
    178 do {									\
    179 	struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
    180 	struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)];			\
    181 	struct mbuf *__m = __ds->ds_mbuf;				\
    182 									\
    183 	/*								\
    184 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    185 	 * so that the payload after the Ethernet header is aligned	\
    186 	 * to a 4-byte boundary.					\
    187 	 */								\
    188 	__m->m_data = __m->m_ext.ext_buf + 2;				\
    189 	__rfd->rfd_frag.frag_addr =					\
    190 	    htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2);		\
    191 	__rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST);	\
    192 	__rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x))));	\
    193 	__rfd->rfd_status = 0;						\
    194 	STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    195 } while (/*CONSTCOND*/0)
    196 
    197 #define STE_TIMEOUT 1000
    198 
    199 static void	ste_start(struct ifnet *);
    200 static void	ste_watchdog(struct ifnet *);
    201 static int	ste_ioctl(struct ifnet *, u_long, void *);
    202 static int	ste_init(struct ifnet *);
    203 static void	ste_stop(struct ifnet *, int);
    204 
    205 static bool	ste_shutdown(device_t, int);
    206 
    207 static void	ste_reset(struct ste_softc *, u_int32_t);
    208 static void	ste_setthresh(struct ste_softc *);
    209 static void	ste_txrestart(struct ste_softc *, u_int8_t);
    210 static void	ste_rxdrain(struct ste_softc *);
    211 static int	ste_add_rxbuf(struct ste_softc *, int);
    212 static void	ste_read_eeprom(struct ste_softc *, int, uint16_t *);
    213 static void	ste_tick(void *);
    214 
    215 static void	ste_stats_update(struct ste_softc *);
    216 
    217 static void	ste_set_filter(struct ste_softc *);
    218 
    219 static int	ste_intr(void *);
    220 static void	ste_txintr(struct ste_softc *);
    221 static void	ste_rxintr(struct ste_softc *);
    222 
    223 static int	ste_mii_readreg(device_t, int, int);
    224 static void	ste_mii_writereg(device_t, int, int, int);
    225 static void	ste_mii_statchg(device_t);
    226 
    227 static int	ste_match(device_t, cfdata_t, void *);
    228 static void	ste_attach(device_t, device_t, void *);
    229 
    230 int	ste_copy_small = 0;
    231 
    232 CFATTACH_DECL(ste, sizeof(struct ste_softc),
    233     ste_match, ste_attach, NULL, NULL);
    234 
    235 static uint32_t ste_mii_bitbang_read(device_t);
    236 static void	ste_mii_bitbang_write(device_t, uint32_t);
    237 
    238 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
    239 	ste_mii_bitbang_read,
    240 	ste_mii_bitbang_write,
    241 	{
    242 		PC_MgmtData,		/* MII_BIT_MDO */
    243 		PC_MgmtData,		/* MII_BIT_MDI */
    244 		PC_MgmtClk,		/* MII_BIT_MDC */
    245 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
    246 		0,			/* MII_BIT_DIR_PHY_HOST */
    247 	}
    248 };
    249 
    250 /*
    251  * Devices supported by this driver.
    252  */
    253 static const struct ste_product {
    254 	pci_vendor_id_t		ste_vendor;
    255 	pci_product_id_t	ste_product;
    256 	const char		*ste_name;
    257 } ste_products[] = {
    258 	{ PCI_VENDOR_SUNDANCETI, 	PCI_PRODUCT_SUNDANCETI_IP100A,
    259 	  "IC Plus Corp. IP00A 10/100 Fast Ethernet Adapter" },
    260 
    261 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST201,
    262 	  "Sundance ST-201 10/100 Ethernet" },
    263 
    264 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL1002,
    265 	  "D-Link DL-1002 10/100 Ethernet" },
    266 
    267 	{ 0,				0,
    268 	  NULL },
    269 };
    270 
    271 static const struct ste_product *
    272 ste_lookup(const struct pci_attach_args *pa)
    273 {
    274 	const struct ste_product *sp;
    275 
    276 	for (sp = ste_products; sp->ste_name != NULL; sp++) {
    277 		if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
    278 		    PCI_PRODUCT(pa->pa_id) == sp->ste_product)
    279 			return (sp);
    280 	}
    281 	return (NULL);
    282 }
    283 
    284 static int
    285 ste_match(device_t parent, cfdata_t cf, void *aux)
    286 {
    287 	struct pci_attach_args *pa = aux;
    288 
    289 	if (ste_lookup(pa) != NULL)
    290 		return (1);
    291 
    292 	return (0);
    293 }
    294 
    295 static void
    296 ste_attach(device_t parent, device_t self, void *aux)
    297 {
    298 	struct ste_softc *sc = device_private(self);
    299 	struct pci_attach_args *pa = aux;
    300 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    301 	pci_chipset_tag_t pc = pa->pa_pc;
    302 	pci_intr_handle_t ih;
    303 	const char *intrstr = NULL;
    304 	bus_space_tag_t iot, memt;
    305 	bus_space_handle_t ioh, memh;
    306 	bus_dma_segment_t seg;
    307 	int ioh_valid, memh_valid;
    308 	int i, rseg, error;
    309 	const struct ste_product *sp;
    310 	uint8_t enaddr[ETHER_ADDR_LEN];
    311 	uint16_t myea[ETHER_ADDR_LEN / 2];
    312 
    313 	callout_init(&sc->sc_tick_ch, 0);
    314 
    315 	sp = ste_lookup(pa);
    316 	if (sp == NULL) {
    317 		printf("\n");
    318 		panic("ste_attach: impossible");
    319 	}
    320 
    321 	printf(": %s\n", sp->ste_name);
    322 
    323 	/*
    324 	 * Map the device.
    325 	 */
    326 	ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
    327 	    PCI_MAPREG_TYPE_IO, 0,
    328 	    &iot, &ioh, NULL, NULL) == 0);
    329 	memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
    330 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    331 	    &memt, &memh, NULL, NULL) == 0);
    332 
    333 	if (memh_valid) {
    334 		sc->sc_st = memt;
    335 		sc->sc_sh = memh;
    336 	} else if (ioh_valid) {
    337 		sc->sc_st = iot;
    338 		sc->sc_sh = ioh;
    339 	} else {
    340 		aprint_error_dev(&sc->sc_dev, "unable to map device registers\n");
    341 		return;
    342 	}
    343 
    344 	sc->sc_dmat = pa->pa_dmat;
    345 
    346 	/* Enable bus mastering. */
    347 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    348 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    349 	    PCI_COMMAND_MASTER_ENABLE);
    350 
    351 	/* power up chip */
    352 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
    353 	    NULL)) && error != EOPNOTSUPP) {
    354 		aprint_error_dev(&sc->sc_dev, "cannot activate %d\n",
    355 		    error);
    356 		return;
    357 	}
    358 
    359 	/*
    360 	 * Map and establish our interrupt.
    361 	 */
    362 	if (pci_intr_map(pa, &ih)) {
    363 		aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
    364 		return;
    365 	}
    366 	intrstr = pci_intr_string(pc, ih);
    367 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
    368 	if (sc->sc_ih == NULL) {
    369 		aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
    370 		if (intrstr != NULL)
    371 			aprint_error(" at %s", intrstr);
    372 		aprint_error("\n");
    373 		return;
    374 	}
    375 	aprint_normal_dev(&sc->sc_dev, "interrupting at %s\n", intrstr);
    376 
    377 	/*
    378 	 * Allocate the control data structures, and create and load the
    379 	 * DMA map for it.
    380 	 */
    381 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    382 	    sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    383 	    0)) != 0) {
    384 		aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n",
    385 		    error);
    386 		goto fail_0;
    387 	}
    388 
    389 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    390 	    sizeof(struct ste_control_data), (void **)&sc->sc_control_data,
    391 	    BUS_DMA_COHERENT)) != 0) {
    392 		aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
    393 		    error);
    394 		goto fail_1;
    395 	}
    396 
    397 	if ((error = bus_dmamap_create(sc->sc_dmat,
    398 	    sizeof(struct ste_control_data), 1,
    399 	    sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    400 		aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
    401 		    "error = %d\n", error);
    402 		goto fail_2;
    403 	}
    404 
    405 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    406 	    sc->sc_control_data, sizeof(struct ste_control_data), NULL,
    407 	    0)) != 0) {
    408 		aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
    409 		    error);
    410 		goto fail_3;
    411 	}
    412 
    413 	/*
    414 	 * Create the transmit buffer DMA maps.
    415 	 */
    416 	for (i = 0; i < STE_NTXDESC; i++) {
    417 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    418 		    STE_NTXFRAGS, MCLBYTES, 0, 0,
    419 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
    420 			aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
    421 			    "error = %d\n", i, error);
    422 			goto fail_4;
    423 		}
    424 	}
    425 
    426 	/*
    427 	 * Create the receive buffer DMA maps.
    428 	 */
    429 	for (i = 0; i < STE_NRXDESC; i++) {
    430 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    431 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
    432 			aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
    433 			    "error = %d\n", i, error);
    434 			goto fail_5;
    435 		}
    436 		sc->sc_rxsoft[i].ds_mbuf = NULL;
    437 	}
    438 
    439 	/*
    440 	 * Reset the chip to a known state.
    441 	 */
    442 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
    443 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
    444 
    445 	/*
    446 	 * Read the Ethernet address from the EEPROM.
    447 	 */
    448 	for (i = 0; i < 3; i++) {
    449 		ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
    450 		myea[i] = le16toh(myea[i]);
    451 	}
    452 	memcpy(enaddr, myea, sizeof(enaddr));
    453 
    454 	printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
    455 	    ether_sprintf(enaddr));
    456 
    457 	/*
    458 	 * Initialize our media structures and probe the MII.
    459 	 */
    460 	sc->sc_mii.mii_ifp = ifp;
    461 	sc->sc_mii.mii_readreg = ste_mii_readreg;
    462 	sc->sc_mii.mii_writereg = ste_mii_writereg;
    463 	sc->sc_mii.mii_statchg = ste_mii_statchg;
    464 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
    465 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
    466 	    ether_mediastatus);
    467 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    468 	    MII_OFFSET_ANY, 0);
    469 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    470 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    471 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    472 	} else
    473 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    474 
    475 	ifp = &sc->sc_ethercom.ec_if;
    476 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
    477 	ifp->if_softc = sc;
    478 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    479 	ifp->if_ioctl = ste_ioctl;
    480 	ifp->if_start = ste_start;
    481 	ifp->if_watchdog = ste_watchdog;
    482 	ifp->if_init = ste_init;
    483 	ifp->if_stop = ste_stop;
    484 	IFQ_SET_READY(&ifp->if_snd);
    485 
    486 	/*
    487 	 * Default the transmit threshold to 128 bytes.
    488 	 */
    489 	sc->sc_txthresh = 128;
    490 
    491 	/*
    492 	 * Disable MWI if the PCI layer tells us to.
    493 	 */
    494 	sc->sc_DMACtrl = 0;
    495 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
    496 		sc->sc_DMACtrl |= DC_MWIDisable;
    497 
    498 	/*
    499 	 * We can support 802.1Q VLAN-sized frames.
    500 	 */
    501 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    502 
    503 	/*
    504 	 * Attach the interface.
    505 	 */
    506 	if_attach(ifp);
    507 	ether_ifattach(ifp, enaddr);
    508 
    509 	/*
    510 	 * Make sure the interface is shutdown during reboot.
    511 	 */
    512 	if (pmf_device_register1(self, NULL, NULL, ste_shutdown))
    513 		pmf_class_network_register(self, ifp);
    514 	else
    515 		aprint_error_dev(self, "couldn't establish power handler\n");
    516 
    517 	return;
    518 
    519 	/*
    520 	 * Free any resources we've allocated during the failed attach
    521 	 * attempt.  Do this in reverse order and fall through.
    522 	 */
    523  fail_5:
    524 	for (i = 0; i < STE_NRXDESC; i++) {
    525 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
    526 			bus_dmamap_destroy(sc->sc_dmat,
    527 			    sc->sc_rxsoft[i].ds_dmamap);
    528 	}
    529  fail_4:
    530 	for (i = 0; i < STE_NTXDESC; i++) {
    531 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
    532 			bus_dmamap_destroy(sc->sc_dmat,
    533 			    sc->sc_txsoft[i].ds_dmamap);
    534 	}
    535 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    536  fail_3:
    537 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    538  fail_2:
    539 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    540 	    sizeof(struct ste_control_data));
    541  fail_1:
    542 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    543  fail_0:
    544 	return;
    545 }
    546 
    547 /*
    548  * ste_shutdown:
    549  *
    550  *	Make sure the interface is stopped at reboot time.
    551  */
    552 static bool
    553 ste_shutdown(device_t self, int howto)
    554 {
    555 	struct ste_softc *sc;
    556 
    557 	sc = device_private(self);
    558 	ste_stop(&sc->sc_ethercom.ec_if, 1);
    559 
    560 	return true;
    561 }
    562 
    563 static void
    564 ste_dmahalt_wait(struct ste_softc *sc)
    565 {
    566 	int i;
    567 
    568 	for (i = 0; i < STE_TIMEOUT; i++) {
    569 		delay(2);
    570 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
    571 		     DC_DMAHaltBusy) == 0)
    572 			break;
    573 	}
    574 
    575 	if (i == STE_TIMEOUT)
    576 		printf("%s: DMA halt timed out\n", device_xname(&sc->sc_dev));
    577 }
    578 
    579 /*
    580  * ste_start:		[ifnet interface function]
    581  *
    582  *	Start packet transmission on the interface.
    583  */
    584 static void
    585 ste_start(struct ifnet *ifp)
    586 {
    587 	struct ste_softc *sc = ifp->if_softc;
    588 	struct mbuf *m0, *m;
    589 	struct ste_descsoft *ds;
    590 	struct ste_tfd *tfd;
    591 	bus_dmamap_t dmamap;
    592 	int error, olasttx, nexttx, opending, seg, totlen;
    593 
    594 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    595 		return;
    596 
    597 	/*
    598 	 * Remember the previous number of pending transmissions
    599 	 * and the current last descriptor in the list.
    600 	 */
    601 	opending = sc->sc_txpending;
    602 	olasttx = sc->sc_txlast;
    603 
    604 	/*
    605 	 * Loop through the send queue, setting up transmit descriptors
    606 	 * until we drain the queue, or use up all available transmit
    607 	 * descriptors.
    608 	 */
    609 	while (sc->sc_txpending < STE_NTXDESC) {
    610 		/*
    611 		 * Grab a packet off the queue.
    612 		 */
    613 		IFQ_POLL(&ifp->if_snd, m0);
    614 		if (m0 == NULL)
    615 			break;
    616 		m = NULL;
    617 
    618 		/*
    619 		 * Get the last and next available transmit descriptor.
    620 		 */
    621 		nexttx = STE_NEXTTX(sc->sc_txlast);
    622 		tfd = &sc->sc_txdescs[nexttx];
    623 		ds = &sc->sc_txsoft[nexttx];
    624 
    625 		dmamap = ds->ds_dmamap;
    626 
    627 		/*
    628 		 * Load the DMA map.  If this fails, the packet either
    629 		 * didn't fit in the alloted number of segments, or we
    630 		 * were short on resources.  In this case, we'll copy
    631 		 * and try again.
    632 		 */
    633 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    634 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
    635 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    636 			if (m == NULL) {
    637 				printf("%s: unable to allocate Tx mbuf\n",
    638 				    device_xname(&sc->sc_dev));
    639 				break;
    640 			}
    641 			if (m0->m_pkthdr.len > MHLEN) {
    642 				MCLGET(m, M_DONTWAIT);
    643 				if ((m->m_flags & M_EXT) == 0) {
    644 					printf("%s: unable to allocate Tx "
    645 					    "cluster\n", device_xname(&sc->sc_dev));
    646 					m_freem(m);
    647 					break;
    648 				}
    649 			}
    650 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
    651 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    652 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    653 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
    654 			if (error) {
    655 				printf("%s: unable to load Tx buffer, "
    656 				    "error = %d\n", device_xname(&sc->sc_dev), error);
    657 				break;
    658 			}
    659 		}
    660 
    661 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    662 		if (m != NULL) {
    663 			m_freem(m0);
    664 			m0 = m;
    665 		}
    666 
    667 		/*
    668 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    669 		 */
    670 
    671 		/* Sync the DMA map. */
    672 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    673 		    BUS_DMASYNC_PREWRITE);
    674 
    675 		/* Initialize the fragment list. */
    676 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
    677 			tfd->tfd_frags[seg].frag_addr =
    678 			    htole32(dmamap->dm_segs[seg].ds_addr);
    679 			tfd->tfd_frags[seg].frag_len =
    680 			    htole32(dmamap->dm_segs[seg].ds_len);
    681 			totlen += dmamap->dm_segs[seg].ds_len;
    682 		}
    683 		tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
    684 
    685 		/* Initialize the descriptor. */
    686 		tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
    687 		tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
    688 
    689 		/* Sync the descriptor. */
    690 		STE_CDTXSYNC(sc, nexttx,
    691 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    692 
    693 		/*
    694 		 * Store a pointer to the packet so we can free it later,
    695 		 * and remember what txdirty will be once the packet is
    696 		 * done.
    697 		 */
    698 		ds->ds_mbuf = m0;
    699 
    700 		/* Advance the tx pointer. */
    701 		sc->sc_txpending++;
    702 		sc->sc_txlast = nexttx;
    703 
    704 #if NBPFILTER > 0
    705 		/*
    706 		 * Pass the packet to any BPF listeners.
    707 		 */
    708 		if (ifp->if_bpf)
    709 			bpf_mtap(ifp->if_bpf, m0);
    710 #endif /* NBPFILTER > 0 */
    711 	}
    712 
    713 	if (sc->sc_txpending == STE_NTXDESC) {
    714 		/* No more slots left; notify upper layer. */
    715 		ifp->if_flags |= IFF_OACTIVE;
    716 	}
    717 
    718 	if (sc->sc_txpending != opending) {
    719 		/*
    720 		 * We enqueued packets.  If the transmitter was idle,
    721 		 * reset the txdirty pointer.
    722 		 */
    723 		if (opending == 0)
    724 			sc->sc_txdirty = STE_NEXTTX(olasttx);
    725 
    726 		/*
    727 		 * Cause a descriptor interrupt to happen on the
    728 		 * last packet we enqueued, and also cause the
    729 		 * DMA engine to wait after is has finished processing
    730 		 * it.
    731 		 */
    732 		sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
    733 		sc->sc_txdescs[sc->sc_txlast].tfd_control |=
    734 		    htole32(TFD_TxDMAIndicate);
    735 		STE_CDTXSYNC(sc, sc->sc_txlast,
    736 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    737 
    738 		/*
    739 		 * Link up the new chain of descriptors to the
    740 		 * last.
    741 		 */
    742 		sc->sc_txdescs[olasttx].tfd_next =
    743 		    htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
    744 		STE_CDTXSYNC(sc, olasttx,
    745 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    746 
    747 		/*
    748 		 * Kick the transmit DMA logic.  Note that since we're
    749 		 * using auto-polling, reading the Tx desc pointer will
    750 		 * give it the nudge it needs to get going.
    751 		 */
    752 		if (bus_space_read_4(sc->sc_st, sc->sc_sh,
    753 		    STE_TxDMAListPtr) == 0) {
    754 			bus_space_write_4(sc->sc_st, sc->sc_sh,
    755 			    STE_DMACtrl, DC_TxDMAHalt);
    756 			ste_dmahalt_wait(sc);
    757 			bus_space_write_4(sc->sc_st, sc->sc_sh,
    758 			    STE_TxDMAListPtr,
    759 			    STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
    760 			bus_space_write_4(sc->sc_st, sc->sc_sh,
    761 			    STE_DMACtrl, DC_TxDMAResume);
    762 		}
    763 
    764 		/* Set a watchdog timer in case the chip flakes out. */
    765 		ifp->if_timer = 5;
    766 	}
    767 }
    768 
    769 /*
    770  * ste_watchdog:	[ifnet interface function]
    771  *
    772  *	Watchdog timer handler.
    773  */
    774 static void
    775 ste_watchdog(struct ifnet *ifp)
    776 {
    777 	struct ste_softc *sc = ifp->if_softc;
    778 
    779 	printf("%s: device timeout\n", device_xname(&sc->sc_dev));
    780 	ifp->if_oerrors++;
    781 
    782 	ste_txintr(sc);
    783 	ste_rxintr(sc);
    784 	(void) ste_init(ifp);
    785 
    786 	/* Try to get more packets going. */
    787 	ste_start(ifp);
    788 }
    789 
    790 /*
    791  * ste_ioctl:		[ifnet interface function]
    792  *
    793  *	Handle control requests from the operator.
    794  */
    795 static int
    796 ste_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    797 {
    798 	struct ste_softc *sc = ifp->if_softc;
    799 	int s, error;
    800 
    801 	s = splnet();
    802 
    803 	error = ether_ioctl(ifp, cmd, data);
    804 	if (error == ENETRESET) {
    805 		/*
    806 		 * Multicast list has changed; set the hardware filter
    807 		 * accordingly.
    808 		 */
    809 		if (ifp->if_flags & IFF_RUNNING)
    810 			ste_set_filter(sc);
    811 		error = 0;
    812 	}
    813 
    814 	/* Try to get more packets going. */
    815 	ste_start(ifp);
    816 
    817 	splx(s);
    818 	return (error);
    819 }
    820 
    821 /*
    822  * ste_intr:
    823  *
    824  *	Interrupt service routine.
    825  */
    826 static int
    827 ste_intr(void *arg)
    828 {
    829 	struct ste_softc *sc = arg;
    830 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    831 	uint16_t isr;
    832 	uint8_t txstat;
    833 	int wantinit;
    834 
    835 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
    836 	     IS_InterruptStatus) == 0)
    837 		return (0);
    838 
    839 	for (wantinit = 0; wantinit == 0;) {
    840 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
    841 		if ((isr & sc->sc_IntEnable) == 0)
    842 			break;
    843 
    844 		/* Receive interrupts. */
    845 		if (isr & IE_RxDMAComplete)
    846 			ste_rxintr(sc);
    847 
    848 		/* Transmit interrupts. */
    849 		if (isr & (IE_TxDMAComplete|IE_TxComplete))
    850 			ste_txintr(sc);
    851 
    852 		/* Statistics overflow. */
    853 		if (isr & IE_UpdateStats)
    854 			ste_stats_update(sc);
    855 
    856 		/* Transmission errors. */
    857 		if (isr & IE_TxComplete) {
    858 			for (;;) {
    859 				txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
    860 				    STE_TxStatus);
    861 				if ((txstat & TS_TxComplete) == 0)
    862 					break;
    863 				if (txstat & TS_TxUnderrun) {
    864 					sc->sc_txthresh += 32;
    865 					if (sc->sc_txthresh > 0x1ffc)
    866 						sc->sc_txthresh = 0x1ffc;
    867 					printf("%s: transmit underrun, new "
    868 					    "threshold: %d bytes\n",
    869 					    device_xname(&sc->sc_dev),
    870 					    sc->sc_txthresh);
    871 					ste_reset(sc, AC_TxReset | AC_DMA |
    872 					    AC_FIFO | AC_Network);
    873 					ste_setthresh(sc);
    874 					bus_space_write_1(sc->sc_st, sc->sc_sh,
    875 					    STE_TxDMAPollPeriod, 127);
    876 					ste_txrestart(sc,
    877 					    bus_space_read_1(sc->sc_st,
    878 						sc->sc_sh, STE_TxFrameId));
    879 				}
    880 				if (txstat & TS_TxReleaseError) {
    881 					printf("%s: Tx FIFO release error\n",
    882 					    device_xname(&sc->sc_dev));
    883 					wantinit = 1;
    884 				}
    885 				if (txstat & TS_MaxCollisions) {
    886 					printf("%s: excessive collisions\n",
    887 					    device_xname(&sc->sc_dev));
    888 					wantinit = 1;
    889 				}
    890 				if (txstat & TS_TxStatusOverflow) {
    891 					printf("%s: status overflow\n",
    892 					    device_xname(&sc->sc_dev));
    893 					wantinit = 1;
    894 				}
    895 				bus_space_write_2(sc->sc_st, sc->sc_sh,
    896 				    STE_TxStatus, 0);
    897 			}
    898 		}
    899 
    900 		/* Host interface errors. */
    901 		if (isr & IE_HostError) {
    902 			printf("%s: Host interface error\n",
    903 			    device_xname(&sc->sc_dev));
    904 			wantinit = 1;
    905 		}
    906 	}
    907 
    908 	if (wantinit)
    909 		ste_init(ifp);
    910 
    911 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
    912 	    sc->sc_IntEnable);
    913 
    914 	/* Try to get more packets going. */
    915 	ste_start(ifp);
    916 
    917 	return (1);
    918 }
    919 
    920 /*
    921  * ste_txintr:
    922  *
    923  *	Helper; handle transmit interrupts.
    924  */
    925 static void
    926 ste_txintr(struct ste_softc *sc)
    927 {
    928 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    929 	struct ste_descsoft *ds;
    930 	uint32_t control;
    931 	int i;
    932 
    933 	ifp->if_flags &= ~IFF_OACTIVE;
    934 
    935 	/*
    936 	 * Go through our Tx list and free mbufs for those
    937 	 * frames which have been transmitted.
    938 	 */
    939 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
    940 	     i = STE_NEXTTX(i), sc->sc_txpending--) {
    941 		ds = &sc->sc_txsoft[i];
    942 
    943 		STE_CDTXSYNC(sc, i,
    944 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    945 
    946 		control = le32toh(sc->sc_txdescs[i].tfd_control);
    947 		if ((control & TFD_TxDMAComplete) == 0)
    948 			break;
    949 
    950 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
    951 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    952 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
    953 		m_freem(ds->ds_mbuf);
    954 		ds->ds_mbuf = NULL;
    955 	}
    956 
    957 	/* Update the dirty transmit buffer pointer. */
    958 	sc->sc_txdirty = i;
    959 
    960 	/*
    961 	 * If there are no more pending transmissions, cancel the watchdog
    962 	 * timer.
    963 	 */
    964 	if (sc->sc_txpending == 0)
    965 		ifp->if_timer = 0;
    966 }
    967 
    968 /*
    969  * ste_rxintr:
    970  *
    971  *	Helper; handle receive interrupts.
    972  */
    973 static void
    974 ste_rxintr(struct ste_softc *sc)
    975 {
    976 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    977 	struct ste_descsoft *ds;
    978 	struct mbuf *m;
    979 	uint32_t status;
    980 	int i, len;
    981 
    982 	for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
    983 		ds = &sc->sc_rxsoft[i];
    984 
    985 		STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    986 
    987 		status = le32toh(sc->sc_rxdescs[i].rfd_status);
    988 
    989 		if ((status & RFD_RxDMAComplete) == 0)
    990 			break;
    991 
    992 		/*
    993 		 * If the packet had an error, simply recycle the
    994 		 * buffer.  Note, we count the error later in the
    995 		 * periodic stats update.
    996 		 */
    997 		if (status & RFD_RxFrameError) {
    998 			STE_INIT_RXDESC(sc, i);
    999 			continue;
   1000 		}
   1001 
   1002 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1003 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1004 
   1005 		/*
   1006 		 * No errors; receive the packet.  Note, we have
   1007 		 * configured the chip to not include the CRC at
   1008 		 * the end of the packet.
   1009 		 */
   1010 		len = RFD_RxDMAFrameLen(status);
   1011 
   1012 		/*
   1013 		 * If the packet is small enough to fit in a
   1014 		 * single header mbuf, allocate one and copy
   1015 		 * the data into it.  This greatly reduces
   1016 		 * memory consumption when we receive lots
   1017 		 * of small packets.
   1018 		 *
   1019 		 * Otherwise, we add a new buffer to the receive
   1020 		 * chain.  If this fails, we drop the packet and
   1021 		 * recycle the old buffer.
   1022 		 */
   1023 		if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
   1024 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1025 			if (m == NULL)
   1026 				goto dropit;
   1027 			m->m_data += 2;
   1028 			memcpy(mtod(m, void *),
   1029 			    mtod(ds->ds_mbuf, void *), len);
   1030 			STE_INIT_RXDESC(sc, i);
   1031 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1032 			    ds->ds_dmamap->dm_mapsize,
   1033 			    BUS_DMASYNC_PREREAD);
   1034 		} else {
   1035 			m = ds->ds_mbuf;
   1036 			if (ste_add_rxbuf(sc, i) != 0) {
   1037  dropit:
   1038 				ifp->if_ierrors++;
   1039 				STE_INIT_RXDESC(sc, i);
   1040 				bus_dmamap_sync(sc->sc_dmat,
   1041 				    ds->ds_dmamap, 0,
   1042 				    ds->ds_dmamap->dm_mapsize,
   1043 				    BUS_DMASYNC_PREREAD);
   1044 				continue;
   1045 			}
   1046 		}
   1047 
   1048 		m->m_pkthdr.rcvif = ifp;
   1049 		m->m_pkthdr.len = m->m_len = len;
   1050 
   1051 #if NBPFILTER > 0
   1052 		/*
   1053 		 * Pass this up to any BPF listeners, but only
   1054 		 * pass if up the stack if it's for us.
   1055 		 */
   1056 		if (ifp->if_bpf)
   1057 			bpf_mtap(ifp->if_bpf, m);
   1058 #endif /* NBPFILTER > 0 */
   1059 
   1060 		/* Pass it on. */
   1061 		(*ifp->if_input)(ifp, m);
   1062 	}
   1063 
   1064 	/* Update the receive pointer. */
   1065 	sc->sc_rxptr = i;
   1066 }
   1067 
   1068 /*
   1069  * ste_tick:
   1070  *
   1071  *	One second timer, used to tick the MII.
   1072  */
   1073 static void
   1074 ste_tick(void *arg)
   1075 {
   1076 	struct ste_softc *sc = arg;
   1077 	int s;
   1078 
   1079 	s = splnet();
   1080 	mii_tick(&sc->sc_mii);
   1081 	ste_stats_update(sc);
   1082 	splx(s);
   1083 
   1084 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
   1085 }
   1086 
   1087 /*
   1088  * ste_stats_update:
   1089  *
   1090  *	Read the ST-201 statistics counters.
   1091  */
   1092 static void
   1093 ste_stats_update(struct ste_softc *sc)
   1094 {
   1095 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1096 	bus_space_tag_t st = sc->sc_st;
   1097 	bus_space_handle_t sh = sc->sc_sh;
   1098 
   1099 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
   1100 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
   1101 
   1102 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
   1103 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
   1104 
   1105 	ifp->if_opackets +=
   1106 	    (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
   1107 	ifp->if_ipackets +=
   1108 	    (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
   1109 
   1110 	ifp->if_collisions +=
   1111 	    (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
   1112 	    (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
   1113 	    (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
   1114 
   1115 	(void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
   1116 
   1117 	ifp->if_ierrors +=
   1118 	    (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
   1119 
   1120 	ifp->if_oerrors +=
   1121 	    (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
   1122 	    (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
   1123 	    bus_space_read_1(st, sh, STE_CarrierSenseErrors);
   1124 
   1125 	(void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
   1126 	(void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
   1127 	(void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
   1128 	(void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
   1129 }
   1130 
   1131 /*
   1132  * ste_reset:
   1133  *
   1134  *	Perform a soft reset on the ST-201.
   1135  */
   1136 static void
   1137 ste_reset(struct ste_softc *sc, u_int32_t rstbits)
   1138 {
   1139 	uint32_t ac;
   1140 	int i;
   1141 
   1142 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
   1143 
   1144 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
   1145 
   1146 	delay(50000);
   1147 
   1148 	for (i = 0; i < STE_TIMEOUT; i++) {
   1149 		delay(1000);
   1150 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
   1151 		     AC_ResetBusy) == 0)
   1152 			break;
   1153 	}
   1154 
   1155 	if (i == STE_TIMEOUT)
   1156 		printf("%s: reset failed to complete\n", device_xname(&sc->sc_dev));
   1157 
   1158 	delay(1000);
   1159 }
   1160 
   1161 /*
   1162  * ste_setthresh:
   1163  *
   1164  * 	set the various transmit threshold registers
   1165  */
   1166 static void
   1167 ste_setthresh(struct ste_softc *sc)
   1168 {
   1169 	/* set the TX threhold */
   1170 	bus_space_write_2(sc->sc_st, sc->sc_sh,
   1171 	    STE_TxStartThresh, sc->sc_txthresh);
   1172 	/* Urgent threshold: set to sc_txthresh / 2 */
   1173 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
   1174 	    sc->sc_txthresh >> 6);
   1175 	/* Burst threshold: use default value (256 bytes) */
   1176 }
   1177 
   1178 /*
   1179  * restart TX at the given frame ID in the transmitter ring
   1180  */
   1181 static void
   1182 ste_txrestart(struct ste_softc *sc, u_int8_t id)
   1183 {
   1184 	u_int32_t control;
   1185 
   1186 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1187 	control = le32toh(sc->sc_txdescs[id].tfd_control);
   1188 	control &= ~TFD_TxDMAComplete;
   1189 	sc->sc_txdescs[id].tfd_control = htole32(control);
   1190 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1191 
   1192 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
   1193 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
   1194 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
   1195 	ste_dmahalt_wait(sc);
   1196 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
   1197 	    STE_CDTXADDR(sc, id));
   1198 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
   1199 }
   1200 
   1201 /*
   1202  * ste_init:		[ ifnet interface function ]
   1203  *
   1204  *	Initialize the interface.  Must be called at splnet().
   1205  */
   1206 static int
   1207 ste_init(struct ifnet *ifp)
   1208 {
   1209 	struct ste_softc *sc = ifp->if_softc;
   1210 	bus_space_tag_t st = sc->sc_st;
   1211 	bus_space_handle_t sh = sc->sc_sh;
   1212 	struct ste_descsoft *ds;
   1213 	int i, error = 0;
   1214 
   1215 	/*
   1216 	 * Cancel any pending I/O.
   1217 	 */
   1218 	ste_stop(ifp, 0);
   1219 
   1220 	/*
   1221 	 * Reset the chip to a known state.
   1222 	 */
   1223 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
   1224 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
   1225 
   1226 	/*
   1227 	 * Initialize the transmit descriptor ring.
   1228 	 */
   1229 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1230 	sc->sc_txpending = 0;
   1231 	sc->sc_txdirty = 0;
   1232 	sc->sc_txlast = STE_NTXDESC - 1;
   1233 
   1234 	/*
   1235 	 * Initialize the receive descriptor and receive job
   1236 	 * descriptor rings.
   1237 	 */
   1238 	for (i = 0; i < STE_NRXDESC; i++) {
   1239 		ds = &sc->sc_rxsoft[i];
   1240 		if (ds->ds_mbuf == NULL) {
   1241 			if ((error = ste_add_rxbuf(sc, i)) != 0) {
   1242 				printf("%s: unable to allocate or map rx "
   1243 				    "buffer %d, error = %d\n",
   1244 				    device_xname(&sc->sc_dev), i, error);
   1245 				/*
   1246 				 * XXX Should attempt to run with fewer receive
   1247 				 * XXX buffers instead of just failing.
   1248 				 */
   1249 				ste_rxdrain(sc);
   1250 				goto out;
   1251 			}
   1252 		} else
   1253 			STE_INIT_RXDESC(sc, i);
   1254 	}
   1255 	sc->sc_rxptr = 0;
   1256 
   1257 	/* Set the station address. */
   1258 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1259 		bus_space_write_1(st, sh, STE_StationAddress0 + 1,
   1260 		    CLLADDR(ifp->if_sadl)[i]);
   1261 
   1262 	/* Set up the receive filter. */
   1263 	ste_set_filter(sc);
   1264 
   1265 	/*
   1266 	 * Give the receive ring to the chip.
   1267 	 */
   1268 	bus_space_write_4(st, sh, STE_RxDMAListPtr,
   1269 	    STE_CDRXADDR(sc, sc->sc_rxptr));
   1270 
   1271 	/*
   1272 	 * We defer giving the transmit ring to the chip until we
   1273 	 * transmit the first packet.
   1274 	 */
   1275 
   1276 	/*
   1277 	 * Initialize the Tx auto-poll period.  It's OK to make this number
   1278 	 * large (127 is the max) -- we explicitly kick the transmit engine
   1279 	 * when there's actually a packet.  We are using auto-polling only
   1280 	 * to make the interface to the transmit engine not suck.
   1281 	 */
   1282 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
   1283 
   1284 	/* ..and the Rx auto-poll period. */
   1285 	bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
   1286 
   1287 	/* Initialize the Tx start threshold. */
   1288 	ste_setthresh(sc);
   1289 
   1290 	/* Set the FIFO release threshold to 512 bytes. */
   1291 	bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
   1292 
   1293 	/* Set maximum packet size for VLAN. */
   1294 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   1295 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN + 4);
   1296 	else
   1297 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN);
   1298 
   1299 	/*
   1300 	 * Initialize the interrupt mask.
   1301 	 */
   1302 	sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
   1303 	    IE_TxDMAComplete | IE_RxDMAComplete;
   1304 
   1305 	bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
   1306 	bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
   1307 
   1308 	/*
   1309 	 * Start the receive DMA engine.
   1310 	 */
   1311 	bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
   1312 
   1313 	/*
   1314 	 * Initialize MacCtrl0 -- do it before setting the media,
   1315 	 * as setting the media will actually program the register.
   1316 	 */
   1317 	sc->sc_MacCtrl0 = MC0_IFSSelect(0);
   1318 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   1319 		sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
   1320 
   1321 	/*
   1322 	 * Set the current media.
   1323 	 */
   1324 	if ((error = ether_mediachange(ifp)) != 0)
   1325 		goto out;
   1326 
   1327 	/*
   1328 	 * Start the MAC.
   1329 	 */
   1330 	bus_space_write_2(st, sh, STE_MacCtrl1,
   1331 	    MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
   1332 
   1333 	/*
   1334 	 * Start the one second MII clock.
   1335 	 */
   1336 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
   1337 
   1338 	/*
   1339 	 * ...all done!
   1340 	 */
   1341 	ifp->if_flags |= IFF_RUNNING;
   1342 	ifp->if_flags &= ~IFF_OACTIVE;
   1343 
   1344  out:
   1345 	if (error)
   1346 		printf("%s: interface not running\n", device_xname(&sc->sc_dev));
   1347 	return (error);
   1348 }
   1349 
   1350 /*
   1351  * ste_drain:
   1352  *
   1353  *	Drain the receive queue.
   1354  */
   1355 static void
   1356 ste_rxdrain(struct ste_softc *sc)
   1357 {
   1358 	struct ste_descsoft *ds;
   1359 	int i;
   1360 
   1361 	for (i = 0; i < STE_NRXDESC; i++) {
   1362 		ds = &sc->sc_rxsoft[i];
   1363 		if (ds->ds_mbuf != NULL) {
   1364 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1365 			m_freem(ds->ds_mbuf);
   1366 			ds->ds_mbuf = NULL;
   1367 		}
   1368 	}
   1369 }
   1370 
   1371 /*
   1372  * ste_stop:		[ ifnet interface function ]
   1373  *
   1374  *	Stop transmission on the interface.
   1375  */
   1376 static void
   1377 ste_stop(struct ifnet *ifp, int disable)
   1378 {
   1379 	struct ste_softc *sc = ifp->if_softc;
   1380 	struct ste_descsoft *ds;
   1381 	int i;
   1382 
   1383 	/*
   1384 	 * Stop the one second clock.
   1385 	 */
   1386 	callout_stop(&sc->sc_tick_ch);
   1387 
   1388 	/* Down the MII. */
   1389 	mii_down(&sc->sc_mii);
   1390 
   1391 	/*
   1392 	 * Disable interrupts.
   1393 	 */
   1394 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
   1395 
   1396 	/*
   1397 	 * Stop receiver, transmitter, and stats update.
   1398 	 */
   1399 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
   1400 	    MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
   1401 
   1402 	/*
   1403 	 * Stop the transmit and receive DMA.
   1404 	 */
   1405 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
   1406 	    DC_RxDMAHalt | DC_TxDMAHalt);
   1407 	ste_dmahalt_wait(sc);
   1408 
   1409 	/*
   1410 	 * Release any queued transmit buffers.
   1411 	 */
   1412 	for (i = 0; i < STE_NTXDESC; i++) {
   1413 		ds = &sc->sc_txsoft[i];
   1414 		if (ds->ds_mbuf != NULL) {
   1415 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1416 			m_freem(ds->ds_mbuf);
   1417 			ds->ds_mbuf = NULL;
   1418 		}
   1419 	}
   1420 
   1421 	/*
   1422 	 * Mark the interface down and cancel the watchdog timer.
   1423 	 */
   1424 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1425 	ifp->if_timer = 0;
   1426 
   1427 	if (disable)
   1428 		ste_rxdrain(sc);
   1429 }
   1430 
   1431 static int
   1432 ste_eeprom_wait(struct ste_softc *sc)
   1433 {
   1434 	int i;
   1435 
   1436 	for (i = 0; i < STE_TIMEOUT; i++) {
   1437 		delay(1000);
   1438 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
   1439 		     EC_EepromBusy) == 0)
   1440 			return (0);
   1441 	}
   1442 	return (1);
   1443 }
   1444 
   1445 /*
   1446  * ste_read_eeprom:
   1447  *
   1448  *	Read data from the serial EEPROM.
   1449  */
   1450 static void
   1451 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
   1452 {
   1453 
   1454 	if (ste_eeprom_wait(sc))
   1455 		printf("%s: EEPROM failed to come ready\n",
   1456 		    device_xname(&sc->sc_dev));
   1457 
   1458 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
   1459 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
   1460 	if (ste_eeprom_wait(sc))
   1461 		printf("%s: EEPROM read timed out\n",
   1462 		    device_xname(&sc->sc_dev));
   1463 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
   1464 }
   1465 
   1466 /*
   1467  * ste_add_rxbuf:
   1468  *
   1469  *	Add a receive buffer to the indicated descriptor.
   1470  */
   1471 static int
   1472 ste_add_rxbuf(struct ste_softc *sc, int idx)
   1473 {
   1474 	struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
   1475 	struct mbuf *m;
   1476 	int error;
   1477 
   1478 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1479 	if (m == NULL)
   1480 		return (ENOBUFS);
   1481 
   1482 	MCLGET(m, M_DONTWAIT);
   1483 	if ((m->m_flags & M_EXT) == 0) {
   1484 		m_freem(m);
   1485 		return (ENOBUFS);
   1486 	}
   1487 
   1488 	if (ds->ds_mbuf != NULL)
   1489 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1490 
   1491 	ds->ds_mbuf = m;
   1492 
   1493 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
   1494 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1495 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1496 	if (error) {
   1497 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1498 		    device_xname(&sc->sc_dev), idx, error);
   1499 		panic("ste_add_rxbuf");		/* XXX */
   1500 	}
   1501 
   1502 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1503 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1504 
   1505 	STE_INIT_RXDESC(sc, idx);
   1506 
   1507 	return (0);
   1508 }
   1509 
   1510 /*
   1511  * ste_set_filter:
   1512  *
   1513  *	Set up the receive filter.
   1514  */
   1515 static void
   1516 ste_set_filter(struct ste_softc *sc)
   1517 {
   1518 	struct ethercom *ec = &sc->sc_ethercom;
   1519 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1520 	struct ether_multi *enm;
   1521 	struct ether_multistep step;
   1522 	uint32_t crc;
   1523 	uint16_t mchash[4];
   1524 
   1525 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
   1526 	if (ifp->if_flags & IFF_BROADCAST)
   1527 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
   1528 
   1529 	if (ifp->if_flags & IFF_PROMISC) {
   1530 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
   1531 		goto allmulti;
   1532 	}
   1533 
   1534 	/*
   1535 	 * Set up the multicast address filter by passing all multicast
   1536 	 * addresses through a CRC generator, and then using the low-order
   1537 	 * 6 bits as an index into the 64 bit multicast hash table.  The
   1538 	 * high order bits select the register, while the rest of the bits
   1539 	 * select the bit within the register.
   1540 	 */
   1541 
   1542 	memset(mchash, 0, sizeof(mchash));
   1543 
   1544 	ETHER_FIRST_MULTI(step, ec, enm);
   1545 	if (enm == NULL)
   1546 		goto done;
   1547 
   1548 	while (enm != NULL) {
   1549 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1550 			/*
   1551 			 * We must listen to a range of multicast addresses.
   1552 			 * For now, just accept all multicasts, rather than
   1553 			 * trying to set only those filter bits needed to match
   1554 			 * the range.  (At this time, the only use of address
   1555 			 * ranges is for IP multicast routing, for which the
   1556 			 * range is big enough to require all bits set.)
   1557 			 */
   1558 			goto allmulti;
   1559 		}
   1560 
   1561 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1562 
   1563 		/* Just want the 6 least significant bits. */
   1564 		crc &= 0x3f;
   1565 
   1566 		/* Set the corresponding bit in the hash table. */
   1567 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   1568 
   1569 		ETHER_NEXT_MULTI(step, enm);
   1570 	}
   1571 
   1572 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
   1573 
   1574 	ifp->if_flags &= ~IFF_ALLMULTI;
   1575 	goto done;
   1576 
   1577  allmulti:
   1578 	ifp->if_flags |= IFF_ALLMULTI;
   1579 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
   1580 
   1581  done:
   1582 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1583 		/*
   1584 		 * Program the multicast hash table.
   1585 		 */
   1586 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
   1587 		    mchash[0]);
   1588 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
   1589 		    mchash[1]);
   1590 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
   1591 		    mchash[2]);
   1592 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
   1593 		    mchash[3]);
   1594 	}
   1595 
   1596 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
   1597 	    sc->sc_ReceiveMode);
   1598 }
   1599 
   1600 /*
   1601  * ste_mii_readreg:	[mii interface function]
   1602  *
   1603  *	Read a PHY register on the MII of the ST-201.
   1604  */
   1605 static int
   1606 ste_mii_readreg(device_t self, int phy, int reg)
   1607 {
   1608 
   1609 	return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
   1610 }
   1611 
   1612 /*
   1613  * ste_mii_writereg:	[mii interface function]
   1614  *
   1615  *	Write a PHY register on the MII of the ST-201.
   1616  */
   1617 static void
   1618 ste_mii_writereg(device_t self, int phy, int reg, int val)
   1619 {
   1620 
   1621 	mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
   1622 }
   1623 
   1624 /*
   1625  * ste_mii_statchg:	[mii interface function]
   1626  *
   1627  *	Callback from MII layer when media changes.
   1628  */
   1629 static void
   1630 ste_mii_statchg(device_t self)
   1631 {
   1632 	struct ste_softc *sc = device_private(self);
   1633 
   1634 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   1635 		sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
   1636 	else
   1637 		sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
   1638 
   1639 	/* XXX 802.1x flow-control? */
   1640 
   1641 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
   1642 }
   1643 
   1644 /*
   1645  * ste_mii_bitbang_read: [mii bit-bang interface function]
   1646  *
   1647  *	Read the MII serial port for the MII bit-bang module.
   1648  */
   1649 static uint32_t
   1650 ste_mii_bitbang_read(device_t self)
   1651 {
   1652 	struct ste_softc *sc = device_private(self);
   1653 
   1654 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
   1655 }
   1656 
   1657 /*
   1658  * ste_mii_bitbang_write: [mii big-bang interface function]
   1659  *
   1660  *	Write the MII serial port for the MII bit-bang module.
   1661  */
   1662 static void
   1663 ste_mii_bitbang_write(device_t self, uint32_t val)
   1664 {
   1665 	struct ste_softc *sc = device_private(self);
   1666 
   1667 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
   1668 }
   1669