if_ste.c revision 1.39 1 /* $NetBSD: if_ste.c,v 1.39 2009/11/26 15:17:10 njoly Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the Sundance Tech. ST-201 10/100
34 * Ethernet controller.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.39 2009/11/26 15:17:10 njoly Exp $");
39
40 #include "bpfilter.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/ioctl.h>
50 #include <sys/errno.h>
51 #include <sys/device.h>
52 #include <sys/queue.h>
53
54 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
55
56 #include <net/if.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
60
61 #if NBPFILTER > 0
62 #include <net/bpf.h>
63 #endif
64
65 #include <sys/bus.h>
66 #include <sys/intr.h>
67
68 #include <dev/mii/mii.h>
69 #include <dev/mii/miivar.h>
70 #include <dev/mii/mii_bitbang.h>
71
72 #include <dev/pci/pcireg.h>
73 #include <dev/pci/pcivar.h>
74 #include <dev/pci/pcidevs.h>
75
76 #include <dev/pci/if_stereg.h>
77
78 /*
79 * Transmit descriptor list size.
80 */
81 #define STE_NTXDESC 256
82 #define STE_NTXDESC_MASK (STE_NTXDESC - 1)
83 #define STE_NEXTTX(x) (((x) + 1) & STE_NTXDESC_MASK)
84
85 /*
86 * Receive descriptor list size.
87 */
88 #define STE_NRXDESC 128
89 #define STE_NRXDESC_MASK (STE_NRXDESC - 1)
90 #define STE_NEXTRX(x) (((x) + 1) & STE_NRXDESC_MASK)
91
92 /*
93 * Control structures are DMA'd to the ST-201 chip. We allocate them in
94 * a single clump that maps to a single DMA segment to make several things
95 * easier.
96 */
97 struct ste_control_data {
98 /*
99 * The transmit descriptors.
100 */
101 struct ste_tfd scd_txdescs[STE_NTXDESC];
102
103 /*
104 * The receive descriptors.
105 */
106 struct ste_rfd scd_rxdescs[STE_NRXDESC];
107 };
108
109 #define STE_CDOFF(x) offsetof(struct ste_control_data, x)
110 #define STE_CDTXOFF(x) STE_CDOFF(scd_txdescs[(x)])
111 #define STE_CDRXOFF(x) STE_CDOFF(scd_rxdescs[(x)])
112
113 /*
114 * Software state for transmit and receive jobs.
115 */
116 struct ste_descsoft {
117 struct mbuf *ds_mbuf; /* head of our mbuf chain */
118 bus_dmamap_t ds_dmamap; /* our DMA map */
119 };
120
121 /*
122 * Software state per device.
123 */
124 struct ste_softc {
125 struct device sc_dev; /* generic device information */
126 bus_space_tag_t sc_st; /* bus space tag */
127 bus_space_handle_t sc_sh; /* bus space handle */
128 bus_dma_tag_t sc_dmat; /* bus DMA tag */
129 struct ethercom sc_ethercom; /* ethernet common data */
130
131 void *sc_ih; /* interrupt cookie */
132
133 struct mii_data sc_mii; /* MII/media information */
134
135 callout_t sc_tick_ch; /* tick callout */
136
137 bus_dmamap_t sc_cddmamap; /* control data DMA map */
138 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
139
140 /*
141 * Software state for transmit and receive descriptors.
142 */
143 struct ste_descsoft sc_txsoft[STE_NTXDESC];
144 struct ste_descsoft sc_rxsoft[STE_NRXDESC];
145
146 /*
147 * Control data structures.
148 */
149 struct ste_control_data *sc_control_data;
150 #define sc_txdescs sc_control_data->scd_txdescs
151 #define sc_rxdescs sc_control_data->scd_rxdescs
152
153 int sc_txpending; /* number of Tx requests pending */
154 int sc_txdirty; /* first dirty Tx descriptor */
155 int sc_txlast; /* last used Tx descriptor */
156
157 int sc_rxptr; /* next ready Rx descriptor/descsoft */
158
159 int sc_txthresh; /* Tx threshold */
160 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
161 uint16_t sc_IntEnable; /* prototype IntEnable register */
162 uint16_t sc_MacCtrl0; /* prototype MacCtrl0 register */
163 uint8_t sc_ReceiveMode; /* prototype ReceiveMode register */
164 };
165
166 #define STE_CDTXADDR(sc, x) ((sc)->sc_cddma + STE_CDTXOFF((x)))
167 #define STE_CDRXADDR(sc, x) ((sc)->sc_cddma + STE_CDRXOFF((x)))
168
169 #define STE_CDTXSYNC(sc, x, ops) \
170 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
171 STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
172
173 #define STE_CDRXSYNC(sc, x, ops) \
174 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
175 STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
176
177 #define STE_INIT_RXDESC(sc, x) \
178 do { \
179 struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
180 struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
181 struct mbuf *__m = __ds->ds_mbuf; \
182 \
183 /* \
184 * Note: We scoot the packet forward 2 bytes in the buffer \
185 * so that the payload after the Ethernet header is aligned \
186 * to a 4-byte boundary. \
187 */ \
188 __m->m_data = __m->m_ext.ext_buf + 2; \
189 __rfd->rfd_frag.frag_addr = \
190 htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2); \
191 __rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST); \
192 __rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x)))); \
193 __rfd->rfd_status = 0; \
194 STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
195 } while (/*CONSTCOND*/0)
196
197 #define STE_TIMEOUT 1000
198
199 static void ste_start(struct ifnet *);
200 static void ste_watchdog(struct ifnet *);
201 static int ste_ioctl(struct ifnet *, u_long, void *);
202 static int ste_init(struct ifnet *);
203 static void ste_stop(struct ifnet *, int);
204
205 static bool ste_shutdown(device_t, int);
206
207 static void ste_reset(struct ste_softc *, u_int32_t);
208 static void ste_setthresh(struct ste_softc *);
209 static void ste_txrestart(struct ste_softc *, u_int8_t);
210 static void ste_rxdrain(struct ste_softc *);
211 static int ste_add_rxbuf(struct ste_softc *, int);
212 static void ste_read_eeprom(struct ste_softc *, int, uint16_t *);
213 static void ste_tick(void *);
214
215 static void ste_stats_update(struct ste_softc *);
216
217 static void ste_set_filter(struct ste_softc *);
218
219 static int ste_intr(void *);
220 static void ste_txintr(struct ste_softc *);
221 static void ste_rxintr(struct ste_softc *);
222
223 static int ste_mii_readreg(device_t, int, int);
224 static void ste_mii_writereg(device_t, int, int, int);
225 static void ste_mii_statchg(device_t);
226
227 static int ste_match(device_t, cfdata_t, void *);
228 static void ste_attach(device_t, device_t, void *);
229
230 int ste_copy_small = 0;
231
232 CFATTACH_DECL(ste, sizeof(struct ste_softc),
233 ste_match, ste_attach, NULL, NULL);
234
235 static uint32_t ste_mii_bitbang_read(device_t);
236 static void ste_mii_bitbang_write(device_t, uint32_t);
237
238 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
239 ste_mii_bitbang_read,
240 ste_mii_bitbang_write,
241 {
242 PC_MgmtData, /* MII_BIT_MDO */
243 PC_MgmtData, /* MII_BIT_MDI */
244 PC_MgmtClk, /* MII_BIT_MDC */
245 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
246 0, /* MII_BIT_DIR_PHY_HOST */
247 }
248 };
249
250 /*
251 * Devices supported by this driver.
252 */
253 static const struct ste_product {
254 pci_vendor_id_t ste_vendor;
255 pci_product_id_t ste_product;
256 const char *ste_name;
257 } ste_products[] = {
258 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_IP100A,
259 "IC Plus Corp. IP00A 10/100 Fast Ethernet Adapter" },
260
261 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST201,
262 "Sundance ST-201 10/100 Ethernet" },
263
264 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL1002,
265 "D-Link DL-1002 10/100 Ethernet" },
266
267 { 0, 0,
268 NULL },
269 };
270
271 static const struct ste_product *
272 ste_lookup(const struct pci_attach_args *pa)
273 {
274 const struct ste_product *sp;
275
276 for (sp = ste_products; sp->ste_name != NULL; sp++) {
277 if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
278 PCI_PRODUCT(pa->pa_id) == sp->ste_product)
279 return (sp);
280 }
281 return (NULL);
282 }
283
284 static int
285 ste_match(device_t parent, cfdata_t cf, void *aux)
286 {
287 struct pci_attach_args *pa = aux;
288
289 if (ste_lookup(pa) != NULL)
290 return (1);
291
292 return (0);
293 }
294
295 static void
296 ste_attach(device_t parent, device_t self, void *aux)
297 {
298 struct ste_softc *sc = device_private(self);
299 struct pci_attach_args *pa = aux;
300 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
301 pci_chipset_tag_t pc = pa->pa_pc;
302 pci_intr_handle_t ih;
303 const char *intrstr = NULL;
304 bus_space_tag_t iot, memt;
305 bus_space_handle_t ioh, memh;
306 bus_dma_segment_t seg;
307 int ioh_valid, memh_valid;
308 int i, rseg, error;
309 const struct ste_product *sp;
310 uint8_t enaddr[ETHER_ADDR_LEN];
311 uint16_t myea[ETHER_ADDR_LEN / 2];
312
313 callout_init(&sc->sc_tick_ch, 0);
314
315 sp = ste_lookup(pa);
316 if (sp == NULL) {
317 printf("\n");
318 panic("ste_attach: impossible");
319 }
320
321 printf(": %s\n", sp->ste_name);
322
323 /*
324 * Map the device.
325 */
326 ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
327 PCI_MAPREG_TYPE_IO, 0,
328 &iot, &ioh, NULL, NULL) == 0);
329 memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
330 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
331 &memt, &memh, NULL, NULL) == 0);
332
333 if (memh_valid) {
334 sc->sc_st = memt;
335 sc->sc_sh = memh;
336 } else if (ioh_valid) {
337 sc->sc_st = iot;
338 sc->sc_sh = ioh;
339 } else {
340 aprint_error_dev(&sc->sc_dev, "unable to map device registers\n");
341 return;
342 }
343
344 sc->sc_dmat = pa->pa_dmat;
345
346 /* Enable bus mastering. */
347 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
348 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
349 PCI_COMMAND_MASTER_ENABLE);
350
351 /* power up chip */
352 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
353 NULL)) && error != EOPNOTSUPP) {
354 aprint_error_dev(&sc->sc_dev, "cannot activate %d\n",
355 error);
356 return;
357 }
358
359 /*
360 * Map and establish our interrupt.
361 */
362 if (pci_intr_map(pa, &ih)) {
363 aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
364 return;
365 }
366 intrstr = pci_intr_string(pc, ih);
367 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
368 if (sc->sc_ih == NULL) {
369 aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
370 if (intrstr != NULL)
371 aprint_error(" at %s", intrstr);
372 aprint_error("\n");
373 return;
374 }
375 aprint_normal_dev(&sc->sc_dev, "interrupting at %s\n", intrstr);
376
377 /*
378 * Allocate the control data structures, and create and load the
379 * DMA map for it.
380 */
381 if ((error = bus_dmamem_alloc(sc->sc_dmat,
382 sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
383 0)) != 0) {
384 aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n",
385 error);
386 goto fail_0;
387 }
388
389 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
390 sizeof(struct ste_control_data), (void **)&sc->sc_control_data,
391 BUS_DMA_COHERENT)) != 0) {
392 aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
393 error);
394 goto fail_1;
395 }
396
397 if ((error = bus_dmamap_create(sc->sc_dmat,
398 sizeof(struct ste_control_data), 1,
399 sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
400 aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
401 "error = %d\n", error);
402 goto fail_2;
403 }
404
405 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
406 sc->sc_control_data, sizeof(struct ste_control_data), NULL,
407 0)) != 0) {
408 aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
409 error);
410 goto fail_3;
411 }
412
413 /*
414 * Create the transmit buffer DMA maps.
415 */
416 for (i = 0; i < STE_NTXDESC; i++) {
417 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
418 STE_NTXFRAGS, MCLBYTES, 0, 0,
419 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
420 aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
421 "error = %d\n", i, error);
422 goto fail_4;
423 }
424 }
425
426 /*
427 * Create the receive buffer DMA maps.
428 */
429 for (i = 0; i < STE_NRXDESC; i++) {
430 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
431 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
432 aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
433 "error = %d\n", i, error);
434 goto fail_5;
435 }
436 sc->sc_rxsoft[i].ds_mbuf = NULL;
437 }
438
439 /*
440 * Reset the chip to a known state.
441 */
442 ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
443 AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
444
445 /*
446 * Read the Ethernet address from the EEPROM.
447 */
448 for (i = 0; i < 3; i++) {
449 ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
450 myea[i] = le16toh(myea[i]);
451 }
452 memcpy(enaddr, myea, sizeof(enaddr));
453
454 printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
455 ether_sprintf(enaddr));
456
457 /*
458 * Initialize our media structures and probe the MII.
459 */
460 sc->sc_mii.mii_ifp = ifp;
461 sc->sc_mii.mii_readreg = ste_mii_readreg;
462 sc->sc_mii.mii_writereg = ste_mii_writereg;
463 sc->sc_mii.mii_statchg = ste_mii_statchg;
464 sc->sc_ethercom.ec_mii = &sc->sc_mii;
465 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
466 ether_mediastatus);
467 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
468 MII_OFFSET_ANY, 0);
469 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
470 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
471 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
472 } else
473 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
474
475 ifp = &sc->sc_ethercom.ec_if;
476 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
477 ifp->if_softc = sc;
478 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
479 ifp->if_ioctl = ste_ioctl;
480 ifp->if_start = ste_start;
481 ifp->if_watchdog = ste_watchdog;
482 ifp->if_init = ste_init;
483 ifp->if_stop = ste_stop;
484 IFQ_SET_READY(&ifp->if_snd);
485
486 /*
487 * Default the transmit threshold to 128 bytes.
488 */
489 sc->sc_txthresh = 128;
490
491 /*
492 * Disable MWI if the PCI layer tells us to.
493 */
494 sc->sc_DMACtrl = 0;
495 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
496 sc->sc_DMACtrl |= DC_MWIDisable;
497
498 /*
499 * We can support 802.1Q VLAN-sized frames.
500 */
501 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
502
503 /*
504 * Attach the interface.
505 */
506 if_attach(ifp);
507 ether_ifattach(ifp, enaddr);
508
509 /*
510 * Make sure the interface is shutdown during reboot.
511 */
512 if (pmf_device_register1(self, NULL, NULL, ste_shutdown))
513 pmf_class_network_register(self, ifp);
514 else
515 aprint_error_dev(self, "couldn't establish power handler\n");
516
517 return;
518
519 /*
520 * Free any resources we've allocated during the failed attach
521 * attempt. Do this in reverse order and fall through.
522 */
523 fail_5:
524 for (i = 0; i < STE_NRXDESC; i++) {
525 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
526 bus_dmamap_destroy(sc->sc_dmat,
527 sc->sc_rxsoft[i].ds_dmamap);
528 }
529 fail_4:
530 for (i = 0; i < STE_NTXDESC; i++) {
531 if (sc->sc_txsoft[i].ds_dmamap != NULL)
532 bus_dmamap_destroy(sc->sc_dmat,
533 sc->sc_txsoft[i].ds_dmamap);
534 }
535 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
536 fail_3:
537 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
538 fail_2:
539 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
540 sizeof(struct ste_control_data));
541 fail_1:
542 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
543 fail_0:
544 return;
545 }
546
547 /*
548 * ste_shutdown:
549 *
550 * Make sure the interface is stopped at reboot time.
551 */
552 static bool
553 ste_shutdown(device_t self, int howto)
554 {
555 struct ste_softc *sc;
556
557 sc = device_private(self);
558 ste_stop(&sc->sc_ethercom.ec_if, 1);
559
560 return true;
561 }
562
563 static void
564 ste_dmahalt_wait(struct ste_softc *sc)
565 {
566 int i;
567
568 for (i = 0; i < STE_TIMEOUT; i++) {
569 delay(2);
570 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
571 DC_DMAHaltBusy) == 0)
572 break;
573 }
574
575 if (i == STE_TIMEOUT)
576 printf("%s: DMA halt timed out\n", device_xname(&sc->sc_dev));
577 }
578
579 /*
580 * ste_start: [ifnet interface function]
581 *
582 * Start packet transmission on the interface.
583 */
584 static void
585 ste_start(struct ifnet *ifp)
586 {
587 struct ste_softc *sc = ifp->if_softc;
588 struct mbuf *m0, *m;
589 struct ste_descsoft *ds;
590 struct ste_tfd *tfd;
591 bus_dmamap_t dmamap;
592 int error, olasttx, nexttx, opending, seg, totlen;
593
594 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
595 return;
596
597 /*
598 * Remember the previous number of pending transmissions
599 * and the current last descriptor in the list.
600 */
601 opending = sc->sc_txpending;
602 olasttx = sc->sc_txlast;
603
604 /*
605 * Loop through the send queue, setting up transmit descriptors
606 * until we drain the queue, or use up all available transmit
607 * descriptors.
608 */
609 while (sc->sc_txpending < STE_NTXDESC) {
610 /*
611 * Grab a packet off the queue.
612 */
613 IFQ_POLL(&ifp->if_snd, m0);
614 if (m0 == NULL)
615 break;
616 m = NULL;
617
618 /*
619 * Get the last and next available transmit descriptor.
620 */
621 nexttx = STE_NEXTTX(sc->sc_txlast);
622 tfd = &sc->sc_txdescs[nexttx];
623 ds = &sc->sc_txsoft[nexttx];
624
625 dmamap = ds->ds_dmamap;
626
627 /*
628 * Load the DMA map. If this fails, the packet either
629 * didn't fit in the alloted number of segments, or we
630 * were short on resources. In this case, we'll copy
631 * and try again.
632 */
633 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
634 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
635 MGETHDR(m, M_DONTWAIT, MT_DATA);
636 if (m == NULL) {
637 printf("%s: unable to allocate Tx mbuf\n",
638 device_xname(&sc->sc_dev));
639 break;
640 }
641 if (m0->m_pkthdr.len > MHLEN) {
642 MCLGET(m, M_DONTWAIT);
643 if ((m->m_flags & M_EXT) == 0) {
644 printf("%s: unable to allocate Tx "
645 "cluster\n", device_xname(&sc->sc_dev));
646 m_freem(m);
647 break;
648 }
649 }
650 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
651 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
652 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
653 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
654 if (error) {
655 printf("%s: unable to load Tx buffer, "
656 "error = %d\n", device_xname(&sc->sc_dev), error);
657 break;
658 }
659 }
660
661 IFQ_DEQUEUE(&ifp->if_snd, m0);
662 if (m != NULL) {
663 m_freem(m0);
664 m0 = m;
665 }
666
667 /*
668 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
669 */
670
671 /* Sync the DMA map. */
672 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
673 BUS_DMASYNC_PREWRITE);
674
675 /* Initialize the fragment list. */
676 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
677 tfd->tfd_frags[seg].frag_addr =
678 htole32(dmamap->dm_segs[seg].ds_addr);
679 tfd->tfd_frags[seg].frag_len =
680 htole32(dmamap->dm_segs[seg].ds_len);
681 totlen += dmamap->dm_segs[seg].ds_len;
682 }
683 tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
684
685 /* Initialize the descriptor. */
686 tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
687 tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
688
689 /* Sync the descriptor. */
690 STE_CDTXSYNC(sc, nexttx,
691 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
692
693 /*
694 * Store a pointer to the packet so we can free it later,
695 * and remember what txdirty will be once the packet is
696 * done.
697 */
698 ds->ds_mbuf = m0;
699
700 /* Advance the tx pointer. */
701 sc->sc_txpending++;
702 sc->sc_txlast = nexttx;
703
704 #if NBPFILTER > 0
705 /*
706 * Pass the packet to any BPF listeners.
707 */
708 if (ifp->if_bpf)
709 bpf_mtap(ifp->if_bpf, m0);
710 #endif /* NBPFILTER > 0 */
711 }
712
713 if (sc->sc_txpending == STE_NTXDESC) {
714 /* No more slots left; notify upper layer. */
715 ifp->if_flags |= IFF_OACTIVE;
716 }
717
718 if (sc->sc_txpending != opending) {
719 /*
720 * We enqueued packets. If the transmitter was idle,
721 * reset the txdirty pointer.
722 */
723 if (opending == 0)
724 sc->sc_txdirty = STE_NEXTTX(olasttx);
725
726 /*
727 * Cause a descriptor interrupt to happen on the
728 * last packet we enqueued, and also cause the
729 * DMA engine to wait after is has finished processing
730 * it.
731 */
732 sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
733 sc->sc_txdescs[sc->sc_txlast].tfd_control |=
734 htole32(TFD_TxDMAIndicate);
735 STE_CDTXSYNC(sc, sc->sc_txlast,
736 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
737
738 /*
739 * Link up the new chain of descriptors to the
740 * last.
741 */
742 sc->sc_txdescs[olasttx].tfd_next =
743 htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
744 STE_CDTXSYNC(sc, olasttx,
745 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
746
747 /*
748 * Kick the transmit DMA logic. Note that since we're
749 * using auto-polling, reading the Tx desc pointer will
750 * give it the nudge it needs to get going.
751 */
752 if (bus_space_read_4(sc->sc_st, sc->sc_sh,
753 STE_TxDMAListPtr) == 0) {
754 bus_space_write_4(sc->sc_st, sc->sc_sh,
755 STE_DMACtrl, DC_TxDMAHalt);
756 ste_dmahalt_wait(sc);
757 bus_space_write_4(sc->sc_st, sc->sc_sh,
758 STE_TxDMAListPtr,
759 STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
760 bus_space_write_4(sc->sc_st, sc->sc_sh,
761 STE_DMACtrl, DC_TxDMAResume);
762 }
763
764 /* Set a watchdog timer in case the chip flakes out. */
765 ifp->if_timer = 5;
766 }
767 }
768
769 /*
770 * ste_watchdog: [ifnet interface function]
771 *
772 * Watchdog timer handler.
773 */
774 static void
775 ste_watchdog(struct ifnet *ifp)
776 {
777 struct ste_softc *sc = ifp->if_softc;
778
779 printf("%s: device timeout\n", device_xname(&sc->sc_dev));
780 ifp->if_oerrors++;
781
782 ste_txintr(sc);
783 ste_rxintr(sc);
784 (void) ste_init(ifp);
785
786 /* Try to get more packets going. */
787 ste_start(ifp);
788 }
789
790 /*
791 * ste_ioctl: [ifnet interface function]
792 *
793 * Handle control requests from the operator.
794 */
795 static int
796 ste_ioctl(struct ifnet *ifp, u_long cmd, void *data)
797 {
798 struct ste_softc *sc = ifp->if_softc;
799 int s, error;
800
801 s = splnet();
802
803 error = ether_ioctl(ifp, cmd, data);
804 if (error == ENETRESET) {
805 /*
806 * Multicast list has changed; set the hardware filter
807 * accordingly.
808 */
809 if (ifp->if_flags & IFF_RUNNING)
810 ste_set_filter(sc);
811 error = 0;
812 }
813
814 /* Try to get more packets going. */
815 ste_start(ifp);
816
817 splx(s);
818 return (error);
819 }
820
821 /*
822 * ste_intr:
823 *
824 * Interrupt service routine.
825 */
826 static int
827 ste_intr(void *arg)
828 {
829 struct ste_softc *sc = arg;
830 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
831 uint16_t isr;
832 uint8_t txstat;
833 int wantinit;
834
835 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
836 IS_InterruptStatus) == 0)
837 return (0);
838
839 for (wantinit = 0; wantinit == 0;) {
840 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
841 if ((isr & sc->sc_IntEnable) == 0)
842 break;
843
844 /* Receive interrupts. */
845 if (isr & IE_RxDMAComplete)
846 ste_rxintr(sc);
847
848 /* Transmit interrupts. */
849 if (isr & (IE_TxDMAComplete|IE_TxComplete))
850 ste_txintr(sc);
851
852 /* Statistics overflow. */
853 if (isr & IE_UpdateStats)
854 ste_stats_update(sc);
855
856 /* Transmission errors. */
857 if (isr & IE_TxComplete) {
858 for (;;) {
859 txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
860 STE_TxStatus);
861 if ((txstat & TS_TxComplete) == 0)
862 break;
863 if (txstat & TS_TxUnderrun) {
864 sc->sc_txthresh += 32;
865 if (sc->sc_txthresh > 0x1ffc)
866 sc->sc_txthresh = 0x1ffc;
867 printf("%s: transmit underrun, new "
868 "threshold: %d bytes\n",
869 device_xname(&sc->sc_dev),
870 sc->sc_txthresh);
871 ste_reset(sc, AC_TxReset | AC_DMA |
872 AC_FIFO | AC_Network);
873 ste_setthresh(sc);
874 bus_space_write_1(sc->sc_st, sc->sc_sh,
875 STE_TxDMAPollPeriod, 127);
876 ste_txrestart(sc,
877 bus_space_read_1(sc->sc_st,
878 sc->sc_sh, STE_TxFrameId));
879 }
880 if (txstat & TS_TxReleaseError) {
881 printf("%s: Tx FIFO release error\n",
882 device_xname(&sc->sc_dev));
883 wantinit = 1;
884 }
885 if (txstat & TS_MaxCollisions) {
886 printf("%s: excessive collisions\n",
887 device_xname(&sc->sc_dev));
888 wantinit = 1;
889 }
890 if (txstat & TS_TxStatusOverflow) {
891 printf("%s: status overflow\n",
892 device_xname(&sc->sc_dev));
893 wantinit = 1;
894 }
895 bus_space_write_2(sc->sc_st, sc->sc_sh,
896 STE_TxStatus, 0);
897 }
898 }
899
900 /* Host interface errors. */
901 if (isr & IE_HostError) {
902 printf("%s: Host interface error\n",
903 device_xname(&sc->sc_dev));
904 wantinit = 1;
905 }
906 }
907
908 if (wantinit)
909 ste_init(ifp);
910
911 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
912 sc->sc_IntEnable);
913
914 /* Try to get more packets going. */
915 ste_start(ifp);
916
917 return (1);
918 }
919
920 /*
921 * ste_txintr:
922 *
923 * Helper; handle transmit interrupts.
924 */
925 static void
926 ste_txintr(struct ste_softc *sc)
927 {
928 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
929 struct ste_descsoft *ds;
930 uint32_t control;
931 int i;
932
933 ifp->if_flags &= ~IFF_OACTIVE;
934
935 /*
936 * Go through our Tx list and free mbufs for those
937 * frames which have been transmitted.
938 */
939 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
940 i = STE_NEXTTX(i), sc->sc_txpending--) {
941 ds = &sc->sc_txsoft[i];
942
943 STE_CDTXSYNC(sc, i,
944 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
945
946 control = le32toh(sc->sc_txdescs[i].tfd_control);
947 if ((control & TFD_TxDMAComplete) == 0)
948 break;
949
950 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
951 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
952 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
953 m_freem(ds->ds_mbuf);
954 ds->ds_mbuf = NULL;
955 }
956
957 /* Update the dirty transmit buffer pointer. */
958 sc->sc_txdirty = i;
959
960 /*
961 * If there are no more pending transmissions, cancel the watchdog
962 * timer.
963 */
964 if (sc->sc_txpending == 0)
965 ifp->if_timer = 0;
966 }
967
968 /*
969 * ste_rxintr:
970 *
971 * Helper; handle receive interrupts.
972 */
973 static void
974 ste_rxintr(struct ste_softc *sc)
975 {
976 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
977 struct ste_descsoft *ds;
978 struct mbuf *m;
979 uint32_t status;
980 int i, len;
981
982 for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
983 ds = &sc->sc_rxsoft[i];
984
985 STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
986
987 status = le32toh(sc->sc_rxdescs[i].rfd_status);
988
989 if ((status & RFD_RxDMAComplete) == 0)
990 break;
991
992 /*
993 * If the packet had an error, simply recycle the
994 * buffer. Note, we count the error later in the
995 * periodic stats update.
996 */
997 if (status & RFD_RxFrameError) {
998 STE_INIT_RXDESC(sc, i);
999 continue;
1000 }
1001
1002 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1003 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1004
1005 /*
1006 * No errors; receive the packet. Note, we have
1007 * configured the chip to not include the CRC at
1008 * the end of the packet.
1009 */
1010 len = RFD_RxDMAFrameLen(status);
1011
1012 /*
1013 * If the packet is small enough to fit in a
1014 * single header mbuf, allocate one and copy
1015 * the data into it. This greatly reduces
1016 * memory consumption when we receive lots
1017 * of small packets.
1018 *
1019 * Otherwise, we add a new buffer to the receive
1020 * chain. If this fails, we drop the packet and
1021 * recycle the old buffer.
1022 */
1023 if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
1024 MGETHDR(m, M_DONTWAIT, MT_DATA);
1025 if (m == NULL)
1026 goto dropit;
1027 m->m_data += 2;
1028 memcpy(mtod(m, void *),
1029 mtod(ds->ds_mbuf, void *), len);
1030 STE_INIT_RXDESC(sc, i);
1031 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1032 ds->ds_dmamap->dm_mapsize,
1033 BUS_DMASYNC_PREREAD);
1034 } else {
1035 m = ds->ds_mbuf;
1036 if (ste_add_rxbuf(sc, i) != 0) {
1037 dropit:
1038 ifp->if_ierrors++;
1039 STE_INIT_RXDESC(sc, i);
1040 bus_dmamap_sync(sc->sc_dmat,
1041 ds->ds_dmamap, 0,
1042 ds->ds_dmamap->dm_mapsize,
1043 BUS_DMASYNC_PREREAD);
1044 continue;
1045 }
1046 }
1047
1048 m->m_pkthdr.rcvif = ifp;
1049 m->m_pkthdr.len = m->m_len = len;
1050
1051 #if NBPFILTER > 0
1052 /*
1053 * Pass this up to any BPF listeners, but only
1054 * pass if up the stack if it's for us.
1055 */
1056 if (ifp->if_bpf)
1057 bpf_mtap(ifp->if_bpf, m);
1058 #endif /* NBPFILTER > 0 */
1059
1060 /* Pass it on. */
1061 (*ifp->if_input)(ifp, m);
1062 }
1063
1064 /* Update the receive pointer. */
1065 sc->sc_rxptr = i;
1066 }
1067
1068 /*
1069 * ste_tick:
1070 *
1071 * One second timer, used to tick the MII.
1072 */
1073 static void
1074 ste_tick(void *arg)
1075 {
1076 struct ste_softc *sc = arg;
1077 int s;
1078
1079 s = splnet();
1080 mii_tick(&sc->sc_mii);
1081 ste_stats_update(sc);
1082 splx(s);
1083
1084 callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1085 }
1086
1087 /*
1088 * ste_stats_update:
1089 *
1090 * Read the ST-201 statistics counters.
1091 */
1092 static void
1093 ste_stats_update(struct ste_softc *sc)
1094 {
1095 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1096 bus_space_tag_t st = sc->sc_st;
1097 bus_space_handle_t sh = sc->sc_sh;
1098
1099 (void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
1100 (void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
1101
1102 (void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
1103 (void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
1104
1105 ifp->if_opackets +=
1106 (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
1107 ifp->if_ipackets +=
1108 (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
1109
1110 ifp->if_collisions +=
1111 (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
1112 (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
1113 (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
1114
1115 (void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
1116
1117 ifp->if_ierrors +=
1118 (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
1119
1120 ifp->if_oerrors +=
1121 (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
1122 (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
1123 bus_space_read_1(st, sh, STE_CarrierSenseErrors);
1124
1125 (void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
1126 (void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
1127 (void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
1128 (void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
1129 }
1130
1131 /*
1132 * ste_reset:
1133 *
1134 * Perform a soft reset on the ST-201.
1135 */
1136 static void
1137 ste_reset(struct ste_softc *sc, u_int32_t rstbits)
1138 {
1139 uint32_t ac;
1140 int i;
1141
1142 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
1143
1144 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
1145
1146 delay(50000);
1147
1148 for (i = 0; i < STE_TIMEOUT; i++) {
1149 delay(1000);
1150 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
1151 AC_ResetBusy) == 0)
1152 break;
1153 }
1154
1155 if (i == STE_TIMEOUT)
1156 printf("%s: reset failed to complete\n", device_xname(&sc->sc_dev));
1157
1158 delay(1000);
1159 }
1160
1161 /*
1162 * ste_setthresh:
1163 *
1164 * set the various transmit threshold registers
1165 */
1166 static void
1167 ste_setthresh(struct ste_softc *sc)
1168 {
1169 /* set the TX threhold */
1170 bus_space_write_2(sc->sc_st, sc->sc_sh,
1171 STE_TxStartThresh, sc->sc_txthresh);
1172 /* Urgent threshold: set to sc_txthresh / 2 */
1173 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
1174 sc->sc_txthresh >> 6);
1175 /* Burst threshold: use default value (256 bytes) */
1176 }
1177
1178 /*
1179 * restart TX at the given frame ID in the transmitter ring
1180 */
1181 static void
1182 ste_txrestart(struct ste_softc *sc, u_int8_t id)
1183 {
1184 u_int32_t control;
1185
1186 STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1187 control = le32toh(sc->sc_txdescs[id].tfd_control);
1188 control &= ~TFD_TxDMAComplete;
1189 sc->sc_txdescs[id].tfd_control = htole32(control);
1190 STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1191
1192 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
1193 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
1194 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
1195 ste_dmahalt_wait(sc);
1196 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
1197 STE_CDTXADDR(sc, id));
1198 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
1199 }
1200
1201 /*
1202 * ste_init: [ ifnet interface function ]
1203 *
1204 * Initialize the interface. Must be called at splnet().
1205 */
1206 static int
1207 ste_init(struct ifnet *ifp)
1208 {
1209 struct ste_softc *sc = ifp->if_softc;
1210 bus_space_tag_t st = sc->sc_st;
1211 bus_space_handle_t sh = sc->sc_sh;
1212 struct ste_descsoft *ds;
1213 int i, error = 0;
1214
1215 /*
1216 * Cancel any pending I/O.
1217 */
1218 ste_stop(ifp, 0);
1219
1220 /*
1221 * Reset the chip to a known state.
1222 */
1223 ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
1224 AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
1225
1226 /*
1227 * Initialize the transmit descriptor ring.
1228 */
1229 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1230 sc->sc_txpending = 0;
1231 sc->sc_txdirty = 0;
1232 sc->sc_txlast = STE_NTXDESC - 1;
1233
1234 /*
1235 * Initialize the receive descriptor and receive job
1236 * descriptor rings.
1237 */
1238 for (i = 0; i < STE_NRXDESC; i++) {
1239 ds = &sc->sc_rxsoft[i];
1240 if (ds->ds_mbuf == NULL) {
1241 if ((error = ste_add_rxbuf(sc, i)) != 0) {
1242 printf("%s: unable to allocate or map rx "
1243 "buffer %d, error = %d\n",
1244 device_xname(&sc->sc_dev), i, error);
1245 /*
1246 * XXX Should attempt to run with fewer receive
1247 * XXX buffers instead of just failing.
1248 */
1249 ste_rxdrain(sc);
1250 goto out;
1251 }
1252 } else
1253 STE_INIT_RXDESC(sc, i);
1254 }
1255 sc->sc_rxptr = 0;
1256
1257 /* Set the station address. */
1258 for (i = 0; i < ETHER_ADDR_LEN; i++)
1259 bus_space_write_1(st, sh, STE_StationAddress0 + 1,
1260 CLLADDR(ifp->if_sadl)[i]);
1261
1262 /* Set up the receive filter. */
1263 ste_set_filter(sc);
1264
1265 /*
1266 * Give the receive ring to the chip.
1267 */
1268 bus_space_write_4(st, sh, STE_RxDMAListPtr,
1269 STE_CDRXADDR(sc, sc->sc_rxptr));
1270
1271 /*
1272 * We defer giving the transmit ring to the chip until we
1273 * transmit the first packet.
1274 */
1275
1276 /*
1277 * Initialize the Tx auto-poll period. It's OK to make this number
1278 * large (127 is the max) -- we explicitly kick the transmit engine
1279 * when there's actually a packet. We are using auto-polling only
1280 * to make the interface to the transmit engine not suck.
1281 */
1282 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
1283
1284 /* ..and the Rx auto-poll period. */
1285 bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
1286
1287 /* Initialize the Tx start threshold. */
1288 ste_setthresh(sc);
1289
1290 /* Set the FIFO release threshold to 512 bytes. */
1291 bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
1292
1293 /* Set maximum packet size for VLAN. */
1294 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1295 bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN + 4);
1296 else
1297 bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN);
1298
1299 /*
1300 * Initialize the interrupt mask.
1301 */
1302 sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1303 IE_TxDMAComplete | IE_RxDMAComplete;
1304
1305 bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
1306 bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
1307
1308 /*
1309 * Start the receive DMA engine.
1310 */
1311 bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
1312
1313 /*
1314 * Initialize MacCtrl0 -- do it before setting the media,
1315 * as setting the media will actually program the register.
1316 */
1317 sc->sc_MacCtrl0 = MC0_IFSSelect(0);
1318 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1319 sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
1320
1321 /*
1322 * Set the current media.
1323 */
1324 if ((error = ether_mediachange(ifp)) != 0)
1325 goto out;
1326
1327 /*
1328 * Start the MAC.
1329 */
1330 bus_space_write_2(st, sh, STE_MacCtrl1,
1331 MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
1332
1333 /*
1334 * Start the one second MII clock.
1335 */
1336 callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1337
1338 /*
1339 * ...all done!
1340 */
1341 ifp->if_flags |= IFF_RUNNING;
1342 ifp->if_flags &= ~IFF_OACTIVE;
1343
1344 out:
1345 if (error)
1346 printf("%s: interface not running\n", device_xname(&sc->sc_dev));
1347 return (error);
1348 }
1349
1350 /*
1351 * ste_drain:
1352 *
1353 * Drain the receive queue.
1354 */
1355 static void
1356 ste_rxdrain(struct ste_softc *sc)
1357 {
1358 struct ste_descsoft *ds;
1359 int i;
1360
1361 for (i = 0; i < STE_NRXDESC; i++) {
1362 ds = &sc->sc_rxsoft[i];
1363 if (ds->ds_mbuf != NULL) {
1364 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1365 m_freem(ds->ds_mbuf);
1366 ds->ds_mbuf = NULL;
1367 }
1368 }
1369 }
1370
1371 /*
1372 * ste_stop: [ ifnet interface function ]
1373 *
1374 * Stop transmission on the interface.
1375 */
1376 static void
1377 ste_stop(struct ifnet *ifp, int disable)
1378 {
1379 struct ste_softc *sc = ifp->if_softc;
1380 struct ste_descsoft *ds;
1381 int i;
1382
1383 /*
1384 * Stop the one second clock.
1385 */
1386 callout_stop(&sc->sc_tick_ch);
1387
1388 /* Down the MII. */
1389 mii_down(&sc->sc_mii);
1390
1391 /*
1392 * Disable interrupts.
1393 */
1394 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
1395
1396 /*
1397 * Stop receiver, transmitter, and stats update.
1398 */
1399 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
1400 MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
1401
1402 /*
1403 * Stop the transmit and receive DMA.
1404 */
1405 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
1406 DC_RxDMAHalt | DC_TxDMAHalt);
1407 ste_dmahalt_wait(sc);
1408
1409 /*
1410 * Release any queued transmit buffers.
1411 */
1412 for (i = 0; i < STE_NTXDESC; i++) {
1413 ds = &sc->sc_txsoft[i];
1414 if (ds->ds_mbuf != NULL) {
1415 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1416 m_freem(ds->ds_mbuf);
1417 ds->ds_mbuf = NULL;
1418 }
1419 }
1420
1421 /*
1422 * Mark the interface down and cancel the watchdog timer.
1423 */
1424 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1425 ifp->if_timer = 0;
1426
1427 if (disable)
1428 ste_rxdrain(sc);
1429 }
1430
1431 static int
1432 ste_eeprom_wait(struct ste_softc *sc)
1433 {
1434 int i;
1435
1436 for (i = 0; i < STE_TIMEOUT; i++) {
1437 delay(1000);
1438 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
1439 EC_EepromBusy) == 0)
1440 return (0);
1441 }
1442 return (1);
1443 }
1444
1445 /*
1446 * ste_read_eeprom:
1447 *
1448 * Read data from the serial EEPROM.
1449 */
1450 static void
1451 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
1452 {
1453
1454 if (ste_eeprom_wait(sc))
1455 printf("%s: EEPROM failed to come ready\n",
1456 device_xname(&sc->sc_dev));
1457
1458 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
1459 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
1460 if (ste_eeprom_wait(sc))
1461 printf("%s: EEPROM read timed out\n",
1462 device_xname(&sc->sc_dev));
1463 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
1464 }
1465
1466 /*
1467 * ste_add_rxbuf:
1468 *
1469 * Add a receive buffer to the indicated descriptor.
1470 */
1471 static int
1472 ste_add_rxbuf(struct ste_softc *sc, int idx)
1473 {
1474 struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
1475 struct mbuf *m;
1476 int error;
1477
1478 MGETHDR(m, M_DONTWAIT, MT_DATA);
1479 if (m == NULL)
1480 return (ENOBUFS);
1481
1482 MCLGET(m, M_DONTWAIT);
1483 if ((m->m_flags & M_EXT) == 0) {
1484 m_freem(m);
1485 return (ENOBUFS);
1486 }
1487
1488 if (ds->ds_mbuf != NULL)
1489 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1490
1491 ds->ds_mbuf = m;
1492
1493 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1494 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1495 BUS_DMA_READ|BUS_DMA_NOWAIT);
1496 if (error) {
1497 printf("%s: can't load rx DMA map %d, error = %d\n",
1498 device_xname(&sc->sc_dev), idx, error);
1499 panic("ste_add_rxbuf"); /* XXX */
1500 }
1501
1502 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1503 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1504
1505 STE_INIT_RXDESC(sc, idx);
1506
1507 return (0);
1508 }
1509
1510 /*
1511 * ste_set_filter:
1512 *
1513 * Set up the receive filter.
1514 */
1515 static void
1516 ste_set_filter(struct ste_softc *sc)
1517 {
1518 struct ethercom *ec = &sc->sc_ethercom;
1519 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1520 struct ether_multi *enm;
1521 struct ether_multistep step;
1522 uint32_t crc;
1523 uint16_t mchash[4];
1524
1525 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1526 if (ifp->if_flags & IFF_BROADCAST)
1527 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1528
1529 if (ifp->if_flags & IFF_PROMISC) {
1530 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1531 goto allmulti;
1532 }
1533
1534 /*
1535 * Set up the multicast address filter by passing all multicast
1536 * addresses through a CRC generator, and then using the low-order
1537 * 6 bits as an index into the 64 bit multicast hash table. The
1538 * high order bits select the register, while the rest of the bits
1539 * select the bit within the register.
1540 */
1541
1542 memset(mchash, 0, sizeof(mchash));
1543
1544 ETHER_FIRST_MULTI(step, ec, enm);
1545 if (enm == NULL)
1546 goto done;
1547
1548 while (enm != NULL) {
1549 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1550 /*
1551 * We must listen to a range of multicast addresses.
1552 * For now, just accept all multicasts, rather than
1553 * trying to set only those filter bits needed to match
1554 * the range. (At this time, the only use of address
1555 * ranges is for IP multicast routing, for which the
1556 * range is big enough to require all bits set.)
1557 */
1558 goto allmulti;
1559 }
1560
1561 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1562
1563 /* Just want the 6 least significant bits. */
1564 crc &= 0x3f;
1565
1566 /* Set the corresponding bit in the hash table. */
1567 mchash[crc >> 4] |= 1 << (crc & 0xf);
1568
1569 ETHER_NEXT_MULTI(step, enm);
1570 }
1571
1572 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1573
1574 ifp->if_flags &= ~IFF_ALLMULTI;
1575 goto done;
1576
1577 allmulti:
1578 ifp->if_flags |= IFF_ALLMULTI;
1579 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1580
1581 done:
1582 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1583 /*
1584 * Program the multicast hash table.
1585 */
1586 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
1587 mchash[0]);
1588 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
1589 mchash[1]);
1590 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
1591 mchash[2]);
1592 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
1593 mchash[3]);
1594 }
1595
1596 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
1597 sc->sc_ReceiveMode);
1598 }
1599
1600 /*
1601 * ste_mii_readreg: [mii interface function]
1602 *
1603 * Read a PHY register on the MII of the ST-201.
1604 */
1605 static int
1606 ste_mii_readreg(device_t self, int phy, int reg)
1607 {
1608
1609 return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
1610 }
1611
1612 /*
1613 * ste_mii_writereg: [mii interface function]
1614 *
1615 * Write a PHY register on the MII of the ST-201.
1616 */
1617 static void
1618 ste_mii_writereg(device_t self, int phy, int reg, int val)
1619 {
1620
1621 mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
1622 }
1623
1624 /*
1625 * ste_mii_statchg: [mii interface function]
1626 *
1627 * Callback from MII layer when media changes.
1628 */
1629 static void
1630 ste_mii_statchg(device_t self)
1631 {
1632 struct ste_softc *sc = device_private(self);
1633
1634 if (sc->sc_mii.mii_media_active & IFM_FDX)
1635 sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
1636 else
1637 sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
1638
1639 /* XXX 802.1x flow-control? */
1640
1641 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
1642 }
1643
1644 /*
1645 * ste_mii_bitbang_read: [mii bit-bang interface function]
1646 *
1647 * Read the MII serial port for the MII bit-bang module.
1648 */
1649 static uint32_t
1650 ste_mii_bitbang_read(device_t self)
1651 {
1652 struct ste_softc *sc = device_private(self);
1653
1654 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
1655 }
1656
1657 /*
1658 * ste_mii_bitbang_write: [mii big-bang interface function]
1659 *
1660 * Write the MII serial port for the MII bit-bang module.
1661 */
1662 static void
1663 ste_mii_bitbang_write(device_t self, uint32_t val)
1664 {
1665 struct ste_softc *sc = device_private(self);
1666
1667 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
1668 }
1669