if_ste.c revision 1.4 1 /* $NetBSD: if_ste.c,v 1.4 2001/07/19 16:36:15 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the Sundance Tech. ST-201 10/100
41 * Ethernet controller.
42 */
43
44 #include "bpfilter.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/callout.h>
49 #include <sys/mbuf.h>
50 #include <sys/malloc.h>
51 #include <sys/kernel.h>
52 #include <sys/socket.h>
53 #include <sys/ioctl.h>
54 #include <sys/errno.h>
55 #include <sys/device.h>
56 #include <sys/queue.h>
57
58 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
59
60 #include <net/if.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 #include <net/if_ether.h>
64
65 #if NBPFILTER > 0
66 #include <net/bpf.h>
67 #endif
68
69 #include <machine/bus.h>
70 #include <machine/intr.h>
71
72 #include <dev/mii/mii.h>
73 #include <dev/mii/miivar.h>
74 #include <dev/mii/mii_bitbang.h>
75
76 #include <dev/pci/pcireg.h>
77 #include <dev/pci/pcivar.h>
78 #include <dev/pci/pcidevs.h>
79
80 #include <dev/pci/if_stereg.h>
81
82 /*
83 * Transmit descriptor list size.
84 */
85 #define STE_NTXDESC 256
86 #define STE_NTXDESC_MASK (STE_NTXDESC - 1)
87 #define STE_NEXTTX(x) (((x) + 1) & STE_NTXDESC_MASK)
88
89 /*
90 * Receive descriptor list size.
91 */
92 #define STE_NRXDESC 128
93 #define STE_NRXDESC_MASK (STE_NRXDESC - 1)
94 #define STE_NEXTRX(x) (((x) + 1) & STE_NRXDESC_MASK)
95
96 /*
97 * Control structures are DMA'd to the ST-201 chip. We allocate them in
98 * a single clump that maps to a single DMA segment to make several things
99 * easier.
100 */
101 struct ste_control_data {
102 /*
103 * The transmit descriptors.
104 */
105 struct ste_tfd scd_txdescs[STE_NTXDESC];
106
107 /*
108 * The receive descriptors.
109 */
110 struct ste_rfd scd_rxdescs[STE_NRXDESC];
111 };
112
113 #define STE_CDOFF(x) offsetof(struct ste_control_data, x)
114 #define STE_CDTXOFF(x) STE_CDOFF(scd_txdescs[(x)])
115 #define STE_CDRXOFF(x) STE_CDOFF(scd_rxdescs[(x)])
116
117 /*
118 * Software state for transmit and receive jobs.
119 */
120 struct ste_descsoft {
121 struct mbuf *ds_mbuf; /* head of our mbuf chain */
122 bus_dmamap_t ds_dmamap; /* our DMA map */
123 };
124
125 /*
126 * Software state per device.
127 */
128 struct ste_softc {
129 struct device sc_dev; /* generic device information */
130 bus_space_tag_t sc_st; /* bus space tag */
131 bus_space_handle_t sc_sh; /* bus space handle */
132 bus_dma_tag_t sc_dmat; /* bus DMA tag */
133 struct ethercom sc_ethercom; /* ethernet common data */
134 void *sc_sdhook; /* shutdown hook */
135
136 void *sc_ih; /* interrupt cookie */
137
138 struct mii_data sc_mii; /* MII/media information */
139
140 struct callout sc_tick_ch; /* tick callout */
141
142 bus_dmamap_t sc_cddmamap; /* control data DMA map */
143 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
144
145 /*
146 * Software state for transmit and receive descriptors.
147 */
148 struct ste_descsoft sc_txsoft[STE_NTXDESC];
149 struct ste_descsoft sc_rxsoft[STE_NRXDESC];
150
151 /*
152 * Control data structures.
153 */
154 struct ste_control_data *sc_control_data;
155 #define sc_txdescs sc_control_data->scd_txdescs
156 #define sc_rxdescs sc_control_data->scd_rxdescs
157
158 int sc_txpending; /* number of Tx requests pending */
159 int sc_txdirty; /* first dirty Tx descriptor */
160 int sc_txlast; /* last used Tx descriptor */
161
162 int sc_rxptr; /* next ready Rx descriptor/descsoft */
163
164 int sc_txthresh; /* Tx threshold */
165 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
166 uint16_t sc_IntEnable; /* prototype IntEnable register */
167 uint16_t sc_MacCtrl0; /* prototype MacCtrl0 register */
168 uint8_t sc_ReceiveMode; /* prototype ReceiveMode register */
169 };
170
171 #define STE_CDTXADDR(sc, x) ((sc)->sc_cddma + STE_CDTXOFF((x)))
172 #define STE_CDRXADDR(sc, x) ((sc)->sc_cddma + STE_CDRXOFF((x)))
173
174 #define STE_CDTXSYNC(sc, x, ops) \
175 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
176 STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
177
178 #define STE_CDRXSYNC(sc, x, ops) \
179 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
180 STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
181
182 #define STE_INIT_RXDESC(sc, x) \
183 do { \
184 struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
185 struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
186 struct mbuf *__m = __ds->ds_mbuf; \
187 \
188 /* \
189 * Note: We scoot the packet forward 2 bytes in the buffer \
190 * so that the payload after the Ethernet header is aligned \
191 * to a 4-byte boundary. \
192 */ \
193 __m->m_data = __m->m_ext.ext_buf + 2; \
194 __rfd->rfd_frag.frag_addr = \
195 htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2); \
196 __rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST); \
197 __rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x)))); \
198 __rfd->rfd_status = 0; \
199 STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
200 } while (/*CONSTCOND*/0)
201
202 #define STE_TIMEOUT 1000
203
204 void ste_start(struct ifnet *);
205 void ste_watchdog(struct ifnet *);
206 int ste_ioctl(struct ifnet *, u_long, caddr_t);
207 int ste_init(struct ifnet *);
208 void ste_stop(struct ifnet *, int);
209
210 void ste_shutdown(void *);
211
212 void ste_reset(struct ste_softc *);
213 void ste_rxdrain(struct ste_softc *);
214 int ste_add_rxbuf(struct ste_softc *, int);
215 void ste_read_eeprom(struct ste_softc *, int, uint16_t *);
216 void ste_tick(void *);
217
218 void ste_stats_update(struct ste_softc *);
219
220 void ste_set_filter(struct ste_softc *);
221
222 int ste_intr(void *);
223 void ste_txintr(struct ste_softc *);
224 void ste_rxintr(struct ste_softc *);
225
226 int ste_mii_readreg(struct device *, int, int);
227 void ste_mii_writereg(struct device *, int, int, int);
228 void ste_mii_statchg(struct device *);
229
230 int ste_mediachange(struct ifnet *);
231 void ste_mediastatus(struct ifnet *, struct ifmediareq *);
232
233 int ste_match(struct device *, struct cfdata *, void *);
234 void ste_attach(struct device *, struct device *, void *);
235
236 int ste_copy_small = 0;
237
238 struct cfattach ste_ca = {
239 sizeof(struct ste_softc), ste_match, ste_attach,
240 };
241
242 uint32_t ste_mii_bitbang_read(struct device *);
243 void ste_mii_bitbang_write(struct device *, uint32_t);
244
245 const struct mii_bitbang_ops ste_mii_bitbang_ops = {
246 ste_mii_bitbang_read,
247 ste_mii_bitbang_write,
248 {
249 PC_MgmtData, /* MII_BIT_MDO */
250 PC_MgmtData, /* MII_BIT_MDI */
251 PC_MgmtClk, /* MII_BIT_MDC */
252 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
253 0, /* MII_BIT_DIR_PHY_HOST */
254 }
255 };
256
257 /*
258 * Devices supported by this driver.
259 */
260 const struct ste_product {
261 pci_vendor_id_t ste_vendor;
262 pci_product_id_t ste_product;
263 const char *ste_name;
264 } ste_products[] = {
265 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST201,
266 "Sundance ST-201 10/100 Ethernet" },
267
268 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL1002,
269 "D-Link DL-1002 10/100 Ethernet" },
270
271 { 0, 0,
272 NULL },
273 };
274
275 static const struct ste_product *
276 ste_lookup(const struct pci_attach_args *pa)
277 {
278 const struct ste_product *sp;
279
280 for (sp = ste_products; sp->ste_name != NULL; sp++) {
281 if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
282 PCI_PRODUCT(pa->pa_id) == sp->ste_product)
283 return (sp);
284 }
285 return (NULL);
286 }
287
288 int
289 ste_match(struct device *parent, struct cfdata *cf, void *aux)
290 {
291 struct pci_attach_args *pa = aux;
292
293 if (ste_lookup(pa) != NULL)
294 return (1);
295
296 return (0);
297 }
298
299 void
300 ste_attach(struct device *parent, struct device *self, void *aux)
301 {
302 struct ste_softc *sc = (struct ste_softc *) self;
303 struct pci_attach_args *pa = aux;
304 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
305 pci_chipset_tag_t pc = pa->pa_pc;
306 pci_intr_handle_t ih;
307 const char *intrstr = NULL;
308 bus_space_tag_t iot, memt;
309 bus_space_handle_t ioh, memh;
310 bus_dma_segment_t seg;
311 int ioh_valid, memh_valid;
312 int i, rseg, error;
313 const struct ste_product *sp;
314 pcireg_t pmode;
315 uint8_t enaddr[ETHER_ADDR_LEN];
316 uint16_t myea[ETHER_ADDR_LEN / 2];
317 int pmreg;
318
319 callout_init(&sc->sc_tick_ch);
320
321 sp = ste_lookup(pa);
322 if (sp == NULL) {
323 printf("\n");
324 panic("ste_attach: impossible");
325 }
326
327 printf(": %s\n", sp->ste_name);
328
329 /*
330 * Map the device.
331 */
332 ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
333 PCI_MAPREG_TYPE_IO, 0,
334 &iot, &ioh, NULL, NULL) == 0);
335 memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
336 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
337 &memt, &memh, NULL, NULL) == 0);
338
339 if (memh_valid) {
340 sc->sc_st = memt;
341 sc->sc_sh = memh;
342 } else if (ioh_valid) {
343 sc->sc_st = iot;
344 sc->sc_sh = ioh;
345 } else {
346 printf("%s: unable to map device registers\n",
347 sc->sc_dev.dv_xname);
348 return;
349 }
350
351 sc->sc_dmat = pa->pa_dmat;
352
353 /* Enable bus mastering. */
354 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
355 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
356 PCI_COMMAND_MASTER_ENABLE);
357
358 /* Get it out of power save mode if needed. */
359 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
360 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
361 if (pmode == 3) {
362 /*
363 * The card has lost all configuration data in
364 * this state, so punt.
365 */
366 printf("%s: unable to wake up from power state D3\n",
367 sc->sc_dev.dv_xname);
368 return;
369 }
370 if (pmode != 0) {
371 printf("%s: waking up from power state D%d\n",
372 sc->sc_dev.dv_xname, pmode);
373 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
374 }
375 }
376
377 /*
378 * Map and establish our interrupt.
379 */
380 if (pci_intr_map(pa, &ih)) {
381 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
382 return;
383 }
384 intrstr = pci_intr_string(pc, ih);
385 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
386 if (sc->sc_ih == NULL) {
387 printf("%s: unable to establish interrupt",
388 sc->sc_dev.dv_xname);
389 if (intrstr != NULL)
390 printf(" at %s", intrstr);
391 printf("\n");
392 return;
393 }
394 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
395
396 /*
397 * Allocate the control data structures, and create and load the
398 * DMA map for it.
399 */
400 if ((error = bus_dmamem_alloc(sc->sc_dmat,
401 sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
402 0)) != 0) {
403 printf("%s: unable to allocate control data, error = %d\n",
404 sc->sc_dev.dv_xname, error);
405 goto fail_0;
406 }
407
408 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
409 sizeof(struct ste_control_data), (caddr_t *)&sc->sc_control_data,
410 BUS_DMA_COHERENT)) != 0) {
411 printf("%s: unable to map control data, error = %d\n",
412 sc->sc_dev.dv_xname, error);
413 goto fail_1;
414 }
415
416 if ((error = bus_dmamap_create(sc->sc_dmat,
417 sizeof(struct ste_control_data), 1,
418 sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
419 printf("%s: unable to create control data DMA map, "
420 "error = %d\n", sc->sc_dev.dv_xname, error);
421 goto fail_2;
422 }
423
424 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
425 sc->sc_control_data, sizeof(struct ste_control_data), NULL,
426 0)) != 0) {
427 printf("%s: unable to load control data DMA map, error = %d\n",
428 sc->sc_dev.dv_xname, error);
429 goto fail_3;
430 }
431
432 /*
433 * Create the transmit buffer DMA maps.
434 */
435 for (i = 0; i < STE_NTXDESC; i++) {
436 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
437 STE_NTXFRAGS, MCLBYTES, 0, 0,
438 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
439 printf("%s: unable to create tx DMA map %d, "
440 "error = %d\n", sc->sc_dev.dv_xname, i, error);
441 goto fail_4;
442 }
443 }
444
445 /*
446 * Create the receive buffer DMA maps.
447 */
448 for (i = 0; i < STE_NRXDESC; i++) {
449 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
450 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
451 printf("%s: unable to create rx DMA map %d, "
452 "error = %d\n", sc->sc_dev.dv_xname, i, error);
453 goto fail_5;
454 }
455 sc->sc_rxsoft[i].ds_mbuf = NULL;
456 }
457
458 /*
459 * Reset the chip to a known state.
460 */
461 ste_reset(sc);
462
463 /*
464 * Read the Ethernet address from the EEPROM.
465 */
466 for (i = 0; i < 3; i++) {
467 ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
468 myea[i] = le16toh(myea[i]);
469 }
470 memcpy(enaddr, myea, sizeof(enaddr));
471
472 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
473 ether_sprintf(enaddr));
474
475 /*
476 * Initialize our media structures and probe the MII.
477 */
478 sc->sc_mii.mii_ifp = ifp;
479 sc->sc_mii.mii_readreg = ste_mii_readreg;
480 sc->sc_mii.mii_writereg = ste_mii_writereg;
481 sc->sc_mii.mii_statchg = ste_mii_statchg;
482 ifmedia_init(&sc->sc_mii.mii_media, 0, ste_mediachange,
483 ste_mediastatus);
484 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
485 MII_OFFSET_ANY, 0);
486 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
487 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
488 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
489 } else
490 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
491
492 ifp = &sc->sc_ethercom.ec_if;
493 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
494 ifp->if_softc = sc;
495 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
496 ifp->if_ioctl = ste_ioctl;
497 ifp->if_start = ste_start;
498 ifp->if_watchdog = ste_watchdog;
499 ifp->if_init = ste_init;
500 ifp->if_stop = ste_stop;
501 IFQ_SET_READY(&ifp->if_snd);
502
503 /*
504 * Default the transmit threshold to 128 bytes.
505 */
506 sc->sc_txthresh = 128;
507
508 /*
509 * Disable MWI if the PCI layer tells us to.
510 */
511 sc->sc_DMACtrl = 0;
512 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
513 sc->sc_DMACtrl |= DC_MWIDisable;
514
515 /*
516 * We can support 802.1Q VLAN-sized frames.
517 */
518 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
519
520 /*
521 * Attach the interface.
522 */
523 if_attach(ifp);
524 ether_ifattach(ifp, enaddr);
525
526 /*
527 * Make sure the interface is shutdown during reboot.
528 */
529 sc->sc_sdhook = shutdownhook_establish(ste_shutdown, sc);
530 if (sc->sc_sdhook == NULL)
531 printf("%s: WARNING: unable to establish shutdown hook\n",
532 sc->sc_dev.dv_xname);
533 return;
534
535 /*
536 * Free any resources we've allocated during the failed attach
537 * attempt. Do this in reverse order and fall through.
538 */
539 fail_5:
540 for (i = 0; i < STE_NRXDESC; i++) {
541 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
542 bus_dmamap_destroy(sc->sc_dmat,
543 sc->sc_rxsoft[i].ds_dmamap);
544 }
545 fail_4:
546 for (i = 0; i < STE_NTXDESC; i++) {
547 if (sc->sc_txsoft[i].ds_dmamap != NULL)
548 bus_dmamap_destroy(sc->sc_dmat,
549 sc->sc_txsoft[i].ds_dmamap);
550 }
551 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
552 fail_3:
553 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
554 fail_2:
555 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
556 sizeof(struct ste_control_data));
557 fail_1:
558 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
559 fail_0:
560 return;
561 }
562
563 /*
564 * ste_shutdown:
565 *
566 * Make sure the interface is stopped at reboot time.
567 */
568 void
569 ste_shutdown(void *arg)
570 {
571 struct ste_softc *sc = arg;
572
573 ste_stop(&sc->sc_ethercom.ec_if, 1);
574 }
575
576 static void
577 ste_dmahalt_wait(struct ste_softc *sc)
578 {
579 int i;
580
581 for (i = 0; i < STE_TIMEOUT; i++) {
582 delay(2);
583 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
584 DC_DMAHaltBusy) == 0)
585 break;
586 }
587
588 if (i == STE_TIMEOUT)
589 printf("%s: DMA halt timed out\n", sc->sc_dev.dv_xname);
590 }
591
592 /*
593 * ste_start: [ifnet interface function]
594 *
595 * Start packet transmission on the interface.
596 */
597 void
598 ste_start(struct ifnet *ifp)
599 {
600 struct ste_softc *sc = ifp->if_softc;
601 struct mbuf *m0, *m;
602 struct ste_descsoft *ds;
603 struct ste_tfd *tfd;
604 bus_dmamap_t dmamap;
605 int error, olasttx, nexttx, opending, seg, totlen;
606
607 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
608 return;
609
610 /*
611 * Remember the previous number of pending transmissions
612 * and the current last descriptor in the list.
613 */
614 opending = sc->sc_txpending;
615 olasttx = sc->sc_txlast;
616
617 /*
618 * Loop through the send queue, setting up transmit descriptors
619 * until we drain the queue, or use up all available transmit
620 * descriptors.
621 */
622 while (sc->sc_txpending < STE_NTXDESC) {
623 /*
624 * Grab a packet off the queue.
625 */
626 IFQ_POLL(&ifp->if_snd, m0);
627 if (m0 == NULL)
628 break;
629 m = NULL;
630
631 /*
632 * Get the last and next available transmit descriptor.
633 */
634 nexttx = STE_NEXTTX(sc->sc_txlast);
635 tfd = &sc->sc_txdescs[nexttx];
636 ds = &sc->sc_txsoft[nexttx];
637
638 dmamap = ds->ds_dmamap;
639
640 /*
641 * Load the DMA map. If this fails, the packet either
642 * didn't fit in the alloted number of segments, or we
643 * were short on resources. In this case, we'll copy
644 * and try again.
645 */
646 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
647 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
648 MGETHDR(m, M_DONTWAIT, MT_DATA);
649 if (m == NULL) {
650 printf("%s: unable to allocate Tx mbuf\n",
651 sc->sc_dev.dv_xname);
652 break;
653 }
654 if (m0->m_pkthdr.len > MHLEN) {
655 MCLGET(m, M_DONTWAIT);
656 if ((m->m_flags & M_EXT) == 0) {
657 printf("%s: unable to allocate Tx "
658 "cluster\n", sc->sc_dev.dv_xname);
659 m_freem(m);
660 break;
661 }
662 }
663 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
664 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
665 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
666 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
667 if (error) {
668 printf("%s: unable to load Tx buffer, "
669 "error = %d\n", sc->sc_dev.dv_xname, error);
670 break;
671 }
672 }
673
674 IFQ_DEQUEUE(&ifp->if_snd, m0);
675 if (m != NULL) {
676 m_freem(m0);
677 m0 = m;
678 }
679
680 /*
681 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
682 */
683
684 /* Sync the DMA map. */
685 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
686 BUS_DMASYNC_PREWRITE);
687
688 /* Initialize the fragment list. */
689 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
690 tfd->tfd_frags[seg].frag_addr =
691 htole32(dmamap->dm_segs[seg].ds_addr);
692 tfd->tfd_frags[seg].frag_len =
693 htole32(dmamap->dm_segs[seg].ds_len);
694 totlen += dmamap->dm_segs[seg].ds_len;
695 }
696 tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
697
698 /* Initialize the descriptor. */
699 tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
700 tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
701
702 /* Sync the descriptor. */
703 STE_CDTXSYNC(sc, nexttx,
704 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
705
706 /*
707 * Store a pointer to the packet so we can free it later,
708 * and remember what txdirty will be once the packet is
709 * done.
710 */
711 ds->ds_mbuf = m0;
712
713 /* Advance the tx pointer. */
714 sc->sc_txpending++;
715 sc->sc_txlast = nexttx;
716
717 #if NBPFILTER > 0
718 /*
719 * Pass the packet to any BPF listeners.
720 */
721 if (ifp->if_bpf)
722 bpf_mtap(ifp->if_bpf, m0);
723 #endif /* NBPFILTER > 0 */
724 }
725
726 if (sc->sc_txpending == STE_NTXDESC) {
727 /* No more slots left; notify upper layer. */
728 ifp->if_flags |= IFF_OACTIVE;
729 }
730
731 if (sc->sc_txpending != opending) {
732 /*
733 * We enqueued packets. If the transmitter was idle,
734 * reset the txdirty pointer.
735 */
736 if (opending == 0)
737 sc->sc_txdirty = STE_NEXTTX(olasttx);
738
739 /*
740 * Cause a descriptor interrupt to happen on the
741 * last packet we enqueued, and also cause the
742 * DMA engine to wait after is has finished processing
743 * it.
744 */
745 sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
746 sc->sc_txdescs[sc->sc_txlast].tfd_control |=
747 htole32(TFD_TxDMAIndicate);
748 STE_CDTXSYNC(sc, sc->sc_txlast,
749 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
750
751 /*
752 * Link up the new chain of descriptors to the
753 * last.
754 */
755 sc->sc_txdescs[olasttx].tfd_next =
756 STE_CDTXADDR(sc, STE_NEXTTX(olasttx));
757 STE_CDTXSYNC(sc, olasttx,
758 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
759
760 /*
761 * Kick the transmit DMA logic. Note that since we're
762 * using auto-polling, reading the Tx desc pointer will
763 * give it the nudge it needs to get going.
764 */
765 if (bus_space_read_4(sc->sc_st, sc->sc_sh,
766 STE_TxDMAListPtr) == 0) {
767 bus_space_write_4(sc->sc_st, sc->sc_sh,
768 STE_DMACtrl, DC_TxDMAHalt);
769 ste_dmahalt_wait(sc);
770 bus_space_write_4(sc->sc_st, sc->sc_sh,
771 STE_TxDMAListPtr,
772 STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
773 bus_space_write_4(sc->sc_st, sc->sc_sh,
774 STE_DMACtrl, DC_TxDMAResume);
775 }
776
777 /* Set a watchdog timer in case the chip flakes out. */
778 ifp->if_timer = 5;
779 }
780 }
781
782 /*
783 * ste_watchdog: [ifnet interface function]
784 *
785 * Watchdog timer handler.
786 */
787 void
788 ste_watchdog(struct ifnet *ifp)
789 {
790 struct ste_softc *sc = ifp->if_softc;
791
792 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
793 ifp->if_oerrors++;
794
795 (void) ste_init(ifp);
796
797 /* Try to get more packets going. */
798 ste_start(ifp);
799 }
800
801 /*
802 * ste_ioctl: [ifnet interface function]
803 *
804 * Handle control requests from the operator.
805 */
806 int
807 ste_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
808 {
809 struct ste_softc *sc = ifp->if_softc;
810 struct ifreq *ifr = (struct ifreq *)data;
811 int s, error;
812
813 s = splnet();
814
815 switch (cmd) {
816 case SIOCSIFMEDIA:
817 case SIOCGIFMEDIA:
818 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
819 break;
820
821 default:
822 error = ether_ioctl(ifp, cmd, data);
823 if (error == ENETRESET) {
824 /*
825 * Multicast list has changed; set the hardware filter
826 * accordingly.
827 */
828 ste_set_filter(sc);
829 error = 0;
830 }
831 break;
832 }
833
834 /* Try to get more packets going. */
835 ste_start(ifp);
836
837 splx(s);
838 return (error);
839 }
840
841 /*
842 * ste_intr:
843 *
844 * Interrupt service routine.
845 */
846 int
847 ste_intr(void *arg)
848 {
849 struct ste_softc *sc = arg;
850 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
851 uint16_t isr;
852 uint8_t txstat;
853 int wantinit;
854
855 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
856 IS_InterruptStatus) == 0)
857 return (0);
858
859 for (wantinit = 0; wantinit == 0;) {
860 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
861 if ((isr & sc->sc_IntEnable) == 0)
862 break;
863
864 /* Receive interrupts. */
865 if (isr & IE_RxDMAComplete)
866 ste_rxintr(sc);
867
868 /* Transmit interrupts. */
869 if (isr & (IE_TxDMAComplete|IE_TxComplete))
870 ste_txintr(sc);
871
872 /* Statistics overflow. */
873 if (isr & IE_UpdateStats)
874 ste_stats_update(sc);
875
876 /* Transmission errors. */
877 if (isr & IE_TxComplete) {
878 for (;;) {
879 txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
880 STE_TxStatus);
881 if ((txstat & TS_TxComplete) == 0)
882 break;
883 if (txstat & TS_TxUnderrun) {
884 sc->sc_txthresh += 32;
885 if (sc->sc_txthresh > 0x1ffc)
886 sc->sc_txthresh = 0x1ffc;
887 printf("%s: transmit underrun, new "
888 "threshold: %d bytes\n",
889 sc->sc_dev.dv_xname,
890 sc->sc_txthresh);
891 }
892 if (txstat & TS_TxReleaseError)
893 printf("%s: Tx FIFO release error\n",
894 sc->sc_dev.dv_xname);
895 if (txstat & TS_MaxCollisions)
896 printf("%s: excessive collisions\n",
897 sc->sc_dev.dv_xname);
898 bus_space_write_2(sc->sc_st, sc->sc_sh,
899 STE_TxStatus, 0);
900 }
901 wantinit = 1;
902 }
903
904 /* Host interface errors. */
905 if (isr & IE_HostError) {
906 printf("%s: Host interface error\n",
907 sc->sc_dev.dv_xname);
908 wantinit = 1;
909 }
910 }
911
912 if (wantinit)
913 ste_init(ifp);
914
915 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
916 sc->sc_IntEnable);
917
918 /* Try to get more packets going. */
919 ste_start(ifp);
920
921 return (1);
922 }
923
924 /*
925 * ste_txintr:
926 *
927 * Helper; handle transmit interrupts.
928 */
929 void
930 ste_txintr(struct ste_softc *sc)
931 {
932 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
933 struct ste_descsoft *ds;
934 uint32_t control;
935 int i;
936
937 ifp->if_flags &= ~IFF_OACTIVE;
938
939 /*
940 * Go through our Tx list and free mbufs for those
941 * frames which have been transmitted.
942 */
943 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
944 i = STE_NEXTTX(i), sc->sc_txpending--) {
945 ds = &sc->sc_txsoft[i];
946
947 STE_CDTXSYNC(sc, i,
948 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
949
950 control = le32toh(sc->sc_txdescs[i].tfd_control);
951 if ((control & TFD_TxDMAComplete) == 0)
952 break;
953
954 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
955 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
956 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
957 m_freem(ds->ds_mbuf);
958 ds->ds_mbuf = NULL;
959 }
960
961 /* Update the dirty transmit buffer pointer. */
962 sc->sc_txdirty = i;
963
964 /*
965 * If there are no more pending transmissions, cancel the watchdog
966 * timer.
967 */
968 if (sc->sc_txpending == 0)
969 ifp->if_timer = 0;
970 }
971
972 /*
973 * ste_rxintr:
974 *
975 * Helper; handle receive interrupts.
976 */
977 void
978 ste_rxintr(struct ste_softc *sc)
979 {
980 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
981 struct ste_descsoft *ds;
982 struct mbuf *m;
983 uint32_t status;
984 int i, len;
985
986 for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
987 ds = &sc->sc_rxsoft[i];
988
989 STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
990
991 status = le32toh(sc->sc_rxdescs[i].rfd_status);
992
993 if ((status & RFD_RxDMAComplete) == 0)
994 break;
995
996 /*
997 * If the packet had an error, simply recycle the
998 * buffer. Note, we count the error later in the
999 * periodic stats update.
1000 */
1001 if (status & RFD_RxFrameError) {
1002 STE_INIT_RXDESC(sc, i);
1003 continue;
1004 }
1005
1006 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1007 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1008
1009 /*
1010 * No errors; receive the packet. Note, we have
1011 * configured the chip to not include the CRC at
1012 * the end of the packet.
1013 */
1014 len = RFD_RxDMAFrameLen(status);
1015
1016 /*
1017 * If the packet is small enough to fit in a
1018 * single header mbuf, allocate one and copy
1019 * the data into it. This greatly reduces
1020 * memory consumption when we receive lots
1021 * of small packets.
1022 *
1023 * Otherwise, we add a new buffer to the receive
1024 * chain. If this fails, we drop the packet and
1025 * recycle the old buffer.
1026 */
1027 if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
1028 MGETHDR(m, M_DONTWAIT, MT_DATA);
1029 if (m == NULL)
1030 goto dropit;
1031 m->m_data += 2;
1032 memcpy(mtod(m, caddr_t),
1033 mtod(ds->ds_mbuf, caddr_t), len);
1034 STE_INIT_RXDESC(sc, i);
1035 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1036 ds->ds_dmamap->dm_mapsize,
1037 BUS_DMASYNC_PREREAD);
1038 } else {
1039 m = ds->ds_mbuf;
1040 if (ste_add_rxbuf(sc, i) != 0) {
1041 dropit:
1042 ifp->if_ierrors++;
1043 STE_INIT_RXDESC(sc, i);
1044 bus_dmamap_sync(sc->sc_dmat,
1045 ds->ds_dmamap, 0,
1046 ds->ds_dmamap->dm_mapsize,
1047 BUS_DMASYNC_PREREAD);
1048 continue;
1049 }
1050 }
1051
1052 m->m_pkthdr.rcvif = ifp;
1053 m->m_pkthdr.len = m->m_len = len;
1054
1055 #if NBPFILTER > 0
1056 /*
1057 * Pass this up to any BPF listeners, but only
1058 * pass if up the stack if it's for us.
1059 */
1060 if (ifp->if_bpf)
1061 bpf_mtap(ifp->if_bpf, m);
1062 #endif /* NBPFILTER > 0 */
1063
1064 /* Pass it on. */
1065 (*ifp->if_input)(ifp, m);
1066 }
1067
1068 /* Update the receive pointer. */
1069 sc->sc_rxptr = i;
1070 }
1071
1072 /*
1073 * ste_tick:
1074 *
1075 * One second timer, used to tick the MII.
1076 */
1077 void
1078 ste_tick(void *arg)
1079 {
1080 struct ste_softc *sc = arg;
1081 int s;
1082
1083 s = splnet();
1084 mii_tick(&sc->sc_mii);
1085 ste_stats_update(sc);
1086 splx(s);
1087
1088 callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1089 }
1090
1091 /*
1092 * ste_stats_update:
1093 *
1094 * Read the ST-201 statistics counters.
1095 */
1096 void
1097 ste_stats_update(struct ste_softc *sc)
1098 {
1099 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1100 bus_space_tag_t st = sc->sc_st;
1101 bus_space_handle_t sh = sc->sc_sh;
1102
1103 (void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
1104 (void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
1105
1106 (void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
1107 (void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
1108
1109 ifp->if_opackets +=
1110 (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
1111 ifp->if_ipackets +=
1112 (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
1113
1114 (void) bus_space_read_2(st, sh, STE_CarrierSenseErrors);
1115
1116 ifp->if_collisions +=
1117 (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
1118 (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
1119 (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
1120
1121 (void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
1122
1123 ifp->if_ierrors +=
1124 (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
1125
1126 ifp->if_oerrors +=
1127 (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
1128 (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls);
1129
1130 (void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
1131 (void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
1132 (void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
1133 (void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
1134 }
1135
1136 /*
1137 * ste_reset:
1138 *
1139 * Perform a soft reset on the ST-201.
1140 */
1141 void
1142 ste_reset(struct ste_softc *sc)
1143 {
1144 uint32_t ac;
1145 int i;
1146
1147 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
1148
1149 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl,
1150 ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1151 AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1152 AC_RstOut);
1153
1154 delay(50000);
1155
1156 for (i = 0; i < STE_TIMEOUT; i++) {
1157 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
1158 AC_ResetBusy) == 0)
1159 break;
1160 }
1161
1162 if (i == STE_TIMEOUT)
1163 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1164
1165 delay(1000);
1166 }
1167
1168 /*
1169 * ste_init: [ ifnet interface function ]
1170 *
1171 * Initialize the interface. Must be called at splnet().
1172 */
1173 int
1174 ste_init(struct ifnet *ifp)
1175 {
1176 struct ste_softc *sc = ifp->if_softc;
1177 bus_space_tag_t st = sc->sc_st;
1178 bus_space_handle_t sh = sc->sc_sh;
1179 struct ste_descsoft *ds;
1180 int i, error = 0;
1181
1182 /*
1183 * Cancel any pending I/O.
1184 */
1185 ste_stop(ifp, 0);
1186
1187 /*
1188 * Reset the chip to a known state.
1189 */
1190 ste_reset(sc);
1191
1192 /*
1193 * Initialize the transmit descriptor ring.
1194 */
1195 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1196 sc->sc_txpending = 0;
1197 sc->sc_txdirty = 0;
1198 sc->sc_txlast = STE_NTXDESC - 1;
1199
1200 /*
1201 * Initialize the receive descriptor and receive job
1202 * descriptor rings.
1203 */
1204 for (i = 0; i < STE_NRXDESC; i++) {
1205 ds = &sc->sc_rxsoft[i];
1206 if (ds->ds_mbuf == NULL) {
1207 if ((error = ste_add_rxbuf(sc, i)) != 0) {
1208 printf("%s: unable to allocate or map rx "
1209 "buffer %d, error = %d\n",
1210 sc->sc_dev.dv_xname, i, error);
1211 /*
1212 * XXX Should attempt to run with fewer receive
1213 * XXX buffers instead of just failing.
1214 */
1215 ste_rxdrain(sc);
1216 goto out;
1217 }
1218 }
1219 }
1220 sc->sc_rxptr = 0;
1221
1222 /* Set the station address. */
1223 for (i = 0; i < ETHER_ADDR_LEN; i++)
1224 bus_space_write_1(st, sh, STE_StationAddress0 + 1,
1225 LLADDR(ifp->if_sadl)[i]);
1226
1227 /* Set up the receive filter. */
1228 ste_set_filter(sc);
1229
1230 /*
1231 * Give the receive ring to the chip.
1232 */
1233 bus_space_write_4(st, sh, STE_RxDMAListPtr,
1234 STE_CDRXADDR(sc, sc->sc_rxptr));
1235
1236 /*
1237 * We defer giving the transmit ring to the chip until we
1238 * transmit the first packet.
1239 */
1240
1241 /*
1242 * Initialize the Tx auto-poll period. It's OK to make this number
1243 * large (127 is the max) -- we explicitly kick the transmit engine
1244 * when there's actually a packet. We are using auto-polling only
1245 * to make the interface to the transmit engine not suck.
1246 */
1247 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
1248
1249 /* ..and the Rx auto-poll period. */
1250 bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
1251
1252 /* Initialize the Tx start threshold. */
1253 bus_space_write_2(st, sh, STE_TxStartThresh, sc->sc_txthresh);
1254
1255 /* Set the FIFO release threshold to 512 bytes. */
1256 bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
1257
1258 /*
1259 * Initialize the interrupt mask.
1260 */
1261 sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1262 IE_TxDMAComplete | IE_RxDMAComplete;
1263 bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
1264 bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
1265
1266 /*
1267 * Start the receive DMA engine.
1268 */
1269 bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
1270
1271 /*
1272 * Initialize MacCtrl0 -- do it before setting the media,
1273 * as setting the media will actually program the register.
1274 */
1275 sc->sc_MacCtrl0 = MC0_IFSSelect(0);
1276 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1277 sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
1278
1279 /*
1280 * Set the current media.
1281 */
1282 mii_mediachg(&sc->sc_mii);
1283
1284 /*
1285 * Start the MAC.
1286 */
1287 bus_space_write_2(st, sh, STE_MacCtrl1,
1288 MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
1289
1290 /*
1291 * Start the one second MII clock.
1292 */
1293 callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1294
1295 /*
1296 * ...all done!
1297 */
1298 ifp->if_flags |= IFF_RUNNING;
1299 ifp->if_flags &= ~IFF_OACTIVE;
1300
1301 out:
1302 if (error)
1303 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1304 return (error);
1305 }
1306
1307 /*
1308 * ste_drain:
1309 *
1310 * Drain the receive queue.
1311 */
1312 void
1313 ste_rxdrain(struct ste_softc *sc)
1314 {
1315 struct ste_descsoft *ds;
1316 int i;
1317
1318 for (i = 0; i < STE_NRXDESC; i++) {
1319 ds = &sc->sc_rxsoft[i];
1320 if (ds->ds_mbuf != NULL) {
1321 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1322 m_freem(ds->ds_mbuf);
1323 ds->ds_mbuf = NULL;
1324 }
1325 }
1326 }
1327
1328 /*
1329 * ste_stop: [ ifnet interface function ]
1330 *
1331 * Stop transmission on the interface.
1332 */
1333 void
1334 ste_stop(struct ifnet *ifp, int disable)
1335 {
1336 struct ste_softc *sc = ifp->if_softc;
1337 struct ste_descsoft *ds;
1338 int i;
1339
1340 /*
1341 * Stop the one second clock.
1342 */
1343 callout_stop(&sc->sc_tick_ch);
1344
1345 /* Down the MII. */
1346 mii_down(&sc->sc_mii);
1347
1348 /*
1349 * Disable interrupts.
1350 */
1351 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
1352
1353 /*
1354 * Stop receiver, transmitter, and stats update.
1355 */
1356 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
1357 MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
1358
1359 /*
1360 * Stop the transmit and receive DMA.
1361 */
1362 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
1363 DC_RxDMAHalt | DC_TxDMAHalt);
1364 ste_dmahalt_wait(sc);
1365
1366 /*
1367 * Release any queued transmit buffers.
1368 */
1369 for (i = 0; i < STE_NTXDESC; i++) {
1370 ds = &sc->sc_txsoft[i];
1371 if (ds->ds_mbuf != NULL) {
1372 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1373 m_freem(ds->ds_mbuf);
1374 ds->ds_mbuf = NULL;
1375 }
1376 }
1377
1378 if (disable)
1379 ste_rxdrain(sc);
1380
1381 /*
1382 * Mark the interface down and cancel the watchdog timer.
1383 */
1384 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1385 ifp->if_timer = 0;
1386 }
1387
1388 static int
1389 ste_eeprom_wait(struct ste_softc *sc)
1390 {
1391 int i;
1392
1393 for (i = 0; i < STE_TIMEOUT; i++) {
1394 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
1395 EC_EepromBusy) == 0)
1396 return (0);
1397 delay(2);
1398 }
1399 return (1);
1400 }
1401
1402 /*
1403 * ste_read_eeprom:
1404 *
1405 * Read data from the serial EEPROM.
1406 */
1407 void
1408 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
1409 {
1410
1411 if (ste_eeprom_wait(sc))
1412 printf("%s: EEPROM failed to come ready\n",
1413 sc->sc_dev.dv_xname);
1414
1415 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
1416 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
1417 if (ste_eeprom_wait(sc))
1418 printf("%s: EEPROM read timed out\n",
1419 sc->sc_dev.dv_xname);
1420 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
1421 }
1422
1423 /*
1424 * ste_add_rxbuf:
1425 *
1426 * Add a receive buffer to the indicated descriptor.
1427 */
1428 int
1429 ste_add_rxbuf(struct ste_softc *sc, int idx)
1430 {
1431 struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
1432 struct mbuf *m;
1433 int error;
1434
1435 MGETHDR(m, M_DONTWAIT, MT_DATA);
1436 if (m == NULL)
1437 return (ENOBUFS);
1438
1439 MCLGET(m, M_DONTWAIT);
1440 if ((m->m_flags & M_EXT) == 0) {
1441 m_freem(m);
1442 return (ENOBUFS);
1443 }
1444
1445 if (ds->ds_mbuf != NULL)
1446 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1447
1448 ds->ds_mbuf = m;
1449
1450 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1451 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1452 BUS_DMA_READ|BUS_DMA_NOWAIT);
1453 if (error) {
1454 printf("%s: can't load rx DMA map %d, error = %d\n",
1455 sc->sc_dev.dv_xname, idx, error);
1456 panic("ste_add_rxbuf"); /* XXX */
1457 }
1458
1459 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1460 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1461
1462 STE_INIT_RXDESC(sc, idx);
1463
1464 return (0);
1465 }
1466
1467 /*
1468 * ste_set_filter:
1469 *
1470 * Set up the receive filter.
1471 */
1472 void
1473 ste_set_filter(struct ste_softc *sc)
1474 {
1475 struct ethercom *ec = &sc->sc_ethercom;
1476 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1477 struct ether_multi *enm;
1478 struct ether_multistep step;
1479 uint32_t crc;
1480 uint16_t mchash[4];
1481
1482 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1483 if (ifp->if_flags & IFF_BROADCAST)
1484 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1485
1486 if (ifp->if_flags & IFF_PROMISC) {
1487 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1488 goto allmulti;
1489 }
1490
1491 /*
1492 * Set up the multicast address filter by passing all multicast
1493 * addresses through a CRC generator, and then using the low-order
1494 * 6 bits as an index into the 64 bit multicast hash table. The
1495 * high order bits select the register, while the rest of the bits
1496 * select the bit within the register.
1497 */
1498
1499 memset(mchash, 0, sizeof(mchash));
1500
1501 ETHER_FIRST_MULTI(step, ec, enm);
1502 if (enm == NULL)
1503 goto done;
1504
1505 while (enm != NULL) {
1506 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1507 /*
1508 * We must listen to a range of multicast addresses.
1509 * For now, just accept all multicasts, rather than
1510 * trying to set only those filter bits needed to match
1511 * the range. (At this time, the only use of address
1512 * ranges is for IP multicast routing, for which the
1513 * range is big enough to require all bits set.)
1514 */
1515 goto allmulti;
1516 }
1517
1518 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1519
1520 /* Just want the 6 least significant bits. */
1521 crc &= 0x3f;
1522
1523 /* Set the corresponding bit in the hash table. */
1524 mchash[crc >> 4] |= 1 << (crc & 0xf);
1525
1526 ETHER_NEXT_MULTI(step, enm);
1527 }
1528
1529 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1530
1531 ifp->if_flags &= ~IFF_ALLMULTI;
1532 goto done;
1533
1534 allmulti:
1535 ifp->if_flags |= IFF_ALLMULTI;
1536 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1537
1538 done:
1539 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1540 /*
1541 * Program the multicast hash table.
1542 */
1543 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
1544 mchash[0]);
1545 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
1546 mchash[1]);
1547 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
1548 mchash[2]);
1549 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
1550 mchash[3]);
1551 }
1552
1553 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
1554 sc->sc_ReceiveMode);
1555 }
1556
1557 /*
1558 * ste_mii_readreg: [mii interface function]
1559 *
1560 * Read a PHY register on the MII of the ST-201.
1561 */
1562 int
1563 ste_mii_readreg(struct device *self, int phy, int reg)
1564 {
1565
1566 return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
1567 }
1568
1569 /*
1570 * ste_mii_writereg: [mii interface function]
1571 *
1572 * Write a PHY register on the MII of the ST-201.
1573 */
1574 void
1575 ste_mii_writereg(struct device *self, int phy, int reg, int val)
1576 {
1577
1578 mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
1579 }
1580
1581 /*
1582 * ste_mii_statchg: [mii interface function]
1583 *
1584 * Callback from MII layer when media changes.
1585 */
1586 void
1587 ste_mii_statchg(struct device *self)
1588 {
1589 struct ste_softc *sc = (struct ste_softc *) self;
1590
1591 if (sc->sc_mii.mii_media_active & IFM_FDX)
1592 sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
1593 else
1594 sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
1595
1596 /* XXX 802.1x flow-control? */
1597
1598 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
1599 }
1600
1601 /*
1602 * ste_mii_bitbang_read: [mii bit-bang interface function]
1603 *
1604 * Read the MII serial port for the MII bit-bang module.
1605 */
1606 uint32_t
1607 ste_mii_bitbang_read(struct device *self)
1608 {
1609 struct ste_softc *sc = (void *) self;
1610
1611 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
1612 }
1613
1614 /*
1615 * ste_mii_bitbang_write: [mii big-bang interface function]
1616 *
1617 * Write the MII serial port for the MII bit-bang module.
1618 */
1619 void
1620 ste_mii_bitbang_write(struct device *self, uint32_t val)
1621 {
1622 struct ste_softc *sc = (void *) self;
1623
1624 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
1625 }
1626
1627 /*
1628 * ste_mediastatus: [ifmedia interface function]
1629 *
1630 * Get the current interface media status.
1631 */
1632 void
1633 ste_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1634 {
1635 struct ste_softc *sc = ifp->if_softc;
1636
1637 mii_pollstat(&sc->sc_mii);
1638 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1639 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1640 }
1641
1642 /*
1643 * ste_mediachange: [ifmedia interface function]
1644 *
1645 * Set hardware to newly-selected media.
1646 */
1647 int
1648 ste_mediachange(struct ifnet *ifp)
1649 {
1650 struct ste_softc *sc = ifp->if_softc;
1651
1652 if (ifp->if_flags & IFF_UP)
1653 mii_mediachg(&sc->sc_mii);
1654 return (0);
1655 }
1656