Home | History | Annotate | Line # | Download | only in pci
if_ste.c revision 1.43
      1 /*	$NetBSD: if_ste.c,v 1.43 2012/07/22 14:33:03 matt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Device driver for the Sundance Tech. ST-201 10/100
     34  * Ethernet controller.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.43 2012/07/22 14:33:03 matt Exp $");
     39 
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/callout.h>
     44 #include <sys/mbuf.h>
     45 #include <sys/malloc.h>
     46 #include <sys/kernel.h>
     47 #include <sys/socket.h>
     48 #include <sys/ioctl.h>
     49 #include <sys/errno.h>
     50 #include <sys/device.h>
     51 #include <sys/queue.h>
     52 
     53 #include <net/if.h>
     54 #include <net/if_dl.h>
     55 #include <net/if_media.h>
     56 #include <net/if_ether.h>
     57 
     58 #include <net/bpf.h>
     59 
     60 #include <sys/bus.h>
     61 #include <sys/intr.h>
     62 
     63 #include <dev/mii/mii.h>
     64 #include <dev/mii/miivar.h>
     65 #include <dev/mii/mii_bitbang.h>
     66 
     67 #include <dev/pci/pcireg.h>
     68 #include <dev/pci/pcivar.h>
     69 #include <dev/pci/pcidevs.h>
     70 
     71 #include <dev/pci/if_stereg.h>
     72 
     73 /*
     74  * Transmit descriptor list size.
     75  */
     76 #define	STE_NTXDESC		256
     77 #define	STE_NTXDESC_MASK	(STE_NTXDESC - 1)
     78 #define	STE_NEXTTX(x)		(((x) + 1) & STE_NTXDESC_MASK)
     79 
     80 /*
     81  * Receive descriptor list size.
     82  */
     83 #define	STE_NRXDESC		128
     84 #define	STE_NRXDESC_MASK	(STE_NRXDESC - 1)
     85 #define	STE_NEXTRX(x)		(((x) + 1) & STE_NRXDESC_MASK)
     86 
     87 /*
     88  * Control structures are DMA'd to the ST-201 chip.  We allocate them in
     89  * a single clump that maps to a single DMA segment to make several things
     90  * easier.
     91  */
     92 struct ste_control_data {
     93 	/*
     94 	 * The transmit descriptors.
     95 	 */
     96 	struct ste_tfd scd_txdescs[STE_NTXDESC];
     97 
     98 	/*
     99 	 * The receive descriptors.
    100 	 */
    101 	struct ste_rfd scd_rxdescs[STE_NRXDESC];
    102 };
    103 
    104 #define	STE_CDOFF(x)	offsetof(struct ste_control_data, x)
    105 #define	STE_CDTXOFF(x)	STE_CDOFF(scd_txdescs[(x)])
    106 #define	STE_CDRXOFF(x)	STE_CDOFF(scd_rxdescs[(x)])
    107 
    108 /*
    109  * Software state for transmit and receive jobs.
    110  */
    111 struct ste_descsoft {
    112 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
    113 	bus_dmamap_t ds_dmamap;		/* our DMA map */
    114 };
    115 
    116 /*
    117  * Software state per device.
    118  */
    119 struct ste_softc {
    120 	struct device sc_dev;		/* generic device information */
    121 	bus_space_tag_t sc_st;		/* bus space tag */
    122 	bus_space_handle_t sc_sh;	/* bus space handle */
    123 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    124 	struct ethercom sc_ethercom;	/* ethernet common data */
    125 
    126 	void *sc_ih;			/* interrupt cookie */
    127 
    128 	struct mii_data sc_mii;		/* MII/media information */
    129 
    130 	callout_t sc_tick_ch;		/* tick callout */
    131 
    132 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    133 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    134 
    135 	/*
    136 	 * Software state for transmit and receive descriptors.
    137 	 */
    138 	struct ste_descsoft sc_txsoft[STE_NTXDESC];
    139 	struct ste_descsoft sc_rxsoft[STE_NRXDESC];
    140 
    141 	/*
    142 	 * Control data structures.
    143 	 */
    144 	struct ste_control_data *sc_control_data;
    145 #define	sc_txdescs	sc_control_data->scd_txdescs
    146 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    147 
    148 	int	sc_txpending;		/* number of Tx requests pending */
    149 	int	sc_txdirty;		/* first dirty Tx descriptor */
    150 	int	sc_txlast;		/* last used Tx descriptor */
    151 
    152 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    153 
    154 	int	sc_txthresh;		/* Tx threshold */
    155 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
    156 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
    157 	uint16_t sc_MacCtrl0;		/* prototype MacCtrl0 register */
    158 	uint8_t	sc_ReceiveMode;		/* prototype ReceiveMode register */
    159 };
    160 
    161 #define	STE_CDTXADDR(sc, x)	((sc)->sc_cddma + STE_CDTXOFF((x)))
    162 #define	STE_CDRXADDR(sc, x)	((sc)->sc_cddma + STE_CDRXOFF((x)))
    163 
    164 #define	STE_CDTXSYNC(sc, x, ops)					\
    165 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    166 	    STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
    167 
    168 #define	STE_CDRXSYNC(sc, x, ops)					\
    169 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    170 	    STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
    171 
    172 #define	STE_INIT_RXDESC(sc, x)						\
    173 do {									\
    174 	struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
    175 	struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)];			\
    176 	struct mbuf *__m = __ds->ds_mbuf;				\
    177 									\
    178 	/*								\
    179 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    180 	 * so that the payload after the Ethernet header is aligned	\
    181 	 * to a 4-byte boundary.					\
    182 	 */								\
    183 	__m->m_data = __m->m_ext.ext_buf + 2;				\
    184 	__rfd->rfd_frag.frag_addr =					\
    185 	    htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2);		\
    186 	__rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST);	\
    187 	__rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x))));	\
    188 	__rfd->rfd_status = 0;						\
    189 	STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    190 } while (/*CONSTCOND*/0)
    191 
    192 #define STE_TIMEOUT 1000
    193 
    194 static void	ste_start(struct ifnet *);
    195 static void	ste_watchdog(struct ifnet *);
    196 static int	ste_ioctl(struct ifnet *, u_long, void *);
    197 static int	ste_init(struct ifnet *);
    198 static void	ste_stop(struct ifnet *, int);
    199 
    200 static bool	ste_shutdown(device_t, int);
    201 
    202 static void	ste_reset(struct ste_softc *, u_int32_t);
    203 static void	ste_setthresh(struct ste_softc *);
    204 static void	ste_txrestart(struct ste_softc *, u_int8_t);
    205 static void	ste_rxdrain(struct ste_softc *);
    206 static int	ste_add_rxbuf(struct ste_softc *, int);
    207 static void	ste_read_eeprom(struct ste_softc *, int, uint16_t *);
    208 static void	ste_tick(void *);
    209 
    210 static void	ste_stats_update(struct ste_softc *);
    211 
    212 static void	ste_set_filter(struct ste_softc *);
    213 
    214 static int	ste_intr(void *);
    215 static void	ste_txintr(struct ste_softc *);
    216 static void	ste_rxintr(struct ste_softc *);
    217 
    218 static int	ste_mii_readreg(device_t, int, int);
    219 static void	ste_mii_writereg(device_t, int, int, int);
    220 static void	ste_mii_statchg(struct ifnet *);
    221 
    222 static int	ste_match(device_t, cfdata_t, void *);
    223 static void	ste_attach(device_t, device_t, void *);
    224 
    225 int	ste_copy_small = 0;
    226 
    227 CFATTACH_DECL(ste, sizeof(struct ste_softc),
    228     ste_match, ste_attach, NULL, NULL);
    229 
    230 static uint32_t ste_mii_bitbang_read(device_t);
    231 static void	ste_mii_bitbang_write(device_t, uint32_t);
    232 
    233 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
    234 	ste_mii_bitbang_read,
    235 	ste_mii_bitbang_write,
    236 	{
    237 		PC_MgmtData,		/* MII_BIT_MDO */
    238 		PC_MgmtData,		/* MII_BIT_MDI */
    239 		PC_MgmtClk,		/* MII_BIT_MDC */
    240 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
    241 		0,			/* MII_BIT_DIR_PHY_HOST */
    242 	}
    243 };
    244 
    245 /*
    246  * Devices supported by this driver.
    247  */
    248 static const struct ste_product {
    249 	pci_vendor_id_t		ste_vendor;
    250 	pci_product_id_t	ste_product;
    251 	const char		*ste_name;
    252 } ste_products[] = {
    253 	{ PCI_VENDOR_SUNDANCETI, 	PCI_PRODUCT_SUNDANCETI_IP100A,
    254 	  "IC Plus Corp. IP00A 10/100 Fast Ethernet Adapter" },
    255 
    256 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST201,
    257 	  "Sundance ST-201 10/100 Ethernet" },
    258 
    259 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL1002,
    260 	  "D-Link DL-1002 10/100 Ethernet" },
    261 
    262 	{ 0,				0,
    263 	  NULL },
    264 };
    265 
    266 static const struct ste_product *
    267 ste_lookup(const struct pci_attach_args *pa)
    268 {
    269 	const struct ste_product *sp;
    270 
    271 	for (sp = ste_products; sp->ste_name != NULL; sp++) {
    272 		if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
    273 		    PCI_PRODUCT(pa->pa_id) == sp->ste_product)
    274 			return (sp);
    275 	}
    276 	return (NULL);
    277 }
    278 
    279 static int
    280 ste_match(device_t parent, cfdata_t cf, void *aux)
    281 {
    282 	struct pci_attach_args *pa = aux;
    283 
    284 	if (ste_lookup(pa) != NULL)
    285 		return (1);
    286 
    287 	return (0);
    288 }
    289 
    290 static void
    291 ste_attach(device_t parent, device_t self, void *aux)
    292 {
    293 	struct ste_softc *sc = device_private(self);
    294 	struct pci_attach_args *pa = aux;
    295 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    296 	pci_chipset_tag_t pc = pa->pa_pc;
    297 	pci_intr_handle_t ih;
    298 	const char *intrstr = NULL;
    299 	bus_space_tag_t iot, memt;
    300 	bus_space_handle_t ioh, memh;
    301 	bus_dma_segment_t seg;
    302 	int ioh_valid, memh_valid;
    303 	int i, rseg, error;
    304 	const struct ste_product *sp;
    305 	uint8_t enaddr[ETHER_ADDR_LEN];
    306 	uint16_t myea[ETHER_ADDR_LEN / 2];
    307 
    308 	callout_init(&sc->sc_tick_ch, 0);
    309 
    310 	sp = ste_lookup(pa);
    311 	if (sp == NULL) {
    312 		printf("\n");
    313 		panic("ste_attach: impossible");
    314 	}
    315 
    316 	printf(": %s\n", sp->ste_name);
    317 
    318 	/*
    319 	 * Map the device.
    320 	 */
    321 	ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
    322 	    PCI_MAPREG_TYPE_IO, 0,
    323 	    &iot, &ioh, NULL, NULL) == 0);
    324 	memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
    325 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    326 	    &memt, &memh, NULL, NULL) == 0);
    327 
    328 	if (memh_valid) {
    329 		sc->sc_st = memt;
    330 		sc->sc_sh = memh;
    331 	} else if (ioh_valid) {
    332 		sc->sc_st = iot;
    333 		sc->sc_sh = ioh;
    334 	} else {
    335 		aprint_error_dev(&sc->sc_dev, "unable to map device registers\n");
    336 		return;
    337 	}
    338 
    339 	sc->sc_dmat = pa->pa_dmat;
    340 
    341 	/* Enable bus mastering. */
    342 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    343 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    344 	    PCI_COMMAND_MASTER_ENABLE);
    345 
    346 	/* power up chip */
    347 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
    348 	    NULL)) && error != EOPNOTSUPP) {
    349 		aprint_error_dev(&sc->sc_dev, "cannot activate %d\n",
    350 		    error);
    351 		return;
    352 	}
    353 
    354 	/*
    355 	 * Map and establish our interrupt.
    356 	 */
    357 	if (pci_intr_map(pa, &ih)) {
    358 		aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
    359 		return;
    360 	}
    361 	intrstr = pci_intr_string(pc, ih);
    362 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
    363 	if (sc->sc_ih == NULL) {
    364 		aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
    365 		if (intrstr != NULL)
    366 			aprint_error(" at %s", intrstr);
    367 		aprint_error("\n");
    368 		return;
    369 	}
    370 	aprint_normal_dev(&sc->sc_dev, "interrupting at %s\n", intrstr);
    371 
    372 	/*
    373 	 * Allocate the control data structures, and create and load the
    374 	 * DMA map for it.
    375 	 */
    376 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    377 	    sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    378 	    0)) != 0) {
    379 		aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n",
    380 		    error);
    381 		goto fail_0;
    382 	}
    383 
    384 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    385 	    sizeof(struct ste_control_data), (void **)&sc->sc_control_data,
    386 	    BUS_DMA_COHERENT)) != 0) {
    387 		aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
    388 		    error);
    389 		goto fail_1;
    390 	}
    391 
    392 	if ((error = bus_dmamap_create(sc->sc_dmat,
    393 	    sizeof(struct ste_control_data), 1,
    394 	    sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    395 		aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
    396 		    "error = %d\n", error);
    397 		goto fail_2;
    398 	}
    399 
    400 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    401 	    sc->sc_control_data, sizeof(struct ste_control_data), NULL,
    402 	    0)) != 0) {
    403 		aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
    404 		    error);
    405 		goto fail_3;
    406 	}
    407 
    408 	/*
    409 	 * Create the transmit buffer DMA maps.
    410 	 */
    411 	for (i = 0; i < STE_NTXDESC; i++) {
    412 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    413 		    STE_NTXFRAGS, MCLBYTES, 0, 0,
    414 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
    415 			aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
    416 			    "error = %d\n", i, error);
    417 			goto fail_4;
    418 		}
    419 	}
    420 
    421 	/*
    422 	 * Create the receive buffer DMA maps.
    423 	 */
    424 	for (i = 0; i < STE_NRXDESC; i++) {
    425 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    426 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
    427 			aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
    428 			    "error = %d\n", i, error);
    429 			goto fail_5;
    430 		}
    431 		sc->sc_rxsoft[i].ds_mbuf = NULL;
    432 	}
    433 
    434 	/*
    435 	 * Reset the chip to a known state.
    436 	 */
    437 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
    438 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
    439 
    440 	/*
    441 	 * Read the Ethernet address from the EEPROM.
    442 	 */
    443 	for (i = 0; i < 3; i++) {
    444 		ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
    445 		myea[i] = le16toh(myea[i]);
    446 	}
    447 	memcpy(enaddr, myea, sizeof(enaddr));
    448 
    449 	printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
    450 	    ether_sprintf(enaddr));
    451 
    452 	/*
    453 	 * Initialize our media structures and probe the MII.
    454 	 */
    455 	sc->sc_mii.mii_ifp = ifp;
    456 	sc->sc_mii.mii_readreg = ste_mii_readreg;
    457 	sc->sc_mii.mii_writereg = ste_mii_writereg;
    458 	sc->sc_mii.mii_statchg = ste_mii_statchg;
    459 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
    460 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
    461 	    ether_mediastatus);
    462 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    463 	    MII_OFFSET_ANY, 0);
    464 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    465 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    466 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    467 	} else
    468 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    469 
    470 	ifp = &sc->sc_ethercom.ec_if;
    471 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
    472 	ifp->if_softc = sc;
    473 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    474 	ifp->if_ioctl = ste_ioctl;
    475 	ifp->if_start = ste_start;
    476 	ifp->if_watchdog = ste_watchdog;
    477 	ifp->if_init = ste_init;
    478 	ifp->if_stop = ste_stop;
    479 	IFQ_SET_READY(&ifp->if_snd);
    480 
    481 	/*
    482 	 * Default the transmit threshold to 128 bytes.
    483 	 */
    484 	sc->sc_txthresh = 128;
    485 
    486 	/*
    487 	 * Disable MWI if the PCI layer tells us to.
    488 	 */
    489 	sc->sc_DMACtrl = 0;
    490 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
    491 		sc->sc_DMACtrl |= DC_MWIDisable;
    492 
    493 	/*
    494 	 * We can support 802.1Q VLAN-sized frames.
    495 	 */
    496 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    497 
    498 	/*
    499 	 * Attach the interface.
    500 	 */
    501 	if_attach(ifp);
    502 	ether_ifattach(ifp, enaddr);
    503 
    504 	/*
    505 	 * Make sure the interface is shutdown during reboot.
    506 	 */
    507 	if (pmf_device_register1(self, NULL, NULL, ste_shutdown))
    508 		pmf_class_network_register(self, ifp);
    509 	else
    510 		aprint_error_dev(self, "couldn't establish power handler\n");
    511 
    512 	return;
    513 
    514 	/*
    515 	 * Free any resources we've allocated during the failed attach
    516 	 * attempt.  Do this in reverse order and fall through.
    517 	 */
    518  fail_5:
    519 	for (i = 0; i < STE_NRXDESC; i++) {
    520 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
    521 			bus_dmamap_destroy(sc->sc_dmat,
    522 			    sc->sc_rxsoft[i].ds_dmamap);
    523 	}
    524  fail_4:
    525 	for (i = 0; i < STE_NTXDESC; i++) {
    526 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
    527 			bus_dmamap_destroy(sc->sc_dmat,
    528 			    sc->sc_txsoft[i].ds_dmamap);
    529 	}
    530 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    531  fail_3:
    532 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    533  fail_2:
    534 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    535 	    sizeof(struct ste_control_data));
    536  fail_1:
    537 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    538  fail_0:
    539 	return;
    540 }
    541 
    542 /*
    543  * ste_shutdown:
    544  *
    545  *	Make sure the interface is stopped at reboot time.
    546  */
    547 static bool
    548 ste_shutdown(device_t self, int howto)
    549 {
    550 	struct ste_softc *sc;
    551 
    552 	sc = device_private(self);
    553 	ste_stop(&sc->sc_ethercom.ec_if, 1);
    554 
    555 	return true;
    556 }
    557 
    558 static void
    559 ste_dmahalt_wait(struct ste_softc *sc)
    560 {
    561 	int i;
    562 
    563 	for (i = 0; i < STE_TIMEOUT; i++) {
    564 		delay(2);
    565 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
    566 		     DC_DMAHaltBusy) == 0)
    567 			break;
    568 	}
    569 
    570 	if (i == STE_TIMEOUT)
    571 		printf("%s: DMA halt timed out\n", device_xname(&sc->sc_dev));
    572 }
    573 
    574 /*
    575  * ste_start:		[ifnet interface function]
    576  *
    577  *	Start packet transmission on the interface.
    578  */
    579 static void
    580 ste_start(struct ifnet *ifp)
    581 {
    582 	struct ste_softc *sc = ifp->if_softc;
    583 	struct mbuf *m0, *m;
    584 	struct ste_descsoft *ds;
    585 	struct ste_tfd *tfd;
    586 	bus_dmamap_t dmamap;
    587 	int error, olasttx, nexttx, opending, seg, totlen;
    588 
    589 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    590 		return;
    591 
    592 	/*
    593 	 * Remember the previous number of pending transmissions
    594 	 * and the current last descriptor in the list.
    595 	 */
    596 	opending = sc->sc_txpending;
    597 	olasttx = sc->sc_txlast;
    598 
    599 	/*
    600 	 * Loop through the send queue, setting up transmit descriptors
    601 	 * until we drain the queue, or use up all available transmit
    602 	 * descriptors.
    603 	 */
    604 	while (sc->sc_txpending < STE_NTXDESC) {
    605 		/*
    606 		 * Grab a packet off the queue.
    607 		 */
    608 		IFQ_POLL(&ifp->if_snd, m0);
    609 		if (m0 == NULL)
    610 			break;
    611 		m = NULL;
    612 
    613 		/*
    614 		 * Get the last and next available transmit descriptor.
    615 		 */
    616 		nexttx = STE_NEXTTX(sc->sc_txlast);
    617 		tfd = &sc->sc_txdescs[nexttx];
    618 		ds = &sc->sc_txsoft[nexttx];
    619 
    620 		dmamap = ds->ds_dmamap;
    621 
    622 		/*
    623 		 * Load the DMA map.  If this fails, the packet either
    624 		 * didn't fit in the alloted number of segments, or we
    625 		 * were short on resources.  In this case, we'll copy
    626 		 * and try again.
    627 		 */
    628 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    629 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
    630 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    631 			if (m == NULL) {
    632 				printf("%s: unable to allocate Tx mbuf\n",
    633 				    device_xname(&sc->sc_dev));
    634 				break;
    635 			}
    636 			if (m0->m_pkthdr.len > MHLEN) {
    637 				MCLGET(m, M_DONTWAIT);
    638 				if ((m->m_flags & M_EXT) == 0) {
    639 					printf("%s: unable to allocate Tx "
    640 					    "cluster\n", device_xname(&sc->sc_dev));
    641 					m_freem(m);
    642 					break;
    643 				}
    644 			}
    645 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
    646 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    647 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    648 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
    649 			if (error) {
    650 				printf("%s: unable to load Tx buffer, "
    651 				    "error = %d\n", device_xname(&sc->sc_dev), error);
    652 				break;
    653 			}
    654 		}
    655 
    656 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    657 		if (m != NULL) {
    658 			m_freem(m0);
    659 			m0 = m;
    660 		}
    661 
    662 		/*
    663 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    664 		 */
    665 
    666 		/* Sync the DMA map. */
    667 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    668 		    BUS_DMASYNC_PREWRITE);
    669 
    670 		/* Initialize the fragment list. */
    671 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
    672 			tfd->tfd_frags[seg].frag_addr =
    673 			    htole32(dmamap->dm_segs[seg].ds_addr);
    674 			tfd->tfd_frags[seg].frag_len =
    675 			    htole32(dmamap->dm_segs[seg].ds_len);
    676 			totlen += dmamap->dm_segs[seg].ds_len;
    677 		}
    678 		tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
    679 
    680 		/* Initialize the descriptor. */
    681 		tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
    682 		tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
    683 
    684 		/* Sync the descriptor. */
    685 		STE_CDTXSYNC(sc, nexttx,
    686 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    687 
    688 		/*
    689 		 * Store a pointer to the packet so we can free it later,
    690 		 * and remember what txdirty will be once the packet is
    691 		 * done.
    692 		 */
    693 		ds->ds_mbuf = m0;
    694 
    695 		/* Advance the tx pointer. */
    696 		sc->sc_txpending++;
    697 		sc->sc_txlast = nexttx;
    698 
    699 		/*
    700 		 * Pass the packet to any BPF listeners.
    701 		 */
    702 		bpf_mtap(ifp, m0);
    703 	}
    704 
    705 	if (sc->sc_txpending == STE_NTXDESC) {
    706 		/* No more slots left; notify upper layer. */
    707 		ifp->if_flags |= IFF_OACTIVE;
    708 	}
    709 
    710 	if (sc->sc_txpending != opending) {
    711 		/*
    712 		 * We enqueued packets.  If the transmitter was idle,
    713 		 * reset the txdirty pointer.
    714 		 */
    715 		if (opending == 0)
    716 			sc->sc_txdirty = STE_NEXTTX(olasttx);
    717 
    718 		/*
    719 		 * Cause a descriptor interrupt to happen on the
    720 		 * last packet we enqueued, and also cause the
    721 		 * DMA engine to wait after is has finished processing
    722 		 * it.
    723 		 */
    724 		sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
    725 		sc->sc_txdescs[sc->sc_txlast].tfd_control |=
    726 		    htole32(TFD_TxDMAIndicate);
    727 		STE_CDTXSYNC(sc, sc->sc_txlast,
    728 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    729 
    730 		/*
    731 		 * Link up the new chain of descriptors to the
    732 		 * last.
    733 		 */
    734 		sc->sc_txdescs[olasttx].tfd_next =
    735 		    htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
    736 		STE_CDTXSYNC(sc, olasttx,
    737 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    738 
    739 		/*
    740 		 * Kick the transmit DMA logic.  Note that since we're
    741 		 * using auto-polling, reading the Tx desc pointer will
    742 		 * give it the nudge it needs to get going.
    743 		 */
    744 		if (bus_space_read_4(sc->sc_st, sc->sc_sh,
    745 		    STE_TxDMAListPtr) == 0) {
    746 			bus_space_write_4(sc->sc_st, sc->sc_sh,
    747 			    STE_DMACtrl, DC_TxDMAHalt);
    748 			ste_dmahalt_wait(sc);
    749 			bus_space_write_4(sc->sc_st, sc->sc_sh,
    750 			    STE_TxDMAListPtr,
    751 			    STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
    752 			bus_space_write_4(sc->sc_st, sc->sc_sh,
    753 			    STE_DMACtrl, DC_TxDMAResume);
    754 		}
    755 
    756 		/* Set a watchdog timer in case the chip flakes out. */
    757 		ifp->if_timer = 5;
    758 	}
    759 }
    760 
    761 /*
    762  * ste_watchdog:	[ifnet interface function]
    763  *
    764  *	Watchdog timer handler.
    765  */
    766 static void
    767 ste_watchdog(struct ifnet *ifp)
    768 {
    769 	struct ste_softc *sc = ifp->if_softc;
    770 
    771 	printf("%s: device timeout\n", device_xname(&sc->sc_dev));
    772 	ifp->if_oerrors++;
    773 
    774 	ste_txintr(sc);
    775 	ste_rxintr(sc);
    776 	(void) ste_init(ifp);
    777 
    778 	/* Try to get more packets going. */
    779 	ste_start(ifp);
    780 }
    781 
    782 /*
    783  * ste_ioctl:		[ifnet interface function]
    784  *
    785  *	Handle control requests from the operator.
    786  */
    787 static int
    788 ste_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    789 {
    790 	struct ste_softc *sc = ifp->if_softc;
    791 	int s, error;
    792 
    793 	s = splnet();
    794 
    795 	error = ether_ioctl(ifp, cmd, data);
    796 	if (error == ENETRESET) {
    797 		/*
    798 		 * Multicast list has changed; set the hardware filter
    799 		 * accordingly.
    800 		 */
    801 		if (ifp->if_flags & IFF_RUNNING)
    802 			ste_set_filter(sc);
    803 		error = 0;
    804 	}
    805 
    806 	/* Try to get more packets going. */
    807 	ste_start(ifp);
    808 
    809 	splx(s);
    810 	return (error);
    811 }
    812 
    813 /*
    814  * ste_intr:
    815  *
    816  *	Interrupt service routine.
    817  */
    818 static int
    819 ste_intr(void *arg)
    820 {
    821 	struct ste_softc *sc = arg;
    822 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    823 	uint16_t isr;
    824 	uint8_t txstat;
    825 	int wantinit;
    826 
    827 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
    828 	     IS_InterruptStatus) == 0)
    829 		return (0);
    830 
    831 	for (wantinit = 0; wantinit == 0;) {
    832 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
    833 		if ((isr & sc->sc_IntEnable) == 0)
    834 			break;
    835 
    836 		/* Receive interrupts. */
    837 		if (isr & IE_RxDMAComplete)
    838 			ste_rxintr(sc);
    839 
    840 		/* Transmit interrupts. */
    841 		if (isr & (IE_TxDMAComplete|IE_TxComplete))
    842 			ste_txintr(sc);
    843 
    844 		/* Statistics overflow. */
    845 		if (isr & IE_UpdateStats)
    846 			ste_stats_update(sc);
    847 
    848 		/* Transmission errors. */
    849 		if (isr & IE_TxComplete) {
    850 			for (;;) {
    851 				txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
    852 				    STE_TxStatus);
    853 				if ((txstat & TS_TxComplete) == 0)
    854 					break;
    855 				if (txstat & TS_TxUnderrun) {
    856 					sc->sc_txthresh += 32;
    857 					if (sc->sc_txthresh > 0x1ffc)
    858 						sc->sc_txthresh = 0x1ffc;
    859 					printf("%s: transmit underrun, new "
    860 					    "threshold: %d bytes\n",
    861 					    device_xname(&sc->sc_dev),
    862 					    sc->sc_txthresh);
    863 					ste_reset(sc, AC_TxReset | AC_DMA |
    864 					    AC_FIFO | AC_Network);
    865 					ste_setthresh(sc);
    866 					bus_space_write_1(sc->sc_st, sc->sc_sh,
    867 					    STE_TxDMAPollPeriod, 127);
    868 					ste_txrestart(sc,
    869 					    bus_space_read_1(sc->sc_st,
    870 						sc->sc_sh, STE_TxFrameId));
    871 				}
    872 				if (txstat & TS_TxReleaseError) {
    873 					printf("%s: Tx FIFO release error\n",
    874 					    device_xname(&sc->sc_dev));
    875 					wantinit = 1;
    876 				}
    877 				if (txstat & TS_MaxCollisions) {
    878 					printf("%s: excessive collisions\n",
    879 					    device_xname(&sc->sc_dev));
    880 					wantinit = 1;
    881 				}
    882 				if (txstat & TS_TxStatusOverflow) {
    883 					printf("%s: status overflow\n",
    884 					    device_xname(&sc->sc_dev));
    885 					wantinit = 1;
    886 				}
    887 				bus_space_write_2(sc->sc_st, sc->sc_sh,
    888 				    STE_TxStatus, 0);
    889 			}
    890 		}
    891 
    892 		/* Host interface errors. */
    893 		if (isr & IE_HostError) {
    894 			printf("%s: Host interface error\n",
    895 			    device_xname(&sc->sc_dev));
    896 			wantinit = 1;
    897 		}
    898 	}
    899 
    900 	if (wantinit)
    901 		ste_init(ifp);
    902 
    903 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
    904 	    sc->sc_IntEnable);
    905 
    906 	/* Try to get more packets going. */
    907 	ste_start(ifp);
    908 
    909 	return (1);
    910 }
    911 
    912 /*
    913  * ste_txintr:
    914  *
    915  *	Helper; handle transmit interrupts.
    916  */
    917 static void
    918 ste_txintr(struct ste_softc *sc)
    919 {
    920 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    921 	struct ste_descsoft *ds;
    922 	uint32_t control;
    923 	int i;
    924 
    925 	ifp->if_flags &= ~IFF_OACTIVE;
    926 
    927 	/*
    928 	 * Go through our Tx list and free mbufs for those
    929 	 * frames which have been transmitted.
    930 	 */
    931 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
    932 	     i = STE_NEXTTX(i), sc->sc_txpending--) {
    933 		ds = &sc->sc_txsoft[i];
    934 
    935 		STE_CDTXSYNC(sc, i,
    936 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    937 
    938 		control = le32toh(sc->sc_txdescs[i].tfd_control);
    939 		if ((control & TFD_TxDMAComplete) == 0)
    940 			break;
    941 
    942 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
    943 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    944 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
    945 		m_freem(ds->ds_mbuf);
    946 		ds->ds_mbuf = NULL;
    947 	}
    948 
    949 	/* Update the dirty transmit buffer pointer. */
    950 	sc->sc_txdirty = i;
    951 
    952 	/*
    953 	 * If there are no more pending transmissions, cancel the watchdog
    954 	 * timer.
    955 	 */
    956 	if (sc->sc_txpending == 0)
    957 		ifp->if_timer = 0;
    958 }
    959 
    960 /*
    961  * ste_rxintr:
    962  *
    963  *	Helper; handle receive interrupts.
    964  */
    965 static void
    966 ste_rxintr(struct ste_softc *sc)
    967 {
    968 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    969 	struct ste_descsoft *ds;
    970 	struct mbuf *m;
    971 	uint32_t status;
    972 	int i, len;
    973 
    974 	for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
    975 		ds = &sc->sc_rxsoft[i];
    976 
    977 		STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    978 
    979 		status = le32toh(sc->sc_rxdescs[i].rfd_status);
    980 
    981 		if ((status & RFD_RxDMAComplete) == 0)
    982 			break;
    983 
    984 		/*
    985 		 * If the packet had an error, simply recycle the
    986 		 * buffer.  Note, we count the error later in the
    987 		 * periodic stats update.
    988 		 */
    989 		if (status & RFD_RxFrameError) {
    990 			STE_INIT_RXDESC(sc, i);
    991 			continue;
    992 		}
    993 
    994 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
    995 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    996 
    997 		/*
    998 		 * No errors; receive the packet.  Note, we have
    999 		 * configured the chip to not include the CRC at
   1000 		 * the end of the packet.
   1001 		 */
   1002 		len = RFD_RxDMAFrameLen(status);
   1003 
   1004 		/*
   1005 		 * If the packet is small enough to fit in a
   1006 		 * single header mbuf, allocate one and copy
   1007 		 * the data into it.  This greatly reduces
   1008 		 * memory consumption when we receive lots
   1009 		 * of small packets.
   1010 		 *
   1011 		 * Otherwise, we add a new buffer to the receive
   1012 		 * chain.  If this fails, we drop the packet and
   1013 		 * recycle the old buffer.
   1014 		 */
   1015 		if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
   1016 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1017 			if (m == NULL)
   1018 				goto dropit;
   1019 			m->m_data += 2;
   1020 			memcpy(mtod(m, void *),
   1021 			    mtod(ds->ds_mbuf, void *), len);
   1022 			STE_INIT_RXDESC(sc, i);
   1023 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1024 			    ds->ds_dmamap->dm_mapsize,
   1025 			    BUS_DMASYNC_PREREAD);
   1026 		} else {
   1027 			m = ds->ds_mbuf;
   1028 			if (ste_add_rxbuf(sc, i) != 0) {
   1029  dropit:
   1030 				ifp->if_ierrors++;
   1031 				STE_INIT_RXDESC(sc, i);
   1032 				bus_dmamap_sync(sc->sc_dmat,
   1033 				    ds->ds_dmamap, 0,
   1034 				    ds->ds_dmamap->dm_mapsize,
   1035 				    BUS_DMASYNC_PREREAD);
   1036 				continue;
   1037 			}
   1038 		}
   1039 
   1040 		m->m_pkthdr.rcvif = ifp;
   1041 		m->m_pkthdr.len = m->m_len = len;
   1042 
   1043 		/*
   1044 		 * Pass this up to any BPF listeners, but only
   1045 		 * pass if up the stack if it's for us.
   1046 		 */
   1047 		bpf_mtap(ifp, m);
   1048 
   1049 		/* Pass it on. */
   1050 		(*ifp->if_input)(ifp, m);
   1051 	}
   1052 
   1053 	/* Update the receive pointer. */
   1054 	sc->sc_rxptr = i;
   1055 }
   1056 
   1057 /*
   1058  * ste_tick:
   1059  *
   1060  *	One second timer, used to tick the MII.
   1061  */
   1062 static void
   1063 ste_tick(void *arg)
   1064 {
   1065 	struct ste_softc *sc = arg;
   1066 	int s;
   1067 
   1068 	s = splnet();
   1069 	mii_tick(&sc->sc_mii);
   1070 	ste_stats_update(sc);
   1071 	splx(s);
   1072 
   1073 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
   1074 }
   1075 
   1076 /*
   1077  * ste_stats_update:
   1078  *
   1079  *	Read the ST-201 statistics counters.
   1080  */
   1081 static void
   1082 ste_stats_update(struct ste_softc *sc)
   1083 {
   1084 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1085 	bus_space_tag_t st = sc->sc_st;
   1086 	bus_space_handle_t sh = sc->sc_sh;
   1087 
   1088 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
   1089 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
   1090 
   1091 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
   1092 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
   1093 
   1094 	ifp->if_opackets +=
   1095 	    (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
   1096 	ifp->if_ipackets +=
   1097 	    (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
   1098 
   1099 	ifp->if_collisions +=
   1100 	    (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
   1101 	    (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
   1102 	    (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
   1103 
   1104 	(void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
   1105 
   1106 	ifp->if_ierrors +=
   1107 	    (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
   1108 
   1109 	ifp->if_oerrors +=
   1110 	    (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
   1111 	    (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
   1112 	    bus_space_read_1(st, sh, STE_CarrierSenseErrors);
   1113 
   1114 	(void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
   1115 	(void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
   1116 	(void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
   1117 	(void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
   1118 }
   1119 
   1120 /*
   1121  * ste_reset:
   1122  *
   1123  *	Perform a soft reset on the ST-201.
   1124  */
   1125 static void
   1126 ste_reset(struct ste_softc *sc, u_int32_t rstbits)
   1127 {
   1128 	uint32_t ac;
   1129 	int i;
   1130 
   1131 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
   1132 
   1133 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
   1134 
   1135 	delay(50000);
   1136 
   1137 	for (i = 0; i < STE_TIMEOUT; i++) {
   1138 		delay(1000);
   1139 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
   1140 		     AC_ResetBusy) == 0)
   1141 			break;
   1142 	}
   1143 
   1144 	if (i == STE_TIMEOUT)
   1145 		printf("%s: reset failed to complete\n", device_xname(&sc->sc_dev));
   1146 
   1147 	delay(1000);
   1148 }
   1149 
   1150 /*
   1151  * ste_setthresh:
   1152  *
   1153  * 	set the various transmit threshold registers
   1154  */
   1155 static void
   1156 ste_setthresh(struct ste_softc *sc)
   1157 {
   1158 	/* set the TX threhold */
   1159 	bus_space_write_2(sc->sc_st, sc->sc_sh,
   1160 	    STE_TxStartThresh, sc->sc_txthresh);
   1161 	/* Urgent threshold: set to sc_txthresh / 2 */
   1162 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
   1163 	    sc->sc_txthresh >> 6);
   1164 	/* Burst threshold: use default value (256 bytes) */
   1165 }
   1166 
   1167 /*
   1168  * restart TX at the given frame ID in the transmitter ring
   1169  */
   1170 static void
   1171 ste_txrestart(struct ste_softc *sc, u_int8_t id)
   1172 {
   1173 	u_int32_t control;
   1174 
   1175 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1176 	control = le32toh(sc->sc_txdescs[id].tfd_control);
   1177 	control &= ~TFD_TxDMAComplete;
   1178 	sc->sc_txdescs[id].tfd_control = htole32(control);
   1179 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1180 
   1181 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
   1182 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
   1183 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
   1184 	ste_dmahalt_wait(sc);
   1185 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
   1186 	    STE_CDTXADDR(sc, id));
   1187 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
   1188 }
   1189 
   1190 /*
   1191  * ste_init:		[ ifnet interface function ]
   1192  *
   1193  *	Initialize the interface.  Must be called at splnet().
   1194  */
   1195 static int
   1196 ste_init(struct ifnet *ifp)
   1197 {
   1198 	struct ste_softc *sc = ifp->if_softc;
   1199 	bus_space_tag_t st = sc->sc_st;
   1200 	bus_space_handle_t sh = sc->sc_sh;
   1201 	struct ste_descsoft *ds;
   1202 	int i, error = 0;
   1203 
   1204 	/*
   1205 	 * Cancel any pending I/O.
   1206 	 */
   1207 	ste_stop(ifp, 0);
   1208 
   1209 	/*
   1210 	 * Reset the chip to a known state.
   1211 	 */
   1212 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
   1213 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
   1214 
   1215 	/*
   1216 	 * Initialize the transmit descriptor ring.
   1217 	 */
   1218 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1219 	sc->sc_txpending = 0;
   1220 	sc->sc_txdirty = 0;
   1221 	sc->sc_txlast = STE_NTXDESC - 1;
   1222 
   1223 	/*
   1224 	 * Initialize the receive descriptor and receive job
   1225 	 * descriptor rings.
   1226 	 */
   1227 	for (i = 0; i < STE_NRXDESC; i++) {
   1228 		ds = &sc->sc_rxsoft[i];
   1229 		if (ds->ds_mbuf == NULL) {
   1230 			if ((error = ste_add_rxbuf(sc, i)) != 0) {
   1231 				printf("%s: unable to allocate or map rx "
   1232 				    "buffer %d, error = %d\n",
   1233 				    device_xname(&sc->sc_dev), i, error);
   1234 				/*
   1235 				 * XXX Should attempt to run with fewer receive
   1236 				 * XXX buffers instead of just failing.
   1237 				 */
   1238 				ste_rxdrain(sc);
   1239 				goto out;
   1240 			}
   1241 		} else
   1242 			STE_INIT_RXDESC(sc, i);
   1243 	}
   1244 	sc->sc_rxptr = 0;
   1245 
   1246 	/* Set the station address. */
   1247 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1248 		bus_space_write_1(st, sh, STE_StationAddress0 + 1,
   1249 		    CLLADDR(ifp->if_sadl)[i]);
   1250 
   1251 	/* Set up the receive filter. */
   1252 	ste_set_filter(sc);
   1253 
   1254 	/*
   1255 	 * Give the receive ring to the chip.
   1256 	 */
   1257 	bus_space_write_4(st, sh, STE_RxDMAListPtr,
   1258 	    STE_CDRXADDR(sc, sc->sc_rxptr));
   1259 
   1260 	/*
   1261 	 * We defer giving the transmit ring to the chip until we
   1262 	 * transmit the first packet.
   1263 	 */
   1264 
   1265 	/*
   1266 	 * Initialize the Tx auto-poll period.  It's OK to make this number
   1267 	 * large (127 is the max) -- we explicitly kick the transmit engine
   1268 	 * when there's actually a packet.  We are using auto-polling only
   1269 	 * to make the interface to the transmit engine not suck.
   1270 	 */
   1271 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
   1272 
   1273 	/* ..and the Rx auto-poll period. */
   1274 	bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
   1275 
   1276 	/* Initialize the Tx start threshold. */
   1277 	ste_setthresh(sc);
   1278 
   1279 	/* Set the FIFO release threshold to 512 bytes. */
   1280 	bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
   1281 
   1282 	/* Set maximum packet size for VLAN. */
   1283 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   1284 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN + 4);
   1285 	else
   1286 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN);
   1287 
   1288 	/*
   1289 	 * Initialize the interrupt mask.
   1290 	 */
   1291 	sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
   1292 	    IE_TxDMAComplete | IE_RxDMAComplete;
   1293 
   1294 	bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
   1295 	bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
   1296 
   1297 	/*
   1298 	 * Start the receive DMA engine.
   1299 	 */
   1300 	bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
   1301 
   1302 	/*
   1303 	 * Initialize MacCtrl0 -- do it before setting the media,
   1304 	 * as setting the media will actually program the register.
   1305 	 */
   1306 	sc->sc_MacCtrl0 = MC0_IFSSelect(0);
   1307 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   1308 		sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
   1309 
   1310 	/*
   1311 	 * Set the current media.
   1312 	 */
   1313 	if ((error = ether_mediachange(ifp)) != 0)
   1314 		goto out;
   1315 
   1316 	/*
   1317 	 * Start the MAC.
   1318 	 */
   1319 	bus_space_write_2(st, sh, STE_MacCtrl1,
   1320 	    MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
   1321 
   1322 	/*
   1323 	 * Start the one second MII clock.
   1324 	 */
   1325 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
   1326 
   1327 	/*
   1328 	 * ...all done!
   1329 	 */
   1330 	ifp->if_flags |= IFF_RUNNING;
   1331 	ifp->if_flags &= ~IFF_OACTIVE;
   1332 
   1333  out:
   1334 	if (error)
   1335 		printf("%s: interface not running\n", device_xname(&sc->sc_dev));
   1336 	return (error);
   1337 }
   1338 
   1339 /*
   1340  * ste_drain:
   1341  *
   1342  *	Drain the receive queue.
   1343  */
   1344 static void
   1345 ste_rxdrain(struct ste_softc *sc)
   1346 {
   1347 	struct ste_descsoft *ds;
   1348 	int i;
   1349 
   1350 	for (i = 0; i < STE_NRXDESC; i++) {
   1351 		ds = &sc->sc_rxsoft[i];
   1352 		if (ds->ds_mbuf != NULL) {
   1353 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1354 			m_freem(ds->ds_mbuf);
   1355 			ds->ds_mbuf = NULL;
   1356 		}
   1357 	}
   1358 }
   1359 
   1360 /*
   1361  * ste_stop:		[ ifnet interface function ]
   1362  *
   1363  *	Stop transmission on the interface.
   1364  */
   1365 static void
   1366 ste_stop(struct ifnet *ifp, int disable)
   1367 {
   1368 	struct ste_softc *sc = ifp->if_softc;
   1369 	struct ste_descsoft *ds;
   1370 	int i;
   1371 
   1372 	/*
   1373 	 * Stop the one second clock.
   1374 	 */
   1375 	callout_stop(&sc->sc_tick_ch);
   1376 
   1377 	/* Down the MII. */
   1378 	mii_down(&sc->sc_mii);
   1379 
   1380 	/*
   1381 	 * Disable interrupts.
   1382 	 */
   1383 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
   1384 
   1385 	/*
   1386 	 * Stop receiver, transmitter, and stats update.
   1387 	 */
   1388 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
   1389 	    MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
   1390 
   1391 	/*
   1392 	 * Stop the transmit and receive DMA.
   1393 	 */
   1394 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
   1395 	    DC_RxDMAHalt | DC_TxDMAHalt);
   1396 	ste_dmahalt_wait(sc);
   1397 
   1398 	/*
   1399 	 * Release any queued transmit buffers.
   1400 	 */
   1401 	for (i = 0; i < STE_NTXDESC; i++) {
   1402 		ds = &sc->sc_txsoft[i];
   1403 		if (ds->ds_mbuf != NULL) {
   1404 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1405 			m_freem(ds->ds_mbuf);
   1406 			ds->ds_mbuf = NULL;
   1407 		}
   1408 	}
   1409 
   1410 	/*
   1411 	 * Mark the interface down and cancel the watchdog timer.
   1412 	 */
   1413 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1414 	ifp->if_timer = 0;
   1415 
   1416 	if (disable)
   1417 		ste_rxdrain(sc);
   1418 }
   1419 
   1420 static int
   1421 ste_eeprom_wait(struct ste_softc *sc)
   1422 {
   1423 	int i;
   1424 
   1425 	for (i = 0; i < STE_TIMEOUT; i++) {
   1426 		delay(1000);
   1427 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
   1428 		     EC_EepromBusy) == 0)
   1429 			return (0);
   1430 	}
   1431 	return (1);
   1432 }
   1433 
   1434 /*
   1435  * ste_read_eeprom:
   1436  *
   1437  *	Read data from the serial EEPROM.
   1438  */
   1439 static void
   1440 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
   1441 {
   1442 
   1443 	if (ste_eeprom_wait(sc))
   1444 		printf("%s: EEPROM failed to come ready\n",
   1445 		    device_xname(&sc->sc_dev));
   1446 
   1447 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
   1448 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
   1449 	if (ste_eeprom_wait(sc))
   1450 		printf("%s: EEPROM read timed out\n",
   1451 		    device_xname(&sc->sc_dev));
   1452 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
   1453 }
   1454 
   1455 /*
   1456  * ste_add_rxbuf:
   1457  *
   1458  *	Add a receive buffer to the indicated descriptor.
   1459  */
   1460 static int
   1461 ste_add_rxbuf(struct ste_softc *sc, int idx)
   1462 {
   1463 	struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
   1464 	struct mbuf *m;
   1465 	int error;
   1466 
   1467 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1468 	if (m == NULL)
   1469 		return (ENOBUFS);
   1470 
   1471 	MCLGET(m, M_DONTWAIT);
   1472 	if ((m->m_flags & M_EXT) == 0) {
   1473 		m_freem(m);
   1474 		return (ENOBUFS);
   1475 	}
   1476 
   1477 	if (ds->ds_mbuf != NULL)
   1478 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1479 
   1480 	ds->ds_mbuf = m;
   1481 
   1482 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
   1483 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1484 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1485 	if (error) {
   1486 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1487 		    device_xname(&sc->sc_dev), idx, error);
   1488 		panic("ste_add_rxbuf");		/* XXX */
   1489 	}
   1490 
   1491 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1492 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1493 
   1494 	STE_INIT_RXDESC(sc, idx);
   1495 
   1496 	return (0);
   1497 }
   1498 
   1499 /*
   1500  * ste_set_filter:
   1501  *
   1502  *	Set up the receive filter.
   1503  */
   1504 static void
   1505 ste_set_filter(struct ste_softc *sc)
   1506 {
   1507 	struct ethercom *ec = &sc->sc_ethercom;
   1508 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1509 	struct ether_multi *enm;
   1510 	struct ether_multistep step;
   1511 	uint32_t crc;
   1512 	uint16_t mchash[4];
   1513 
   1514 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
   1515 	if (ifp->if_flags & IFF_BROADCAST)
   1516 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
   1517 
   1518 	if (ifp->if_flags & IFF_PROMISC) {
   1519 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
   1520 		goto allmulti;
   1521 	}
   1522 
   1523 	/*
   1524 	 * Set up the multicast address filter by passing all multicast
   1525 	 * addresses through a CRC generator, and then using the low-order
   1526 	 * 6 bits as an index into the 64 bit multicast hash table.  The
   1527 	 * high order bits select the register, while the rest of the bits
   1528 	 * select the bit within the register.
   1529 	 */
   1530 
   1531 	memset(mchash, 0, sizeof(mchash));
   1532 
   1533 	ETHER_FIRST_MULTI(step, ec, enm);
   1534 	if (enm == NULL)
   1535 		goto done;
   1536 
   1537 	while (enm != NULL) {
   1538 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1539 			/*
   1540 			 * We must listen to a range of multicast addresses.
   1541 			 * For now, just accept all multicasts, rather than
   1542 			 * trying to set only those filter bits needed to match
   1543 			 * the range.  (At this time, the only use of address
   1544 			 * ranges is for IP multicast routing, for which the
   1545 			 * range is big enough to require all bits set.)
   1546 			 */
   1547 			goto allmulti;
   1548 		}
   1549 
   1550 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1551 
   1552 		/* Just want the 6 least significant bits. */
   1553 		crc &= 0x3f;
   1554 
   1555 		/* Set the corresponding bit in the hash table. */
   1556 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   1557 
   1558 		ETHER_NEXT_MULTI(step, enm);
   1559 	}
   1560 
   1561 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
   1562 
   1563 	ifp->if_flags &= ~IFF_ALLMULTI;
   1564 	goto done;
   1565 
   1566  allmulti:
   1567 	ifp->if_flags |= IFF_ALLMULTI;
   1568 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
   1569 
   1570  done:
   1571 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1572 		/*
   1573 		 * Program the multicast hash table.
   1574 		 */
   1575 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
   1576 		    mchash[0]);
   1577 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
   1578 		    mchash[1]);
   1579 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
   1580 		    mchash[2]);
   1581 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
   1582 		    mchash[3]);
   1583 	}
   1584 
   1585 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
   1586 	    sc->sc_ReceiveMode);
   1587 }
   1588 
   1589 /*
   1590  * ste_mii_readreg:	[mii interface function]
   1591  *
   1592  *	Read a PHY register on the MII of the ST-201.
   1593  */
   1594 static int
   1595 ste_mii_readreg(device_t self, int phy, int reg)
   1596 {
   1597 
   1598 	return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
   1599 }
   1600 
   1601 /*
   1602  * ste_mii_writereg:	[mii interface function]
   1603  *
   1604  *	Write a PHY register on the MII of the ST-201.
   1605  */
   1606 static void
   1607 ste_mii_writereg(device_t self, int phy, int reg, int val)
   1608 {
   1609 
   1610 	mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
   1611 }
   1612 
   1613 /*
   1614  * ste_mii_statchg:	[mii interface function]
   1615  *
   1616  *	Callback from MII layer when media changes.
   1617  */
   1618 static void
   1619 ste_mii_statchg(struct ifnet *ifp)
   1620 {
   1621 	struct ste_softc *sc = ifp->if_softc;
   1622 
   1623 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   1624 		sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
   1625 	else
   1626 		sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
   1627 
   1628 	/* XXX 802.1x flow-control? */
   1629 
   1630 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
   1631 }
   1632 
   1633 /*
   1634  * ste_mii_bitbang_read: [mii bit-bang interface function]
   1635  *
   1636  *	Read the MII serial port for the MII bit-bang module.
   1637  */
   1638 static uint32_t
   1639 ste_mii_bitbang_read(device_t self)
   1640 {
   1641 	struct ste_softc *sc = device_private(self);
   1642 
   1643 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
   1644 }
   1645 
   1646 /*
   1647  * ste_mii_bitbang_write: [mii big-bang interface function]
   1648  *
   1649  *	Write the MII serial port for the MII bit-bang module.
   1650  */
   1651 static void
   1652 ste_mii_bitbang_write(device_t self, uint32_t val)
   1653 {
   1654 	struct ste_softc *sc = device_private(self);
   1655 
   1656 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
   1657 }
   1658