if_ste.c revision 1.43 1 /* $NetBSD: if_ste.c,v 1.43 2012/07/22 14:33:03 matt Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the Sundance Tech. ST-201 10/100
34 * Ethernet controller.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.43 2012/07/22 14:33:03 matt Exp $");
39
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 #include <sys/queue.h>
52
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57
58 #include <net/bpf.h>
59
60 #include <sys/bus.h>
61 #include <sys/intr.h>
62
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 #include <dev/mii/mii_bitbang.h>
66
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70
71 #include <dev/pci/if_stereg.h>
72
73 /*
74 * Transmit descriptor list size.
75 */
76 #define STE_NTXDESC 256
77 #define STE_NTXDESC_MASK (STE_NTXDESC - 1)
78 #define STE_NEXTTX(x) (((x) + 1) & STE_NTXDESC_MASK)
79
80 /*
81 * Receive descriptor list size.
82 */
83 #define STE_NRXDESC 128
84 #define STE_NRXDESC_MASK (STE_NRXDESC - 1)
85 #define STE_NEXTRX(x) (((x) + 1) & STE_NRXDESC_MASK)
86
87 /*
88 * Control structures are DMA'd to the ST-201 chip. We allocate them in
89 * a single clump that maps to a single DMA segment to make several things
90 * easier.
91 */
92 struct ste_control_data {
93 /*
94 * The transmit descriptors.
95 */
96 struct ste_tfd scd_txdescs[STE_NTXDESC];
97
98 /*
99 * The receive descriptors.
100 */
101 struct ste_rfd scd_rxdescs[STE_NRXDESC];
102 };
103
104 #define STE_CDOFF(x) offsetof(struct ste_control_data, x)
105 #define STE_CDTXOFF(x) STE_CDOFF(scd_txdescs[(x)])
106 #define STE_CDRXOFF(x) STE_CDOFF(scd_rxdescs[(x)])
107
108 /*
109 * Software state for transmit and receive jobs.
110 */
111 struct ste_descsoft {
112 struct mbuf *ds_mbuf; /* head of our mbuf chain */
113 bus_dmamap_t ds_dmamap; /* our DMA map */
114 };
115
116 /*
117 * Software state per device.
118 */
119 struct ste_softc {
120 struct device sc_dev; /* generic device information */
121 bus_space_tag_t sc_st; /* bus space tag */
122 bus_space_handle_t sc_sh; /* bus space handle */
123 bus_dma_tag_t sc_dmat; /* bus DMA tag */
124 struct ethercom sc_ethercom; /* ethernet common data */
125
126 void *sc_ih; /* interrupt cookie */
127
128 struct mii_data sc_mii; /* MII/media information */
129
130 callout_t sc_tick_ch; /* tick callout */
131
132 bus_dmamap_t sc_cddmamap; /* control data DMA map */
133 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
134
135 /*
136 * Software state for transmit and receive descriptors.
137 */
138 struct ste_descsoft sc_txsoft[STE_NTXDESC];
139 struct ste_descsoft sc_rxsoft[STE_NRXDESC];
140
141 /*
142 * Control data structures.
143 */
144 struct ste_control_data *sc_control_data;
145 #define sc_txdescs sc_control_data->scd_txdescs
146 #define sc_rxdescs sc_control_data->scd_rxdescs
147
148 int sc_txpending; /* number of Tx requests pending */
149 int sc_txdirty; /* first dirty Tx descriptor */
150 int sc_txlast; /* last used Tx descriptor */
151
152 int sc_rxptr; /* next ready Rx descriptor/descsoft */
153
154 int sc_txthresh; /* Tx threshold */
155 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
156 uint16_t sc_IntEnable; /* prototype IntEnable register */
157 uint16_t sc_MacCtrl0; /* prototype MacCtrl0 register */
158 uint8_t sc_ReceiveMode; /* prototype ReceiveMode register */
159 };
160
161 #define STE_CDTXADDR(sc, x) ((sc)->sc_cddma + STE_CDTXOFF((x)))
162 #define STE_CDRXADDR(sc, x) ((sc)->sc_cddma + STE_CDRXOFF((x)))
163
164 #define STE_CDTXSYNC(sc, x, ops) \
165 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
166 STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
167
168 #define STE_CDRXSYNC(sc, x, ops) \
169 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
170 STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
171
172 #define STE_INIT_RXDESC(sc, x) \
173 do { \
174 struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
175 struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
176 struct mbuf *__m = __ds->ds_mbuf; \
177 \
178 /* \
179 * Note: We scoot the packet forward 2 bytes in the buffer \
180 * so that the payload after the Ethernet header is aligned \
181 * to a 4-byte boundary. \
182 */ \
183 __m->m_data = __m->m_ext.ext_buf + 2; \
184 __rfd->rfd_frag.frag_addr = \
185 htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2); \
186 __rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST); \
187 __rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x)))); \
188 __rfd->rfd_status = 0; \
189 STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
190 } while (/*CONSTCOND*/0)
191
192 #define STE_TIMEOUT 1000
193
194 static void ste_start(struct ifnet *);
195 static void ste_watchdog(struct ifnet *);
196 static int ste_ioctl(struct ifnet *, u_long, void *);
197 static int ste_init(struct ifnet *);
198 static void ste_stop(struct ifnet *, int);
199
200 static bool ste_shutdown(device_t, int);
201
202 static void ste_reset(struct ste_softc *, u_int32_t);
203 static void ste_setthresh(struct ste_softc *);
204 static void ste_txrestart(struct ste_softc *, u_int8_t);
205 static void ste_rxdrain(struct ste_softc *);
206 static int ste_add_rxbuf(struct ste_softc *, int);
207 static void ste_read_eeprom(struct ste_softc *, int, uint16_t *);
208 static void ste_tick(void *);
209
210 static void ste_stats_update(struct ste_softc *);
211
212 static void ste_set_filter(struct ste_softc *);
213
214 static int ste_intr(void *);
215 static void ste_txintr(struct ste_softc *);
216 static void ste_rxintr(struct ste_softc *);
217
218 static int ste_mii_readreg(device_t, int, int);
219 static void ste_mii_writereg(device_t, int, int, int);
220 static void ste_mii_statchg(struct ifnet *);
221
222 static int ste_match(device_t, cfdata_t, void *);
223 static void ste_attach(device_t, device_t, void *);
224
225 int ste_copy_small = 0;
226
227 CFATTACH_DECL(ste, sizeof(struct ste_softc),
228 ste_match, ste_attach, NULL, NULL);
229
230 static uint32_t ste_mii_bitbang_read(device_t);
231 static void ste_mii_bitbang_write(device_t, uint32_t);
232
233 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
234 ste_mii_bitbang_read,
235 ste_mii_bitbang_write,
236 {
237 PC_MgmtData, /* MII_BIT_MDO */
238 PC_MgmtData, /* MII_BIT_MDI */
239 PC_MgmtClk, /* MII_BIT_MDC */
240 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
241 0, /* MII_BIT_DIR_PHY_HOST */
242 }
243 };
244
245 /*
246 * Devices supported by this driver.
247 */
248 static const struct ste_product {
249 pci_vendor_id_t ste_vendor;
250 pci_product_id_t ste_product;
251 const char *ste_name;
252 } ste_products[] = {
253 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_IP100A,
254 "IC Plus Corp. IP00A 10/100 Fast Ethernet Adapter" },
255
256 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST201,
257 "Sundance ST-201 10/100 Ethernet" },
258
259 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL1002,
260 "D-Link DL-1002 10/100 Ethernet" },
261
262 { 0, 0,
263 NULL },
264 };
265
266 static const struct ste_product *
267 ste_lookup(const struct pci_attach_args *pa)
268 {
269 const struct ste_product *sp;
270
271 for (sp = ste_products; sp->ste_name != NULL; sp++) {
272 if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
273 PCI_PRODUCT(pa->pa_id) == sp->ste_product)
274 return (sp);
275 }
276 return (NULL);
277 }
278
279 static int
280 ste_match(device_t parent, cfdata_t cf, void *aux)
281 {
282 struct pci_attach_args *pa = aux;
283
284 if (ste_lookup(pa) != NULL)
285 return (1);
286
287 return (0);
288 }
289
290 static void
291 ste_attach(device_t parent, device_t self, void *aux)
292 {
293 struct ste_softc *sc = device_private(self);
294 struct pci_attach_args *pa = aux;
295 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
296 pci_chipset_tag_t pc = pa->pa_pc;
297 pci_intr_handle_t ih;
298 const char *intrstr = NULL;
299 bus_space_tag_t iot, memt;
300 bus_space_handle_t ioh, memh;
301 bus_dma_segment_t seg;
302 int ioh_valid, memh_valid;
303 int i, rseg, error;
304 const struct ste_product *sp;
305 uint8_t enaddr[ETHER_ADDR_LEN];
306 uint16_t myea[ETHER_ADDR_LEN / 2];
307
308 callout_init(&sc->sc_tick_ch, 0);
309
310 sp = ste_lookup(pa);
311 if (sp == NULL) {
312 printf("\n");
313 panic("ste_attach: impossible");
314 }
315
316 printf(": %s\n", sp->ste_name);
317
318 /*
319 * Map the device.
320 */
321 ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
322 PCI_MAPREG_TYPE_IO, 0,
323 &iot, &ioh, NULL, NULL) == 0);
324 memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
325 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
326 &memt, &memh, NULL, NULL) == 0);
327
328 if (memh_valid) {
329 sc->sc_st = memt;
330 sc->sc_sh = memh;
331 } else if (ioh_valid) {
332 sc->sc_st = iot;
333 sc->sc_sh = ioh;
334 } else {
335 aprint_error_dev(&sc->sc_dev, "unable to map device registers\n");
336 return;
337 }
338
339 sc->sc_dmat = pa->pa_dmat;
340
341 /* Enable bus mastering. */
342 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
343 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
344 PCI_COMMAND_MASTER_ENABLE);
345
346 /* power up chip */
347 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
348 NULL)) && error != EOPNOTSUPP) {
349 aprint_error_dev(&sc->sc_dev, "cannot activate %d\n",
350 error);
351 return;
352 }
353
354 /*
355 * Map and establish our interrupt.
356 */
357 if (pci_intr_map(pa, &ih)) {
358 aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
359 return;
360 }
361 intrstr = pci_intr_string(pc, ih);
362 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
363 if (sc->sc_ih == NULL) {
364 aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
365 if (intrstr != NULL)
366 aprint_error(" at %s", intrstr);
367 aprint_error("\n");
368 return;
369 }
370 aprint_normal_dev(&sc->sc_dev, "interrupting at %s\n", intrstr);
371
372 /*
373 * Allocate the control data structures, and create and load the
374 * DMA map for it.
375 */
376 if ((error = bus_dmamem_alloc(sc->sc_dmat,
377 sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
378 0)) != 0) {
379 aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n",
380 error);
381 goto fail_0;
382 }
383
384 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
385 sizeof(struct ste_control_data), (void **)&sc->sc_control_data,
386 BUS_DMA_COHERENT)) != 0) {
387 aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
388 error);
389 goto fail_1;
390 }
391
392 if ((error = bus_dmamap_create(sc->sc_dmat,
393 sizeof(struct ste_control_data), 1,
394 sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
395 aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
396 "error = %d\n", error);
397 goto fail_2;
398 }
399
400 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
401 sc->sc_control_data, sizeof(struct ste_control_data), NULL,
402 0)) != 0) {
403 aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
404 error);
405 goto fail_3;
406 }
407
408 /*
409 * Create the transmit buffer DMA maps.
410 */
411 for (i = 0; i < STE_NTXDESC; i++) {
412 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
413 STE_NTXFRAGS, MCLBYTES, 0, 0,
414 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
415 aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
416 "error = %d\n", i, error);
417 goto fail_4;
418 }
419 }
420
421 /*
422 * Create the receive buffer DMA maps.
423 */
424 for (i = 0; i < STE_NRXDESC; i++) {
425 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
426 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
427 aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
428 "error = %d\n", i, error);
429 goto fail_5;
430 }
431 sc->sc_rxsoft[i].ds_mbuf = NULL;
432 }
433
434 /*
435 * Reset the chip to a known state.
436 */
437 ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
438 AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
439
440 /*
441 * Read the Ethernet address from the EEPROM.
442 */
443 for (i = 0; i < 3; i++) {
444 ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
445 myea[i] = le16toh(myea[i]);
446 }
447 memcpy(enaddr, myea, sizeof(enaddr));
448
449 printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
450 ether_sprintf(enaddr));
451
452 /*
453 * Initialize our media structures and probe the MII.
454 */
455 sc->sc_mii.mii_ifp = ifp;
456 sc->sc_mii.mii_readreg = ste_mii_readreg;
457 sc->sc_mii.mii_writereg = ste_mii_writereg;
458 sc->sc_mii.mii_statchg = ste_mii_statchg;
459 sc->sc_ethercom.ec_mii = &sc->sc_mii;
460 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
461 ether_mediastatus);
462 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
463 MII_OFFSET_ANY, 0);
464 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
465 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
466 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
467 } else
468 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
469
470 ifp = &sc->sc_ethercom.ec_if;
471 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
472 ifp->if_softc = sc;
473 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
474 ifp->if_ioctl = ste_ioctl;
475 ifp->if_start = ste_start;
476 ifp->if_watchdog = ste_watchdog;
477 ifp->if_init = ste_init;
478 ifp->if_stop = ste_stop;
479 IFQ_SET_READY(&ifp->if_snd);
480
481 /*
482 * Default the transmit threshold to 128 bytes.
483 */
484 sc->sc_txthresh = 128;
485
486 /*
487 * Disable MWI if the PCI layer tells us to.
488 */
489 sc->sc_DMACtrl = 0;
490 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
491 sc->sc_DMACtrl |= DC_MWIDisable;
492
493 /*
494 * We can support 802.1Q VLAN-sized frames.
495 */
496 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
497
498 /*
499 * Attach the interface.
500 */
501 if_attach(ifp);
502 ether_ifattach(ifp, enaddr);
503
504 /*
505 * Make sure the interface is shutdown during reboot.
506 */
507 if (pmf_device_register1(self, NULL, NULL, ste_shutdown))
508 pmf_class_network_register(self, ifp);
509 else
510 aprint_error_dev(self, "couldn't establish power handler\n");
511
512 return;
513
514 /*
515 * Free any resources we've allocated during the failed attach
516 * attempt. Do this in reverse order and fall through.
517 */
518 fail_5:
519 for (i = 0; i < STE_NRXDESC; i++) {
520 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
521 bus_dmamap_destroy(sc->sc_dmat,
522 sc->sc_rxsoft[i].ds_dmamap);
523 }
524 fail_4:
525 for (i = 0; i < STE_NTXDESC; i++) {
526 if (sc->sc_txsoft[i].ds_dmamap != NULL)
527 bus_dmamap_destroy(sc->sc_dmat,
528 sc->sc_txsoft[i].ds_dmamap);
529 }
530 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
531 fail_3:
532 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
533 fail_2:
534 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
535 sizeof(struct ste_control_data));
536 fail_1:
537 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
538 fail_0:
539 return;
540 }
541
542 /*
543 * ste_shutdown:
544 *
545 * Make sure the interface is stopped at reboot time.
546 */
547 static bool
548 ste_shutdown(device_t self, int howto)
549 {
550 struct ste_softc *sc;
551
552 sc = device_private(self);
553 ste_stop(&sc->sc_ethercom.ec_if, 1);
554
555 return true;
556 }
557
558 static void
559 ste_dmahalt_wait(struct ste_softc *sc)
560 {
561 int i;
562
563 for (i = 0; i < STE_TIMEOUT; i++) {
564 delay(2);
565 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
566 DC_DMAHaltBusy) == 0)
567 break;
568 }
569
570 if (i == STE_TIMEOUT)
571 printf("%s: DMA halt timed out\n", device_xname(&sc->sc_dev));
572 }
573
574 /*
575 * ste_start: [ifnet interface function]
576 *
577 * Start packet transmission on the interface.
578 */
579 static void
580 ste_start(struct ifnet *ifp)
581 {
582 struct ste_softc *sc = ifp->if_softc;
583 struct mbuf *m0, *m;
584 struct ste_descsoft *ds;
585 struct ste_tfd *tfd;
586 bus_dmamap_t dmamap;
587 int error, olasttx, nexttx, opending, seg, totlen;
588
589 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
590 return;
591
592 /*
593 * Remember the previous number of pending transmissions
594 * and the current last descriptor in the list.
595 */
596 opending = sc->sc_txpending;
597 olasttx = sc->sc_txlast;
598
599 /*
600 * Loop through the send queue, setting up transmit descriptors
601 * until we drain the queue, or use up all available transmit
602 * descriptors.
603 */
604 while (sc->sc_txpending < STE_NTXDESC) {
605 /*
606 * Grab a packet off the queue.
607 */
608 IFQ_POLL(&ifp->if_snd, m0);
609 if (m0 == NULL)
610 break;
611 m = NULL;
612
613 /*
614 * Get the last and next available transmit descriptor.
615 */
616 nexttx = STE_NEXTTX(sc->sc_txlast);
617 tfd = &sc->sc_txdescs[nexttx];
618 ds = &sc->sc_txsoft[nexttx];
619
620 dmamap = ds->ds_dmamap;
621
622 /*
623 * Load the DMA map. If this fails, the packet either
624 * didn't fit in the alloted number of segments, or we
625 * were short on resources. In this case, we'll copy
626 * and try again.
627 */
628 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
629 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
630 MGETHDR(m, M_DONTWAIT, MT_DATA);
631 if (m == NULL) {
632 printf("%s: unable to allocate Tx mbuf\n",
633 device_xname(&sc->sc_dev));
634 break;
635 }
636 if (m0->m_pkthdr.len > MHLEN) {
637 MCLGET(m, M_DONTWAIT);
638 if ((m->m_flags & M_EXT) == 0) {
639 printf("%s: unable to allocate Tx "
640 "cluster\n", device_xname(&sc->sc_dev));
641 m_freem(m);
642 break;
643 }
644 }
645 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
646 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
647 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
648 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
649 if (error) {
650 printf("%s: unable to load Tx buffer, "
651 "error = %d\n", device_xname(&sc->sc_dev), error);
652 break;
653 }
654 }
655
656 IFQ_DEQUEUE(&ifp->if_snd, m0);
657 if (m != NULL) {
658 m_freem(m0);
659 m0 = m;
660 }
661
662 /*
663 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
664 */
665
666 /* Sync the DMA map. */
667 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
668 BUS_DMASYNC_PREWRITE);
669
670 /* Initialize the fragment list. */
671 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
672 tfd->tfd_frags[seg].frag_addr =
673 htole32(dmamap->dm_segs[seg].ds_addr);
674 tfd->tfd_frags[seg].frag_len =
675 htole32(dmamap->dm_segs[seg].ds_len);
676 totlen += dmamap->dm_segs[seg].ds_len;
677 }
678 tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
679
680 /* Initialize the descriptor. */
681 tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
682 tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
683
684 /* Sync the descriptor. */
685 STE_CDTXSYNC(sc, nexttx,
686 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
687
688 /*
689 * Store a pointer to the packet so we can free it later,
690 * and remember what txdirty will be once the packet is
691 * done.
692 */
693 ds->ds_mbuf = m0;
694
695 /* Advance the tx pointer. */
696 sc->sc_txpending++;
697 sc->sc_txlast = nexttx;
698
699 /*
700 * Pass the packet to any BPF listeners.
701 */
702 bpf_mtap(ifp, m0);
703 }
704
705 if (sc->sc_txpending == STE_NTXDESC) {
706 /* No more slots left; notify upper layer. */
707 ifp->if_flags |= IFF_OACTIVE;
708 }
709
710 if (sc->sc_txpending != opending) {
711 /*
712 * We enqueued packets. If the transmitter was idle,
713 * reset the txdirty pointer.
714 */
715 if (opending == 0)
716 sc->sc_txdirty = STE_NEXTTX(olasttx);
717
718 /*
719 * Cause a descriptor interrupt to happen on the
720 * last packet we enqueued, and also cause the
721 * DMA engine to wait after is has finished processing
722 * it.
723 */
724 sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
725 sc->sc_txdescs[sc->sc_txlast].tfd_control |=
726 htole32(TFD_TxDMAIndicate);
727 STE_CDTXSYNC(sc, sc->sc_txlast,
728 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
729
730 /*
731 * Link up the new chain of descriptors to the
732 * last.
733 */
734 sc->sc_txdescs[olasttx].tfd_next =
735 htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
736 STE_CDTXSYNC(sc, olasttx,
737 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
738
739 /*
740 * Kick the transmit DMA logic. Note that since we're
741 * using auto-polling, reading the Tx desc pointer will
742 * give it the nudge it needs to get going.
743 */
744 if (bus_space_read_4(sc->sc_st, sc->sc_sh,
745 STE_TxDMAListPtr) == 0) {
746 bus_space_write_4(sc->sc_st, sc->sc_sh,
747 STE_DMACtrl, DC_TxDMAHalt);
748 ste_dmahalt_wait(sc);
749 bus_space_write_4(sc->sc_st, sc->sc_sh,
750 STE_TxDMAListPtr,
751 STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
752 bus_space_write_4(sc->sc_st, sc->sc_sh,
753 STE_DMACtrl, DC_TxDMAResume);
754 }
755
756 /* Set a watchdog timer in case the chip flakes out. */
757 ifp->if_timer = 5;
758 }
759 }
760
761 /*
762 * ste_watchdog: [ifnet interface function]
763 *
764 * Watchdog timer handler.
765 */
766 static void
767 ste_watchdog(struct ifnet *ifp)
768 {
769 struct ste_softc *sc = ifp->if_softc;
770
771 printf("%s: device timeout\n", device_xname(&sc->sc_dev));
772 ifp->if_oerrors++;
773
774 ste_txintr(sc);
775 ste_rxintr(sc);
776 (void) ste_init(ifp);
777
778 /* Try to get more packets going. */
779 ste_start(ifp);
780 }
781
782 /*
783 * ste_ioctl: [ifnet interface function]
784 *
785 * Handle control requests from the operator.
786 */
787 static int
788 ste_ioctl(struct ifnet *ifp, u_long cmd, void *data)
789 {
790 struct ste_softc *sc = ifp->if_softc;
791 int s, error;
792
793 s = splnet();
794
795 error = ether_ioctl(ifp, cmd, data);
796 if (error == ENETRESET) {
797 /*
798 * Multicast list has changed; set the hardware filter
799 * accordingly.
800 */
801 if (ifp->if_flags & IFF_RUNNING)
802 ste_set_filter(sc);
803 error = 0;
804 }
805
806 /* Try to get more packets going. */
807 ste_start(ifp);
808
809 splx(s);
810 return (error);
811 }
812
813 /*
814 * ste_intr:
815 *
816 * Interrupt service routine.
817 */
818 static int
819 ste_intr(void *arg)
820 {
821 struct ste_softc *sc = arg;
822 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
823 uint16_t isr;
824 uint8_t txstat;
825 int wantinit;
826
827 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
828 IS_InterruptStatus) == 0)
829 return (0);
830
831 for (wantinit = 0; wantinit == 0;) {
832 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
833 if ((isr & sc->sc_IntEnable) == 0)
834 break;
835
836 /* Receive interrupts. */
837 if (isr & IE_RxDMAComplete)
838 ste_rxintr(sc);
839
840 /* Transmit interrupts. */
841 if (isr & (IE_TxDMAComplete|IE_TxComplete))
842 ste_txintr(sc);
843
844 /* Statistics overflow. */
845 if (isr & IE_UpdateStats)
846 ste_stats_update(sc);
847
848 /* Transmission errors. */
849 if (isr & IE_TxComplete) {
850 for (;;) {
851 txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
852 STE_TxStatus);
853 if ((txstat & TS_TxComplete) == 0)
854 break;
855 if (txstat & TS_TxUnderrun) {
856 sc->sc_txthresh += 32;
857 if (sc->sc_txthresh > 0x1ffc)
858 sc->sc_txthresh = 0x1ffc;
859 printf("%s: transmit underrun, new "
860 "threshold: %d bytes\n",
861 device_xname(&sc->sc_dev),
862 sc->sc_txthresh);
863 ste_reset(sc, AC_TxReset | AC_DMA |
864 AC_FIFO | AC_Network);
865 ste_setthresh(sc);
866 bus_space_write_1(sc->sc_st, sc->sc_sh,
867 STE_TxDMAPollPeriod, 127);
868 ste_txrestart(sc,
869 bus_space_read_1(sc->sc_st,
870 sc->sc_sh, STE_TxFrameId));
871 }
872 if (txstat & TS_TxReleaseError) {
873 printf("%s: Tx FIFO release error\n",
874 device_xname(&sc->sc_dev));
875 wantinit = 1;
876 }
877 if (txstat & TS_MaxCollisions) {
878 printf("%s: excessive collisions\n",
879 device_xname(&sc->sc_dev));
880 wantinit = 1;
881 }
882 if (txstat & TS_TxStatusOverflow) {
883 printf("%s: status overflow\n",
884 device_xname(&sc->sc_dev));
885 wantinit = 1;
886 }
887 bus_space_write_2(sc->sc_st, sc->sc_sh,
888 STE_TxStatus, 0);
889 }
890 }
891
892 /* Host interface errors. */
893 if (isr & IE_HostError) {
894 printf("%s: Host interface error\n",
895 device_xname(&sc->sc_dev));
896 wantinit = 1;
897 }
898 }
899
900 if (wantinit)
901 ste_init(ifp);
902
903 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
904 sc->sc_IntEnable);
905
906 /* Try to get more packets going. */
907 ste_start(ifp);
908
909 return (1);
910 }
911
912 /*
913 * ste_txintr:
914 *
915 * Helper; handle transmit interrupts.
916 */
917 static void
918 ste_txintr(struct ste_softc *sc)
919 {
920 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
921 struct ste_descsoft *ds;
922 uint32_t control;
923 int i;
924
925 ifp->if_flags &= ~IFF_OACTIVE;
926
927 /*
928 * Go through our Tx list and free mbufs for those
929 * frames which have been transmitted.
930 */
931 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
932 i = STE_NEXTTX(i), sc->sc_txpending--) {
933 ds = &sc->sc_txsoft[i];
934
935 STE_CDTXSYNC(sc, i,
936 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
937
938 control = le32toh(sc->sc_txdescs[i].tfd_control);
939 if ((control & TFD_TxDMAComplete) == 0)
940 break;
941
942 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
943 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
944 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
945 m_freem(ds->ds_mbuf);
946 ds->ds_mbuf = NULL;
947 }
948
949 /* Update the dirty transmit buffer pointer. */
950 sc->sc_txdirty = i;
951
952 /*
953 * If there are no more pending transmissions, cancel the watchdog
954 * timer.
955 */
956 if (sc->sc_txpending == 0)
957 ifp->if_timer = 0;
958 }
959
960 /*
961 * ste_rxintr:
962 *
963 * Helper; handle receive interrupts.
964 */
965 static void
966 ste_rxintr(struct ste_softc *sc)
967 {
968 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
969 struct ste_descsoft *ds;
970 struct mbuf *m;
971 uint32_t status;
972 int i, len;
973
974 for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
975 ds = &sc->sc_rxsoft[i];
976
977 STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
978
979 status = le32toh(sc->sc_rxdescs[i].rfd_status);
980
981 if ((status & RFD_RxDMAComplete) == 0)
982 break;
983
984 /*
985 * If the packet had an error, simply recycle the
986 * buffer. Note, we count the error later in the
987 * periodic stats update.
988 */
989 if (status & RFD_RxFrameError) {
990 STE_INIT_RXDESC(sc, i);
991 continue;
992 }
993
994 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
995 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
996
997 /*
998 * No errors; receive the packet. Note, we have
999 * configured the chip to not include the CRC at
1000 * the end of the packet.
1001 */
1002 len = RFD_RxDMAFrameLen(status);
1003
1004 /*
1005 * If the packet is small enough to fit in a
1006 * single header mbuf, allocate one and copy
1007 * the data into it. This greatly reduces
1008 * memory consumption when we receive lots
1009 * of small packets.
1010 *
1011 * Otherwise, we add a new buffer to the receive
1012 * chain. If this fails, we drop the packet and
1013 * recycle the old buffer.
1014 */
1015 if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
1016 MGETHDR(m, M_DONTWAIT, MT_DATA);
1017 if (m == NULL)
1018 goto dropit;
1019 m->m_data += 2;
1020 memcpy(mtod(m, void *),
1021 mtod(ds->ds_mbuf, void *), len);
1022 STE_INIT_RXDESC(sc, i);
1023 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1024 ds->ds_dmamap->dm_mapsize,
1025 BUS_DMASYNC_PREREAD);
1026 } else {
1027 m = ds->ds_mbuf;
1028 if (ste_add_rxbuf(sc, i) != 0) {
1029 dropit:
1030 ifp->if_ierrors++;
1031 STE_INIT_RXDESC(sc, i);
1032 bus_dmamap_sync(sc->sc_dmat,
1033 ds->ds_dmamap, 0,
1034 ds->ds_dmamap->dm_mapsize,
1035 BUS_DMASYNC_PREREAD);
1036 continue;
1037 }
1038 }
1039
1040 m->m_pkthdr.rcvif = ifp;
1041 m->m_pkthdr.len = m->m_len = len;
1042
1043 /*
1044 * Pass this up to any BPF listeners, but only
1045 * pass if up the stack if it's for us.
1046 */
1047 bpf_mtap(ifp, m);
1048
1049 /* Pass it on. */
1050 (*ifp->if_input)(ifp, m);
1051 }
1052
1053 /* Update the receive pointer. */
1054 sc->sc_rxptr = i;
1055 }
1056
1057 /*
1058 * ste_tick:
1059 *
1060 * One second timer, used to tick the MII.
1061 */
1062 static void
1063 ste_tick(void *arg)
1064 {
1065 struct ste_softc *sc = arg;
1066 int s;
1067
1068 s = splnet();
1069 mii_tick(&sc->sc_mii);
1070 ste_stats_update(sc);
1071 splx(s);
1072
1073 callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1074 }
1075
1076 /*
1077 * ste_stats_update:
1078 *
1079 * Read the ST-201 statistics counters.
1080 */
1081 static void
1082 ste_stats_update(struct ste_softc *sc)
1083 {
1084 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1085 bus_space_tag_t st = sc->sc_st;
1086 bus_space_handle_t sh = sc->sc_sh;
1087
1088 (void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
1089 (void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
1090
1091 (void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
1092 (void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
1093
1094 ifp->if_opackets +=
1095 (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
1096 ifp->if_ipackets +=
1097 (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
1098
1099 ifp->if_collisions +=
1100 (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
1101 (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
1102 (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
1103
1104 (void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
1105
1106 ifp->if_ierrors +=
1107 (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
1108
1109 ifp->if_oerrors +=
1110 (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
1111 (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
1112 bus_space_read_1(st, sh, STE_CarrierSenseErrors);
1113
1114 (void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
1115 (void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
1116 (void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
1117 (void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
1118 }
1119
1120 /*
1121 * ste_reset:
1122 *
1123 * Perform a soft reset on the ST-201.
1124 */
1125 static void
1126 ste_reset(struct ste_softc *sc, u_int32_t rstbits)
1127 {
1128 uint32_t ac;
1129 int i;
1130
1131 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
1132
1133 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
1134
1135 delay(50000);
1136
1137 for (i = 0; i < STE_TIMEOUT; i++) {
1138 delay(1000);
1139 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
1140 AC_ResetBusy) == 0)
1141 break;
1142 }
1143
1144 if (i == STE_TIMEOUT)
1145 printf("%s: reset failed to complete\n", device_xname(&sc->sc_dev));
1146
1147 delay(1000);
1148 }
1149
1150 /*
1151 * ste_setthresh:
1152 *
1153 * set the various transmit threshold registers
1154 */
1155 static void
1156 ste_setthresh(struct ste_softc *sc)
1157 {
1158 /* set the TX threhold */
1159 bus_space_write_2(sc->sc_st, sc->sc_sh,
1160 STE_TxStartThresh, sc->sc_txthresh);
1161 /* Urgent threshold: set to sc_txthresh / 2 */
1162 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
1163 sc->sc_txthresh >> 6);
1164 /* Burst threshold: use default value (256 bytes) */
1165 }
1166
1167 /*
1168 * restart TX at the given frame ID in the transmitter ring
1169 */
1170 static void
1171 ste_txrestart(struct ste_softc *sc, u_int8_t id)
1172 {
1173 u_int32_t control;
1174
1175 STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1176 control = le32toh(sc->sc_txdescs[id].tfd_control);
1177 control &= ~TFD_TxDMAComplete;
1178 sc->sc_txdescs[id].tfd_control = htole32(control);
1179 STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1180
1181 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
1182 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
1183 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
1184 ste_dmahalt_wait(sc);
1185 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
1186 STE_CDTXADDR(sc, id));
1187 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
1188 }
1189
1190 /*
1191 * ste_init: [ ifnet interface function ]
1192 *
1193 * Initialize the interface. Must be called at splnet().
1194 */
1195 static int
1196 ste_init(struct ifnet *ifp)
1197 {
1198 struct ste_softc *sc = ifp->if_softc;
1199 bus_space_tag_t st = sc->sc_st;
1200 bus_space_handle_t sh = sc->sc_sh;
1201 struct ste_descsoft *ds;
1202 int i, error = 0;
1203
1204 /*
1205 * Cancel any pending I/O.
1206 */
1207 ste_stop(ifp, 0);
1208
1209 /*
1210 * Reset the chip to a known state.
1211 */
1212 ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
1213 AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
1214
1215 /*
1216 * Initialize the transmit descriptor ring.
1217 */
1218 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1219 sc->sc_txpending = 0;
1220 sc->sc_txdirty = 0;
1221 sc->sc_txlast = STE_NTXDESC - 1;
1222
1223 /*
1224 * Initialize the receive descriptor and receive job
1225 * descriptor rings.
1226 */
1227 for (i = 0; i < STE_NRXDESC; i++) {
1228 ds = &sc->sc_rxsoft[i];
1229 if (ds->ds_mbuf == NULL) {
1230 if ((error = ste_add_rxbuf(sc, i)) != 0) {
1231 printf("%s: unable to allocate or map rx "
1232 "buffer %d, error = %d\n",
1233 device_xname(&sc->sc_dev), i, error);
1234 /*
1235 * XXX Should attempt to run with fewer receive
1236 * XXX buffers instead of just failing.
1237 */
1238 ste_rxdrain(sc);
1239 goto out;
1240 }
1241 } else
1242 STE_INIT_RXDESC(sc, i);
1243 }
1244 sc->sc_rxptr = 0;
1245
1246 /* Set the station address. */
1247 for (i = 0; i < ETHER_ADDR_LEN; i++)
1248 bus_space_write_1(st, sh, STE_StationAddress0 + 1,
1249 CLLADDR(ifp->if_sadl)[i]);
1250
1251 /* Set up the receive filter. */
1252 ste_set_filter(sc);
1253
1254 /*
1255 * Give the receive ring to the chip.
1256 */
1257 bus_space_write_4(st, sh, STE_RxDMAListPtr,
1258 STE_CDRXADDR(sc, sc->sc_rxptr));
1259
1260 /*
1261 * We defer giving the transmit ring to the chip until we
1262 * transmit the first packet.
1263 */
1264
1265 /*
1266 * Initialize the Tx auto-poll period. It's OK to make this number
1267 * large (127 is the max) -- we explicitly kick the transmit engine
1268 * when there's actually a packet. We are using auto-polling only
1269 * to make the interface to the transmit engine not suck.
1270 */
1271 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
1272
1273 /* ..and the Rx auto-poll period. */
1274 bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
1275
1276 /* Initialize the Tx start threshold. */
1277 ste_setthresh(sc);
1278
1279 /* Set the FIFO release threshold to 512 bytes. */
1280 bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
1281
1282 /* Set maximum packet size for VLAN. */
1283 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1284 bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN + 4);
1285 else
1286 bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN);
1287
1288 /*
1289 * Initialize the interrupt mask.
1290 */
1291 sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1292 IE_TxDMAComplete | IE_RxDMAComplete;
1293
1294 bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
1295 bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
1296
1297 /*
1298 * Start the receive DMA engine.
1299 */
1300 bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
1301
1302 /*
1303 * Initialize MacCtrl0 -- do it before setting the media,
1304 * as setting the media will actually program the register.
1305 */
1306 sc->sc_MacCtrl0 = MC0_IFSSelect(0);
1307 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1308 sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
1309
1310 /*
1311 * Set the current media.
1312 */
1313 if ((error = ether_mediachange(ifp)) != 0)
1314 goto out;
1315
1316 /*
1317 * Start the MAC.
1318 */
1319 bus_space_write_2(st, sh, STE_MacCtrl1,
1320 MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
1321
1322 /*
1323 * Start the one second MII clock.
1324 */
1325 callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1326
1327 /*
1328 * ...all done!
1329 */
1330 ifp->if_flags |= IFF_RUNNING;
1331 ifp->if_flags &= ~IFF_OACTIVE;
1332
1333 out:
1334 if (error)
1335 printf("%s: interface not running\n", device_xname(&sc->sc_dev));
1336 return (error);
1337 }
1338
1339 /*
1340 * ste_drain:
1341 *
1342 * Drain the receive queue.
1343 */
1344 static void
1345 ste_rxdrain(struct ste_softc *sc)
1346 {
1347 struct ste_descsoft *ds;
1348 int i;
1349
1350 for (i = 0; i < STE_NRXDESC; i++) {
1351 ds = &sc->sc_rxsoft[i];
1352 if (ds->ds_mbuf != NULL) {
1353 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1354 m_freem(ds->ds_mbuf);
1355 ds->ds_mbuf = NULL;
1356 }
1357 }
1358 }
1359
1360 /*
1361 * ste_stop: [ ifnet interface function ]
1362 *
1363 * Stop transmission on the interface.
1364 */
1365 static void
1366 ste_stop(struct ifnet *ifp, int disable)
1367 {
1368 struct ste_softc *sc = ifp->if_softc;
1369 struct ste_descsoft *ds;
1370 int i;
1371
1372 /*
1373 * Stop the one second clock.
1374 */
1375 callout_stop(&sc->sc_tick_ch);
1376
1377 /* Down the MII. */
1378 mii_down(&sc->sc_mii);
1379
1380 /*
1381 * Disable interrupts.
1382 */
1383 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
1384
1385 /*
1386 * Stop receiver, transmitter, and stats update.
1387 */
1388 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
1389 MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
1390
1391 /*
1392 * Stop the transmit and receive DMA.
1393 */
1394 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
1395 DC_RxDMAHalt | DC_TxDMAHalt);
1396 ste_dmahalt_wait(sc);
1397
1398 /*
1399 * Release any queued transmit buffers.
1400 */
1401 for (i = 0; i < STE_NTXDESC; i++) {
1402 ds = &sc->sc_txsoft[i];
1403 if (ds->ds_mbuf != NULL) {
1404 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1405 m_freem(ds->ds_mbuf);
1406 ds->ds_mbuf = NULL;
1407 }
1408 }
1409
1410 /*
1411 * Mark the interface down and cancel the watchdog timer.
1412 */
1413 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1414 ifp->if_timer = 0;
1415
1416 if (disable)
1417 ste_rxdrain(sc);
1418 }
1419
1420 static int
1421 ste_eeprom_wait(struct ste_softc *sc)
1422 {
1423 int i;
1424
1425 for (i = 0; i < STE_TIMEOUT; i++) {
1426 delay(1000);
1427 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
1428 EC_EepromBusy) == 0)
1429 return (0);
1430 }
1431 return (1);
1432 }
1433
1434 /*
1435 * ste_read_eeprom:
1436 *
1437 * Read data from the serial EEPROM.
1438 */
1439 static void
1440 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
1441 {
1442
1443 if (ste_eeprom_wait(sc))
1444 printf("%s: EEPROM failed to come ready\n",
1445 device_xname(&sc->sc_dev));
1446
1447 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
1448 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
1449 if (ste_eeprom_wait(sc))
1450 printf("%s: EEPROM read timed out\n",
1451 device_xname(&sc->sc_dev));
1452 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
1453 }
1454
1455 /*
1456 * ste_add_rxbuf:
1457 *
1458 * Add a receive buffer to the indicated descriptor.
1459 */
1460 static int
1461 ste_add_rxbuf(struct ste_softc *sc, int idx)
1462 {
1463 struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
1464 struct mbuf *m;
1465 int error;
1466
1467 MGETHDR(m, M_DONTWAIT, MT_DATA);
1468 if (m == NULL)
1469 return (ENOBUFS);
1470
1471 MCLGET(m, M_DONTWAIT);
1472 if ((m->m_flags & M_EXT) == 0) {
1473 m_freem(m);
1474 return (ENOBUFS);
1475 }
1476
1477 if (ds->ds_mbuf != NULL)
1478 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1479
1480 ds->ds_mbuf = m;
1481
1482 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1483 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1484 BUS_DMA_READ|BUS_DMA_NOWAIT);
1485 if (error) {
1486 printf("%s: can't load rx DMA map %d, error = %d\n",
1487 device_xname(&sc->sc_dev), idx, error);
1488 panic("ste_add_rxbuf"); /* XXX */
1489 }
1490
1491 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1492 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1493
1494 STE_INIT_RXDESC(sc, idx);
1495
1496 return (0);
1497 }
1498
1499 /*
1500 * ste_set_filter:
1501 *
1502 * Set up the receive filter.
1503 */
1504 static void
1505 ste_set_filter(struct ste_softc *sc)
1506 {
1507 struct ethercom *ec = &sc->sc_ethercom;
1508 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1509 struct ether_multi *enm;
1510 struct ether_multistep step;
1511 uint32_t crc;
1512 uint16_t mchash[4];
1513
1514 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1515 if (ifp->if_flags & IFF_BROADCAST)
1516 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1517
1518 if (ifp->if_flags & IFF_PROMISC) {
1519 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1520 goto allmulti;
1521 }
1522
1523 /*
1524 * Set up the multicast address filter by passing all multicast
1525 * addresses through a CRC generator, and then using the low-order
1526 * 6 bits as an index into the 64 bit multicast hash table. The
1527 * high order bits select the register, while the rest of the bits
1528 * select the bit within the register.
1529 */
1530
1531 memset(mchash, 0, sizeof(mchash));
1532
1533 ETHER_FIRST_MULTI(step, ec, enm);
1534 if (enm == NULL)
1535 goto done;
1536
1537 while (enm != NULL) {
1538 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1539 /*
1540 * We must listen to a range of multicast addresses.
1541 * For now, just accept all multicasts, rather than
1542 * trying to set only those filter bits needed to match
1543 * the range. (At this time, the only use of address
1544 * ranges is for IP multicast routing, for which the
1545 * range is big enough to require all bits set.)
1546 */
1547 goto allmulti;
1548 }
1549
1550 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1551
1552 /* Just want the 6 least significant bits. */
1553 crc &= 0x3f;
1554
1555 /* Set the corresponding bit in the hash table. */
1556 mchash[crc >> 4] |= 1 << (crc & 0xf);
1557
1558 ETHER_NEXT_MULTI(step, enm);
1559 }
1560
1561 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1562
1563 ifp->if_flags &= ~IFF_ALLMULTI;
1564 goto done;
1565
1566 allmulti:
1567 ifp->if_flags |= IFF_ALLMULTI;
1568 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1569
1570 done:
1571 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1572 /*
1573 * Program the multicast hash table.
1574 */
1575 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
1576 mchash[0]);
1577 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
1578 mchash[1]);
1579 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
1580 mchash[2]);
1581 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
1582 mchash[3]);
1583 }
1584
1585 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
1586 sc->sc_ReceiveMode);
1587 }
1588
1589 /*
1590 * ste_mii_readreg: [mii interface function]
1591 *
1592 * Read a PHY register on the MII of the ST-201.
1593 */
1594 static int
1595 ste_mii_readreg(device_t self, int phy, int reg)
1596 {
1597
1598 return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
1599 }
1600
1601 /*
1602 * ste_mii_writereg: [mii interface function]
1603 *
1604 * Write a PHY register on the MII of the ST-201.
1605 */
1606 static void
1607 ste_mii_writereg(device_t self, int phy, int reg, int val)
1608 {
1609
1610 mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
1611 }
1612
1613 /*
1614 * ste_mii_statchg: [mii interface function]
1615 *
1616 * Callback from MII layer when media changes.
1617 */
1618 static void
1619 ste_mii_statchg(struct ifnet *ifp)
1620 {
1621 struct ste_softc *sc = ifp->if_softc;
1622
1623 if (sc->sc_mii.mii_media_active & IFM_FDX)
1624 sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
1625 else
1626 sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
1627
1628 /* XXX 802.1x flow-control? */
1629
1630 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
1631 }
1632
1633 /*
1634 * ste_mii_bitbang_read: [mii bit-bang interface function]
1635 *
1636 * Read the MII serial port for the MII bit-bang module.
1637 */
1638 static uint32_t
1639 ste_mii_bitbang_read(device_t self)
1640 {
1641 struct ste_softc *sc = device_private(self);
1642
1643 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
1644 }
1645
1646 /*
1647 * ste_mii_bitbang_write: [mii big-bang interface function]
1648 *
1649 * Write the MII serial port for the MII bit-bang module.
1650 */
1651 static void
1652 ste_mii_bitbang_write(device_t self, uint32_t val)
1653 {
1654 struct ste_softc *sc = device_private(self);
1655
1656 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
1657 }
1658