if_ste.c revision 1.44 1 /* $NetBSD: if_ste.c,v 1.44 2012/10/27 17:18:33 chs Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the Sundance Tech. ST-201 10/100
34 * Ethernet controller.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.44 2012/10/27 17:18:33 chs Exp $");
39
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 #include <sys/queue.h>
52
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57
58 #include <net/bpf.h>
59
60 #include <sys/bus.h>
61 #include <sys/intr.h>
62
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 #include <dev/mii/mii_bitbang.h>
66
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70
71 #include <dev/pci/if_stereg.h>
72
73 /*
74 * Transmit descriptor list size.
75 */
76 #define STE_NTXDESC 256
77 #define STE_NTXDESC_MASK (STE_NTXDESC - 1)
78 #define STE_NEXTTX(x) (((x) + 1) & STE_NTXDESC_MASK)
79
80 /*
81 * Receive descriptor list size.
82 */
83 #define STE_NRXDESC 128
84 #define STE_NRXDESC_MASK (STE_NRXDESC - 1)
85 #define STE_NEXTRX(x) (((x) + 1) & STE_NRXDESC_MASK)
86
87 /*
88 * Control structures are DMA'd to the ST-201 chip. We allocate them in
89 * a single clump that maps to a single DMA segment to make several things
90 * easier.
91 */
92 struct ste_control_data {
93 /*
94 * The transmit descriptors.
95 */
96 struct ste_tfd scd_txdescs[STE_NTXDESC];
97
98 /*
99 * The receive descriptors.
100 */
101 struct ste_rfd scd_rxdescs[STE_NRXDESC];
102 };
103
104 #define STE_CDOFF(x) offsetof(struct ste_control_data, x)
105 #define STE_CDTXOFF(x) STE_CDOFF(scd_txdescs[(x)])
106 #define STE_CDRXOFF(x) STE_CDOFF(scd_rxdescs[(x)])
107
108 /*
109 * Software state for transmit and receive jobs.
110 */
111 struct ste_descsoft {
112 struct mbuf *ds_mbuf; /* head of our mbuf chain */
113 bus_dmamap_t ds_dmamap; /* our DMA map */
114 };
115
116 /*
117 * Software state per device.
118 */
119 struct ste_softc {
120 device_t sc_dev; /* generic device information */
121 bus_space_tag_t sc_st; /* bus space tag */
122 bus_space_handle_t sc_sh; /* bus space handle */
123 bus_dma_tag_t sc_dmat; /* bus DMA tag */
124 struct ethercom sc_ethercom; /* ethernet common data */
125
126 void *sc_ih; /* interrupt cookie */
127
128 struct mii_data sc_mii; /* MII/media information */
129
130 callout_t sc_tick_ch; /* tick callout */
131
132 bus_dmamap_t sc_cddmamap; /* control data DMA map */
133 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
134
135 /*
136 * Software state for transmit and receive descriptors.
137 */
138 struct ste_descsoft sc_txsoft[STE_NTXDESC];
139 struct ste_descsoft sc_rxsoft[STE_NRXDESC];
140
141 /*
142 * Control data structures.
143 */
144 struct ste_control_data *sc_control_data;
145 #define sc_txdescs sc_control_data->scd_txdescs
146 #define sc_rxdescs sc_control_data->scd_rxdescs
147
148 int sc_txpending; /* number of Tx requests pending */
149 int sc_txdirty; /* first dirty Tx descriptor */
150 int sc_txlast; /* last used Tx descriptor */
151
152 int sc_rxptr; /* next ready Rx descriptor/descsoft */
153
154 int sc_txthresh; /* Tx threshold */
155 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
156 uint16_t sc_IntEnable; /* prototype IntEnable register */
157 uint16_t sc_MacCtrl0; /* prototype MacCtrl0 register */
158 uint8_t sc_ReceiveMode; /* prototype ReceiveMode register */
159 };
160
161 #define STE_CDTXADDR(sc, x) ((sc)->sc_cddma + STE_CDTXOFF((x)))
162 #define STE_CDRXADDR(sc, x) ((sc)->sc_cddma + STE_CDRXOFF((x)))
163
164 #define STE_CDTXSYNC(sc, x, ops) \
165 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
166 STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
167
168 #define STE_CDRXSYNC(sc, x, ops) \
169 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
170 STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
171
172 #define STE_INIT_RXDESC(sc, x) \
173 do { \
174 struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
175 struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
176 struct mbuf *__m = __ds->ds_mbuf; \
177 \
178 /* \
179 * Note: We scoot the packet forward 2 bytes in the buffer \
180 * so that the payload after the Ethernet header is aligned \
181 * to a 4-byte boundary. \
182 */ \
183 __m->m_data = __m->m_ext.ext_buf + 2; \
184 __rfd->rfd_frag.frag_addr = \
185 htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2); \
186 __rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST); \
187 __rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x)))); \
188 __rfd->rfd_status = 0; \
189 STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
190 } while (/*CONSTCOND*/0)
191
192 #define STE_TIMEOUT 1000
193
194 static void ste_start(struct ifnet *);
195 static void ste_watchdog(struct ifnet *);
196 static int ste_ioctl(struct ifnet *, u_long, void *);
197 static int ste_init(struct ifnet *);
198 static void ste_stop(struct ifnet *, int);
199
200 static bool ste_shutdown(device_t, int);
201
202 static void ste_reset(struct ste_softc *, u_int32_t);
203 static void ste_setthresh(struct ste_softc *);
204 static void ste_txrestart(struct ste_softc *, u_int8_t);
205 static void ste_rxdrain(struct ste_softc *);
206 static int ste_add_rxbuf(struct ste_softc *, int);
207 static void ste_read_eeprom(struct ste_softc *, int, uint16_t *);
208 static void ste_tick(void *);
209
210 static void ste_stats_update(struct ste_softc *);
211
212 static void ste_set_filter(struct ste_softc *);
213
214 static int ste_intr(void *);
215 static void ste_txintr(struct ste_softc *);
216 static void ste_rxintr(struct ste_softc *);
217
218 static int ste_mii_readreg(device_t, int, int);
219 static void ste_mii_writereg(device_t, int, int, int);
220 static void ste_mii_statchg(struct ifnet *);
221
222 static int ste_match(device_t, cfdata_t, void *);
223 static void ste_attach(device_t, device_t, void *);
224
225 int ste_copy_small = 0;
226
227 CFATTACH_DECL_NEW(ste, sizeof(struct ste_softc),
228 ste_match, ste_attach, NULL, NULL);
229
230 static uint32_t ste_mii_bitbang_read(device_t);
231 static void ste_mii_bitbang_write(device_t, uint32_t);
232
233 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
234 ste_mii_bitbang_read,
235 ste_mii_bitbang_write,
236 {
237 PC_MgmtData, /* MII_BIT_MDO */
238 PC_MgmtData, /* MII_BIT_MDI */
239 PC_MgmtClk, /* MII_BIT_MDC */
240 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
241 0, /* MII_BIT_DIR_PHY_HOST */
242 }
243 };
244
245 /*
246 * Devices supported by this driver.
247 */
248 static const struct ste_product {
249 pci_vendor_id_t ste_vendor;
250 pci_product_id_t ste_product;
251 const char *ste_name;
252 } ste_products[] = {
253 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_IP100A,
254 "IC Plus Corp. IP00A 10/100 Fast Ethernet Adapter" },
255
256 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST201,
257 "Sundance ST-201 10/100 Ethernet" },
258
259 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL1002,
260 "D-Link DL-1002 10/100 Ethernet" },
261
262 { 0, 0,
263 NULL },
264 };
265
266 static const struct ste_product *
267 ste_lookup(const struct pci_attach_args *pa)
268 {
269 const struct ste_product *sp;
270
271 for (sp = ste_products; sp->ste_name != NULL; sp++) {
272 if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
273 PCI_PRODUCT(pa->pa_id) == sp->ste_product)
274 return (sp);
275 }
276 return (NULL);
277 }
278
279 static int
280 ste_match(device_t parent, cfdata_t cf, void *aux)
281 {
282 struct pci_attach_args *pa = aux;
283
284 if (ste_lookup(pa) != NULL)
285 return (1);
286
287 return (0);
288 }
289
290 static void
291 ste_attach(device_t parent, device_t self, void *aux)
292 {
293 struct ste_softc *sc = device_private(self);
294 struct pci_attach_args *pa = aux;
295 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
296 pci_chipset_tag_t pc = pa->pa_pc;
297 pci_intr_handle_t ih;
298 const char *intrstr = NULL;
299 bus_space_tag_t iot, memt;
300 bus_space_handle_t ioh, memh;
301 bus_dma_segment_t seg;
302 int ioh_valid, memh_valid;
303 int i, rseg, error;
304 const struct ste_product *sp;
305 uint8_t enaddr[ETHER_ADDR_LEN];
306 uint16_t myea[ETHER_ADDR_LEN / 2];
307
308 sc->sc_dev = self;
309
310 callout_init(&sc->sc_tick_ch, 0);
311
312 sp = ste_lookup(pa);
313 if (sp == NULL) {
314 printf("\n");
315 panic("ste_attach: impossible");
316 }
317
318 printf(": %s\n", sp->ste_name);
319
320 /*
321 * Map the device.
322 */
323 ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
324 PCI_MAPREG_TYPE_IO, 0,
325 &iot, &ioh, NULL, NULL) == 0);
326 memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
327 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
328 &memt, &memh, NULL, NULL) == 0);
329
330 if (memh_valid) {
331 sc->sc_st = memt;
332 sc->sc_sh = memh;
333 } else if (ioh_valid) {
334 sc->sc_st = iot;
335 sc->sc_sh = ioh;
336 } else {
337 aprint_error_dev(self, "unable to map device registers\n");
338 return;
339 }
340
341 sc->sc_dmat = pa->pa_dmat;
342
343 /* Enable bus mastering. */
344 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
345 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
346 PCI_COMMAND_MASTER_ENABLE);
347
348 /* power up chip */
349 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
350 NULL)) && error != EOPNOTSUPP) {
351 aprint_error_dev(sc->sc_dev, "cannot activate %d\n",
352 error);
353 return;
354 }
355
356 /*
357 * Map and establish our interrupt.
358 */
359 if (pci_intr_map(pa, &ih)) {
360 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
361 return;
362 }
363 intrstr = pci_intr_string(pc, ih);
364 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
365 if (sc->sc_ih == NULL) {
366 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
367 if (intrstr != NULL)
368 aprint_error(" at %s", intrstr);
369 aprint_error("\n");
370 return;
371 }
372 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
373
374 /*
375 * Allocate the control data structures, and create and load the
376 * DMA map for it.
377 */
378 if ((error = bus_dmamem_alloc(sc->sc_dmat,
379 sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
380 0)) != 0) {
381 aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n",
382 error);
383 goto fail_0;
384 }
385
386 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
387 sizeof(struct ste_control_data), (void **)&sc->sc_control_data,
388 BUS_DMA_COHERENT)) != 0) {
389 aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
390 error);
391 goto fail_1;
392 }
393
394 if ((error = bus_dmamap_create(sc->sc_dmat,
395 sizeof(struct ste_control_data), 1,
396 sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
397 aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
398 "error = %d\n", error);
399 goto fail_2;
400 }
401
402 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
403 sc->sc_control_data, sizeof(struct ste_control_data), NULL,
404 0)) != 0) {
405 aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n",
406 error);
407 goto fail_3;
408 }
409
410 /*
411 * Create the transmit buffer DMA maps.
412 */
413 for (i = 0; i < STE_NTXDESC; i++) {
414 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
415 STE_NTXFRAGS, MCLBYTES, 0, 0,
416 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
417 aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
418 "error = %d\n", i, error);
419 goto fail_4;
420 }
421 }
422
423 /*
424 * Create the receive buffer DMA maps.
425 */
426 for (i = 0; i < STE_NRXDESC; i++) {
427 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
428 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
429 aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
430 "error = %d\n", i, error);
431 goto fail_5;
432 }
433 sc->sc_rxsoft[i].ds_mbuf = NULL;
434 }
435
436 /*
437 * Reset the chip to a known state.
438 */
439 ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
440 AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
441
442 /*
443 * Read the Ethernet address from the EEPROM.
444 */
445 for (i = 0; i < 3; i++) {
446 ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
447 myea[i] = le16toh(myea[i]);
448 }
449 memcpy(enaddr, myea, sizeof(enaddr));
450
451 printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
452 ether_sprintf(enaddr));
453
454 /*
455 * Initialize our media structures and probe the MII.
456 */
457 sc->sc_mii.mii_ifp = ifp;
458 sc->sc_mii.mii_readreg = ste_mii_readreg;
459 sc->sc_mii.mii_writereg = ste_mii_writereg;
460 sc->sc_mii.mii_statchg = ste_mii_statchg;
461 sc->sc_ethercom.ec_mii = &sc->sc_mii;
462 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
463 ether_mediastatus);
464 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
465 MII_OFFSET_ANY, 0);
466 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
467 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
468 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
469 } else
470 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
471
472 ifp = &sc->sc_ethercom.ec_if;
473 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
474 ifp->if_softc = sc;
475 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
476 ifp->if_ioctl = ste_ioctl;
477 ifp->if_start = ste_start;
478 ifp->if_watchdog = ste_watchdog;
479 ifp->if_init = ste_init;
480 ifp->if_stop = ste_stop;
481 IFQ_SET_READY(&ifp->if_snd);
482
483 /*
484 * Default the transmit threshold to 128 bytes.
485 */
486 sc->sc_txthresh = 128;
487
488 /*
489 * Disable MWI if the PCI layer tells us to.
490 */
491 sc->sc_DMACtrl = 0;
492 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
493 sc->sc_DMACtrl |= DC_MWIDisable;
494
495 /*
496 * We can support 802.1Q VLAN-sized frames.
497 */
498 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
499
500 /*
501 * Attach the interface.
502 */
503 if_attach(ifp);
504 ether_ifattach(ifp, enaddr);
505
506 /*
507 * Make sure the interface is shutdown during reboot.
508 */
509 if (pmf_device_register1(self, NULL, NULL, ste_shutdown))
510 pmf_class_network_register(self, ifp);
511 else
512 aprint_error_dev(self, "couldn't establish power handler\n");
513
514 return;
515
516 /*
517 * Free any resources we've allocated during the failed attach
518 * attempt. Do this in reverse order and fall through.
519 */
520 fail_5:
521 for (i = 0; i < STE_NRXDESC; i++) {
522 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
523 bus_dmamap_destroy(sc->sc_dmat,
524 sc->sc_rxsoft[i].ds_dmamap);
525 }
526 fail_4:
527 for (i = 0; i < STE_NTXDESC; i++) {
528 if (sc->sc_txsoft[i].ds_dmamap != NULL)
529 bus_dmamap_destroy(sc->sc_dmat,
530 sc->sc_txsoft[i].ds_dmamap);
531 }
532 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
533 fail_3:
534 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
535 fail_2:
536 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
537 sizeof(struct ste_control_data));
538 fail_1:
539 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
540 fail_0:
541 return;
542 }
543
544 /*
545 * ste_shutdown:
546 *
547 * Make sure the interface is stopped at reboot time.
548 */
549 static bool
550 ste_shutdown(device_t self, int howto)
551 {
552 struct ste_softc *sc;
553
554 sc = device_private(self);
555 ste_stop(&sc->sc_ethercom.ec_if, 1);
556
557 return true;
558 }
559
560 static void
561 ste_dmahalt_wait(struct ste_softc *sc)
562 {
563 int i;
564
565 for (i = 0; i < STE_TIMEOUT; i++) {
566 delay(2);
567 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
568 DC_DMAHaltBusy) == 0)
569 break;
570 }
571
572 if (i == STE_TIMEOUT)
573 printf("%s: DMA halt timed out\n", device_xname(sc->sc_dev));
574 }
575
576 /*
577 * ste_start: [ifnet interface function]
578 *
579 * Start packet transmission on the interface.
580 */
581 static void
582 ste_start(struct ifnet *ifp)
583 {
584 struct ste_softc *sc = ifp->if_softc;
585 struct mbuf *m0, *m;
586 struct ste_descsoft *ds;
587 struct ste_tfd *tfd;
588 bus_dmamap_t dmamap;
589 int error, olasttx, nexttx, opending, seg, totlen;
590
591 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
592 return;
593
594 /*
595 * Remember the previous number of pending transmissions
596 * and the current last descriptor in the list.
597 */
598 opending = sc->sc_txpending;
599 olasttx = sc->sc_txlast;
600
601 /*
602 * Loop through the send queue, setting up transmit descriptors
603 * until we drain the queue, or use up all available transmit
604 * descriptors.
605 */
606 while (sc->sc_txpending < STE_NTXDESC) {
607 /*
608 * Grab a packet off the queue.
609 */
610 IFQ_POLL(&ifp->if_snd, m0);
611 if (m0 == NULL)
612 break;
613 m = NULL;
614
615 /*
616 * Get the last and next available transmit descriptor.
617 */
618 nexttx = STE_NEXTTX(sc->sc_txlast);
619 tfd = &sc->sc_txdescs[nexttx];
620 ds = &sc->sc_txsoft[nexttx];
621
622 dmamap = ds->ds_dmamap;
623
624 /*
625 * Load the DMA map. If this fails, the packet either
626 * didn't fit in the alloted number of segments, or we
627 * were short on resources. In this case, we'll copy
628 * and try again.
629 */
630 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
631 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
632 MGETHDR(m, M_DONTWAIT, MT_DATA);
633 if (m == NULL) {
634 printf("%s: unable to allocate Tx mbuf\n",
635 device_xname(sc->sc_dev));
636 break;
637 }
638 if (m0->m_pkthdr.len > MHLEN) {
639 MCLGET(m, M_DONTWAIT);
640 if ((m->m_flags & M_EXT) == 0) {
641 printf("%s: unable to allocate Tx "
642 "cluster\n", device_xname(sc->sc_dev));
643 m_freem(m);
644 break;
645 }
646 }
647 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
648 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
649 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
650 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
651 if (error) {
652 printf("%s: unable to load Tx buffer, "
653 "error = %d\n", device_xname(sc->sc_dev), error);
654 break;
655 }
656 }
657
658 IFQ_DEQUEUE(&ifp->if_snd, m0);
659 if (m != NULL) {
660 m_freem(m0);
661 m0 = m;
662 }
663
664 /*
665 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
666 */
667
668 /* Sync the DMA map. */
669 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
670 BUS_DMASYNC_PREWRITE);
671
672 /* Initialize the fragment list. */
673 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
674 tfd->tfd_frags[seg].frag_addr =
675 htole32(dmamap->dm_segs[seg].ds_addr);
676 tfd->tfd_frags[seg].frag_len =
677 htole32(dmamap->dm_segs[seg].ds_len);
678 totlen += dmamap->dm_segs[seg].ds_len;
679 }
680 tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
681
682 /* Initialize the descriptor. */
683 tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
684 tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
685
686 /* Sync the descriptor. */
687 STE_CDTXSYNC(sc, nexttx,
688 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
689
690 /*
691 * Store a pointer to the packet so we can free it later,
692 * and remember what txdirty will be once the packet is
693 * done.
694 */
695 ds->ds_mbuf = m0;
696
697 /* Advance the tx pointer. */
698 sc->sc_txpending++;
699 sc->sc_txlast = nexttx;
700
701 /*
702 * Pass the packet to any BPF listeners.
703 */
704 bpf_mtap(ifp, m0);
705 }
706
707 if (sc->sc_txpending == STE_NTXDESC) {
708 /* No more slots left; notify upper layer. */
709 ifp->if_flags |= IFF_OACTIVE;
710 }
711
712 if (sc->sc_txpending != opending) {
713 /*
714 * We enqueued packets. If the transmitter was idle,
715 * reset the txdirty pointer.
716 */
717 if (opending == 0)
718 sc->sc_txdirty = STE_NEXTTX(olasttx);
719
720 /*
721 * Cause a descriptor interrupt to happen on the
722 * last packet we enqueued, and also cause the
723 * DMA engine to wait after is has finished processing
724 * it.
725 */
726 sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
727 sc->sc_txdescs[sc->sc_txlast].tfd_control |=
728 htole32(TFD_TxDMAIndicate);
729 STE_CDTXSYNC(sc, sc->sc_txlast,
730 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
731
732 /*
733 * Link up the new chain of descriptors to the
734 * last.
735 */
736 sc->sc_txdescs[olasttx].tfd_next =
737 htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
738 STE_CDTXSYNC(sc, olasttx,
739 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
740
741 /*
742 * Kick the transmit DMA logic. Note that since we're
743 * using auto-polling, reading the Tx desc pointer will
744 * give it the nudge it needs to get going.
745 */
746 if (bus_space_read_4(sc->sc_st, sc->sc_sh,
747 STE_TxDMAListPtr) == 0) {
748 bus_space_write_4(sc->sc_st, sc->sc_sh,
749 STE_DMACtrl, DC_TxDMAHalt);
750 ste_dmahalt_wait(sc);
751 bus_space_write_4(sc->sc_st, sc->sc_sh,
752 STE_TxDMAListPtr,
753 STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
754 bus_space_write_4(sc->sc_st, sc->sc_sh,
755 STE_DMACtrl, DC_TxDMAResume);
756 }
757
758 /* Set a watchdog timer in case the chip flakes out. */
759 ifp->if_timer = 5;
760 }
761 }
762
763 /*
764 * ste_watchdog: [ifnet interface function]
765 *
766 * Watchdog timer handler.
767 */
768 static void
769 ste_watchdog(struct ifnet *ifp)
770 {
771 struct ste_softc *sc = ifp->if_softc;
772
773 printf("%s: device timeout\n", device_xname(sc->sc_dev));
774 ifp->if_oerrors++;
775
776 ste_txintr(sc);
777 ste_rxintr(sc);
778 (void) ste_init(ifp);
779
780 /* Try to get more packets going. */
781 ste_start(ifp);
782 }
783
784 /*
785 * ste_ioctl: [ifnet interface function]
786 *
787 * Handle control requests from the operator.
788 */
789 static int
790 ste_ioctl(struct ifnet *ifp, u_long cmd, void *data)
791 {
792 struct ste_softc *sc = ifp->if_softc;
793 int s, error;
794
795 s = splnet();
796
797 error = ether_ioctl(ifp, cmd, data);
798 if (error == ENETRESET) {
799 /*
800 * Multicast list has changed; set the hardware filter
801 * accordingly.
802 */
803 if (ifp->if_flags & IFF_RUNNING)
804 ste_set_filter(sc);
805 error = 0;
806 }
807
808 /* Try to get more packets going. */
809 ste_start(ifp);
810
811 splx(s);
812 return (error);
813 }
814
815 /*
816 * ste_intr:
817 *
818 * Interrupt service routine.
819 */
820 static int
821 ste_intr(void *arg)
822 {
823 struct ste_softc *sc = arg;
824 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
825 uint16_t isr;
826 uint8_t txstat;
827 int wantinit;
828
829 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
830 IS_InterruptStatus) == 0)
831 return (0);
832
833 for (wantinit = 0; wantinit == 0;) {
834 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
835 if ((isr & sc->sc_IntEnable) == 0)
836 break;
837
838 /* Receive interrupts. */
839 if (isr & IE_RxDMAComplete)
840 ste_rxintr(sc);
841
842 /* Transmit interrupts. */
843 if (isr & (IE_TxDMAComplete|IE_TxComplete))
844 ste_txintr(sc);
845
846 /* Statistics overflow. */
847 if (isr & IE_UpdateStats)
848 ste_stats_update(sc);
849
850 /* Transmission errors. */
851 if (isr & IE_TxComplete) {
852 for (;;) {
853 txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
854 STE_TxStatus);
855 if ((txstat & TS_TxComplete) == 0)
856 break;
857 if (txstat & TS_TxUnderrun) {
858 sc->sc_txthresh += 32;
859 if (sc->sc_txthresh > 0x1ffc)
860 sc->sc_txthresh = 0x1ffc;
861 printf("%s: transmit underrun, new "
862 "threshold: %d bytes\n",
863 device_xname(sc->sc_dev),
864 sc->sc_txthresh);
865 ste_reset(sc, AC_TxReset | AC_DMA |
866 AC_FIFO | AC_Network);
867 ste_setthresh(sc);
868 bus_space_write_1(sc->sc_st, sc->sc_sh,
869 STE_TxDMAPollPeriod, 127);
870 ste_txrestart(sc,
871 bus_space_read_1(sc->sc_st,
872 sc->sc_sh, STE_TxFrameId));
873 }
874 if (txstat & TS_TxReleaseError) {
875 printf("%s: Tx FIFO release error\n",
876 device_xname(sc->sc_dev));
877 wantinit = 1;
878 }
879 if (txstat & TS_MaxCollisions) {
880 printf("%s: excessive collisions\n",
881 device_xname(sc->sc_dev));
882 wantinit = 1;
883 }
884 if (txstat & TS_TxStatusOverflow) {
885 printf("%s: status overflow\n",
886 device_xname(sc->sc_dev));
887 wantinit = 1;
888 }
889 bus_space_write_2(sc->sc_st, sc->sc_sh,
890 STE_TxStatus, 0);
891 }
892 }
893
894 /* Host interface errors. */
895 if (isr & IE_HostError) {
896 printf("%s: Host interface error\n",
897 device_xname(sc->sc_dev));
898 wantinit = 1;
899 }
900 }
901
902 if (wantinit)
903 ste_init(ifp);
904
905 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
906 sc->sc_IntEnable);
907
908 /* Try to get more packets going. */
909 ste_start(ifp);
910
911 return (1);
912 }
913
914 /*
915 * ste_txintr:
916 *
917 * Helper; handle transmit interrupts.
918 */
919 static void
920 ste_txintr(struct ste_softc *sc)
921 {
922 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
923 struct ste_descsoft *ds;
924 uint32_t control;
925 int i;
926
927 ifp->if_flags &= ~IFF_OACTIVE;
928
929 /*
930 * Go through our Tx list and free mbufs for those
931 * frames which have been transmitted.
932 */
933 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
934 i = STE_NEXTTX(i), sc->sc_txpending--) {
935 ds = &sc->sc_txsoft[i];
936
937 STE_CDTXSYNC(sc, i,
938 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
939
940 control = le32toh(sc->sc_txdescs[i].tfd_control);
941 if ((control & TFD_TxDMAComplete) == 0)
942 break;
943
944 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
945 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
946 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
947 m_freem(ds->ds_mbuf);
948 ds->ds_mbuf = NULL;
949 }
950
951 /* Update the dirty transmit buffer pointer. */
952 sc->sc_txdirty = i;
953
954 /*
955 * If there are no more pending transmissions, cancel the watchdog
956 * timer.
957 */
958 if (sc->sc_txpending == 0)
959 ifp->if_timer = 0;
960 }
961
962 /*
963 * ste_rxintr:
964 *
965 * Helper; handle receive interrupts.
966 */
967 static void
968 ste_rxintr(struct ste_softc *sc)
969 {
970 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
971 struct ste_descsoft *ds;
972 struct mbuf *m;
973 uint32_t status;
974 int i, len;
975
976 for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
977 ds = &sc->sc_rxsoft[i];
978
979 STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
980
981 status = le32toh(sc->sc_rxdescs[i].rfd_status);
982
983 if ((status & RFD_RxDMAComplete) == 0)
984 break;
985
986 /*
987 * If the packet had an error, simply recycle the
988 * buffer. Note, we count the error later in the
989 * periodic stats update.
990 */
991 if (status & RFD_RxFrameError) {
992 STE_INIT_RXDESC(sc, i);
993 continue;
994 }
995
996 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
997 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
998
999 /*
1000 * No errors; receive the packet. Note, we have
1001 * configured the chip to not include the CRC at
1002 * the end of the packet.
1003 */
1004 len = RFD_RxDMAFrameLen(status);
1005
1006 /*
1007 * If the packet is small enough to fit in a
1008 * single header mbuf, allocate one and copy
1009 * the data into it. This greatly reduces
1010 * memory consumption when we receive lots
1011 * of small packets.
1012 *
1013 * Otherwise, we add a new buffer to the receive
1014 * chain. If this fails, we drop the packet and
1015 * recycle the old buffer.
1016 */
1017 if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
1018 MGETHDR(m, M_DONTWAIT, MT_DATA);
1019 if (m == NULL)
1020 goto dropit;
1021 m->m_data += 2;
1022 memcpy(mtod(m, void *),
1023 mtod(ds->ds_mbuf, void *), len);
1024 STE_INIT_RXDESC(sc, i);
1025 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1026 ds->ds_dmamap->dm_mapsize,
1027 BUS_DMASYNC_PREREAD);
1028 } else {
1029 m = ds->ds_mbuf;
1030 if (ste_add_rxbuf(sc, i) != 0) {
1031 dropit:
1032 ifp->if_ierrors++;
1033 STE_INIT_RXDESC(sc, i);
1034 bus_dmamap_sync(sc->sc_dmat,
1035 ds->ds_dmamap, 0,
1036 ds->ds_dmamap->dm_mapsize,
1037 BUS_DMASYNC_PREREAD);
1038 continue;
1039 }
1040 }
1041
1042 m->m_pkthdr.rcvif = ifp;
1043 m->m_pkthdr.len = m->m_len = len;
1044
1045 /*
1046 * Pass this up to any BPF listeners, but only
1047 * pass if up the stack if it's for us.
1048 */
1049 bpf_mtap(ifp, m);
1050
1051 /* Pass it on. */
1052 (*ifp->if_input)(ifp, m);
1053 }
1054
1055 /* Update the receive pointer. */
1056 sc->sc_rxptr = i;
1057 }
1058
1059 /*
1060 * ste_tick:
1061 *
1062 * One second timer, used to tick the MII.
1063 */
1064 static void
1065 ste_tick(void *arg)
1066 {
1067 struct ste_softc *sc = arg;
1068 int s;
1069
1070 s = splnet();
1071 mii_tick(&sc->sc_mii);
1072 ste_stats_update(sc);
1073 splx(s);
1074
1075 callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1076 }
1077
1078 /*
1079 * ste_stats_update:
1080 *
1081 * Read the ST-201 statistics counters.
1082 */
1083 static void
1084 ste_stats_update(struct ste_softc *sc)
1085 {
1086 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1087 bus_space_tag_t st = sc->sc_st;
1088 bus_space_handle_t sh = sc->sc_sh;
1089
1090 (void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
1091 (void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
1092
1093 (void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
1094 (void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
1095
1096 ifp->if_opackets +=
1097 (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
1098 ifp->if_ipackets +=
1099 (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
1100
1101 ifp->if_collisions +=
1102 (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
1103 (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
1104 (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
1105
1106 (void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
1107
1108 ifp->if_ierrors +=
1109 (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
1110
1111 ifp->if_oerrors +=
1112 (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
1113 (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
1114 bus_space_read_1(st, sh, STE_CarrierSenseErrors);
1115
1116 (void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
1117 (void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
1118 (void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
1119 (void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
1120 }
1121
1122 /*
1123 * ste_reset:
1124 *
1125 * Perform a soft reset on the ST-201.
1126 */
1127 static void
1128 ste_reset(struct ste_softc *sc, u_int32_t rstbits)
1129 {
1130 uint32_t ac;
1131 int i;
1132
1133 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
1134
1135 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
1136
1137 delay(50000);
1138
1139 for (i = 0; i < STE_TIMEOUT; i++) {
1140 delay(1000);
1141 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
1142 AC_ResetBusy) == 0)
1143 break;
1144 }
1145
1146 if (i == STE_TIMEOUT)
1147 printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
1148
1149 delay(1000);
1150 }
1151
1152 /*
1153 * ste_setthresh:
1154 *
1155 * set the various transmit threshold registers
1156 */
1157 static void
1158 ste_setthresh(struct ste_softc *sc)
1159 {
1160 /* set the TX threhold */
1161 bus_space_write_2(sc->sc_st, sc->sc_sh,
1162 STE_TxStartThresh, sc->sc_txthresh);
1163 /* Urgent threshold: set to sc_txthresh / 2 */
1164 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
1165 sc->sc_txthresh >> 6);
1166 /* Burst threshold: use default value (256 bytes) */
1167 }
1168
1169 /*
1170 * restart TX at the given frame ID in the transmitter ring
1171 */
1172 static void
1173 ste_txrestart(struct ste_softc *sc, u_int8_t id)
1174 {
1175 u_int32_t control;
1176
1177 STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1178 control = le32toh(sc->sc_txdescs[id].tfd_control);
1179 control &= ~TFD_TxDMAComplete;
1180 sc->sc_txdescs[id].tfd_control = htole32(control);
1181 STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1182
1183 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
1184 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
1185 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
1186 ste_dmahalt_wait(sc);
1187 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
1188 STE_CDTXADDR(sc, id));
1189 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
1190 }
1191
1192 /*
1193 * ste_init: [ ifnet interface function ]
1194 *
1195 * Initialize the interface. Must be called at splnet().
1196 */
1197 static int
1198 ste_init(struct ifnet *ifp)
1199 {
1200 struct ste_softc *sc = ifp->if_softc;
1201 bus_space_tag_t st = sc->sc_st;
1202 bus_space_handle_t sh = sc->sc_sh;
1203 struct ste_descsoft *ds;
1204 int i, error = 0;
1205
1206 /*
1207 * Cancel any pending I/O.
1208 */
1209 ste_stop(ifp, 0);
1210
1211 /*
1212 * Reset the chip to a known state.
1213 */
1214 ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
1215 AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
1216
1217 /*
1218 * Initialize the transmit descriptor ring.
1219 */
1220 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1221 sc->sc_txpending = 0;
1222 sc->sc_txdirty = 0;
1223 sc->sc_txlast = STE_NTXDESC - 1;
1224
1225 /*
1226 * Initialize the receive descriptor and receive job
1227 * descriptor rings.
1228 */
1229 for (i = 0; i < STE_NRXDESC; i++) {
1230 ds = &sc->sc_rxsoft[i];
1231 if (ds->ds_mbuf == NULL) {
1232 if ((error = ste_add_rxbuf(sc, i)) != 0) {
1233 printf("%s: unable to allocate or map rx "
1234 "buffer %d, error = %d\n",
1235 device_xname(sc->sc_dev), i, error);
1236 /*
1237 * XXX Should attempt to run with fewer receive
1238 * XXX buffers instead of just failing.
1239 */
1240 ste_rxdrain(sc);
1241 goto out;
1242 }
1243 } else
1244 STE_INIT_RXDESC(sc, i);
1245 }
1246 sc->sc_rxptr = 0;
1247
1248 /* Set the station address. */
1249 for (i = 0; i < ETHER_ADDR_LEN; i++)
1250 bus_space_write_1(st, sh, STE_StationAddress0 + 1,
1251 CLLADDR(ifp->if_sadl)[i]);
1252
1253 /* Set up the receive filter. */
1254 ste_set_filter(sc);
1255
1256 /*
1257 * Give the receive ring to the chip.
1258 */
1259 bus_space_write_4(st, sh, STE_RxDMAListPtr,
1260 STE_CDRXADDR(sc, sc->sc_rxptr));
1261
1262 /*
1263 * We defer giving the transmit ring to the chip until we
1264 * transmit the first packet.
1265 */
1266
1267 /*
1268 * Initialize the Tx auto-poll period. It's OK to make this number
1269 * large (127 is the max) -- we explicitly kick the transmit engine
1270 * when there's actually a packet. We are using auto-polling only
1271 * to make the interface to the transmit engine not suck.
1272 */
1273 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
1274
1275 /* ..and the Rx auto-poll period. */
1276 bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
1277
1278 /* Initialize the Tx start threshold. */
1279 ste_setthresh(sc);
1280
1281 /* Set the FIFO release threshold to 512 bytes. */
1282 bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
1283
1284 /* Set maximum packet size for VLAN. */
1285 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1286 bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN + 4);
1287 else
1288 bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN);
1289
1290 /*
1291 * Initialize the interrupt mask.
1292 */
1293 sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1294 IE_TxDMAComplete | IE_RxDMAComplete;
1295
1296 bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
1297 bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
1298
1299 /*
1300 * Start the receive DMA engine.
1301 */
1302 bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
1303
1304 /*
1305 * Initialize MacCtrl0 -- do it before setting the media,
1306 * as setting the media will actually program the register.
1307 */
1308 sc->sc_MacCtrl0 = MC0_IFSSelect(0);
1309 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1310 sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
1311
1312 /*
1313 * Set the current media.
1314 */
1315 if ((error = ether_mediachange(ifp)) != 0)
1316 goto out;
1317
1318 /*
1319 * Start the MAC.
1320 */
1321 bus_space_write_2(st, sh, STE_MacCtrl1,
1322 MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
1323
1324 /*
1325 * Start the one second MII clock.
1326 */
1327 callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1328
1329 /*
1330 * ...all done!
1331 */
1332 ifp->if_flags |= IFF_RUNNING;
1333 ifp->if_flags &= ~IFF_OACTIVE;
1334
1335 out:
1336 if (error)
1337 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1338 return (error);
1339 }
1340
1341 /*
1342 * ste_drain:
1343 *
1344 * Drain the receive queue.
1345 */
1346 static void
1347 ste_rxdrain(struct ste_softc *sc)
1348 {
1349 struct ste_descsoft *ds;
1350 int i;
1351
1352 for (i = 0; i < STE_NRXDESC; i++) {
1353 ds = &sc->sc_rxsoft[i];
1354 if (ds->ds_mbuf != NULL) {
1355 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1356 m_freem(ds->ds_mbuf);
1357 ds->ds_mbuf = NULL;
1358 }
1359 }
1360 }
1361
1362 /*
1363 * ste_stop: [ ifnet interface function ]
1364 *
1365 * Stop transmission on the interface.
1366 */
1367 static void
1368 ste_stop(struct ifnet *ifp, int disable)
1369 {
1370 struct ste_softc *sc = ifp->if_softc;
1371 struct ste_descsoft *ds;
1372 int i;
1373
1374 /*
1375 * Stop the one second clock.
1376 */
1377 callout_stop(&sc->sc_tick_ch);
1378
1379 /* Down the MII. */
1380 mii_down(&sc->sc_mii);
1381
1382 /*
1383 * Disable interrupts.
1384 */
1385 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
1386
1387 /*
1388 * Stop receiver, transmitter, and stats update.
1389 */
1390 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
1391 MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
1392
1393 /*
1394 * Stop the transmit and receive DMA.
1395 */
1396 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
1397 DC_RxDMAHalt | DC_TxDMAHalt);
1398 ste_dmahalt_wait(sc);
1399
1400 /*
1401 * Release any queued transmit buffers.
1402 */
1403 for (i = 0; i < STE_NTXDESC; i++) {
1404 ds = &sc->sc_txsoft[i];
1405 if (ds->ds_mbuf != NULL) {
1406 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1407 m_freem(ds->ds_mbuf);
1408 ds->ds_mbuf = NULL;
1409 }
1410 }
1411
1412 /*
1413 * Mark the interface down and cancel the watchdog timer.
1414 */
1415 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1416 ifp->if_timer = 0;
1417
1418 if (disable)
1419 ste_rxdrain(sc);
1420 }
1421
1422 static int
1423 ste_eeprom_wait(struct ste_softc *sc)
1424 {
1425 int i;
1426
1427 for (i = 0; i < STE_TIMEOUT; i++) {
1428 delay(1000);
1429 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
1430 EC_EepromBusy) == 0)
1431 return (0);
1432 }
1433 return (1);
1434 }
1435
1436 /*
1437 * ste_read_eeprom:
1438 *
1439 * Read data from the serial EEPROM.
1440 */
1441 static void
1442 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
1443 {
1444
1445 if (ste_eeprom_wait(sc))
1446 printf("%s: EEPROM failed to come ready\n",
1447 device_xname(sc->sc_dev));
1448
1449 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
1450 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
1451 if (ste_eeprom_wait(sc))
1452 printf("%s: EEPROM read timed out\n",
1453 device_xname(sc->sc_dev));
1454 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
1455 }
1456
1457 /*
1458 * ste_add_rxbuf:
1459 *
1460 * Add a receive buffer to the indicated descriptor.
1461 */
1462 static int
1463 ste_add_rxbuf(struct ste_softc *sc, int idx)
1464 {
1465 struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
1466 struct mbuf *m;
1467 int error;
1468
1469 MGETHDR(m, M_DONTWAIT, MT_DATA);
1470 if (m == NULL)
1471 return (ENOBUFS);
1472
1473 MCLGET(m, M_DONTWAIT);
1474 if ((m->m_flags & M_EXT) == 0) {
1475 m_freem(m);
1476 return (ENOBUFS);
1477 }
1478
1479 if (ds->ds_mbuf != NULL)
1480 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1481
1482 ds->ds_mbuf = m;
1483
1484 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1485 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1486 BUS_DMA_READ|BUS_DMA_NOWAIT);
1487 if (error) {
1488 printf("%s: can't load rx DMA map %d, error = %d\n",
1489 device_xname(sc->sc_dev), idx, error);
1490 panic("ste_add_rxbuf"); /* XXX */
1491 }
1492
1493 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1494 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1495
1496 STE_INIT_RXDESC(sc, idx);
1497
1498 return (0);
1499 }
1500
1501 /*
1502 * ste_set_filter:
1503 *
1504 * Set up the receive filter.
1505 */
1506 static void
1507 ste_set_filter(struct ste_softc *sc)
1508 {
1509 struct ethercom *ec = &sc->sc_ethercom;
1510 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1511 struct ether_multi *enm;
1512 struct ether_multistep step;
1513 uint32_t crc;
1514 uint16_t mchash[4];
1515
1516 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1517 if (ifp->if_flags & IFF_BROADCAST)
1518 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1519
1520 if (ifp->if_flags & IFF_PROMISC) {
1521 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1522 goto allmulti;
1523 }
1524
1525 /*
1526 * Set up the multicast address filter by passing all multicast
1527 * addresses through a CRC generator, and then using the low-order
1528 * 6 bits as an index into the 64 bit multicast hash table. The
1529 * high order bits select the register, while the rest of the bits
1530 * select the bit within the register.
1531 */
1532
1533 memset(mchash, 0, sizeof(mchash));
1534
1535 ETHER_FIRST_MULTI(step, ec, enm);
1536 if (enm == NULL)
1537 goto done;
1538
1539 while (enm != NULL) {
1540 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1541 /*
1542 * We must listen to a range of multicast addresses.
1543 * For now, just accept all multicasts, rather than
1544 * trying to set only those filter bits needed to match
1545 * the range. (At this time, the only use of address
1546 * ranges is for IP multicast routing, for which the
1547 * range is big enough to require all bits set.)
1548 */
1549 goto allmulti;
1550 }
1551
1552 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1553
1554 /* Just want the 6 least significant bits. */
1555 crc &= 0x3f;
1556
1557 /* Set the corresponding bit in the hash table. */
1558 mchash[crc >> 4] |= 1 << (crc & 0xf);
1559
1560 ETHER_NEXT_MULTI(step, enm);
1561 }
1562
1563 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1564
1565 ifp->if_flags &= ~IFF_ALLMULTI;
1566 goto done;
1567
1568 allmulti:
1569 ifp->if_flags |= IFF_ALLMULTI;
1570 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1571
1572 done:
1573 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1574 /*
1575 * Program the multicast hash table.
1576 */
1577 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
1578 mchash[0]);
1579 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
1580 mchash[1]);
1581 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
1582 mchash[2]);
1583 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
1584 mchash[3]);
1585 }
1586
1587 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
1588 sc->sc_ReceiveMode);
1589 }
1590
1591 /*
1592 * ste_mii_readreg: [mii interface function]
1593 *
1594 * Read a PHY register on the MII of the ST-201.
1595 */
1596 static int
1597 ste_mii_readreg(device_t self, int phy, int reg)
1598 {
1599
1600 return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
1601 }
1602
1603 /*
1604 * ste_mii_writereg: [mii interface function]
1605 *
1606 * Write a PHY register on the MII of the ST-201.
1607 */
1608 static void
1609 ste_mii_writereg(device_t self, int phy, int reg, int val)
1610 {
1611
1612 mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
1613 }
1614
1615 /*
1616 * ste_mii_statchg: [mii interface function]
1617 *
1618 * Callback from MII layer when media changes.
1619 */
1620 static void
1621 ste_mii_statchg(struct ifnet *ifp)
1622 {
1623 struct ste_softc *sc = ifp->if_softc;
1624
1625 if (sc->sc_mii.mii_media_active & IFM_FDX)
1626 sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
1627 else
1628 sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
1629
1630 /* XXX 802.1x flow-control? */
1631
1632 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
1633 }
1634
1635 /*
1636 * ste_mii_bitbang_read: [mii bit-bang interface function]
1637 *
1638 * Read the MII serial port for the MII bit-bang module.
1639 */
1640 static uint32_t
1641 ste_mii_bitbang_read(device_t self)
1642 {
1643 struct ste_softc *sc = device_private(self);
1644
1645 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
1646 }
1647
1648 /*
1649 * ste_mii_bitbang_write: [mii big-bang interface function]
1650 *
1651 * Write the MII serial port for the MII bit-bang module.
1652 */
1653 static void
1654 ste_mii_bitbang_write(device_t self, uint32_t val)
1655 {
1656 struct ste_softc *sc = device_private(self);
1657
1658 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
1659 }
1660