if_ste.c revision 1.46 1 /* $NetBSD: if_ste.c,v 1.46 2016/02/09 08:32:11 ozaki-r Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the Sundance Tech. ST-201 10/100
34 * Ethernet controller.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.46 2016/02/09 08:32:11 ozaki-r Exp $");
39
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 #include <sys/queue.h>
52
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57
58 #include <net/bpf.h>
59
60 #include <sys/bus.h>
61 #include <sys/intr.h>
62
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 #include <dev/mii/mii_bitbang.h>
66
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70
71 #include <dev/pci/if_stereg.h>
72
73 /*
74 * Transmit descriptor list size.
75 */
76 #define STE_NTXDESC 256
77 #define STE_NTXDESC_MASK (STE_NTXDESC - 1)
78 #define STE_NEXTTX(x) (((x) + 1) & STE_NTXDESC_MASK)
79
80 /*
81 * Receive descriptor list size.
82 */
83 #define STE_NRXDESC 128
84 #define STE_NRXDESC_MASK (STE_NRXDESC - 1)
85 #define STE_NEXTRX(x) (((x) + 1) & STE_NRXDESC_MASK)
86
87 /*
88 * Control structures are DMA'd to the ST-201 chip. We allocate them in
89 * a single clump that maps to a single DMA segment to make several things
90 * easier.
91 */
92 struct ste_control_data {
93 /*
94 * The transmit descriptors.
95 */
96 struct ste_tfd scd_txdescs[STE_NTXDESC];
97
98 /*
99 * The receive descriptors.
100 */
101 struct ste_rfd scd_rxdescs[STE_NRXDESC];
102 };
103
104 #define STE_CDOFF(x) offsetof(struct ste_control_data, x)
105 #define STE_CDTXOFF(x) STE_CDOFF(scd_txdescs[(x)])
106 #define STE_CDRXOFF(x) STE_CDOFF(scd_rxdescs[(x)])
107
108 /*
109 * Software state for transmit and receive jobs.
110 */
111 struct ste_descsoft {
112 struct mbuf *ds_mbuf; /* head of our mbuf chain */
113 bus_dmamap_t ds_dmamap; /* our DMA map */
114 };
115
116 /*
117 * Software state per device.
118 */
119 struct ste_softc {
120 device_t sc_dev; /* generic device information */
121 bus_space_tag_t sc_st; /* bus space tag */
122 bus_space_handle_t sc_sh; /* bus space handle */
123 bus_dma_tag_t sc_dmat; /* bus DMA tag */
124 struct ethercom sc_ethercom; /* ethernet common data */
125
126 void *sc_ih; /* interrupt cookie */
127
128 struct mii_data sc_mii; /* MII/media information */
129
130 callout_t sc_tick_ch; /* tick callout */
131
132 bus_dmamap_t sc_cddmamap; /* control data DMA map */
133 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
134
135 /*
136 * Software state for transmit and receive descriptors.
137 */
138 struct ste_descsoft sc_txsoft[STE_NTXDESC];
139 struct ste_descsoft sc_rxsoft[STE_NRXDESC];
140
141 /*
142 * Control data structures.
143 */
144 struct ste_control_data *sc_control_data;
145 #define sc_txdescs sc_control_data->scd_txdescs
146 #define sc_rxdescs sc_control_data->scd_rxdescs
147
148 int sc_txpending; /* number of Tx requests pending */
149 int sc_txdirty; /* first dirty Tx descriptor */
150 int sc_txlast; /* last used Tx descriptor */
151
152 int sc_rxptr; /* next ready Rx descriptor/descsoft */
153
154 int sc_txthresh; /* Tx threshold */
155 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
156 uint16_t sc_IntEnable; /* prototype IntEnable register */
157 uint16_t sc_MacCtrl0; /* prototype MacCtrl0 register */
158 uint8_t sc_ReceiveMode; /* prototype ReceiveMode register */
159 };
160
161 #define STE_CDTXADDR(sc, x) ((sc)->sc_cddma + STE_CDTXOFF((x)))
162 #define STE_CDRXADDR(sc, x) ((sc)->sc_cddma + STE_CDRXOFF((x)))
163
164 #define STE_CDTXSYNC(sc, x, ops) \
165 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
166 STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
167
168 #define STE_CDRXSYNC(sc, x, ops) \
169 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
170 STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
171
172 #define STE_INIT_RXDESC(sc, x) \
173 do { \
174 struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
175 struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
176 struct mbuf *__m = __ds->ds_mbuf; \
177 \
178 /* \
179 * Note: We scoot the packet forward 2 bytes in the buffer \
180 * so that the payload after the Ethernet header is aligned \
181 * to a 4-byte boundary. \
182 */ \
183 __m->m_data = __m->m_ext.ext_buf + 2; \
184 __rfd->rfd_frag.frag_addr = \
185 htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2); \
186 __rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST); \
187 __rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x)))); \
188 __rfd->rfd_status = 0; \
189 STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
190 } while (/*CONSTCOND*/0)
191
192 #define STE_TIMEOUT 1000
193
194 static void ste_start(struct ifnet *);
195 static void ste_watchdog(struct ifnet *);
196 static int ste_ioctl(struct ifnet *, u_long, void *);
197 static int ste_init(struct ifnet *);
198 static void ste_stop(struct ifnet *, int);
199
200 static bool ste_shutdown(device_t, int);
201
202 static void ste_reset(struct ste_softc *, u_int32_t);
203 static void ste_setthresh(struct ste_softc *);
204 static void ste_txrestart(struct ste_softc *, u_int8_t);
205 static void ste_rxdrain(struct ste_softc *);
206 static int ste_add_rxbuf(struct ste_softc *, int);
207 static void ste_read_eeprom(struct ste_softc *, int, uint16_t *);
208 static void ste_tick(void *);
209
210 static void ste_stats_update(struct ste_softc *);
211
212 static void ste_set_filter(struct ste_softc *);
213
214 static int ste_intr(void *);
215 static void ste_txintr(struct ste_softc *);
216 static void ste_rxintr(struct ste_softc *);
217
218 static int ste_mii_readreg(device_t, int, int);
219 static void ste_mii_writereg(device_t, int, int, int);
220 static void ste_mii_statchg(struct ifnet *);
221
222 static int ste_match(device_t, cfdata_t, void *);
223 static void ste_attach(device_t, device_t, void *);
224
225 int ste_copy_small = 0;
226
227 CFATTACH_DECL_NEW(ste, sizeof(struct ste_softc),
228 ste_match, ste_attach, NULL, NULL);
229
230 static uint32_t ste_mii_bitbang_read(device_t);
231 static void ste_mii_bitbang_write(device_t, uint32_t);
232
233 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
234 ste_mii_bitbang_read,
235 ste_mii_bitbang_write,
236 {
237 PC_MgmtData, /* MII_BIT_MDO */
238 PC_MgmtData, /* MII_BIT_MDI */
239 PC_MgmtClk, /* MII_BIT_MDC */
240 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
241 0, /* MII_BIT_DIR_PHY_HOST */
242 }
243 };
244
245 /*
246 * Devices supported by this driver.
247 */
248 static const struct ste_product {
249 pci_vendor_id_t ste_vendor;
250 pci_product_id_t ste_product;
251 const char *ste_name;
252 } ste_products[] = {
253 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_IP100A,
254 "IC Plus Corp. IP00A 10/100 Fast Ethernet Adapter" },
255
256 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST201,
257 "Sundance ST-201 10/100 Ethernet" },
258
259 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL1002,
260 "D-Link DL-1002 10/100 Ethernet" },
261
262 { 0, 0,
263 NULL },
264 };
265
266 static const struct ste_product *
267 ste_lookup(const struct pci_attach_args *pa)
268 {
269 const struct ste_product *sp;
270
271 for (sp = ste_products; sp->ste_name != NULL; sp++) {
272 if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
273 PCI_PRODUCT(pa->pa_id) == sp->ste_product)
274 return (sp);
275 }
276 return (NULL);
277 }
278
279 static int
280 ste_match(device_t parent, cfdata_t cf, void *aux)
281 {
282 struct pci_attach_args *pa = aux;
283
284 if (ste_lookup(pa) != NULL)
285 return (1);
286
287 return (0);
288 }
289
290 static void
291 ste_attach(device_t parent, device_t self, void *aux)
292 {
293 struct ste_softc *sc = device_private(self);
294 struct pci_attach_args *pa = aux;
295 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
296 pci_chipset_tag_t pc = pa->pa_pc;
297 pci_intr_handle_t ih;
298 const char *intrstr = NULL;
299 bus_space_tag_t iot, memt;
300 bus_space_handle_t ioh, memh;
301 bus_dma_segment_t seg;
302 int ioh_valid, memh_valid;
303 int i, rseg, error;
304 const struct ste_product *sp;
305 uint8_t enaddr[ETHER_ADDR_LEN];
306 uint16_t myea[ETHER_ADDR_LEN / 2];
307 char intrbuf[PCI_INTRSTR_LEN];
308
309 sc->sc_dev = self;
310
311 callout_init(&sc->sc_tick_ch, 0);
312
313 sp = ste_lookup(pa);
314 if (sp == NULL) {
315 printf("\n");
316 panic("ste_attach: impossible");
317 }
318
319 printf(": %s\n", sp->ste_name);
320
321 /*
322 * Map the device.
323 */
324 ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
325 PCI_MAPREG_TYPE_IO, 0,
326 &iot, &ioh, NULL, NULL) == 0);
327 memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
328 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
329 &memt, &memh, NULL, NULL) == 0);
330
331 if (memh_valid) {
332 sc->sc_st = memt;
333 sc->sc_sh = memh;
334 } else if (ioh_valid) {
335 sc->sc_st = iot;
336 sc->sc_sh = ioh;
337 } else {
338 aprint_error_dev(self, "unable to map device registers\n");
339 return;
340 }
341
342 sc->sc_dmat = pa->pa_dmat;
343
344 /* Enable bus mastering. */
345 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
346 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
347 PCI_COMMAND_MASTER_ENABLE);
348
349 /* power up chip */
350 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
351 NULL)) && error != EOPNOTSUPP) {
352 aprint_error_dev(sc->sc_dev, "cannot activate %d\n",
353 error);
354 return;
355 }
356
357 /*
358 * Map and establish our interrupt.
359 */
360 if (pci_intr_map(pa, &ih)) {
361 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
362 return;
363 }
364 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
365 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
366 if (sc->sc_ih == NULL) {
367 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
368 if (intrstr != NULL)
369 aprint_error(" at %s", intrstr);
370 aprint_error("\n");
371 return;
372 }
373 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
374
375 /*
376 * Allocate the control data structures, and create and load the
377 * DMA map for it.
378 */
379 if ((error = bus_dmamem_alloc(sc->sc_dmat,
380 sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
381 0)) != 0) {
382 aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n",
383 error);
384 goto fail_0;
385 }
386
387 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
388 sizeof(struct ste_control_data), (void **)&sc->sc_control_data,
389 BUS_DMA_COHERENT)) != 0) {
390 aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
391 error);
392 goto fail_1;
393 }
394
395 if ((error = bus_dmamap_create(sc->sc_dmat,
396 sizeof(struct ste_control_data), 1,
397 sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
398 aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
399 "error = %d\n", error);
400 goto fail_2;
401 }
402
403 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
404 sc->sc_control_data, sizeof(struct ste_control_data), NULL,
405 0)) != 0) {
406 aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n",
407 error);
408 goto fail_3;
409 }
410
411 /*
412 * Create the transmit buffer DMA maps.
413 */
414 for (i = 0; i < STE_NTXDESC; i++) {
415 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
416 STE_NTXFRAGS, MCLBYTES, 0, 0,
417 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
418 aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
419 "error = %d\n", i, error);
420 goto fail_4;
421 }
422 }
423
424 /*
425 * Create the receive buffer DMA maps.
426 */
427 for (i = 0; i < STE_NRXDESC; i++) {
428 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
429 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
430 aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
431 "error = %d\n", i, error);
432 goto fail_5;
433 }
434 sc->sc_rxsoft[i].ds_mbuf = NULL;
435 }
436
437 /*
438 * Reset the chip to a known state.
439 */
440 ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
441 AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
442
443 /*
444 * Read the Ethernet address from the EEPROM.
445 */
446 for (i = 0; i < 3; i++) {
447 ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
448 myea[i] = le16toh(myea[i]);
449 }
450 memcpy(enaddr, myea, sizeof(enaddr));
451
452 printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
453 ether_sprintf(enaddr));
454
455 /*
456 * Initialize our media structures and probe the MII.
457 */
458 sc->sc_mii.mii_ifp = ifp;
459 sc->sc_mii.mii_readreg = ste_mii_readreg;
460 sc->sc_mii.mii_writereg = ste_mii_writereg;
461 sc->sc_mii.mii_statchg = ste_mii_statchg;
462 sc->sc_ethercom.ec_mii = &sc->sc_mii;
463 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
464 ether_mediastatus);
465 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
466 MII_OFFSET_ANY, 0);
467 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
468 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
469 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
470 } else
471 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
472
473 ifp = &sc->sc_ethercom.ec_if;
474 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
475 ifp->if_softc = sc;
476 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
477 ifp->if_ioctl = ste_ioctl;
478 ifp->if_start = ste_start;
479 ifp->if_watchdog = ste_watchdog;
480 ifp->if_init = ste_init;
481 ifp->if_stop = ste_stop;
482 IFQ_SET_READY(&ifp->if_snd);
483
484 /*
485 * Default the transmit threshold to 128 bytes.
486 */
487 sc->sc_txthresh = 128;
488
489 /*
490 * Disable MWI if the PCI layer tells us to.
491 */
492 sc->sc_DMACtrl = 0;
493 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
494 sc->sc_DMACtrl |= DC_MWIDisable;
495
496 /*
497 * We can support 802.1Q VLAN-sized frames.
498 */
499 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
500
501 /*
502 * Attach the interface.
503 */
504 if_attach(ifp);
505 ether_ifattach(ifp, enaddr);
506
507 /*
508 * Make sure the interface is shutdown during reboot.
509 */
510 if (pmf_device_register1(self, NULL, NULL, ste_shutdown))
511 pmf_class_network_register(self, ifp);
512 else
513 aprint_error_dev(self, "couldn't establish power handler\n");
514
515 return;
516
517 /*
518 * Free any resources we've allocated during the failed attach
519 * attempt. Do this in reverse order and fall through.
520 */
521 fail_5:
522 for (i = 0; i < STE_NRXDESC; i++) {
523 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
524 bus_dmamap_destroy(sc->sc_dmat,
525 sc->sc_rxsoft[i].ds_dmamap);
526 }
527 fail_4:
528 for (i = 0; i < STE_NTXDESC; i++) {
529 if (sc->sc_txsoft[i].ds_dmamap != NULL)
530 bus_dmamap_destroy(sc->sc_dmat,
531 sc->sc_txsoft[i].ds_dmamap);
532 }
533 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
534 fail_3:
535 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
536 fail_2:
537 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
538 sizeof(struct ste_control_data));
539 fail_1:
540 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
541 fail_0:
542 return;
543 }
544
545 /*
546 * ste_shutdown:
547 *
548 * Make sure the interface is stopped at reboot time.
549 */
550 static bool
551 ste_shutdown(device_t self, int howto)
552 {
553 struct ste_softc *sc;
554
555 sc = device_private(self);
556 ste_stop(&sc->sc_ethercom.ec_if, 1);
557
558 return true;
559 }
560
561 static void
562 ste_dmahalt_wait(struct ste_softc *sc)
563 {
564 int i;
565
566 for (i = 0; i < STE_TIMEOUT; i++) {
567 delay(2);
568 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
569 DC_DMAHaltBusy) == 0)
570 break;
571 }
572
573 if (i == STE_TIMEOUT)
574 printf("%s: DMA halt timed out\n", device_xname(sc->sc_dev));
575 }
576
577 /*
578 * ste_start: [ifnet interface function]
579 *
580 * Start packet transmission on the interface.
581 */
582 static void
583 ste_start(struct ifnet *ifp)
584 {
585 struct ste_softc *sc = ifp->if_softc;
586 struct mbuf *m0, *m;
587 struct ste_descsoft *ds;
588 struct ste_tfd *tfd;
589 bus_dmamap_t dmamap;
590 int error, olasttx, nexttx, opending, seg, totlen;
591
592 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
593 return;
594
595 /*
596 * Remember the previous number of pending transmissions
597 * and the current last descriptor in the list.
598 */
599 opending = sc->sc_txpending;
600 olasttx = sc->sc_txlast;
601
602 /*
603 * Loop through the send queue, setting up transmit descriptors
604 * until we drain the queue, or use up all available transmit
605 * descriptors.
606 */
607 while (sc->sc_txpending < STE_NTXDESC) {
608 /*
609 * Grab a packet off the queue.
610 */
611 IFQ_POLL(&ifp->if_snd, m0);
612 if (m0 == NULL)
613 break;
614 m = NULL;
615
616 /*
617 * Get the last and next available transmit descriptor.
618 */
619 nexttx = STE_NEXTTX(sc->sc_txlast);
620 tfd = &sc->sc_txdescs[nexttx];
621 ds = &sc->sc_txsoft[nexttx];
622
623 dmamap = ds->ds_dmamap;
624
625 /*
626 * Load the DMA map. If this fails, the packet either
627 * didn't fit in the alloted number of segments, or we
628 * were short on resources. In this case, we'll copy
629 * and try again.
630 */
631 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
632 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
633 MGETHDR(m, M_DONTWAIT, MT_DATA);
634 if (m == NULL) {
635 printf("%s: unable to allocate Tx mbuf\n",
636 device_xname(sc->sc_dev));
637 break;
638 }
639 if (m0->m_pkthdr.len > MHLEN) {
640 MCLGET(m, M_DONTWAIT);
641 if ((m->m_flags & M_EXT) == 0) {
642 printf("%s: unable to allocate Tx "
643 "cluster\n", device_xname(sc->sc_dev));
644 m_freem(m);
645 break;
646 }
647 }
648 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
649 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
650 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
651 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
652 if (error) {
653 printf("%s: unable to load Tx buffer, "
654 "error = %d\n", device_xname(sc->sc_dev), error);
655 break;
656 }
657 }
658
659 IFQ_DEQUEUE(&ifp->if_snd, m0);
660 if (m != NULL) {
661 m_freem(m0);
662 m0 = m;
663 }
664
665 /*
666 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
667 */
668
669 /* Sync the DMA map. */
670 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
671 BUS_DMASYNC_PREWRITE);
672
673 /* Initialize the fragment list. */
674 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
675 tfd->tfd_frags[seg].frag_addr =
676 htole32(dmamap->dm_segs[seg].ds_addr);
677 tfd->tfd_frags[seg].frag_len =
678 htole32(dmamap->dm_segs[seg].ds_len);
679 totlen += dmamap->dm_segs[seg].ds_len;
680 }
681 tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
682
683 /* Initialize the descriptor. */
684 tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
685 tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
686
687 /* Sync the descriptor. */
688 STE_CDTXSYNC(sc, nexttx,
689 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
690
691 /*
692 * Store a pointer to the packet so we can free it later,
693 * and remember what txdirty will be once the packet is
694 * done.
695 */
696 ds->ds_mbuf = m0;
697
698 /* Advance the tx pointer. */
699 sc->sc_txpending++;
700 sc->sc_txlast = nexttx;
701
702 /*
703 * Pass the packet to any BPF listeners.
704 */
705 bpf_mtap(ifp, m0);
706 }
707
708 if (sc->sc_txpending == STE_NTXDESC) {
709 /* No more slots left; notify upper layer. */
710 ifp->if_flags |= IFF_OACTIVE;
711 }
712
713 if (sc->sc_txpending != opending) {
714 /*
715 * We enqueued packets. If the transmitter was idle,
716 * reset the txdirty pointer.
717 */
718 if (opending == 0)
719 sc->sc_txdirty = STE_NEXTTX(olasttx);
720
721 /*
722 * Cause a descriptor interrupt to happen on the
723 * last packet we enqueued, and also cause the
724 * DMA engine to wait after is has finished processing
725 * it.
726 */
727 sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
728 sc->sc_txdescs[sc->sc_txlast].tfd_control |=
729 htole32(TFD_TxDMAIndicate);
730 STE_CDTXSYNC(sc, sc->sc_txlast,
731 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
732
733 /*
734 * Link up the new chain of descriptors to the
735 * last.
736 */
737 sc->sc_txdescs[olasttx].tfd_next =
738 htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
739 STE_CDTXSYNC(sc, olasttx,
740 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
741
742 /*
743 * Kick the transmit DMA logic. Note that since we're
744 * using auto-polling, reading the Tx desc pointer will
745 * give it the nudge it needs to get going.
746 */
747 if (bus_space_read_4(sc->sc_st, sc->sc_sh,
748 STE_TxDMAListPtr) == 0) {
749 bus_space_write_4(sc->sc_st, sc->sc_sh,
750 STE_DMACtrl, DC_TxDMAHalt);
751 ste_dmahalt_wait(sc);
752 bus_space_write_4(sc->sc_st, sc->sc_sh,
753 STE_TxDMAListPtr,
754 STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
755 bus_space_write_4(sc->sc_st, sc->sc_sh,
756 STE_DMACtrl, DC_TxDMAResume);
757 }
758
759 /* Set a watchdog timer in case the chip flakes out. */
760 ifp->if_timer = 5;
761 }
762 }
763
764 /*
765 * ste_watchdog: [ifnet interface function]
766 *
767 * Watchdog timer handler.
768 */
769 static void
770 ste_watchdog(struct ifnet *ifp)
771 {
772 struct ste_softc *sc = ifp->if_softc;
773
774 printf("%s: device timeout\n", device_xname(sc->sc_dev));
775 ifp->if_oerrors++;
776
777 ste_txintr(sc);
778 ste_rxintr(sc);
779 (void) ste_init(ifp);
780
781 /* Try to get more packets going. */
782 ste_start(ifp);
783 }
784
785 /*
786 * ste_ioctl: [ifnet interface function]
787 *
788 * Handle control requests from the operator.
789 */
790 static int
791 ste_ioctl(struct ifnet *ifp, u_long cmd, void *data)
792 {
793 struct ste_softc *sc = ifp->if_softc;
794 int s, error;
795
796 s = splnet();
797
798 error = ether_ioctl(ifp, cmd, data);
799 if (error == ENETRESET) {
800 /*
801 * Multicast list has changed; set the hardware filter
802 * accordingly.
803 */
804 if (ifp->if_flags & IFF_RUNNING)
805 ste_set_filter(sc);
806 error = 0;
807 }
808
809 /* Try to get more packets going. */
810 ste_start(ifp);
811
812 splx(s);
813 return (error);
814 }
815
816 /*
817 * ste_intr:
818 *
819 * Interrupt service routine.
820 */
821 static int
822 ste_intr(void *arg)
823 {
824 struct ste_softc *sc = arg;
825 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
826 uint16_t isr;
827 uint8_t txstat;
828 int wantinit;
829
830 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
831 IS_InterruptStatus) == 0)
832 return (0);
833
834 for (wantinit = 0; wantinit == 0;) {
835 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
836 if ((isr & sc->sc_IntEnable) == 0)
837 break;
838
839 /* Receive interrupts. */
840 if (isr & IE_RxDMAComplete)
841 ste_rxintr(sc);
842
843 /* Transmit interrupts. */
844 if (isr & (IE_TxDMAComplete|IE_TxComplete))
845 ste_txintr(sc);
846
847 /* Statistics overflow. */
848 if (isr & IE_UpdateStats)
849 ste_stats_update(sc);
850
851 /* Transmission errors. */
852 if (isr & IE_TxComplete) {
853 for (;;) {
854 txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
855 STE_TxStatus);
856 if ((txstat & TS_TxComplete) == 0)
857 break;
858 if (txstat & TS_TxUnderrun) {
859 sc->sc_txthresh += 32;
860 if (sc->sc_txthresh > 0x1ffc)
861 sc->sc_txthresh = 0x1ffc;
862 printf("%s: transmit underrun, new "
863 "threshold: %d bytes\n",
864 device_xname(sc->sc_dev),
865 sc->sc_txthresh);
866 ste_reset(sc, AC_TxReset | AC_DMA |
867 AC_FIFO | AC_Network);
868 ste_setthresh(sc);
869 bus_space_write_1(sc->sc_st, sc->sc_sh,
870 STE_TxDMAPollPeriod, 127);
871 ste_txrestart(sc,
872 bus_space_read_1(sc->sc_st,
873 sc->sc_sh, STE_TxFrameId));
874 }
875 if (txstat & TS_TxReleaseError) {
876 printf("%s: Tx FIFO release error\n",
877 device_xname(sc->sc_dev));
878 wantinit = 1;
879 }
880 if (txstat & TS_MaxCollisions) {
881 printf("%s: excessive collisions\n",
882 device_xname(sc->sc_dev));
883 wantinit = 1;
884 }
885 if (txstat & TS_TxStatusOverflow) {
886 printf("%s: status overflow\n",
887 device_xname(sc->sc_dev));
888 wantinit = 1;
889 }
890 bus_space_write_2(sc->sc_st, sc->sc_sh,
891 STE_TxStatus, 0);
892 }
893 }
894
895 /* Host interface errors. */
896 if (isr & IE_HostError) {
897 printf("%s: Host interface error\n",
898 device_xname(sc->sc_dev));
899 wantinit = 1;
900 }
901 }
902
903 if (wantinit)
904 ste_init(ifp);
905
906 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
907 sc->sc_IntEnable);
908
909 /* Try to get more packets going. */
910 ste_start(ifp);
911
912 return (1);
913 }
914
915 /*
916 * ste_txintr:
917 *
918 * Helper; handle transmit interrupts.
919 */
920 static void
921 ste_txintr(struct ste_softc *sc)
922 {
923 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
924 struct ste_descsoft *ds;
925 uint32_t control;
926 int i;
927
928 ifp->if_flags &= ~IFF_OACTIVE;
929
930 /*
931 * Go through our Tx list and free mbufs for those
932 * frames which have been transmitted.
933 */
934 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
935 i = STE_NEXTTX(i), sc->sc_txpending--) {
936 ds = &sc->sc_txsoft[i];
937
938 STE_CDTXSYNC(sc, i,
939 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
940
941 control = le32toh(sc->sc_txdescs[i].tfd_control);
942 if ((control & TFD_TxDMAComplete) == 0)
943 break;
944
945 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
946 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
947 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
948 m_freem(ds->ds_mbuf);
949 ds->ds_mbuf = NULL;
950 }
951
952 /* Update the dirty transmit buffer pointer. */
953 sc->sc_txdirty = i;
954
955 /*
956 * If there are no more pending transmissions, cancel the watchdog
957 * timer.
958 */
959 if (sc->sc_txpending == 0)
960 ifp->if_timer = 0;
961 }
962
963 /*
964 * ste_rxintr:
965 *
966 * Helper; handle receive interrupts.
967 */
968 static void
969 ste_rxintr(struct ste_softc *sc)
970 {
971 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
972 struct ste_descsoft *ds;
973 struct mbuf *m;
974 uint32_t status;
975 int i, len;
976
977 for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
978 ds = &sc->sc_rxsoft[i];
979
980 STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
981
982 status = le32toh(sc->sc_rxdescs[i].rfd_status);
983
984 if ((status & RFD_RxDMAComplete) == 0)
985 break;
986
987 /*
988 * If the packet had an error, simply recycle the
989 * buffer. Note, we count the error later in the
990 * periodic stats update.
991 */
992 if (status & RFD_RxFrameError) {
993 STE_INIT_RXDESC(sc, i);
994 continue;
995 }
996
997 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
998 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
999
1000 /*
1001 * No errors; receive the packet. Note, we have
1002 * configured the chip to not include the CRC at
1003 * the end of the packet.
1004 */
1005 len = RFD_RxDMAFrameLen(status);
1006
1007 /*
1008 * If the packet is small enough to fit in a
1009 * single header mbuf, allocate one and copy
1010 * the data into it. This greatly reduces
1011 * memory consumption when we receive lots
1012 * of small packets.
1013 *
1014 * Otherwise, we add a new buffer to the receive
1015 * chain. If this fails, we drop the packet and
1016 * recycle the old buffer.
1017 */
1018 if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
1019 MGETHDR(m, M_DONTWAIT, MT_DATA);
1020 if (m == NULL)
1021 goto dropit;
1022 m->m_data += 2;
1023 memcpy(mtod(m, void *),
1024 mtod(ds->ds_mbuf, void *), len);
1025 STE_INIT_RXDESC(sc, i);
1026 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1027 ds->ds_dmamap->dm_mapsize,
1028 BUS_DMASYNC_PREREAD);
1029 } else {
1030 m = ds->ds_mbuf;
1031 if (ste_add_rxbuf(sc, i) != 0) {
1032 dropit:
1033 ifp->if_ierrors++;
1034 STE_INIT_RXDESC(sc, i);
1035 bus_dmamap_sync(sc->sc_dmat,
1036 ds->ds_dmamap, 0,
1037 ds->ds_dmamap->dm_mapsize,
1038 BUS_DMASYNC_PREREAD);
1039 continue;
1040 }
1041 }
1042
1043 m->m_pkthdr.rcvif = ifp;
1044 m->m_pkthdr.len = m->m_len = len;
1045
1046 /*
1047 * Pass this up to any BPF listeners, but only
1048 * pass if up the stack if it's for us.
1049 */
1050 bpf_mtap(ifp, m);
1051
1052 /* Pass it on. */
1053 if_percpuq_enqueue(ifp->if_percpuq, m);
1054 }
1055
1056 /* Update the receive pointer. */
1057 sc->sc_rxptr = i;
1058 }
1059
1060 /*
1061 * ste_tick:
1062 *
1063 * One second timer, used to tick the MII.
1064 */
1065 static void
1066 ste_tick(void *arg)
1067 {
1068 struct ste_softc *sc = arg;
1069 int s;
1070
1071 s = splnet();
1072 mii_tick(&sc->sc_mii);
1073 ste_stats_update(sc);
1074 splx(s);
1075
1076 callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1077 }
1078
1079 /*
1080 * ste_stats_update:
1081 *
1082 * Read the ST-201 statistics counters.
1083 */
1084 static void
1085 ste_stats_update(struct ste_softc *sc)
1086 {
1087 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1088 bus_space_tag_t st = sc->sc_st;
1089 bus_space_handle_t sh = sc->sc_sh;
1090
1091 (void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
1092 (void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
1093
1094 (void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
1095 (void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
1096
1097 ifp->if_opackets +=
1098 (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
1099 ifp->if_ipackets +=
1100 (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
1101
1102 ifp->if_collisions +=
1103 (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
1104 (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
1105 (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
1106
1107 (void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
1108
1109 ifp->if_ierrors +=
1110 (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
1111
1112 ifp->if_oerrors +=
1113 (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
1114 (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
1115 bus_space_read_1(st, sh, STE_CarrierSenseErrors);
1116
1117 (void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
1118 (void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
1119 (void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
1120 (void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
1121 }
1122
1123 /*
1124 * ste_reset:
1125 *
1126 * Perform a soft reset on the ST-201.
1127 */
1128 static void
1129 ste_reset(struct ste_softc *sc, u_int32_t rstbits)
1130 {
1131 uint32_t ac;
1132 int i;
1133
1134 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
1135
1136 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
1137
1138 delay(50000);
1139
1140 for (i = 0; i < STE_TIMEOUT; i++) {
1141 delay(1000);
1142 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
1143 AC_ResetBusy) == 0)
1144 break;
1145 }
1146
1147 if (i == STE_TIMEOUT)
1148 printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
1149
1150 delay(1000);
1151 }
1152
1153 /*
1154 * ste_setthresh:
1155 *
1156 * set the various transmit threshold registers
1157 */
1158 static void
1159 ste_setthresh(struct ste_softc *sc)
1160 {
1161 /* set the TX threhold */
1162 bus_space_write_2(sc->sc_st, sc->sc_sh,
1163 STE_TxStartThresh, sc->sc_txthresh);
1164 /* Urgent threshold: set to sc_txthresh / 2 */
1165 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
1166 sc->sc_txthresh >> 6);
1167 /* Burst threshold: use default value (256 bytes) */
1168 }
1169
1170 /*
1171 * restart TX at the given frame ID in the transmitter ring
1172 */
1173 static void
1174 ste_txrestart(struct ste_softc *sc, u_int8_t id)
1175 {
1176 u_int32_t control;
1177
1178 STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1179 control = le32toh(sc->sc_txdescs[id].tfd_control);
1180 control &= ~TFD_TxDMAComplete;
1181 sc->sc_txdescs[id].tfd_control = htole32(control);
1182 STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1183
1184 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
1185 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
1186 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
1187 ste_dmahalt_wait(sc);
1188 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
1189 STE_CDTXADDR(sc, id));
1190 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
1191 }
1192
1193 /*
1194 * ste_init: [ ifnet interface function ]
1195 *
1196 * Initialize the interface. Must be called at splnet().
1197 */
1198 static int
1199 ste_init(struct ifnet *ifp)
1200 {
1201 struct ste_softc *sc = ifp->if_softc;
1202 bus_space_tag_t st = sc->sc_st;
1203 bus_space_handle_t sh = sc->sc_sh;
1204 struct ste_descsoft *ds;
1205 int i, error = 0;
1206
1207 /*
1208 * Cancel any pending I/O.
1209 */
1210 ste_stop(ifp, 0);
1211
1212 /*
1213 * Reset the chip to a known state.
1214 */
1215 ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
1216 AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
1217
1218 /*
1219 * Initialize the transmit descriptor ring.
1220 */
1221 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1222 sc->sc_txpending = 0;
1223 sc->sc_txdirty = 0;
1224 sc->sc_txlast = STE_NTXDESC - 1;
1225
1226 /*
1227 * Initialize the receive descriptor and receive job
1228 * descriptor rings.
1229 */
1230 for (i = 0; i < STE_NRXDESC; i++) {
1231 ds = &sc->sc_rxsoft[i];
1232 if (ds->ds_mbuf == NULL) {
1233 if ((error = ste_add_rxbuf(sc, i)) != 0) {
1234 printf("%s: unable to allocate or map rx "
1235 "buffer %d, error = %d\n",
1236 device_xname(sc->sc_dev), i, error);
1237 /*
1238 * XXX Should attempt to run with fewer receive
1239 * XXX buffers instead of just failing.
1240 */
1241 ste_rxdrain(sc);
1242 goto out;
1243 }
1244 } else
1245 STE_INIT_RXDESC(sc, i);
1246 }
1247 sc->sc_rxptr = 0;
1248
1249 /* Set the station address. */
1250 for (i = 0; i < ETHER_ADDR_LEN; i++)
1251 bus_space_write_1(st, sh, STE_StationAddress0 + 1,
1252 CLLADDR(ifp->if_sadl)[i]);
1253
1254 /* Set up the receive filter. */
1255 ste_set_filter(sc);
1256
1257 /*
1258 * Give the receive ring to the chip.
1259 */
1260 bus_space_write_4(st, sh, STE_RxDMAListPtr,
1261 STE_CDRXADDR(sc, sc->sc_rxptr));
1262
1263 /*
1264 * We defer giving the transmit ring to the chip until we
1265 * transmit the first packet.
1266 */
1267
1268 /*
1269 * Initialize the Tx auto-poll period. It's OK to make this number
1270 * large (127 is the max) -- we explicitly kick the transmit engine
1271 * when there's actually a packet. We are using auto-polling only
1272 * to make the interface to the transmit engine not suck.
1273 */
1274 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
1275
1276 /* ..and the Rx auto-poll period. */
1277 bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
1278
1279 /* Initialize the Tx start threshold. */
1280 ste_setthresh(sc);
1281
1282 /* Set the FIFO release threshold to 512 bytes. */
1283 bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
1284
1285 /* Set maximum packet size for VLAN. */
1286 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1287 bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN + 4);
1288 else
1289 bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN);
1290
1291 /*
1292 * Initialize the interrupt mask.
1293 */
1294 sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1295 IE_TxDMAComplete | IE_RxDMAComplete;
1296
1297 bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
1298 bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
1299
1300 /*
1301 * Start the receive DMA engine.
1302 */
1303 bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
1304
1305 /*
1306 * Initialize MacCtrl0 -- do it before setting the media,
1307 * as setting the media will actually program the register.
1308 */
1309 sc->sc_MacCtrl0 = MC0_IFSSelect(0);
1310 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1311 sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
1312
1313 /*
1314 * Set the current media.
1315 */
1316 if ((error = ether_mediachange(ifp)) != 0)
1317 goto out;
1318
1319 /*
1320 * Start the MAC.
1321 */
1322 bus_space_write_2(st, sh, STE_MacCtrl1,
1323 MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
1324
1325 /*
1326 * Start the one second MII clock.
1327 */
1328 callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1329
1330 /*
1331 * ...all done!
1332 */
1333 ifp->if_flags |= IFF_RUNNING;
1334 ifp->if_flags &= ~IFF_OACTIVE;
1335
1336 out:
1337 if (error)
1338 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1339 return (error);
1340 }
1341
1342 /*
1343 * ste_drain:
1344 *
1345 * Drain the receive queue.
1346 */
1347 static void
1348 ste_rxdrain(struct ste_softc *sc)
1349 {
1350 struct ste_descsoft *ds;
1351 int i;
1352
1353 for (i = 0; i < STE_NRXDESC; i++) {
1354 ds = &sc->sc_rxsoft[i];
1355 if (ds->ds_mbuf != NULL) {
1356 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1357 m_freem(ds->ds_mbuf);
1358 ds->ds_mbuf = NULL;
1359 }
1360 }
1361 }
1362
1363 /*
1364 * ste_stop: [ ifnet interface function ]
1365 *
1366 * Stop transmission on the interface.
1367 */
1368 static void
1369 ste_stop(struct ifnet *ifp, int disable)
1370 {
1371 struct ste_softc *sc = ifp->if_softc;
1372 struct ste_descsoft *ds;
1373 int i;
1374
1375 /*
1376 * Stop the one second clock.
1377 */
1378 callout_stop(&sc->sc_tick_ch);
1379
1380 /* Down the MII. */
1381 mii_down(&sc->sc_mii);
1382
1383 /*
1384 * Disable interrupts.
1385 */
1386 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
1387
1388 /*
1389 * Stop receiver, transmitter, and stats update.
1390 */
1391 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
1392 MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
1393
1394 /*
1395 * Stop the transmit and receive DMA.
1396 */
1397 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
1398 DC_RxDMAHalt | DC_TxDMAHalt);
1399 ste_dmahalt_wait(sc);
1400
1401 /*
1402 * Release any queued transmit buffers.
1403 */
1404 for (i = 0; i < STE_NTXDESC; i++) {
1405 ds = &sc->sc_txsoft[i];
1406 if (ds->ds_mbuf != NULL) {
1407 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1408 m_freem(ds->ds_mbuf);
1409 ds->ds_mbuf = NULL;
1410 }
1411 }
1412
1413 /*
1414 * Mark the interface down and cancel the watchdog timer.
1415 */
1416 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1417 ifp->if_timer = 0;
1418
1419 if (disable)
1420 ste_rxdrain(sc);
1421 }
1422
1423 static int
1424 ste_eeprom_wait(struct ste_softc *sc)
1425 {
1426 int i;
1427
1428 for (i = 0; i < STE_TIMEOUT; i++) {
1429 delay(1000);
1430 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
1431 EC_EepromBusy) == 0)
1432 return (0);
1433 }
1434 return (1);
1435 }
1436
1437 /*
1438 * ste_read_eeprom:
1439 *
1440 * Read data from the serial EEPROM.
1441 */
1442 static void
1443 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
1444 {
1445
1446 if (ste_eeprom_wait(sc))
1447 printf("%s: EEPROM failed to come ready\n",
1448 device_xname(sc->sc_dev));
1449
1450 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
1451 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
1452 if (ste_eeprom_wait(sc))
1453 printf("%s: EEPROM read timed out\n",
1454 device_xname(sc->sc_dev));
1455 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
1456 }
1457
1458 /*
1459 * ste_add_rxbuf:
1460 *
1461 * Add a receive buffer to the indicated descriptor.
1462 */
1463 static int
1464 ste_add_rxbuf(struct ste_softc *sc, int idx)
1465 {
1466 struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
1467 struct mbuf *m;
1468 int error;
1469
1470 MGETHDR(m, M_DONTWAIT, MT_DATA);
1471 if (m == NULL)
1472 return (ENOBUFS);
1473
1474 MCLGET(m, M_DONTWAIT);
1475 if ((m->m_flags & M_EXT) == 0) {
1476 m_freem(m);
1477 return (ENOBUFS);
1478 }
1479
1480 if (ds->ds_mbuf != NULL)
1481 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1482
1483 ds->ds_mbuf = m;
1484
1485 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1486 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1487 BUS_DMA_READ|BUS_DMA_NOWAIT);
1488 if (error) {
1489 printf("%s: can't load rx DMA map %d, error = %d\n",
1490 device_xname(sc->sc_dev), idx, error);
1491 panic("ste_add_rxbuf"); /* XXX */
1492 }
1493
1494 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1495 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1496
1497 STE_INIT_RXDESC(sc, idx);
1498
1499 return (0);
1500 }
1501
1502 /*
1503 * ste_set_filter:
1504 *
1505 * Set up the receive filter.
1506 */
1507 static void
1508 ste_set_filter(struct ste_softc *sc)
1509 {
1510 struct ethercom *ec = &sc->sc_ethercom;
1511 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1512 struct ether_multi *enm;
1513 struct ether_multistep step;
1514 uint32_t crc;
1515 uint16_t mchash[4];
1516
1517 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1518 if (ifp->if_flags & IFF_BROADCAST)
1519 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1520
1521 if (ifp->if_flags & IFF_PROMISC) {
1522 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1523 goto allmulti;
1524 }
1525
1526 /*
1527 * Set up the multicast address filter by passing all multicast
1528 * addresses through a CRC generator, and then using the low-order
1529 * 6 bits as an index into the 64 bit multicast hash table. The
1530 * high order bits select the register, while the rest of the bits
1531 * select the bit within the register.
1532 */
1533
1534 memset(mchash, 0, sizeof(mchash));
1535
1536 ETHER_FIRST_MULTI(step, ec, enm);
1537 if (enm == NULL)
1538 goto done;
1539
1540 while (enm != NULL) {
1541 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1542 /*
1543 * We must listen to a range of multicast addresses.
1544 * For now, just accept all multicasts, rather than
1545 * trying to set only those filter bits needed to match
1546 * the range. (At this time, the only use of address
1547 * ranges is for IP multicast routing, for which the
1548 * range is big enough to require all bits set.)
1549 */
1550 goto allmulti;
1551 }
1552
1553 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1554
1555 /* Just want the 6 least significant bits. */
1556 crc &= 0x3f;
1557
1558 /* Set the corresponding bit in the hash table. */
1559 mchash[crc >> 4] |= 1 << (crc & 0xf);
1560
1561 ETHER_NEXT_MULTI(step, enm);
1562 }
1563
1564 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1565
1566 ifp->if_flags &= ~IFF_ALLMULTI;
1567 goto done;
1568
1569 allmulti:
1570 ifp->if_flags |= IFF_ALLMULTI;
1571 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1572
1573 done:
1574 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1575 /*
1576 * Program the multicast hash table.
1577 */
1578 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
1579 mchash[0]);
1580 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
1581 mchash[1]);
1582 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
1583 mchash[2]);
1584 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
1585 mchash[3]);
1586 }
1587
1588 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
1589 sc->sc_ReceiveMode);
1590 }
1591
1592 /*
1593 * ste_mii_readreg: [mii interface function]
1594 *
1595 * Read a PHY register on the MII of the ST-201.
1596 */
1597 static int
1598 ste_mii_readreg(device_t self, int phy, int reg)
1599 {
1600
1601 return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
1602 }
1603
1604 /*
1605 * ste_mii_writereg: [mii interface function]
1606 *
1607 * Write a PHY register on the MII of the ST-201.
1608 */
1609 static void
1610 ste_mii_writereg(device_t self, int phy, int reg, int val)
1611 {
1612
1613 mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
1614 }
1615
1616 /*
1617 * ste_mii_statchg: [mii interface function]
1618 *
1619 * Callback from MII layer when media changes.
1620 */
1621 static void
1622 ste_mii_statchg(struct ifnet *ifp)
1623 {
1624 struct ste_softc *sc = ifp->if_softc;
1625
1626 if (sc->sc_mii.mii_media_active & IFM_FDX)
1627 sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
1628 else
1629 sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
1630
1631 /* XXX 802.1x flow-control? */
1632
1633 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
1634 }
1635
1636 /*
1637 * ste_mii_bitbang_read: [mii bit-bang interface function]
1638 *
1639 * Read the MII serial port for the MII bit-bang module.
1640 */
1641 static uint32_t
1642 ste_mii_bitbang_read(device_t self)
1643 {
1644 struct ste_softc *sc = device_private(self);
1645
1646 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
1647 }
1648
1649 /*
1650 * ste_mii_bitbang_write: [mii big-bang interface function]
1651 *
1652 * Write the MII serial port for the MII bit-bang module.
1653 */
1654 static void
1655 ste_mii_bitbang_write(device_t self, uint32_t val)
1656 {
1657 struct ste_softc *sc = device_private(self);
1658
1659 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
1660 }
1661