Home | History | Annotate | Line # | Download | only in pci
if_ste.c revision 1.48
      1 /*	$NetBSD: if_ste.c,v 1.48 2016/07/07 06:55:41 msaitoh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Device driver for the Sundance Tech. ST-201 10/100
     34  * Ethernet controller.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.48 2016/07/07 06:55:41 msaitoh Exp $");
     39 
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/callout.h>
     44 #include <sys/mbuf.h>
     45 #include <sys/malloc.h>
     46 #include <sys/kernel.h>
     47 #include <sys/socket.h>
     48 #include <sys/ioctl.h>
     49 #include <sys/errno.h>
     50 #include <sys/device.h>
     51 #include <sys/queue.h>
     52 
     53 #include <net/if.h>
     54 #include <net/if_dl.h>
     55 #include <net/if_media.h>
     56 #include <net/if_ether.h>
     57 
     58 #include <net/bpf.h>
     59 
     60 #include <sys/bus.h>
     61 #include <sys/intr.h>
     62 
     63 #include <dev/mii/mii.h>
     64 #include <dev/mii/miivar.h>
     65 #include <dev/mii/mii_bitbang.h>
     66 
     67 #include <dev/pci/pcireg.h>
     68 #include <dev/pci/pcivar.h>
     69 #include <dev/pci/pcidevs.h>
     70 
     71 #include <dev/pci/if_stereg.h>
     72 
     73 /*
     74  * Transmit descriptor list size.
     75  */
     76 #define	STE_NTXDESC		256
     77 #define	STE_NTXDESC_MASK	(STE_NTXDESC - 1)
     78 #define	STE_NEXTTX(x)		(((x) + 1) & STE_NTXDESC_MASK)
     79 
     80 /*
     81  * Receive descriptor list size.
     82  */
     83 #define	STE_NRXDESC		128
     84 #define	STE_NRXDESC_MASK	(STE_NRXDESC - 1)
     85 #define	STE_NEXTRX(x)		(((x) + 1) & STE_NRXDESC_MASK)
     86 
     87 /*
     88  * Control structures are DMA'd to the ST-201 chip.  We allocate them in
     89  * a single clump that maps to a single DMA segment to make several things
     90  * easier.
     91  */
     92 struct ste_control_data {
     93 	/*
     94 	 * The transmit descriptors.
     95 	 */
     96 	struct ste_tfd scd_txdescs[STE_NTXDESC];
     97 
     98 	/*
     99 	 * The receive descriptors.
    100 	 */
    101 	struct ste_rfd scd_rxdescs[STE_NRXDESC];
    102 };
    103 
    104 #define	STE_CDOFF(x)	offsetof(struct ste_control_data, x)
    105 #define	STE_CDTXOFF(x)	STE_CDOFF(scd_txdescs[(x)])
    106 #define	STE_CDRXOFF(x)	STE_CDOFF(scd_rxdescs[(x)])
    107 
    108 /*
    109  * Software state for transmit and receive jobs.
    110  */
    111 struct ste_descsoft {
    112 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
    113 	bus_dmamap_t ds_dmamap;		/* our DMA map */
    114 };
    115 
    116 /*
    117  * Software state per device.
    118  */
    119 struct ste_softc {
    120 	device_t sc_dev;		/* generic device information */
    121 	bus_space_tag_t sc_st;		/* bus space tag */
    122 	bus_space_handle_t sc_sh;	/* bus space handle */
    123 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    124 	struct ethercom sc_ethercom;	/* ethernet common data */
    125 
    126 	void *sc_ih;			/* interrupt cookie */
    127 
    128 	struct mii_data sc_mii;		/* MII/media information */
    129 
    130 	callout_t sc_tick_ch;		/* tick callout */
    131 
    132 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    133 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    134 
    135 	/*
    136 	 * Software state for transmit and receive descriptors.
    137 	 */
    138 	struct ste_descsoft sc_txsoft[STE_NTXDESC];
    139 	struct ste_descsoft sc_rxsoft[STE_NRXDESC];
    140 
    141 	/*
    142 	 * Control data structures.
    143 	 */
    144 	struct ste_control_data *sc_control_data;
    145 #define	sc_txdescs	sc_control_data->scd_txdescs
    146 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    147 
    148 	int	sc_txpending;		/* number of Tx requests pending */
    149 	int	sc_txdirty;		/* first dirty Tx descriptor */
    150 	int	sc_txlast;		/* last used Tx descriptor */
    151 
    152 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    153 
    154 	int	sc_txthresh;		/* Tx threshold */
    155 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
    156 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
    157 	uint16_t sc_MacCtrl0;		/* prototype MacCtrl0 register */
    158 	uint8_t	sc_ReceiveMode;		/* prototype ReceiveMode register */
    159 };
    160 
    161 #define	STE_CDTXADDR(sc, x)	((sc)->sc_cddma + STE_CDTXOFF((x)))
    162 #define	STE_CDRXADDR(sc, x)	((sc)->sc_cddma + STE_CDRXOFF((x)))
    163 
    164 #define	STE_CDTXSYNC(sc, x, ops)					\
    165 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    166 	    STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
    167 
    168 #define	STE_CDRXSYNC(sc, x, ops)					\
    169 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    170 	    STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
    171 
    172 #define	STE_INIT_RXDESC(sc, x)						\
    173 do {									\
    174 	struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
    175 	struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)];			\
    176 	struct mbuf *__m = __ds->ds_mbuf;				\
    177 									\
    178 	/*								\
    179 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    180 	 * so that the payload after the Ethernet header is aligned	\
    181 	 * to a 4-byte boundary.					\
    182 	 */								\
    183 	__m->m_data = __m->m_ext.ext_buf + 2;				\
    184 	__rfd->rfd_frag.frag_addr =					\
    185 	    htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2);		\
    186 	__rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST);	\
    187 	__rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x))));	\
    188 	__rfd->rfd_status = 0;						\
    189 	STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    190 } while (/*CONSTCOND*/0)
    191 
    192 #define STE_TIMEOUT 1000
    193 
    194 static void	ste_start(struct ifnet *);
    195 static void	ste_watchdog(struct ifnet *);
    196 static int	ste_ioctl(struct ifnet *, u_long, void *);
    197 static int	ste_init(struct ifnet *);
    198 static void	ste_stop(struct ifnet *, int);
    199 
    200 static bool	ste_shutdown(device_t, int);
    201 
    202 static void	ste_reset(struct ste_softc *, u_int32_t);
    203 static void	ste_setthresh(struct ste_softc *);
    204 static void	ste_txrestart(struct ste_softc *, u_int8_t);
    205 static void	ste_rxdrain(struct ste_softc *);
    206 static int	ste_add_rxbuf(struct ste_softc *, int);
    207 static void	ste_read_eeprom(struct ste_softc *, int, uint16_t *);
    208 static void	ste_tick(void *);
    209 
    210 static void	ste_stats_update(struct ste_softc *);
    211 
    212 static void	ste_set_filter(struct ste_softc *);
    213 
    214 static int	ste_intr(void *);
    215 static void	ste_txintr(struct ste_softc *);
    216 static void	ste_rxintr(struct ste_softc *);
    217 
    218 static int	ste_mii_readreg(device_t, int, int);
    219 static void	ste_mii_writereg(device_t, int, int, int);
    220 static void	ste_mii_statchg(struct ifnet *);
    221 
    222 static int	ste_match(device_t, cfdata_t, void *);
    223 static void	ste_attach(device_t, device_t, void *);
    224 
    225 int	ste_copy_small = 0;
    226 
    227 CFATTACH_DECL_NEW(ste, sizeof(struct ste_softc),
    228     ste_match, ste_attach, NULL, NULL);
    229 
    230 static uint32_t ste_mii_bitbang_read(device_t);
    231 static void	ste_mii_bitbang_write(device_t, uint32_t);
    232 
    233 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
    234 	ste_mii_bitbang_read,
    235 	ste_mii_bitbang_write,
    236 	{
    237 		PC_MgmtData,		/* MII_BIT_MDO */
    238 		PC_MgmtData,		/* MII_BIT_MDI */
    239 		PC_MgmtClk,		/* MII_BIT_MDC */
    240 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
    241 		0,			/* MII_BIT_DIR_PHY_HOST */
    242 	}
    243 };
    244 
    245 /*
    246  * Devices supported by this driver.
    247  */
    248 static const struct ste_product {
    249 	pci_vendor_id_t		ste_vendor;
    250 	pci_product_id_t	ste_product;
    251 	const char		*ste_name;
    252 } ste_products[] = {
    253 	{ PCI_VENDOR_SUNDANCETI, 	PCI_PRODUCT_SUNDANCETI_IP100A,
    254 	  "IC Plus Corp. IP00A 10/100 Fast Ethernet Adapter" },
    255 
    256 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST201,
    257 	  "Sundance ST-201 10/100 Ethernet" },
    258 
    259 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL1002,
    260 	  "D-Link DL-1002 10/100 Ethernet" },
    261 
    262 	{ 0,				0,
    263 	  NULL },
    264 };
    265 
    266 static const struct ste_product *
    267 ste_lookup(const struct pci_attach_args *pa)
    268 {
    269 	const struct ste_product *sp;
    270 
    271 	for (sp = ste_products; sp->ste_name != NULL; sp++) {
    272 		if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
    273 		    PCI_PRODUCT(pa->pa_id) == sp->ste_product)
    274 			return (sp);
    275 	}
    276 	return (NULL);
    277 }
    278 
    279 static int
    280 ste_match(device_t parent, cfdata_t cf, void *aux)
    281 {
    282 	struct pci_attach_args *pa = aux;
    283 
    284 	if (ste_lookup(pa) != NULL)
    285 		return (1);
    286 
    287 	return (0);
    288 }
    289 
    290 static void
    291 ste_attach(device_t parent, device_t self, void *aux)
    292 {
    293 	struct ste_softc *sc = device_private(self);
    294 	struct pci_attach_args *pa = aux;
    295 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    296 	pci_chipset_tag_t pc = pa->pa_pc;
    297 	pci_intr_handle_t ih;
    298 	const char *intrstr = NULL;
    299 	bus_space_tag_t iot, memt;
    300 	bus_space_handle_t ioh, memh;
    301 	bus_dma_segment_t seg;
    302 	int ioh_valid, memh_valid;
    303 	int i, rseg, error;
    304 	const struct ste_product *sp;
    305 	uint8_t enaddr[ETHER_ADDR_LEN];
    306 	uint16_t myea[ETHER_ADDR_LEN / 2];
    307 	char intrbuf[PCI_INTRSTR_LEN];
    308 
    309 	sc->sc_dev = self;
    310 
    311 	callout_init(&sc->sc_tick_ch, 0);
    312 
    313 	sp = ste_lookup(pa);
    314 	if (sp == NULL) {
    315 		printf("\n");
    316 		panic("ste_attach: impossible");
    317 	}
    318 
    319 	printf(": %s\n", sp->ste_name);
    320 
    321 	/*
    322 	 * Map the device.
    323 	 */
    324 	ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
    325 	    PCI_MAPREG_TYPE_IO, 0,
    326 	    &iot, &ioh, NULL, NULL) == 0);
    327 	memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
    328 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    329 	    &memt, &memh, NULL, NULL) == 0);
    330 
    331 	if (memh_valid) {
    332 		sc->sc_st = memt;
    333 		sc->sc_sh = memh;
    334 	} else if (ioh_valid) {
    335 		sc->sc_st = iot;
    336 		sc->sc_sh = ioh;
    337 	} else {
    338 		aprint_error_dev(self, "unable to map device registers\n");
    339 		return;
    340 	}
    341 
    342 	sc->sc_dmat = pa->pa_dmat;
    343 
    344 	/* Enable bus mastering. */
    345 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    346 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    347 	    PCI_COMMAND_MASTER_ENABLE);
    348 
    349 	/* power up chip */
    350 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
    351 	    NULL)) && error != EOPNOTSUPP) {
    352 		aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
    353 		return;
    354 	}
    355 
    356 	/*
    357 	 * Map and establish our interrupt.
    358 	 */
    359 	if (pci_intr_map(pa, &ih)) {
    360 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
    361 		return;
    362 	}
    363 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    364 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
    365 	if (sc->sc_ih == NULL) {
    366 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
    367 		if (intrstr != NULL)
    368 			aprint_error(" at %s", intrstr);
    369 		aprint_error("\n");
    370 		return;
    371 	}
    372 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
    373 
    374 	/*
    375 	 * Allocate the control data structures, and create and load the
    376 	 * DMA map for it.
    377 	 */
    378 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    379 	    sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    380 	    0)) != 0) {
    381 		aprint_error_dev(sc->sc_dev,
    382 		    "unable to allocate control data, error = %d\n", error);
    383 		goto fail_0;
    384 	}
    385 
    386 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    387 	    sizeof(struct ste_control_data), (void **)&sc->sc_control_data,
    388 	    BUS_DMA_COHERENT)) != 0) {
    389 		aprint_error_dev(sc->sc_dev,
    390 		    "unable to map control data, error = %d\n", error);
    391 		goto fail_1;
    392 	}
    393 
    394 	if ((error = bus_dmamap_create(sc->sc_dmat,
    395 	    sizeof(struct ste_control_data), 1,
    396 	    sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    397 		aprint_error_dev(sc->sc_dev,
    398 		    "unable to create control data DMA map, error = %d\n",
    399 		    error);
    400 		goto fail_2;
    401 	}
    402 
    403 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    404 	    sc->sc_control_data, sizeof(struct ste_control_data), NULL,
    405 	    0)) != 0) {
    406 		aprint_error_dev(sc->sc_dev,
    407 		    "unable to load control data DMA map, error = %d\n",
    408 		    error);
    409 		goto fail_3;
    410 	}
    411 
    412 	/*
    413 	 * Create the transmit buffer DMA maps.
    414 	 */
    415 	for (i = 0; i < STE_NTXDESC; i++) {
    416 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    417 		    STE_NTXFRAGS, MCLBYTES, 0, 0,
    418 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
    419 			aprint_error_dev(sc->sc_dev,
    420 			    "unable to create tx DMA map %d, error = %d\n", i,
    421 			    error);
    422 			goto fail_4;
    423 		}
    424 	}
    425 
    426 	/*
    427 	 * Create the receive buffer DMA maps.
    428 	 */
    429 	for (i = 0; i < STE_NRXDESC; i++) {
    430 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    431 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
    432 			aprint_error_dev(sc->sc_dev,
    433 			    "unable to create rx DMA map %d, error = %d\n", i,
    434 			    error);
    435 			goto fail_5;
    436 		}
    437 		sc->sc_rxsoft[i].ds_mbuf = NULL;
    438 	}
    439 
    440 	/*
    441 	 * Reset the chip to a known state.
    442 	 */
    443 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
    444 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
    445 
    446 	/*
    447 	 * Read the Ethernet address from the EEPROM.
    448 	 */
    449 	for (i = 0; i < 3; i++) {
    450 		ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
    451 		myea[i] = le16toh(myea[i]);
    452 	}
    453 	memcpy(enaddr, myea, sizeof(enaddr));
    454 
    455 	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
    456 	    ether_sprintf(enaddr));
    457 
    458 	/*
    459 	 * Initialize our media structures and probe the MII.
    460 	 */
    461 	sc->sc_mii.mii_ifp = ifp;
    462 	sc->sc_mii.mii_readreg = ste_mii_readreg;
    463 	sc->sc_mii.mii_writereg = ste_mii_writereg;
    464 	sc->sc_mii.mii_statchg = ste_mii_statchg;
    465 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
    466 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
    467 	    ether_mediastatus);
    468 	mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    469 	    MII_OFFSET_ANY, 0);
    470 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    471 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0,NULL);
    472 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    473 	} else
    474 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    475 
    476 	ifp = &sc->sc_ethercom.ec_if;
    477 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    478 	ifp->if_softc = sc;
    479 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    480 	ifp->if_ioctl = ste_ioctl;
    481 	ifp->if_start = ste_start;
    482 	ifp->if_watchdog = ste_watchdog;
    483 	ifp->if_init = ste_init;
    484 	ifp->if_stop = ste_stop;
    485 	IFQ_SET_READY(&ifp->if_snd);
    486 
    487 	/*
    488 	 * Default the transmit threshold to 128 bytes.
    489 	 */
    490 	sc->sc_txthresh = 128;
    491 
    492 	/*
    493 	 * Disable MWI if the PCI layer tells us to.
    494 	 */
    495 	sc->sc_DMACtrl = 0;
    496 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
    497 		sc->sc_DMACtrl |= DC_MWIDisable;
    498 
    499 	/*
    500 	 * We can support 802.1Q VLAN-sized frames.
    501 	 */
    502 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    503 
    504 	/*
    505 	 * Attach the interface.
    506 	 */
    507 	if_attach(ifp);
    508 	ether_ifattach(ifp, enaddr);
    509 
    510 	/*
    511 	 * Make sure the interface is shutdown during reboot.
    512 	 */
    513 	if (pmf_device_register1(self, NULL, NULL, ste_shutdown))
    514 		pmf_class_network_register(self, ifp);
    515 	else
    516 		aprint_error_dev(self, "couldn't establish power handler\n");
    517 
    518 	return;
    519 
    520 	/*
    521 	 * Free any resources we've allocated during the failed attach
    522 	 * attempt.  Do this in reverse order and fall through.
    523 	 */
    524  fail_5:
    525 	for (i = 0; i < STE_NRXDESC; i++) {
    526 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
    527 			bus_dmamap_destroy(sc->sc_dmat,
    528 			    sc->sc_rxsoft[i].ds_dmamap);
    529 	}
    530  fail_4:
    531 	for (i = 0; i < STE_NTXDESC; i++) {
    532 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
    533 			bus_dmamap_destroy(sc->sc_dmat,
    534 			    sc->sc_txsoft[i].ds_dmamap);
    535 	}
    536 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    537  fail_3:
    538 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    539  fail_2:
    540 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    541 	    sizeof(struct ste_control_data));
    542  fail_1:
    543 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    544  fail_0:
    545 	return;
    546 }
    547 
    548 /*
    549  * ste_shutdown:
    550  *
    551  *	Make sure the interface is stopped at reboot time.
    552  */
    553 static bool
    554 ste_shutdown(device_t self, int howto)
    555 {
    556 	struct ste_softc *sc;
    557 
    558 	sc = device_private(self);
    559 	ste_stop(&sc->sc_ethercom.ec_if, 1);
    560 
    561 	return true;
    562 }
    563 
    564 static void
    565 ste_dmahalt_wait(struct ste_softc *sc)
    566 {
    567 	int i;
    568 
    569 	for (i = 0; i < STE_TIMEOUT; i++) {
    570 		delay(2);
    571 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
    572 		     DC_DMAHaltBusy) == 0)
    573 			break;
    574 	}
    575 
    576 	if (i == STE_TIMEOUT)
    577 		printf("%s: DMA halt timed out\n", device_xname(sc->sc_dev));
    578 }
    579 
    580 /*
    581  * ste_start:		[ifnet interface function]
    582  *
    583  *	Start packet transmission on the interface.
    584  */
    585 static void
    586 ste_start(struct ifnet *ifp)
    587 {
    588 	struct ste_softc *sc = ifp->if_softc;
    589 	struct mbuf *m0, *m;
    590 	struct ste_descsoft *ds;
    591 	struct ste_tfd *tfd;
    592 	bus_dmamap_t dmamap;
    593 	int error, olasttx, nexttx, opending, seg, totlen;
    594 
    595 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    596 		return;
    597 
    598 	/*
    599 	 * Remember the previous number of pending transmissions
    600 	 * and the current last descriptor in the list.
    601 	 */
    602 	opending = sc->sc_txpending;
    603 	olasttx = sc->sc_txlast;
    604 
    605 	/*
    606 	 * Loop through the send queue, setting up transmit descriptors
    607 	 * until we drain the queue, or use up all available transmit
    608 	 * descriptors.
    609 	 */
    610 	while (sc->sc_txpending < STE_NTXDESC) {
    611 		/*
    612 		 * Grab a packet off the queue.
    613 		 */
    614 		IFQ_POLL(&ifp->if_snd, m0);
    615 		if (m0 == NULL)
    616 			break;
    617 		m = NULL;
    618 
    619 		/*
    620 		 * Get the last and next available transmit descriptor.
    621 		 */
    622 		nexttx = STE_NEXTTX(sc->sc_txlast);
    623 		tfd = &sc->sc_txdescs[nexttx];
    624 		ds = &sc->sc_txsoft[nexttx];
    625 
    626 		dmamap = ds->ds_dmamap;
    627 
    628 		/*
    629 		 * Load the DMA map.  If this fails, the packet either
    630 		 * didn't fit in the alloted number of segments, or we
    631 		 * were short on resources.  In this case, we'll copy
    632 		 * and try again.
    633 		 */
    634 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    635 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
    636 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    637 			if (m == NULL) {
    638 				printf("%s: unable to allocate Tx mbuf\n",
    639 				    device_xname(sc->sc_dev));
    640 				break;
    641 			}
    642 			if (m0->m_pkthdr.len > MHLEN) {
    643 				MCLGET(m, M_DONTWAIT);
    644 				if ((m->m_flags & M_EXT) == 0) {
    645 					printf("%s: unable to allocate Tx "
    646 					    "cluster\n",
    647 					    device_xname(sc->sc_dev));
    648 					m_freem(m);
    649 					break;
    650 				}
    651 			}
    652 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
    653 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    654 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    655 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
    656 			if (error) {
    657 				printf("%s: unable to load Tx buffer, "
    658 				    "error = %d\n", device_xname(sc->sc_dev),
    659 				    error);
    660 				break;
    661 			}
    662 		}
    663 
    664 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    665 		if (m != NULL) {
    666 			m_freem(m0);
    667 			m0 = m;
    668 		}
    669 
    670 		/*
    671 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    672 		 */
    673 
    674 		/* Sync the DMA map. */
    675 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    676 		    BUS_DMASYNC_PREWRITE);
    677 
    678 		/* Initialize the fragment list. */
    679 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
    680 			tfd->tfd_frags[seg].frag_addr =
    681 			    htole32(dmamap->dm_segs[seg].ds_addr);
    682 			tfd->tfd_frags[seg].frag_len =
    683 			    htole32(dmamap->dm_segs[seg].ds_len);
    684 			totlen += dmamap->dm_segs[seg].ds_len;
    685 		}
    686 		tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
    687 
    688 		/* Initialize the descriptor. */
    689 		tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
    690 		tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
    691 
    692 		/* Sync the descriptor. */
    693 		STE_CDTXSYNC(sc, nexttx,
    694 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    695 
    696 		/*
    697 		 * Store a pointer to the packet so we can free it later,
    698 		 * and remember what txdirty will be once the packet is
    699 		 * done.
    700 		 */
    701 		ds->ds_mbuf = m0;
    702 
    703 		/* Advance the tx pointer. */
    704 		sc->sc_txpending++;
    705 		sc->sc_txlast = nexttx;
    706 
    707 		/*
    708 		 * Pass the packet to any BPF listeners.
    709 		 */
    710 		bpf_mtap(ifp, m0);
    711 	}
    712 
    713 	if (sc->sc_txpending == STE_NTXDESC) {
    714 		/* No more slots left; notify upper layer. */
    715 		ifp->if_flags |= IFF_OACTIVE;
    716 	}
    717 
    718 	if (sc->sc_txpending != opending) {
    719 		/*
    720 		 * We enqueued packets.  If the transmitter was idle,
    721 		 * reset the txdirty pointer.
    722 		 */
    723 		if (opending == 0)
    724 			sc->sc_txdirty = STE_NEXTTX(olasttx);
    725 
    726 		/*
    727 		 * Cause a descriptor interrupt to happen on the
    728 		 * last packet we enqueued, and also cause the
    729 		 * DMA engine to wait after is has finished processing
    730 		 * it.
    731 		 */
    732 		sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
    733 		sc->sc_txdescs[sc->sc_txlast].tfd_control |=
    734 		    htole32(TFD_TxDMAIndicate);
    735 		STE_CDTXSYNC(sc, sc->sc_txlast,
    736 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    737 
    738 		/*
    739 		 * Link up the new chain of descriptors to the
    740 		 * last.
    741 		 */
    742 		sc->sc_txdescs[olasttx].tfd_next =
    743 		    htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
    744 		STE_CDTXSYNC(sc, olasttx,
    745 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    746 
    747 		/*
    748 		 * Kick the transmit DMA logic.  Note that since we're
    749 		 * using auto-polling, reading the Tx desc pointer will
    750 		 * give it the nudge it needs to get going.
    751 		 */
    752 		if (bus_space_read_4(sc->sc_st, sc->sc_sh,
    753 		    STE_TxDMAListPtr) == 0) {
    754 			bus_space_write_4(sc->sc_st, sc->sc_sh,
    755 			    STE_DMACtrl, DC_TxDMAHalt);
    756 			ste_dmahalt_wait(sc);
    757 			bus_space_write_4(sc->sc_st, sc->sc_sh,
    758 			    STE_TxDMAListPtr,
    759 			    STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
    760 			bus_space_write_4(sc->sc_st, sc->sc_sh,
    761 			    STE_DMACtrl, DC_TxDMAResume);
    762 		}
    763 
    764 		/* Set a watchdog timer in case the chip flakes out. */
    765 		ifp->if_timer = 5;
    766 	}
    767 }
    768 
    769 /*
    770  * ste_watchdog:	[ifnet interface function]
    771  *
    772  *	Watchdog timer handler.
    773  */
    774 static void
    775 ste_watchdog(struct ifnet *ifp)
    776 {
    777 	struct ste_softc *sc = ifp->if_softc;
    778 
    779 	printf("%s: device timeout\n", device_xname(sc->sc_dev));
    780 	ifp->if_oerrors++;
    781 
    782 	ste_txintr(sc);
    783 	ste_rxintr(sc);
    784 	(void) ste_init(ifp);
    785 
    786 	/* Try to get more packets going. */
    787 	ste_start(ifp);
    788 }
    789 
    790 /*
    791  * ste_ioctl:		[ifnet interface function]
    792  *
    793  *	Handle control requests from the operator.
    794  */
    795 static int
    796 ste_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    797 {
    798 	struct ste_softc *sc = ifp->if_softc;
    799 	int s, error;
    800 
    801 	s = splnet();
    802 
    803 	error = ether_ioctl(ifp, cmd, data);
    804 	if (error == ENETRESET) {
    805 		/*
    806 		 * Multicast list has changed; set the hardware filter
    807 		 * accordingly.
    808 		 */
    809 		if (ifp->if_flags & IFF_RUNNING)
    810 			ste_set_filter(sc);
    811 		error = 0;
    812 	}
    813 
    814 	/* Try to get more packets going. */
    815 	ste_start(ifp);
    816 
    817 	splx(s);
    818 	return (error);
    819 }
    820 
    821 /*
    822  * ste_intr:
    823  *
    824  *	Interrupt service routine.
    825  */
    826 static int
    827 ste_intr(void *arg)
    828 {
    829 	struct ste_softc *sc = arg;
    830 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    831 	uint16_t isr;
    832 	uint8_t txstat;
    833 	int wantinit;
    834 
    835 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
    836 	     IS_InterruptStatus) == 0)
    837 		return (0);
    838 
    839 	for (wantinit = 0; wantinit == 0;) {
    840 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
    841 		if ((isr & sc->sc_IntEnable) == 0)
    842 			break;
    843 
    844 		/* Receive interrupts. */
    845 		if (isr & IE_RxDMAComplete)
    846 			ste_rxintr(sc);
    847 
    848 		/* Transmit interrupts. */
    849 		if (isr & (IE_TxDMAComplete|IE_TxComplete))
    850 			ste_txintr(sc);
    851 
    852 		/* Statistics overflow. */
    853 		if (isr & IE_UpdateStats)
    854 			ste_stats_update(sc);
    855 
    856 		/* Transmission errors. */
    857 		if (isr & IE_TxComplete) {
    858 			for (;;) {
    859 				txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
    860 				    STE_TxStatus);
    861 				if ((txstat & TS_TxComplete) == 0)
    862 					break;
    863 				if (txstat & TS_TxUnderrun) {
    864 					sc->sc_txthresh += 32;
    865 					if (sc->sc_txthresh > 0x1ffc)
    866 						sc->sc_txthresh = 0x1ffc;
    867 					printf("%s: transmit underrun, new "
    868 					    "threshold: %d bytes\n",
    869 					    device_xname(sc->sc_dev),
    870 					    sc->sc_txthresh);
    871 					ste_reset(sc, AC_TxReset | AC_DMA |
    872 					    AC_FIFO | AC_Network);
    873 					ste_setthresh(sc);
    874 					bus_space_write_1(sc->sc_st, sc->sc_sh,
    875 					    STE_TxDMAPollPeriod, 127);
    876 					ste_txrestart(sc,
    877 					    bus_space_read_1(sc->sc_st,
    878 						sc->sc_sh, STE_TxFrameId));
    879 				}
    880 				if (txstat & TS_TxReleaseError) {
    881 					printf("%s: Tx FIFO release error\n",
    882 					    device_xname(sc->sc_dev));
    883 					wantinit = 1;
    884 				}
    885 				if (txstat & TS_MaxCollisions) {
    886 					printf("%s: excessive collisions\n",
    887 					    device_xname(sc->sc_dev));
    888 					wantinit = 1;
    889 				}
    890 				if (txstat & TS_TxStatusOverflow) {
    891 					printf("%s: status overflow\n",
    892 					    device_xname(sc->sc_dev));
    893 					wantinit = 1;
    894 				}
    895 				bus_space_write_2(sc->sc_st, sc->sc_sh,
    896 				    STE_TxStatus, 0);
    897 			}
    898 		}
    899 
    900 		/* Host interface errors. */
    901 		if (isr & IE_HostError) {
    902 			printf("%s: Host interface error\n",
    903 			    device_xname(sc->sc_dev));
    904 			wantinit = 1;
    905 		}
    906 	}
    907 
    908 	if (wantinit)
    909 		ste_init(ifp);
    910 
    911 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
    912 	    sc->sc_IntEnable);
    913 
    914 	/* Try to get more packets going. */
    915 	ste_start(ifp);
    916 
    917 	return (1);
    918 }
    919 
    920 /*
    921  * ste_txintr:
    922  *
    923  *	Helper; handle transmit interrupts.
    924  */
    925 static void
    926 ste_txintr(struct ste_softc *sc)
    927 {
    928 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    929 	struct ste_descsoft *ds;
    930 	uint32_t control;
    931 	int i;
    932 
    933 	ifp->if_flags &= ~IFF_OACTIVE;
    934 
    935 	/*
    936 	 * Go through our Tx list and free mbufs for those
    937 	 * frames which have been transmitted.
    938 	 */
    939 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
    940 	     i = STE_NEXTTX(i), sc->sc_txpending--) {
    941 		ds = &sc->sc_txsoft[i];
    942 
    943 		STE_CDTXSYNC(sc, i,
    944 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    945 
    946 		control = le32toh(sc->sc_txdescs[i].tfd_control);
    947 		if ((control & TFD_TxDMAComplete) == 0)
    948 			break;
    949 
    950 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
    951 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    952 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
    953 		m_freem(ds->ds_mbuf);
    954 		ds->ds_mbuf = NULL;
    955 	}
    956 
    957 	/* Update the dirty transmit buffer pointer. */
    958 	sc->sc_txdirty = i;
    959 
    960 	/*
    961 	 * If there are no more pending transmissions, cancel the watchdog
    962 	 * timer.
    963 	 */
    964 	if (sc->sc_txpending == 0)
    965 		ifp->if_timer = 0;
    966 }
    967 
    968 /*
    969  * ste_rxintr:
    970  *
    971  *	Helper; handle receive interrupts.
    972  */
    973 static void
    974 ste_rxintr(struct ste_softc *sc)
    975 {
    976 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    977 	struct ste_descsoft *ds;
    978 	struct mbuf *m;
    979 	uint32_t status;
    980 	int i, len;
    981 
    982 	for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
    983 		ds = &sc->sc_rxsoft[i];
    984 
    985 		STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    986 
    987 		status = le32toh(sc->sc_rxdescs[i].rfd_status);
    988 
    989 		if ((status & RFD_RxDMAComplete) == 0)
    990 			break;
    991 
    992 		/*
    993 		 * If the packet had an error, simply recycle the
    994 		 * buffer.  Note, we count the error later in the
    995 		 * periodic stats update.
    996 		 */
    997 		if (status & RFD_RxFrameError) {
    998 			STE_INIT_RXDESC(sc, i);
    999 			continue;
   1000 		}
   1001 
   1002 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1003 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1004 
   1005 		/*
   1006 		 * No errors; receive the packet.  Note, we have
   1007 		 * configured the chip to not include the CRC at
   1008 		 * the end of the packet.
   1009 		 */
   1010 		len = RFD_RxDMAFrameLen(status);
   1011 
   1012 		/*
   1013 		 * If the packet is small enough to fit in a
   1014 		 * single header mbuf, allocate one and copy
   1015 		 * the data into it.  This greatly reduces
   1016 		 * memory consumption when we receive lots
   1017 		 * of small packets.
   1018 		 *
   1019 		 * Otherwise, we add a new buffer to the receive
   1020 		 * chain.  If this fails, we drop the packet and
   1021 		 * recycle the old buffer.
   1022 		 */
   1023 		if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
   1024 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1025 			if (m == NULL)
   1026 				goto dropit;
   1027 			m->m_data += 2;
   1028 			memcpy(mtod(m, void *),
   1029 			    mtod(ds->ds_mbuf, void *), len);
   1030 			STE_INIT_RXDESC(sc, i);
   1031 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1032 			    ds->ds_dmamap->dm_mapsize,
   1033 			    BUS_DMASYNC_PREREAD);
   1034 		} else {
   1035 			m = ds->ds_mbuf;
   1036 			if (ste_add_rxbuf(sc, i) != 0) {
   1037  dropit:
   1038 				ifp->if_ierrors++;
   1039 				STE_INIT_RXDESC(sc, i);
   1040 				bus_dmamap_sync(sc->sc_dmat,
   1041 				    ds->ds_dmamap, 0,
   1042 				    ds->ds_dmamap->dm_mapsize,
   1043 				    BUS_DMASYNC_PREREAD);
   1044 				continue;
   1045 			}
   1046 		}
   1047 
   1048 		m_set_rcvif(m, ifp);
   1049 		m->m_pkthdr.len = m->m_len = len;
   1050 
   1051 		/*
   1052 		 * Pass this up to any BPF listeners, but only
   1053 		 * pass if up the stack if it's for us.
   1054 		 */
   1055 		bpf_mtap(ifp, m);
   1056 
   1057 		/* Pass it on. */
   1058 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1059 	}
   1060 
   1061 	/* Update the receive pointer. */
   1062 	sc->sc_rxptr = i;
   1063 }
   1064 
   1065 /*
   1066  * ste_tick:
   1067  *
   1068  *	One second timer, used to tick the MII.
   1069  */
   1070 static void
   1071 ste_tick(void *arg)
   1072 {
   1073 	struct ste_softc *sc = arg;
   1074 	int s;
   1075 
   1076 	s = splnet();
   1077 	mii_tick(&sc->sc_mii);
   1078 	ste_stats_update(sc);
   1079 	splx(s);
   1080 
   1081 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
   1082 }
   1083 
   1084 /*
   1085  * ste_stats_update:
   1086  *
   1087  *	Read the ST-201 statistics counters.
   1088  */
   1089 static void
   1090 ste_stats_update(struct ste_softc *sc)
   1091 {
   1092 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1093 	bus_space_tag_t st = sc->sc_st;
   1094 	bus_space_handle_t sh = sc->sc_sh;
   1095 
   1096 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
   1097 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
   1098 
   1099 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
   1100 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
   1101 
   1102 	ifp->if_opackets +=
   1103 	    (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
   1104 	ifp->if_ipackets +=
   1105 	    (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
   1106 
   1107 	ifp->if_collisions +=
   1108 	    (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
   1109 	    (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
   1110 	    (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
   1111 
   1112 	(void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
   1113 
   1114 	ifp->if_ierrors +=
   1115 	    (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
   1116 
   1117 	ifp->if_oerrors +=
   1118 	    (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
   1119 	    (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
   1120 	    bus_space_read_1(st, sh, STE_CarrierSenseErrors);
   1121 
   1122 	(void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
   1123 	(void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
   1124 	(void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
   1125 	(void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
   1126 }
   1127 
   1128 /*
   1129  * ste_reset:
   1130  *
   1131  *	Perform a soft reset on the ST-201.
   1132  */
   1133 static void
   1134 ste_reset(struct ste_softc *sc, u_int32_t rstbits)
   1135 {
   1136 	uint32_t ac;
   1137 	int i;
   1138 
   1139 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
   1140 
   1141 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
   1142 
   1143 	delay(50000);
   1144 
   1145 	for (i = 0; i < STE_TIMEOUT; i++) {
   1146 		delay(1000);
   1147 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
   1148 		     AC_ResetBusy) == 0)
   1149 			break;
   1150 	}
   1151 
   1152 	if (i == STE_TIMEOUT)
   1153 		printf("%s: reset failed to complete\n",
   1154 		    device_xname(sc->sc_dev));
   1155 
   1156 	delay(1000);
   1157 }
   1158 
   1159 /*
   1160  * ste_setthresh:
   1161  *
   1162  * 	set the various transmit threshold registers
   1163  */
   1164 static void
   1165 ste_setthresh(struct ste_softc *sc)
   1166 {
   1167 	/* set the TX threhold */
   1168 	bus_space_write_2(sc->sc_st, sc->sc_sh,
   1169 	    STE_TxStartThresh, sc->sc_txthresh);
   1170 	/* Urgent threshold: set to sc_txthresh / 2 */
   1171 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
   1172 	    sc->sc_txthresh >> 6);
   1173 	/* Burst threshold: use default value (256 bytes) */
   1174 }
   1175 
   1176 /*
   1177  * restart TX at the given frame ID in the transmitter ring
   1178  */
   1179 static void
   1180 ste_txrestart(struct ste_softc *sc, u_int8_t id)
   1181 {
   1182 	u_int32_t control;
   1183 
   1184 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1185 	control = le32toh(sc->sc_txdescs[id].tfd_control);
   1186 	control &= ~TFD_TxDMAComplete;
   1187 	sc->sc_txdescs[id].tfd_control = htole32(control);
   1188 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1189 
   1190 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
   1191 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
   1192 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
   1193 	ste_dmahalt_wait(sc);
   1194 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
   1195 	    STE_CDTXADDR(sc, id));
   1196 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
   1197 }
   1198 
   1199 /*
   1200  * ste_init:		[ ifnet interface function ]
   1201  *
   1202  *	Initialize the interface.  Must be called at splnet().
   1203  */
   1204 static int
   1205 ste_init(struct ifnet *ifp)
   1206 {
   1207 	struct ste_softc *sc = ifp->if_softc;
   1208 	bus_space_tag_t st = sc->sc_st;
   1209 	bus_space_handle_t sh = sc->sc_sh;
   1210 	struct ste_descsoft *ds;
   1211 	int i, error = 0;
   1212 
   1213 	/*
   1214 	 * Cancel any pending I/O.
   1215 	 */
   1216 	ste_stop(ifp, 0);
   1217 
   1218 	/*
   1219 	 * Reset the chip to a known state.
   1220 	 */
   1221 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
   1222 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
   1223 
   1224 	/*
   1225 	 * Initialize the transmit descriptor ring.
   1226 	 */
   1227 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1228 	sc->sc_txpending = 0;
   1229 	sc->sc_txdirty = 0;
   1230 	sc->sc_txlast = STE_NTXDESC - 1;
   1231 
   1232 	/*
   1233 	 * Initialize the receive descriptor and receive job
   1234 	 * descriptor rings.
   1235 	 */
   1236 	for (i = 0; i < STE_NRXDESC; i++) {
   1237 		ds = &sc->sc_rxsoft[i];
   1238 		if (ds->ds_mbuf == NULL) {
   1239 			if ((error = ste_add_rxbuf(sc, i)) != 0) {
   1240 				printf("%s: unable to allocate or map rx "
   1241 				    "buffer %d, error = %d\n",
   1242 				    device_xname(sc->sc_dev), i, error);
   1243 				/*
   1244 				 * XXX Should attempt to run with fewer receive
   1245 				 * XXX buffers instead of just failing.
   1246 				 */
   1247 				ste_rxdrain(sc);
   1248 				goto out;
   1249 			}
   1250 		} else
   1251 			STE_INIT_RXDESC(sc, i);
   1252 	}
   1253 	sc->sc_rxptr = 0;
   1254 
   1255 	/* Set the station address. */
   1256 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1257 		bus_space_write_1(st, sh, STE_StationAddress0 + 1,
   1258 		    CLLADDR(ifp->if_sadl)[i]);
   1259 
   1260 	/* Set up the receive filter. */
   1261 	ste_set_filter(sc);
   1262 
   1263 	/*
   1264 	 * Give the receive ring to the chip.
   1265 	 */
   1266 	bus_space_write_4(st, sh, STE_RxDMAListPtr,
   1267 	    STE_CDRXADDR(sc, sc->sc_rxptr));
   1268 
   1269 	/*
   1270 	 * We defer giving the transmit ring to the chip until we
   1271 	 * transmit the first packet.
   1272 	 */
   1273 
   1274 	/*
   1275 	 * Initialize the Tx auto-poll period.  It's OK to make this number
   1276 	 * large (127 is the max) -- we explicitly kick the transmit engine
   1277 	 * when there's actually a packet.  We are using auto-polling only
   1278 	 * to make the interface to the transmit engine not suck.
   1279 	 */
   1280 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
   1281 
   1282 	/* ..and the Rx auto-poll period. */
   1283 	bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
   1284 
   1285 	/* Initialize the Tx start threshold. */
   1286 	ste_setthresh(sc);
   1287 
   1288 	/* Set the FIFO release threshold to 512 bytes. */
   1289 	bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
   1290 
   1291 	/* Set maximum packet size for VLAN. */
   1292 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   1293 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN + 4);
   1294 	else
   1295 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN);
   1296 
   1297 	/*
   1298 	 * Initialize the interrupt mask.
   1299 	 */
   1300 	sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
   1301 	    IE_TxDMAComplete | IE_RxDMAComplete;
   1302 
   1303 	bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
   1304 	bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
   1305 
   1306 	/*
   1307 	 * Start the receive DMA engine.
   1308 	 */
   1309 	bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
   1310 
   1311 	/*
   1312 	 * Initialize MacCtrl0 -- do it before setting the media,
   1313 	 * as setting the media will actually program the register.
   1314 	 */
   1315 	sc->sc_MacCtrl0 = MC0_IFSSelect(0);
   1316 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   1317 		sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
   1318 
   1319 	/*
   1320 	 * Set the current media.
   1321 	 */
   1322 	if ((error = ether_mediachange(ifp)) != 0)
   1323 		goto out;
   1324 
   1325 	/*
   1326 	 * Start the MAC.
   1327 	 */
   1328 	bus_space_write_2(st, sh, STE_MacCtrl1,
   1329 	    MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
   1330 
   1331 	/*
   1332 	 * Start the one second MII clock.
   1333 	 */
   1334 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
   1335 
   1336 	/*
   1337 	 * ...all done!
   1338 	 */
   1339 	ifp->if_flags |= IFF_RUNNING;
   1340 	ifp->if_flags &= ~IFF_OACTIVE;
   1341 
   1342  out:
   1343 	if (error)
   1344 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
   1345 	return (error);
   1346 }
   1347 
   1348 /*
   1349  * ste_drain:
   1350  *
   1351  *	Drain the receive queue.
   1352  */
   1353 static void
   1354 ste_rxdrain(struct ste_softc *sc)
   1355 {
   1356 	struct ste_descsoft *ds;
   1357 	int i;
   1358 
   1359 	for (i = 0; i < STE_NRXDESC; i++) {
   1360 		ds = &sc->sc_rxsoft[i];
   1361 		if (ds->ds_mbuf != NULL) {
   1362 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1363 			m_freem(ds->ds_mbuf);
   1364 			ds->ds_mbuf = NULL;
   1365 		}
   1366 	}
   1367 }
   1368 
   1369 /*
   1370  * ste_stop:		[ ifnet interface function ]
   1371  *
   1372  *	Stop transmission on the interface.
   1373  */
   1374 static void
   1375 ste_stop(struct ifnet *ifp, int disable)
   1376 {
   1377 	struct ste_softc *sc = ifp->if_softc;
   1378 	struct ste_descsoft *ds;
   1379 	int i;
   1380 
   1381 	/*
   1382 	 * Stop the one second clock.
   1383 	 */
   1384 	callout_stop(&sc->sc_tick_ch);
   1385 
   1386 	/* Down the MII. */
   1387 	mii_down(&sc->sc_mii);
   1388 
   1389 	/*
   1390 	 * Disable interrupts.
   1391 	 */
   1392 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
   1393 
   1394 	/*
   1395 	 * Stop receiver, transmitter, and stats update.
   1396 	 */
   1397 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
   1398 	    MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
   1399 
   1400 	/*
   1401 	 * Stop the transmit and receive DMA.
   1402 	 */
   1403 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
   1404 	    DC_RxDMAHalt | DC_TxDMAHalt);
   1405 	ste_dmahalt_wait(sc);
   1406 
   1407 	/*
   1408 	 * Release any queued transmit buffers.
   1409 	 */
   1410 	for (i = 0; i < STE_NTXDESC; i++) {
   1411 		ds = &sc->sc_txsoft[i];
   1412 		if (ds->ds_mbuf != NULL) {
   1413 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1414 			m_freem(ds->ds_mbuf);
   1415 			ds->ds_mbuf = NULL;
   1416 		}
   1417 	}
   1418 
   1419 	/*
   1420 	 * Mark the interface down and cancel the watchdog timer.
   1421 	 */
   1422 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1423 	ifp->if_timer = 0;
   1424 
   1425 	if (disable)
   1426 		ste_rxdrain(sc);
   1427 }
   1428 
   1429 static int
   1430 ste_eeprom_wait(struct ste_softc *sc)
   1431 {
   1432 	int i;
   1433 
   1434 	for (i = 0; i < STE_TIMEOUT; i++) {
   1435 		delay(1000);
   1436 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
   1437 		     EC_EepromBusy) == 0)
   1438 			return (0);
   1439 	}
   1440 	return (1);
   1441 }
   1442 
   1443 /*
   1444  * ste_read_eeprom:
   1445  *
   1446  *	Read data from the serial EEPROM.
   1447  */
   1448 static void
   1449 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
   1450 {
   1451 
   1452 	if (ste_eeprom_wait(sc))
   1453 		printf("%s: EEPROM failed to come ready\n",
   1454 		    device_xname(sc->sc_dev));
   1455 
   1456 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
   1457 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
   1458 	if (ste_eeprom_wait(sc))
   1459 		printf("%s: EEPROM read timed out\n",
   1460 		    device_xname(sc->sc_dev));
   1461 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
   1462 }
   1463 
   1464 /*
   1465  * ste_add_rxbuf:
   1466  *
   1467  *	Add a receive buffer to the indicated descriptor.
   1468  */
   1469 static int
   1470 ste_add_rxbuf(struct ste_softc *sc, int idx)
   1471 {
   1472 	struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
   1473 	struct mbuf *m;
   1474 	int error;
   1475 
   1476 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1477 	if (m == NULL)
   1478 		return (ENOBUFS);
   1479 
   1480 	MCLGET(m, M_DONTWAIT);
   1481 	if ((m->m_flags & M_EXT) == 0) {
   1482 		m_freem(m);
   1483 		return (ENOBUFS);
   1484 	}
   1485 
   1486 	if (ds->ds_mbuf != NULL)
   1487 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1488 
   1489 	ds->ds_mbuf = m;
   1490 
   1491 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
   1492 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1493 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1494 	if (error) {
   1495 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1496 		    device_xname(sc->sc_dev), idx, error);
   1497 		panic("ste_add_rxbuf");		/* XXX */
   1498 	}
   1499 
   1500 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1501 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1502 
   1503 	STE_INIT_RXDESC(sc, idx);
   1504 
   1505 	return (0);
   1506 }
   1507 
   1508 /*
   1509  * ste_set_filter:
   1510  *
   1511  *	Set up the receive filter.
   1512  */
   1513 static void
   1514 ste_set_filter(struct ste_softc *sc)
   1515 {
   1516 	struct ethercom *ec = &sc->sc_ethercom;
   1517 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1518 	struct ether_multi *enm;
   1519 	struct ether_multistep step;
   1520 	uint32_t crc;
   1521 	uint16_t mchash[4];
   1522 
   1523 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
   1524 	if (ifp->if_flags & IFF_BROADCAST)
   1525 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
   1526 
   1527 	if (ifp->if_flags & IFF_PROMISC) {
   1528 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
   1529 		goto allmulti;
   1530 	}
   1531 
   1532 	/*
   1533 	 * Set up the multicast address filter by passing all multicast
   1534 	 * addresses through a CRC generator, and then using the low-order
   1535 	 * 6 bits as an index into the 64 bit multicast hash table.  The
   1536 	 * high order bits select the register, while the rest of the bits
   1537 	 * select the bit within the register.
   1538 	 */
   1539 
   1540 	memset(mchash, 0, sizeof(mchash));
   1541 
   1542 	ETHER_FIRST_MULTI(step, ec, enm);
   1543 	if (enm == NULL)
   1544 		goto done;
   1545 
   1546 	while (enm != NULL) {
   1547 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1548 			/*
   1549 			 * We must listen to a range of multicast addresses.
   1550 			 * For now, just accept all multicasts, rather than
   1551 			 * trying to set only those filter bits needed to match
   1552 			 * the range.  (At this time, the only use of address
   1553 			 * ranges is for IP multicast routing, for which the
   1554 			 * range is big enough to require all bits set.)
   1555 			 */
   1556 			goto allmulti;
   1557 		}
   1558 
   1559 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1560 
   1561 		/* Just want the 6 least significant bits. */
   1562 		crc &= 0x3f;
   1563 
   1564 		/* Set the corresponding bit in the hash table. */
   1565 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   1566 
   1567 		ETHER_NEXT_MULTI(step, enm);
   1568 	}
   1569 
   1570 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
   1571 
   1572 	ifp->if_flags &= ~IFF_ALLMULTI;
   1573 	goto done;
   1574 
   1575  allmulti:
   1576 	ifp->if_flags |= IFF_ALLMULTI;
   1577 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
   1578 
   1579  done:
   1580 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1581 		/*
   1582 		 * Program the multicast hash table.
   1583 		 */
   1584 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
   1585 		    mchash[0]);
   1586 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
   1587 		    mchash[1]);
   1588 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
   1589 		    mchash[2]);
   1590 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
   1591 		    mchash[3]);
   1592 	}
   1593 
   1594 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
   1595 	    sc->sc_ReceiveMode);
   1596 }
   1597 
   1598 /*
   1599  * ste_mii_readreg:	[mii interface function]
   1600  *
   1601  *	Read a PHY register on the MII of the ST-201.
   1602  */
   1603 static int
   1604 ste_mii_readreg(device_t self, int phy, int reg)
   1605 {
   1606 
   1607 	return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
   1608 }
   1609 
   1610 /*
   1611  * ste_mii_writereg:	[mii interface function]
   1612  *
   1613  *	Write a PHY register on the MII of the ST-201.
   1614  */
   1615 static void
   1616 ste_mii_writereg(device_t self, int phy, int reg, int val)
   1617 {
   1618 
   1619 	mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
   1620 }
   1621 
   1622 /*
   1623  * ste_mii_statchg:	[mii interface function]
   1624  *
   1625  *	Callback from MII layer when media changes.
   1626  */
   1627 static void
   1628 ste_mii_statchg(struct ifnet *ifp)
   1629 {
   1630 	struct ste_softc *sc = ifp->if_softc;
   1631 
   1632 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   1633 		sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
   1634 	else
   1635 		sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
   1636 
   1637 	/* XXX 802.1x flow-control? */
   1638 
   1639 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
   1640 }
   1641 
   1642 /*
   1643  * ste_mii_bitbang_read: [mii bit-bang interface function]
   1644  *
   1645  *	Read the MII serial port for the MII bit-bang module.
   1646  */
   1647 static uint32_t
   1648 ste_mii_bitbang_read(device_t self)
   1649 {
   1650 	struct ste_softc *sc = device_private(self);
   1651 
   1652 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
   1653 }
   1654 
   1655 /*
   1656  * ste_mii_bitbang_write: [mii big-bang interface function]
   1657  *
   1658  *	Write the MII serial port for the MII bit-bang module.
   1659  */
   1660 static void
   1661 ste_mii_bitbang_write(device_t self, uint32_t val)
   1662 {
   1663 	struct ste_softc *sc = device_private(self);
   1664 
   1665 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
   1666 }
   1667