Home | History | Annotate | Line # | Download | only in pci
if_ste.c revision 1.54
      1 /*	$NetBSD: if_ste.c,v 1.54 2019/05/23 10:51:39 msaitoh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Device driver for the Sundance Tech. ST-201 10/100
     34  * Ethernet controller.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.54 2019/05/23 10:51:39 msaitoh Exp $");
     39 
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/callout.h>
     44 #include <sys/mbuf.h>
     45 #include <sys/malloc.h>
     46 #include <sys/kernel.h>
     47 #include <sys/socket.h>
     48 #include <sys/ioctl.h>
     49 #include <sys/errno.h>
     50 #include <sys/device.h>
     51 #include <sys/queue.h>
     52 
     53 #include <net/if.h>
     54 #include <net/if_dl.h>
     55 #include <net/if_media.h>
     56 #include <net/if_ether.h>
     57 
     58 #include <net/bpf.h>
     59 
     60 #include <sys/bus.h>
     61 #include <sys/intr.h>
     62 
     63 #include <dev/mii/mii.h>
     64 #include <dev/mii/miivar.h>
     65 #include <dev/mii/mii_bitbang.h>
     66 
     67 #include <dev/pci/pcireg.h>
     68 #include <dev/pci/pcivar.h>
     69 #include <dev/pci/pcidevs.h>
     70 
     71 #include <dev/pci/if_stereg.h>
     72 
     73 /*
     74  * Transmit descriptor list size.
     75  */
     76 #define	STE_NTXDESC		256
     77 #define	STE_NTXDESC_MASK	(STE_NTXDESC - 1)
     78 #define	STE_NEXTTX(x)		(((x) + 1) & STE_NTXDESC_MASK)
     79 
     80 /*
     81  * Receive descriptor list size.
     82  */
     83 #define	STE_NRXDESC		128
     84 #define	STE_NRXDESC_MASK	(STE_NRXDESC - 1)
     85 #define	STE_NEXTRX(x)		(((x) + 1) & STE_NRXDESC_MASK)
     86 
     87 /*
     88  * Control structures are DMA'd to the ST-201 chip.  We allocate them in
     89  * a single clump that maps to a single DMA segment to make several things
     90  * easier.
     91  */
     92 struct ste_control_data {
     93 	/*
     94 	 * The transmit descriptors.
     95 	 */
     96 	struct ste_tfd scd_txdescs[STE_NTXDESC];
     97 
     98 	/*
     99 	 * The receive descriptors.
    100 	 */
    101 	struct ste_rfd scd_rxdescs[STE_NRXDESC];
    102 };
    103 
    104 #define	STE_CDOFF(x)	offsetof(struct ste_control_data, x)
    105 #define	STE_CDTXOFF(x)	STE_CDOFF(scd_txdescs[(x)])
    106 #define	STE_CDRXOFF(x)	STE_CDOFF(scd_rxdescs[(x)])
    107 
    108 /*
    109  * Software state for transmit and receive jobs.
    110  */
    111 struct ste_descsoft {
    112 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
    113 	bus_dmamap_t ds_dmamap;		/* our DMA map */
    114 };
    115 
    116 /*
    117  * Software state per device.
    118  */
    119 struct ste_softc {
    120 	device_t sc_dev;		/* generic device information */
    121 	bus_space_tag_t sc_st;		/* bus space tag */
    122 	bus_space_handle_t sc_sh;	/* bus space handle */
    123 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    124 	struct ethercom sc_ethercom;	/* ethernet common data */
    125 
    126 	void *sc_ih;			/* interrupt cookie */
    127 
    128 	struct mii_data sc_mii;		/* MII/media information */
    129 
    130 	callout_t sc_tick_ch;		/* tick callout */
    131 
    132 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    133 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    134 
    135 	/*
    136 	 * Software state for transmit and receive descriptors.
    137 	 */
    138 	struct ste_descsoft sc_txsoft[STE_NTXDESC];
    139 	struct ste_descsoft sc_rxsoft[STE_NRXDESC];
    140 
    141 	/*
    142 	 * Control data structures.
    143 	 */
    144 	struct ste_control_data *sc_control_data;
    145 #define	sc_txdescs	sc_control_data->scd_txdescs
    146 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    147 
    148 	int	sc_txpending;		/* number of Tx requests pending */
    149 	int	sc_txdirty;		/* first dirty Tx descriptor */
    150 	int	sc_txlast;		/* last used Tx descriptor */
    151 
    152 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    153 
    154 	int	sc_txthresh;		/* Tx threshold */
    155 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
    156 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
    157 	uint16_t sc_MacCtrl0;		/* prototype MacCtrl0 register */
    158 	uint8_t	sc_ReceiveMode;		/* prototype ReceiveMode register */
    159 };
    160 
    161 #define	STE_CDTXADDR(sc, x)	((sc)->sc_cddma + STE_CDTXOFF((x)))
    162 #define	STE_CDRXADDR(sc, x)	((sc)->sc_cddma + STE_CDRXOFF((x)))
    163 
    164 #define	STE_CDTXSYNC(sc, x, ops)					\
    165 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    166 	    STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
    167 
    168 #define	STE_CDRXSYNC(sc, x, ops)					\
    169 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    170 	    STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
    171 
    172 #define	STE_INIT_RXDESC(sc, x)						\
    173 do {									\
    174 	struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
    175 	struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)];			\
    176 	struct mbuf *__m = __ds->ds_mbuf;				\
    177 									\
    178 	/*								\
    179 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    180 	 * so that the payload after the Ethernet header is aligned	\
    181 	 * to a 4-byte boundary.					\
    182 	 */								\
    183 	__m->m_data = __m->m_ext.ext_buf + 2;				\
    184 	__rfd->rfd_frag.frag_addr =					\
    185 	    htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2);		\
    186 	__rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST);	\
    187 	__rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x))));	\
    188 	__rfd->rfd_status = 0;						\
    189 	STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
    190 } while (/*CONSTCOND*/0)
    191 
    192 #define STE_TIMEOUT 1000
    193 
    194 static void	ste_start(struct ifnet *);
    195 static void	ste_watchdog(struct ifnet *);
    196 static int	ste_ioctl(struct ifnet *, u_long, void *);
    197 static int	ste_init(struct ifnet *);
    198 static void	ste_stop(struct ifnet *, int);
    199 
    200 static bool	ste_shutdown(device_t, int);
    201 
    202 static void	ste_reset(struct ste_softc *, uint32_t);
    203 static void	ste_setthresh(struct ste_softc *);
    204 static void	ste_txrestart(struct ste_softc *, uint8_t);
    205 static void	ste_rxdrain(struct ste_softc *);
    206 static int	ste_add_rxbuf(struct ste_softc *, int);
    207 static void	ste_read_eeprom(struct ste_softc *, int, uint16_t *);
    208 static void	ste_tick(void *);
    209 
    210 static void	ste_stats_update(struct ste_softc *);
    211 
    212 static void	ste_set_filter(struct ste_softc *);
    213 
    214 static int	ste_intr(void *);
    215 static void	ste_txintr(struct ste_softc *);
    216 static void	ste_rxintr(struct ste_softc *);
    217 
    218 static int	ste_mii_readreg(device_t, int, int, uint16_t *);
    219 static int	ste_mii_writereg(device_t, int, int, uint16_t);
    220 static void	ste_mii_statchg(struct ifnet *);
    221 
    222 static int	ste_match(device_t, cfdata_t, void *);
    223 static void	ste_attach(device_t, device_t, void *);
    224 
    225 int	ste_copy_small = 0;
    226 
    227 CFATTACH_DECL_NEW(ste, sizeof(struct ste_softc),
    228     ste_match, ste_attach, NULL, NULL);
    229 
    230 static uint32_t ste_mii_bitbang_read(device_t);
    231 static void	ste_mii_bitbang_write(device_t, uint32_t);
    232 
    233 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
    234 	ste_mii_bitbang_read,
    235 	ste_mii_bitbang_write,
    236 	{
    237 		PC_MgmtData,		/* MII_BIT_MDO */
    238 		PC_MgmtData,		/* MII_BIT_MDI */
    239 		PC_MgmtClk,		/* MII_BIT_MDC */
    240 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
    241 		0,			/* MII_BIT_DIR_PHY_HOST */
    242 	}
    243 };
    244 
    245 /*
    246  * Devices supported by this driver.
    247  */
    248 static const struct ste_product {
    249 	pci_vendor_id_t		ste_vendor;
    250 	pci_product_id_t	ste_product;
    251 	const char		*ste_name;
    252 } ste_products[] = {
    253 	{ PCI_VENDOR_SUNDANCETI, 	PCI_PRODUCT_SUNDANCETI_IP100A,
    254 	  "IC Plus Corp. IP00A 10/100 Fast Ethernet Adapter" },
    255 
    256 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST201,
    257 	  "Sundance ST-201 10/100 Ethernet" },
    258 
    259 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL1002,
    260 	  "D-Link DL-1002 10/100 Ethernet" },
    261 
    262 	{ 0,				0,
    263 	  NULL },
    264 };
    265 
    266 static const struct ste_product *
    267 ste_lookup(const struct pci_attach_args *pa)
    268 {
    269 	const struct ste_product *sp;
    270 
    271 	for (sp = ste_products; sp->ste_name != NULL; sp++) {
    272 		if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
    273 		    PCI_PRODUCT(pa->pa_id) == sp->ste_product)
    274 			return (sp);
    275 	}
    276 	return (NULL);
    277 }
    278 
    279 static int
    280 ste_match(device_t parent, cfdata_t cf, void *aux)
    281 {
    282 	struct pci_attach_args *pa = aux;
    283 
    284 	if (ste_lookup(pa) != NULL)
    285 		return (1);
    286 
    287 	return (0);
    288 }
    289 
    290 static void
    291 ste_attach(device_t parent, device_t self, void *aux)
    292 {
    293 	struct ste_softc *sc = device_private(self);
    294 	struct pci_attach_args *pa = aux;
    295 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    296 	struct mii_data * const mii = &sc->sc_mii;
    297 	pci_chipset_tag_t pc = pa->pa_pc;
    298 	pci_intr_handle_t ih;
    299 	const char *intrstr = NULL;
    300 	bus_space_tag_t iot, memt;
    301 	bus_space_handle_t ioh, memh;
    302 	bus_dma_segment_t seg;
    303 	int ioh_valid, memh_valid;
    304 	int i, rseg, error;
    305 	const struct ste_product *sp;
    306 	uint8_t enaddr[ETHER_ADDR_LEN];
    307 	uint16_t myea[ETHER_ADDR_LEN / 2];
    308 	char intrbuf[PCI_INTRSTR_LEN];
    309 
    310 	sc->sc_dev = self;
    311 
    312 	callout_init(&sc->sc_tick_ch, 0);
    313 
    314 	sp = ste_lookup(pa);
    315 	if (sp == NULL) {
    316 		printf("\n");
    317 		panic("ste_attach: impossible");
    318 	}
    319 
    320 	printf(": %s\n", sp->ste_name);
    321 
    322 	/*
    323 	 * Map the device.
    324 	 */
    325 	ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
    326 	    PCI_MAPREG_TYPE_IO, 0,
    327 	    &iot, &ioh, NULL, NULL) == 0);
    328 	memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
    329 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
    330 	    &memt, &memh, NULL, NULL) == 0);
    331 
    332 	if (memh_valid) {
    333 		sc->sc_st = memt;
    334 		sc->sc_sh = memh;
    335 	} else if (ioh_valid) {
    336 		sc->sc_st = iot;
    337 		sc->sc_sh = ioh;
    338 	} else {
    339 		aprint_error_dev(self, "unable to map device registers\n");
    340 		return;
    341 	}
    342 
    343 	sc->sc_dmat = pa->pa_dmat;
    344 
    345 	/* Enable bus mastering. */
    346 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    347 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    348 	    PCI_COMMAND_MASTER_ENABLE);
    349 
    350 	/* power up chip */
    351 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
    352 	    NULL)) && error != EOPNOTSUPP) {
    353 		aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
    354 		return;
    355 	}
    356 
    357 	/*
    358 	 * Map and establish our interrupt.
    359 	 */
    360 	if (pci_intr_map(pa, &ih)) {
    361 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
    362 		return;
    363 	}
    364 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    365 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, ste_intr, sc,
    366 	    device_xname(self));
    367 	if (sc->sc_ih == NULL) {
    368 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
    369 		if (intrstr != NULL)
    370 			aprint_error(" at %s", intrstr);
    371 		aprint_error("\n");
    372 		return;
    373 	}
    374 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
    375 
    376 	/*
    377 	 * Allocate the control data structures, and create and load the
    378 	 * DMA map for it.
    379 	 */
    380 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    381 	    sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    382 	    0)) != 0) {
    383 		aprint_error_dev(sc->sc_dev,
    384 		    "unable to allocate control data, error = %d\n", error);
    385 		goto fail_0;
    386 	}
    387 
    388 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    389 	    sizeof(struct ste_control_data), (void **)&sc->sc_control_data,
    390 	    BUS_DMA_COHERENT)) != 0) {
    391 		aprint_error_dev(sc->sc_dev,
    392 		    "unable to map control data, error = %d\n", error);
    393 		goto fail_1;
    394 	}
    395 
    396 	if ((error = bus_dmamap_create(sc->sc_dmat,
    397 	    sizeof(struct ste_control_data), 1,
    398 	    sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    399 		aprint_error_dev(sc->sc_dev,
    400 		    "unable to create control data DMA map, error = %d\n",
    401 		    error);
    402 		goto fail_2;
    403 	}
    404 
    405 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    406 	    sc->sc_control_data, sizeof(struct ste_control_data), NULL,
    407 	    0)) != 0) {
    408 		aprint_error_dev(sc->sc_dev,
    409 		    "unable to load control data DMA map, error = %d\n",
    410 		    error);
    411 		goto fail_3;
    412 	}
    413 
    414 	/*
    415 	 * Create the transmit buffer DMA maps.
    416 	 */
    417 	for (i = 0; i < STE_NTXDESC; i++) {
    418 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    419 		    STE_NTXFRAGS, MCLBYTES, 0, 0,
    420 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
    421 			aprint_error_dev(sc->sc_dev,
    422 			    "unable to create tx DMA map %d, error = %d\n", i,
    423 			    error);
    424 			goto fail_4;
    425 		}
    426 	}
    427 
    428 	/*
    429 	 * Create the receive buffer DMA maps.
    430 	 */
    431 	for (i = 0; i < STE_NRXDESC; i++) {
    432 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    433 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
    434 			aprint_error_dev(sc->sc_dev,
    435 			    "unable to create rx DMA map %d, error = %d\n", i,
    436 			    error);
    437 			goto fail_5;
    438 		}
    439 		sc->sc_rxsoft[i].ds_mbuf = NULL;
    440 	}
    441 
    442 	/*
    443 	 * Reset the chip to a known state.
    444 	 */
    445 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
    446 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
    447 
    448 	/*
    449 	 * Read the Ethernet address from the EEPROM.
    450 	 */
    451 	for (i = 0; i < 3; i++) {
    452 		ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
    453 		myea[i] = le16toh(myea[i]);
    454 	}
    455 	memcpy(enaddr, myea, sizeof(enaddr));
    456 
    457 	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
    458 	    ether_sprintf(enaddr));
    459 
    460 	/*
    461 	 * Initialize our media structures and probe the MII.
    462 	 */
    463 	mii->mii_ifp = ifp;
    464 	mii->mii_readreg = ste_mii_readreg;
    465 	mii->mii_writereg = ste_mii_writereg;
    466 	mii->mii_statchg = ste_mii_statchg;
    467 	sc->sc_ethercom.ec_mii = mii;
    468 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
    469 	    ether_mediastatus);
    470 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
    471 	    MII_OFFSET_ANY, 0);
    472 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    473 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
    474 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
    475 	} else
    476 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    477 
    478 	ifp = &sc->sc_ethercom.ec_if;
    479 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    480 	ifp->if_softc = sc;
    481 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    482 	ifp->if_ioctl = ste_ioctl;
    483 	ifp->if_start = ste_start;
    484 	ifp->if_watchdog = ste_watchdog;
    485 	ifp->if_init = ste_init;
    486 	ifp->if_stop = ste_stop;
    487 	IFQ_SET_READY(&ifp->if_snd);
    488 
    489 	/*
    490 	 * Default the transmit threshold to 128 bytes.
    491 	 */
    492 	sc->sc_txthresh = 128;
    493 
    494 	/*
    495 	 * Disable MWI if the PCI layer tells us to.
    496 	 */
    497 	sc->sc_DMACtrl = 0;
    498 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
    499 		sc->sc_DMACtrl |= DC_MWIDisable;
    500 
    501 	/*
    502 	 * We can support 802.1Q VLAN-sized frames.
    503 	 */
    504 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    505 
    506 	/*
    507 	 * Attach the interface.
    508 	 */
    509 	if_attach(ifp);
    510 	if_deferred_start_init(ifp, NULL);
    511 	ether_ifattach(ifp, enaddr);
    512 
    513 	/*
    514 	 * Make sure the interface is shutdown during reboot.
    515 	 */
    516 	if (pmf_device_register1(self, NULL, NULL, ste_shutdown))
    517 		pmf_class_network_register(self, ifp);
    518 	else
    519 		aprint_error_dev(self, "couldn't establish power handler\n");
    520 
    521 	return;
    522 
    523 	/*
    524 	 * Free any resources we've allocated during the failed attach
    525 	 * attempt.  Do this in reverse order and fall through.
    526 	 */
    527  fail_5:
    528 	for (i = 0; i < STE_NRXDESC; i++) {
    529 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
    530 			bus_dmamap_destroy(sc->sc_dmat,
    531 			    sc->sc_rxsoft[i].ds_dmamap);
    532 	}
    533  fail_4:
    534 	for (i = 0; i < STE_NTXDESC; i++) {
    535 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
    536 			bus_dmamap_destroy(sc->sc_dmat,
    537 			    sc->sc_txsoft[i].ds_dmamap);
    538 	}
    539 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    540  fail_3:
    541 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    542  fail_2:
    543 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    544 	    sizeof(struct ste_control_data));
    545  fail_1:
    546 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    547  fail_0:
    548 	return;
    549 }
    550 
    551 /*
    552  * ste_shutdown:
    553  *
    554  *	Make sure the interface is stopped at reboot time.
    555  */
    556 static bool
    557 ste_shutdown(device_t self, int howto)
    558 {
    559 	struct ste_softc *sc;
    560 
    561 	sc = device_private(self);
    562 	ste_stop(&sc->sc_ethercom.ec_if, 1);
    563 
    564 	return true;
    565 }
    566 
    567 static void
    568 ste_dmahalt_wait(struct ste_softc *sc)
    569 {
    570 	int i;
    571 
    572 	for (i = 0; i < STE_TIMEOUT; i++) {
    573 		delay(2);
    574 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
    575 		     DC_DMAHaltBusy) == 0)
    576 			break;
    577 	}
    578 
    579 	if (i == STE_TIMEOUT)
    580 		printf("%s: DMA halt timed out\n", device_xname(sc->sc_dev));
    581 }
    582 
    583 /*
    584  * ste_start:		[ifnet interface function]
    585  *
    586  *	Start packet transmission on the interface.
    587  */
    588 static void
    589 ste_start(struct ifnet *ifp)
    590 {
    591 	struct ste_softc *sc = ifp->if_softc;
    592 	struct mbuf *m0, *m;
    593 	struct ste_descsoft *ds;
    594 	struct ste_tfd *tfd;
    595 	bus_dmamap_t dmamap;
    596 	int error, olasttx, nexttx, opending, seg, totlen;
    597 
    598 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    599 		return;
    600 
    601 	/*
    602 	 * Remember the previous number of pending transmissions
    603 	 * and the current last descriptor in the list.
    604 	 */
    605 	opending = sc->sc_txpending;
    606 	olasttx = sc->sc_txlast;
    607 
    608 	/*
    609 	 * Loop through the send queue, setting up transmit descriptors
    610 	 * until we drain the queue, or use up all available transmit
    611 	 * descriptors.
    612 	 */
    613 	while (sc->sc_txpending < STE_NTXDESC) {
    614 		/*
    615 		 * Grab a packet off the queue.
    616 		 */
    617 		IFQ_POLL(&ifp->if_snd, m0);
    618 		if (m0 == NULL)
    619 			break;
    620 		m = NULL;
    621 
    622 		/*
    623 		 * Get the last and next available transmit descriptor.
    624 		 */
    625 		nexttx = STE_NEXTTX(sc->sc_txlast);
    626 		tfd = &sc->sc_txdescs[nexttx];
    627 		ds = &sc->sc_txsoft[nexttx];
    628 
    629 		dmamap = ds->ds_dmamap;
    630 
    631 		/*
    632 		 * Load the DMA map.  If this fails, the packet either
    633 		 * didn't fit in the alloted number of segments, or we
    634 		 * were short on resources.  In this case, we'll copy
    635 		 * and try again.
    636 		 */
    637 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    638 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
    639 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    640 			if (m == NULL) {
    641 				printf("%s: unable to allocate Tx mbuf\n",
    642 				    device_xname(sc->sc_dev));
    643 				break;
    644 			}
    645 			if (m0->m_pkthdr.len > MHLEN) {
    646 				MCLGET(m, M_DONTWAIT);
    647 				if ((m->m_flags & M_EXT) == 0) {
    648 					printf("%s: unable to allocate Tx "
    649 					    "cluster\n",
    650 					    device_xname(sc->sc_dev));
    651 					m_freem(m);
    652 					break;
    653 				}
    654 			}
    655 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
    656 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    657 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    658 			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
    659 			if (error) {
    660 				printf("%s: unable to load Tx buffer, "
    661 				    "error = %d\n", device_xname(sc->sc_dev),
    662 				    error);
    663 				break;
    664 			}
    665 		}
    666 
    667 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    668 		if (m != NULL) {
    669 			m_freem(m0);
    670 			m0 = m;
    671 		}
    672 
    673 		/*
    674 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    675 		 */
    676 
    677 		/* Sync the DMA map. */
    678 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    679 		    BUS_DMASYNC_PREWRITE);
    680 
    681 		/* Initialize the fragment list. */
    682 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
    683 			tfd->tfd_frags[seg].frag_addr =
    684 			    htole32(dmamap->dm_segs[seg].ds_addr);
    685 			tfd->tfd_frags[seg].frag_len =
    686 			    htole32(dmamap->dm_segs[seg].ds_len);
    687 			totlen += dmamap->dm_segs[seg].ds_len;
    688 		}
    689 		tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
    690 
    691 		/* Initialize the descriptor. */
    692 		tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
    693 		tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
    694 
    695 		/* Sync the descriptor. */
    696 		STE_CDTXSYNC(sc, nexttx,
    697 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    698 
    699 		/*
    700 		 * Store a pointer to the packet so we can free it later,
    701 		 * and remember what txdirty will be once the packet is
    702 		 * done.
    703 		 */
    704 		ds->ds_mbuf = m0;
    705 
    706 		/* Advance the tx pointer. */
    707 		sc->sc_txpending++;
    708 		sc->sc_txlast = nexttx;
    709 
    710 		/*
    711 		 * Pass the packet to any BPF listeners.
    712 		 */
    713 		bpf_mtap(ifp, m0, BPF_D_OUT);
    714 	}
    715 
    716 	if (sc->sc_txpending == STE_NTXDESC) {
    717 		/* No more slots left; notify upper layer. */
    718 		ifp->if_flags |= IFF_OACTIVE;
    719 	}
    720 
    721 	if (sc->sc_txpending != opending) {
    722 		/*
    723 		 * We enqueued packets.  If the transmitter was idle,
    724 		 * reset the txdirty pointer.
    725 		 */
    726 		if (opending == 0)
    727 			sc->sc_txdirty = STE_NEXTTX(olasttx);
    728 
    729 		/*
    730 		 * Cause a descriptor interrupt to happen on the
    731 		 * last packet we enqueued, and also cause the
    732 		 * DMA engine to wait after is has finished processing
    733 		 * it.
    734 		 */
    735 		sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
    736 		sc->sc_txdescs[sc->sc_txlast].tfd_control |=
    737 		    htole32(TFD_TxDMAIndicate);
    738 		STE_CDTXSYNC(sc, sc->sc_txlast,
    739 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    740 
    741 		/*
    742 		 * Link up the new chain of descriptors to the
    743 		 * last.
    744 		 */
    745 		sc->sc_txdescs[olasttx].tfd_next =
    746 		    htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
    747 		STE_CDTXSYNC(sc, olasttx,
    748 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    749 
    750 		/*
    751 		 * Kick the transmit DMA logic.  Note that since we're
    752 		 * using auto-polling, reading the Tx desc pointer will
    753 		 * give it the nudge it needs to get going.
    754 		 */
    755 		if (bus_space_read_4(sc->sc_st, sc->sc_sh,
    756 		    STE_TxDMAListPtr) == 0) {
    757 			bus_space_write_4(sc->sc_st, sc->sc_sh,
    758 			    STE_DMACtrl, DC_TxDMAHalt);
    759 			ste_dmahalt_wait(sc);
    760 			bus_space_write_4(sc->sc_st, sc->sc_sh,
    761 			    STE_TxDMAListPtr,
    762 			    STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
    763 			bus_space_write_4(sc->sc_st, sc->sc_sh,
    764 			    STE_DMACtrl, DC_TxDMAResume);
    765 		}
    766 
    767 		/* Set a watchdog timer in case the chip flakes out. */
    768 		ifp->if_timer = 5;
    769 	}
    770 }
    771 
    772 /*
    773  * ste_watchdog:	[ifnet interface function]
    774  *
    775  *	Watchdog timer handler.
    776  */
    777 static void
    778 ste_watchdog(struct ifnet *ifp)
    779 {
    780 	struct ste_softc *sc = ifp->if_softc;
    781 
    782 	printf("%s: device timeout\n", device_xname(sc->sc_dev));
    783 	ifp->if_oerrors++;
    784 
    785 	ste_txintr(sc);
    786 	ste_rxintr(sc);
    787 	(void) ste_init(ifp);
    788 
    789 	/* Try to get more packets going. */
    790 	ste_start(ifp);
    791 }
    792 
    793 /*
    794  * ste_ioctl:		[ifnet interface function]
    795  *
    796  *	Handle control requests from the operator.
    797  */
    798 static int
    799 ste_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    800 {
    801 	struct ste_softc *sc = ifp->if_softc;
    802 	int s, error;
    803 
    804 	s = splnet();
    805 
    806 	error = ether_ioctl(ifp, cmd, data);
    807 	if (error == ENETRESET) {
    808 		/*
    809 		 * Multicast list has changed; set the hardware filter
    810 		 * accordingly.
    811 		 */
    812 		if (ifp->if_flags & IFF_RUNNING)
    813 			ste_set_filter(sc);
    814 		error = 0;
    815 	}
    816 
    817 	/* Try to get more packets going. */
    818 	ste_start(ifp);
    819 
    820 	splx(s);
    821 	return (error);
    822 }
    823 
    824 /*
    825  * ste_intr:
    826  *
    827  *	Interrupt service routine.
    828  */
    829 static int
    830 ste_intr(void *arg)
    831 {
    832 	struct ste_softc *sc = arg;
    833 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    834 	uint16_t isr;
    835 	uint8_t txstat;
    836 	int wantinit;
    837 
    838 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
    839 	     IS_InterruptStatus) == 0)
    840 		return (0);
    841 
    842 	for (wantinit = 0; wantinit == 0;) {
    843 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
    844 		if ((isr & sc->sc_IntEnable) == 0)
    845 			break;
    846 
    847 		/* Receive interrupts. */
    848 		if (isr & IE_RxDMAComplete)
    849 			ste_rxintr(sc);
    850 
    851 		/* Transmit interrupts. */
    852 		if (isr & (IE_TxDMAComplete | IE_TxComplete))
    853 			ste_txintr(sc);
    854 
    855 		/* Statistics overflow. */
    856 		if (isr & IE_UpdateStats)
    857 			ste_stats_update(sc);
    858 
    859 		/* Transmission errors. */
    860 		if (isr & IE_TxComplete) {
    861 			for (;;) {
    862 				txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
    863 				    STE_TxStatus);
    864 				if ((txstat & TS_TxComplete) == 0)
    865 					break;
    866 				if (txstat & TS_TxUnderrun) {
    867 					sc->sc_txthresh += 32;
    868 					if (sc->sc_txthresh > 0x1ffc)
    869 						sc->sc_txthresh = 0x1ffc;
    870 					printf("%s: transmit underrun, new "
    871 					    "threshold: %d bytes\n",
    872 					    device_xname(sc->sc_dev),
    873 					    sc->sc_txthresh);
    874 					ste_reset(sc, AC_TxReset | AC_DMA |
    875 					    AC_FIFO | AC_Network);
    876 					ste_setthresh(sc);
    877 					bus_space_write_1(sc->sc_st, sc->sc_sh,
    878 					    STE_TxDMAPollPeriod, 127);
    879 					ste_txrestart(sc,
    880 					    bus_space_read_1(sc->sc_st,
    881 						sc->sc_sh, STE_TxFrameId));
    882 				}
    883 				if (txstat & TS_TxReleaseError) {
    884 					printf("%s: Tx FIFO release error\n",
    885 					    device_xname(sc->sc_dev));
    886 					wantinit = 1;
    887 				}
    888 				if (txstat & TS_MaxCollisions) {
    889 					printf("%s: excessive collisions\n",
    890 					    device_xname(sc->sc_dev));
    891 					wantinit = 1;
    892 				}
    893 				if (txstat & TS_TxStatusOverflow) {
    894 					printf("%s: status overflow\n",
    895 					    device_xname(sc->sc_dev));
    896 					wantinit = 1;
    897 				}
    898 				bus_space_write_2(sc->sc_st, sc->sc_sh,
    899 				    STE_TxStatus, 0);
    900 			}
    901 		}
    902 
    903 		/* Host interface errors. */
    904 		if (isr & IE_HostError) {
    905 			printf("%s: Host interface error\n",
    906 			    device_xname(sc->sc_dev));
    907 			wantinit = 1;
    908 		}
    909 	}
    910 
    911 	if (wantinit)
    912 		ste_init(ifp);
    913 
    914 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
    915 	    sc->sc_IntEnable);
    916 
    917 	/* Try to get more packets going. */
    918 	if_schedule_deferred_start(ifp);
    919 
    920 	return (1);
    921 }
    922 
    923 /*
    924  * ste_txintr:
    925  *
    926  *	Helper; handle transmit interrupts.
    927  */
    928 static void
    929 ste_txintr(struct ste_softc *sc)
    930 {
    931 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    932 	struct ste_descsoft *ds;
    933 	uint32_t control;
    934 	int i;
    935 
    936 	ifp->if_flags &= ~IFF_OACTIVE;
    937 
    938 	/*
    939 	 * Go through our Tx list and free mbufs for those
    940 	 * frames which have been transmitted.
    941 	 */
    942 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
    943 	     i = STE_NEXTTX(i), sc->sc_txpending--) {
    944 		ds = &sc->sc_txsoft[i];
    945 
    946 		STE_CDTXSYNC(sc, i,
    947 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
    948 
    949 		control = le32toh(sc->sc_txdescs[i].tfd_control);
    950 		if ((control & TFD_TxDMAComplete) == 0)
    951 			break;
    952 
    953 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
    954 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    955 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
    956 		m_freem(ds->ds_mbuf);
    957 		ds->ds_mbuf = NULL;
    958 	}
    959 
    960 	/* Update the dirty transmit buffer pointer. */
    961 	sc->sc_txdirty = i;
    962 
    963 	/*
    964 	 * If there are no more pending transmissions, cancel the watchdog
    965 	 * timer.
    966 	 */
    967 	if (sc->sc_txpending == 0)
    968 		ifp->if_timer = 0;
    969 }
    970 
    971 /*
    972  * ste_rxintr:
    973  *
    974  *	Helper; handle receive interrupts.
    975  */
    976 static void
    977 ste_rxintr(struct ste_softc *sc)
    978 {
    979 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    980 	struct ste_descsoft *ds;
    981 	struct mbuf *m;
    982 	uint32_t status;
    983 	int i, len;
    984 
    985 	for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
    986 		ds = &sc->sc_rxsoft[i];
    987 
    988 		STE_CDRXSYNC(sc, i,
    989 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
    990 
    991 		status = le32toh(sc->sc_rxdescs[i].rfd_status);
    992 
    993 		if ((status & RFD_RxDMAComplete) == 0)
    994 			break;
    995 
    996 		/*
    997 		 * If the packet had an error, simply recycle the
    998 		 * buffer.  Note, we count the error later in the
    999 		 * periodic stats update.
   1000 		 */
   1001 		if (status & RFD_RxFrameError) {
   1002 			STE_INIT_RXDESC(sc, i);
   1003 			continue;
   1004 		}
   1005 
   1006 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1007 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1008 
   1009 		/*
   1010 		 * No errors; receive the packet.  Note, we have
   1011 		 * configured the chip to not include the CRC at
   1012 		 * the end of the packet.
   1013 		 */
   1014 		len = RFD_RxDMAFrameLen(status);
   1015 
   1016 		/*
   1017 		 * If the packet is small enough to fit in a
   1018 		 * single header mbuf, allocate one and copy
   1019 		 * the data into it.  This greatly reduces
   1020 		 * memory consumption when we receive lots
   1021 		 * of small packets.
   1022 		 *
   1023 		 * Otherwise, we add a new buffer to the receive
   1024 		 * chain.  If this fails, we drop the packet and
   1025 		 * recycle the old buffer.
   1026 		 */
   1027 		if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
   1028 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1029 			if (m == NULL)
   1030 				goto dropit;
   1031 			m->m_data += 2;
   1032 			memcpy(mtod(m, void *),
   1033 			    mtod(ds->ds_mbuf, void *), len);
   1034 			STE_INIT_RXDESC(sc, i);
   1035 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1036 			    ds->ds_dmamap->dm_mapsize,
   1037 			    BUS_DMASYNC_PREREAD);
   1038 		} else {
   1039 			m = ds->ds_mbuf;
   1040 			if (ste_add_rxbuf(sc, i) != 0) {
   1041  dropit:
   1042 				ifp->if_ierrors++;
   1043 				STE_INIT_RXDESC(sc, i);
   1044 				bus_dmamap_sync(sc->sc_dmat,
   1045 				    ds->ds_dmamap, 0,
   1046 				    ds->ds_dmamap->dm_mapsize,
   1047 				    BUS_DMASYNC_PREREAD);
   1048 				continue;
   1049 			}
   1050 		}
   1051 
   1052 		m_set_rcvif(m, ifp);
   1053 		m->m_pkthdr.len = m->m_len = len;
   1054 
   1055 		/* Pass it on. */
   1056 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1057 	}
   1058 
   1059 	/* Update the receive pointer. */
   1060 	sc->sc_rxptr = i;
   1061 }
   1062 
   1063 /*
   1064  * ste_tick:
   1065  *
   1066  *	One second timer, used to tick the MII.
   1067  */
   1068 static void
   1069 ste_tick(void *arg)
   1070 {
   1071 	struct ste_softc *sc = arg;
   1072 	int s;
   1073 
   1074 	s = splnet();
   1075 	mii_tick(&sc->sc_mii);
   1076 	ste_stats_update(sc);
   1077 	splx(s);
   1078 
   1079 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
   1080 }
   1081 
   1082 /*
   1083  * ste_stats_update:
   1084  *
   1085  *	Read the ST-201 statistics counters.
   1086  */
   1087 static void
   1088 ste_stats_update(struct ste_softc *sc)
   1089 {
   1090 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1091 	bus_space_tag_t st = sc->sc_st;
   1092 	bus_space_handle_t sh = sc->sc_sh;
   1093 
   1094 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
   1095 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
   1096 
   1097 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
   1098 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
   1099 
   1100 	ifp->if_opackets +=
   1101 	    (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
   1102 	ifp->if_ipackets +=
   1103 	    (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
   1104 
   1105 	ifp->if_collisions +=
   1106 	    (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
   1107 	    (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
   1108 	    (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
   1109 
   1110 	(void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
   1111 
   1112 	ifp->if_ierrors +=
   1113 	    (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
   1114 
   1115 	ifp->if_oerrors +=
   1116 	    (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
   1117 	    (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
   1118 	    bus_space_read_1(st, sh, STE_CarrierSenseErrors);
   1119 
   1120 	(void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
   1121 	(void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
   1122 	(void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
   1123 	(void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
   1124 }
   1125 
   1126 /*
   1127  * ste_reset:
   1128  *
   1129  *	Perform a soft reset on the ST-201.
   1130  */
   1131 static void
   1132 ste_reset(struct ste_softc *sc, uint32_t rstbits)
   1133 {
   1134 	uint32_t ac;
   1135 	int i;
   1136 
   1137 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
   1138 
   1139 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
   1140 
   1141 	delay(50000);
   1142 
   1143 	for (i = 0; i < STE_TIMEOUT; i++) {
   1144 		delay(1000);
   1145 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
   1146 		     AC_ResetBusy) == 0)
   1147 			break;
   1148 	}
   1149 
   1150 	if (i == STE_TIMEOUT)
   1151 		printf("%s: reset failed to complete\n",
   1152 		    device_xname(sc->sc_dev));
   1153 
   1154 	delay(1000);
   1155 }
   1156 
   1157 /*
   1158  * ste_setthresh:
   1159  *
   1160  * 	set the various transmit threshold registers
   1161  */
   1162 static void
   1163 ste_setthresh(struct ste_softc *sc)
   1164 {
   1165 	/* set the TX threhold */
   1166 	bus_space_write_2(sc->sc_st, sc->sc_sh,
   1167 	    STE_TxStartThresh, sc->sc_txthresh);
   1168 	/* Urgent threshold: set to sc_txthresh / 2 */
   1169 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
   1170 	    sc->sc_txthresh >> 6);
   1171 	/* Burst threshold: use default value (256 bytes) */
   1172 }
   1173 
   1174 /*
   1175  * restart TX at the given frame ID in the transmitter ring
   1176  */
   1177 static void
   1178 ste_txrestart(struct ste_softc *sc, uint8_t id)
   1179 {
   1180 	uint32_t control;
   1181 
   1182 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1183 	control = le32toh(sc->sc_txdescs[id].tfd_control);
   1184 	control &= ~TFD_TxDMAComplete;
   1185 	sc->sc_txdescs[id].tfd_control = htole32(control);
   1186 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1187 
   1188 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
   1189 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
   1190 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
   1191 	ste_dmahalt_wait(sc);
   1192 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
   1193 	    STE_CDTXADDR(sc, id));
   1194 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
   1195 }
   1196 
   1197 /*
   1198  * ste_init:		[ ifnet interface function ]
   1199  *
   1200  *	Initialize the interface.  Must be called at splnet().
   1201  */
   1202 static int
   1203 ste_init(struct ifnet *ifp)
   1204 {
   1205 	struct ste_softc *sc = ifp->if_softc;
   1206 	bus_space_tag_t st = sc->sc_st;
   1207 	bus_space_handle_t sh = sc->sc_sh;
   1208 	struct ste_descsoft *ds;
   1209 	int i, error = 0;
   1210 
   1211 	/*
   1212 	 * Cancel any pending I/O.
   1213 	 */
   1214 	ste_stop(ifp, 0);
   1215 
   1216 	/*
   1217 	 * Reset the chip to a known state.
   1218 	 */
   1219 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
   1220 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
   1221 
   1222 	/*
   1223 	 * Initialize the transmit descriptor ring.
   1224 	 */
   1225 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1226 	sc->sc_txpending = 0;
   1227 	sc->sc_txdirty = 0;
   1228 	sc->sc_txlast = STE_NTXDESC - 1;
   1229 
   1230 	/*
   1231 	 * Initialize the receive descriptor and receive job
   1232 	 * descriptor rings.
   1233 	 */
   1234 	for (i = 0; i < STE_NRXDESC; i++) {
   1235 		ds = &sc->sc_rxsoft[i];
   1236 		if (ds->ds_mbuf == NULL) {
   1237 			if ((error = ste_add_rxbuf(sc, i)) != 0) {
   1238 				printf("%s: unable to allocate or map rx "
   1239 				    "buffer %d, error = %d\n",
   1240 				    device_xname(sc->sc_dev), i, error);
   1241 				/*
   1242 				 * XXX Should attempt to run with fewer receive
   1243 				 * XXX buffers instead of just failing.
   1244 				 */
   1245 				ste_rxdrain(sc);
   1246 				goto out;
   1247 			}
   1248 		} else
   1249 			STE_INIT_RXDESC(sc, i);
   1250 	}
   1251 	sc->sc_rxptr = 0;
   1252 
   1253 	/* Set the station address. */
   1254 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1255 		bus_space_write_1(st, sh, STE_StationAddress0 + 1,
   1256 		    CLLADDR(ifp->if_sadl)[i]);
   1257 
   1258 	/* Set up the receive filter. */
   1259 	ste_set_filter(sc);
   1260 
   1261 	/*
   1262 	 * Give the receive ring to the chip.
   1263 	 */
   1264 	bus_space_write_4(st, sh, STE_RxDMAListPtr,
   1265 	    STE_CDRXADDR(sc, sc->sc_rxptr));
   1266 
   1267 	/*
   1268 	 * We defer giving the transmit ring to the chip until we
   1269 	 * transmit the first packet.
   1270 	 */
   1271 
   1272 	/*
   1273 	 * Initialize the Tx auto-poll period.  It's OK to make this number
   1274 	 * large (127 is the max) -- we explicitly kick the transmit engine
   1275 	 * when there's actually a packet.  We are using auto-polling only
   1276 	 * to make the interface to the transmit engine not suck.
   1277 	 */
   1278 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
   1279 
   1280 	/* ..and the Rx auto-poll period. */
   1281 	bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
   1282 
   1283 	/* Initialize the Tx start threshold. */
   1284 	ste_setthresh(sc);
   1285 
   1286 	/* Set the FIFO release threshold to 512 bytes. */
   1287 	bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
   1288 
   1289 	/* Set maximum packet size for VLAN. */
   1290 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   1291 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN + 4);
   1292 	else
   1293 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN);
   1294 
   1295 	/*
   1296 	 * Initialize the interrupt mask.
   1297 	 */
   1298 	sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
   1299 	    IE_TxDMAComplete | IE_RxDMAComplete;
   1300 
   1301 	bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
   1302 	bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
   1303 
   1304 	/*
   1305 	 * Start the receive DMA engine.
   1306 	 */
   1307 	bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
   1308 
   1309 	/*
   1310 	 * Initialize MacCtrl0 -- do it before setting the media,
   1311 	 * as setting the media will actually program the register.
   1312 	 */
   1313 	sc->sc_MacCtrl0 = MC0_IFSSelect(0);
   1314 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   1315 		sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
   1316 
   1317 	/*
   1318 	 * Set the current media.
   1319 	 */
   1320 	if ((error = ether_mediachange(ifp)) != 0)
   1321 		goto out;
   1322 
   1323 	/*
   1324 	 * Start the MAC.
   1325 	 */
   1326 	bus_space_write_2(st, sh, STE_MacCtrl1,
   1327 	    MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
   1328 
   1329 	/*
   1330 	 * Start the one second MII clock.
   1331 	 */
   1332 	callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
   1333 
   1334 	/*
   1335 	 * ...all done!
   1336 	 */
   1337 	ifp->if_flags |= IFF_RUNNING;
   1338 	ifp->if_flags &= ~IFF_OACTIVE;
   1339 
   1340  out:
   1341 	if (error)
   1342 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
   1343 	return (error);
   1344 }
   1345 
   1346 /*
   1347  * ste_drain:
   1348  *
   1349  *	Drain the receive queue.
   1350  */
   1351 static void
   1352 ste_rxdrain(struct ste_softc *sc)
   1353 {
   1354 	struct ste_descsoft *ds;
   1355 	int i;
   1356 
   1357 	for (i = 0; i < STE_NRXDESC; i++) {
   1358 		ds = &sc->sc_rxsoft[i];
   1359 		if (ds->ds_mbuf != NULL) {
   1360 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1361 			m_freem(ds->ds_mbuf);
   1362 			ds->ds_mbuf = NULL;
   1363 		}
   1364 	}
   1365 }
   1366 
   1367 /*
   1368  * ste_stop:		[ ifnet interface function ]
   1369  *
   1370  *	Stop transmission on the interface.
   1371  */
   1372 static void
   1373 ste_stop(struct ifnet *ifp, int disable)
   1374 {
   1375 	struct ste_softc *sc = ifp->if_softc;
   1376 	struct ste_descsoft *ds;
   1377 	int i;
   1378 
   1379 	/*
   1380 	 * Stop the one second clock.
   1381 	 */
   1382 	callout_stop(&sc->sc_tick_ch);
   1383 
   1384 	/* Down the MII. */
   1385 	mii_down(&sc->sc_mii);
   1386 
   1387 	/*
   1388 	 * Disable interrupts.
   1389 	 */
   1390 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
   1391 
   1392 	/*
   1393 	 * Stop receiver, transmitter, and stats update.
   1394 	 */
   1395 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
   1396 	    MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
   1397 
   1398 	/*
   1399 	 * Stop the transmit and receive DMA.
   1400 	 */
   1401 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
   1402 	    DC_RxDMAHalt | DC_TxDMAHalt);
   1403 	ste_dmahalt_wait(sc);
   1404 
   1405 	/*
   1406 	 * Release any queued transmit buffers.
   1407 	 */
   1408 	for (i = 0; i < STE_NTXDESC; i++) {
   1409 		ds = &sc->sc_txsoft[i];
   1410 		if (ds->ds_mbuf != NULL) {
   1411 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1412 			m_freem(ds->ds_mbuf);
   1413 			ds->ds_mbuf = NULL;
   1414 		}
   1415 	}
   1416 
   1417 	/*
   1418 	 * Mark the interface down and cancel the watchdog timer.
   1419 	 */
   1420 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1421 	ifp->if_timer = 0;
   1422 
   1423 	if (disable)
   1424 		ste_rxdrain(sc);
   1425 }
   1426 
   1427 static int
   1428 ste_eeprom_wait(struct ste_softc *sc)
   1429 {
   1430 	int i;
   1431 
   1432 	for (i = 0; i < STE_TIMEOUT; i++) {
   1433 		delay(1000);
   1434 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
   1435 		     EC_EepromBusy) == 0)
   1436 			return (0);
   1437 	}
   1438 	return (1);
   1439 }
   1440 
   1441 /*
   1442  * ste_read_eeprom:
   1443  *
   1444  *	Read data from the serial EEPROM.
   1445  */
   1446 static void
   1447 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
   1448 {
   1449 
   1450 	if (ste_eeprom_wait(sc))
   1451 		printf("%s: EEPROM failed to come ready\n",
   1452 		    device_xname(sc->sc_dev));
   1453 
   1454 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
   1455 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
   1456 	if (ste_eeprom_wait(sc))
   1457 		printf("%s: EEPROM read timed out\n",
   1458 		    device_xname(sc->sc_dev));
   1459 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
   1460 }
   1461 
   1462 /*
   1463  * ste_add_rxbuf:
   1464  *
   1465  *	Add a receive buffer to the indicated descriptor.
   1466  */
   1467 static int
   1468 ste_add_rxbuf(struct ste_softc *sc, int idx)
   1469 {
   1470 	struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
   1471 	struct mbuf *m;
   1472 	int error;
   1473 
   1474 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1475 	if (m == NULL)
   1476 		return (ENOBUFS);
   1477 
   1478 	MCLGET(m, M_DONTWAIT);
   1479 	if ((m->m_flags & M_EXT) == 0) {
   1480 		m_freem(m);
   1481 		return (ENOBUFS);
   1482 	}
   1483 
   1484 	if (ds->ds_mbuf != NULL)
   1485 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1486 
   1487 	ds->ds_mbuf = m;
   1488 
   1489 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
   1490 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1491 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
   1492 	if (error) {
   1493 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1494 		    device_xname(sc->sc_dev), idx, error);
   1495 		panic("ste_add_rxbuf");		/* XXX */
   1496 	}
   1497 
   1498 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1499 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1500 
   1501 	STE_INIT_RXDESC(sc, idx);
   1502 
   1503 	return (0);
   1504 }
   1505 
   1506 /*
   1507  * ste_set_filter:
   1508  *
   1509  *	Set up the receive filter.
   1510  */
   1511 static void
   1512 ste_set_filter(struct ste_softc *sc)
   1513 {
   1514 	struct ethercom *ec = &sc->sc_ethercom;
   1515 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1516 	struct ether_multi *enm;
   1517 	struct ether_multistep step;
   1518 	uint32_t crc;
   1519 	uint16_t mchash[4];
   1520 
   1521 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
   1522 	if (ifp->if_flags & IFF_BROADCAST)
   1523 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
   1524 
   1525 	if (ifp->if_flags & IFF_PROMISC) {
   1526 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
   1527 		goto allmulti;
   1528 	}
   1529 
   1530 	/*
   1531 	 * Set up the multicast address filter by passing all multicast
   1532 	 * addresses through a CRC generator, and then using the low-order
   1533 	 * 6 bits as an index into the 64 bit multicast hash table.  The
   1534 	 * high order bits select the register, while the rest of the bits
   1535 	 * select the bit within the register.
   1536 	 */
   1537 
   1538 	memset(mchash, 0, sizeof(mchash));
   1539 
   1540 	ETHER_FIRST_MULTI(step, ec, enm);
   1541 	if (enm == NULL)
   1542 		goto done;
   1543 
   1544 	while (enm != NULL) {
   1545 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1546 			/*
   1547 			 * We must listen to a range of multicast addresses.
   1548 			 * For now, just accept all multicasts, rather than
   1549 			 * trying to set only those filter bits needed to match
   1550 			 * the range.  (At this time, the only use of address
   1551 			 * ranges is for IP multicast routing, for which the
   1552 			 * range is big enough to require all bits set.)
   1553 			 */
   1554 			goto allmulti;
   1555 		}
   1556 
   1557 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1558 
   1559 		/* Just want the 6 least significant bits. */
   1560 		crc &= 0x3f;
   1561 
   1562 		/* Set the corresponding bit in the hash table. */
   1563 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   1564 
   1565 		ETHER_NEXT_MULTI(step, enm);
   1566 	}
   1567 
   1568 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
   1569 
   1570 	ifp->if_flags &= ~IFF_ALLMULTI;
   1571 	goto done;
   1572 
   1573  allmulti:
   1574 	ifp->if_flags |= IFF_ALLMULTI;
   1575 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
   1576 
   1577  done:
   1578 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1579 		/*
   1580 		 * Program the multicast hash table.
   1581 		 */
   1582 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
   1583 		    mchash[0]);
   1584 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
   1585 		    mchash[1]);
   1586 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
   1587 		    mchash[2]);
   1588 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
   1589 		    mchash[3]);
   1590 	}
   1591 
   1592 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
   1593 	    sc->sc_ReceiveMode);
   1594 }
   1595 
   1596 /*
   1597  * ste_mii_readreg:	[mii interface function]
   1598  *
   1599  *	Read a PHY register on the MII of the ST-201.
   1600  */
   1601 static int
   1602 ste_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   1603 {
   1604 
   1605 	return mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg, val);
   1606 }
   1607 
   1608 /*
   1609  * ste_mii_writereg:	[mii interface function]
   1610  *
   1611  *	Write a PHY register on the MII of the ST-201.
   1612  */
   1613 static int
   1614 ste_mii_writereg(device_t self, int phy, int reg, uint16_t val)
   1615 {
   1616 
   1617 	return mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
   1618 }
   1619 
   1620 /*
   1621  * ste_mii_statchg:	[mii interface function]
   1622  *
   1623  *	Callback from MII layer when media changes.
   1624  */
   1625 static void
   1626 ste_mii_statchg(struct ifnet *ifp)
   1627 {
   1628 	struct ste_softc *sc = ifp->if_softc;
   1629 
   1630 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   1631 		sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
   1632 	else
   1633 		sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
   1634 
   1635 	/* XXX 802.1x flow-control? */
   1636 
   1637 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
   1638 }
   1639 
   1640 /*
   1641  * ste_mii_bitbang_read: [mii bit-bang interface function]
   1642  *
   1643  *	Read the MII serial port for the MII bit-bang module.
   1644  */
   1645 static uint32_t
   1646 ste_mii_bitbang_read(device_t self)
   1647 {
   1648 	struct ste_softc *sc = device_private(self);
   1649 
   1650 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
   1651 }
   1652 
   1653 /*
   1654  * ste_mii_bitbang_write: [mii big-bang interface function]
   1655  *
   1656  *	Write the MII serial port for the MII bit-bang module.
   1657  */
   1658 static void
   1659 ste_mii_bitbang_write(device_t self, uint32_t val)
   1660 {
   1661 	struct ste_softc *sc = device_private(self);
   1662 
   1663 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
   1664 }
   1665