if_ste.c revision 1.58.2.1 1 /* $NetBSD: if_ste.c,v 1.58.2.1 2020/02/29 20:19:10 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the Sundance Tech. ST-201 10/100
34 * Ethernet controller.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.58.2.1 2020/02/29 20:19:10 ad Exp $");
39
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 #include <sys/queue.h>
52
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57
58 #include <net/bpf.h>
59
60 #include <sys/bus.h>
61 #include <sys/intr.h>
62
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 #include <dev/mii/mii_bitbang.h>
66
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70
71 #include <dev/pci/if_stereg.h>
72
73 /*
74 * Transmit descriptor list size.
75 */
76 #define STE_NTXDESC 256
77 #define STE_NTXDESC_MASK (STE_NTXDESC - 1)
78 #define STE_NEXTTX(x) (((x) + 1) & STE_NTXDESC_MASK)
79
80 /*
81 * Receive descriptor list size.
82 */
83 #define STE_NRXDESC 128
84 #define STE_NRXDESC_MASK (STE_NRXDESC - 1)
85 #define STE_NEXTRX(x) (((x) + 1) & STE_NRXDESC_MASK)
86
87 /*
88 * Control structures are DMA'd to the ST-201 chip. We allocate them in
89 * a single clump that maps to a single DMA segment to make several things
90 * easier.
91 */
92 struct ste_control_data {
93 /*
94 * The transmit descriptors.
95 */
96 struct ste_tfd scd_txdescs[STE_NTXDESC];
97
98 /*
99 * The receive descriptors.
100 */
101 struct ste_rfd scd_rxdescs[STE_NRXDESC];
102 };
103
104 #define STE_CDOFF(x) offsetof(struct ste_control_data, x)
105 #define STE_CDTXOFF(x) STE_CDOFF(scd_txdescs[(x)])
106 #define STE_CDRXOFF(x) STE_CDOFF(scd_rxdescs[(x)])
107
108 /*
109 * Software state for transmit and receive jobs.
110 */
111 struct ste_descsoft {
112 struct mbuf *ds_mbuf; /* head of our mbuf chain */
113 bus_dmamap_t ds_dmamap; /* our DMA map */
114 };
115
116 /*
117 * Software state per device.
118 */
119 struct ste_softc {
120 device_t sc_dev; /* generic device information */
121 bus_space_tag_t sc_st; /* bus space tag */
122 bus_space_handle_t sc_sh; /* bus space handle */
123 bus_dma_tag_t sc_dmat; /* bus DMA tag */
124 struct ethercom sc_ethercom; /* ethernet common data */
125
126 void *sc_ih; /* interrupt cookie */
127
128 struct mii_data sc_mii; /* MII/media information */
129
130 callout_t sc_tick_ch; /* tick callout */
131
132 bus_dmamap_t sc_cddmamap; /* control data DMA map */
133 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
134
135 /*
136 * Software state for transmit and receive descriptors.
137 */
138 struct ste_descsoft sc_txsoft[STE_NTXDESC];
139 struct ste_descsoft sc_rxsoft[STE_NRXDESC];
140
141 /*
142 * Control data structures.
143 */
144 struct ste_control_data *sc_control_data;
145 #define sc_txdescs sc_control_data->scd_txdescs
146 #define sc_rxdescs sc_control_data->scd_rxdescs
147
148 int sc_txpending; /* number of Tx requests pending */
149 int sc_txdirty; /* first dirty Tx descriptor */
150 int sc_txlast; /* last used Tx descriptor */
151
152 int sc_rxptr; /* next ready Rx descriptor/descsoft */
153
154 int sc_txthresh; /* Tx threshold */
155 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
156 uint16_t sc_IntEnable; /* prototype IntEnable register */
157 uint16_t sc_MacCtrl0; /* prototype MacCtrl0 register */
158 uint8_t sc_ReceiveMode; /* prototype ReceiveMode register */
159 };
160
161 #define STE_CDTXADDR(sc, x) ((sc)->sc_cddma + STE_CDTXOFF((x)))
162 #define STE_CDRXADDR(sc, x) ((sc)->sc_cddma + STE_CDRXOFF((x)))
163
164 #define STE_CDTXSYNC(sc, x, ops) \
165 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
166 STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
167
168 #define STE_CDRXSYNC(sc, x, ops) \
169 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
170 STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
171
172 #define STE_INIT_RXDESC(sc, x) \
173 do { \
174 struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
175 struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
176 struct mbuf *__m = __ds->ds_mbuf; \
177 \
178 /* \
179 * Note: We scoot the packet forward 2 bytes in the buffer \
180 * so that the payload after the Ethernet header is aligned \
181 * to a 4-byte boundary. \
182 */ \
183 __m->m_data = __m->m_ext.ext_buf + 2; \
184 __rfd->rfd_frag.frag_addr = \
185 htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2); \
186 __rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST); \
187 __rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x)))); \
188 __rfd->rfd_status = 0; \
189 STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
190 } while (/*CONSTCOND*/0)
191
192 #define STE_TIMEOUT 1000
193
194 static void ste_start(struct ifnet *);
195 static void ste_watchdog(struct ifnet *);
196 static int ste_ioctl(struct ifnet *, u_long, void *);
197 static int ste_init(struct ifnet *);
198 static void ste_stop(struct ifnet *, int);
199
200 static bool ste_shutdown(device_t, int);
201
202 static void ste_reset(struct ste_softc *, uint32_t);
203 static void ste_setthresh(struct ste_softc *);
204 static void ste_txrestart(struct ste_softc *, uint8_t);
205 static void ste_rxdrain(struct ste_softc *);
206 static int ste_add_rxbuf(struct ste_softc *, int);
207 static void ste_read_eeprom(struct ste_softc *, int, uint16_t *);
208 static void ste_tick(void *);
209
210 static void ste_stats_update(struct ste_softc *);
211
212 static void ste_set_filter(struct ste_softc *);
213
214 static int ste_intr(void *);
215 static void ste_txintr(struct ste_softc *);
216 static void ste_rxintr(struct ste_softc *);
217
218 static int ste_mii_readreg(device_t, int, int, uint16_t *);
219 static int ste_mii_writereg(device_t, int, int, uint16_t);
220 static void ste_mii_statchg(struct ifnet *);
221
222 static int ste_match(device_t, cfdata_t, void *);
223 static void ste_attach(device_t, device_t, void *);
224
225 int ste_copy_small = 0;
226
227 CFATTACH_DECL_NEW(ste, sizeof(struct ste_softc),
228 ste_match, ste_attach, NULL, NULL);
229
230 static uint32_t ste_mii_bitbang_read(device_t);
231 static void ste_mii_bitbang_write(device_t, uint32_t);
232
233 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
234 ste_mii_bitbang_read,
235 ste_mii_bitbang_write,
236 {
237 PC_MgmtData, /* MII_BIT_MDO */
238 PC_MgmtData, /* MII_BIT_MDI */
239 PC_MgmtClk, /* MII_BIT_MDC */
240 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
241 0, /* MII_BIT_DIR_PHY_HOST */
242 }
243 };
244
245 /*
246 * Devices supported by this driver.
247 */
248 static const struct ste_product {
249 pci_vendor_id_t ste_vendor;
250 pci_product_id_t ste_product;
251 const char *ste_name;
252 } ste_products[] = {
253 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_IP100A,
254 "IC Plus Corp. IP00A 10/100 Fast Ethernet Adapter" },
255
256 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST201,
257 "Sundance ST-201 10/100 Ethernet" },
258
259 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL1002,
260 "D-Link DL-1002 10/100 Ethernet" },
261
262 { 0, 0,
263 NULL },
264 };
265
266 static const struct ste_product *
267 ste_lookup(const struct pci_attach_args *pa)
268 {
269 const struct ste_product *sp;
270
271 for (sp = ste_products; sp->ste_name != NULL; sp++) {
272 if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
273 PCI_PRODUCT(pa->pa_id) == sp->ste_product)
274 return (sp);
275 }
276 return (NULL);
277 }
278
279 static int
280 ste_match(device_t parent, cfdata_t cf, void *aux)
281 {
282 struct pci_attach_args *pa = aux;
283
284 if (ste_lookup(pa) != NULL)
285 return (1);
286
287 return (0);
288 }
289
290 static void
291 ste_attach(device_t parent, device_t self, void *aux)
292 {
293 struct ste_softc *sc = device_private(self);
294 struct pci_attach_args *pa = aux;
295 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
296 struct mii_data * const mii = &sc->sc_mii;
297 pci_chipset_tag_t pc = pa->pa_pc;
298 pci_intr_handle_t ih;
299 const char *intrstr = NULL;
300 bus_space_tag_t iot, memt;
301 bus_space_handle_t ioh, memh;
302 bus_dma_segment_t seg;
303 int ioh_valid, memh_valid;
304 int i, rseg, error;
305 const struct ste_product *sp;
306 uint8_t enaddr[ETHER_ADDR_LEN];
307 uint16_t myea[ETHER_ADDR_LEN / 2];
308 char intrbuf[PCI_INTRSTR_LEN];
309
310 sc->sc_dev = self;
311
312 callout_init(&sc->sc_tick_ch, 0);
313 callout_setfunc(&sc->sc_tick_ch, ste_tick, sc);
314
315 sp = ste_lookup(pa);
316 if (sp == NULL) {
317 printf("\n");
318 panic("ste_attach: impossible");
319 }
320
321 printf(": %s\n", sp->ste_name);
322
323 /*
324 * Map the device.
325 */
326 ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
327 PCI_MAPREG_TYPE_IO, 0,
328 &iot, &ioh, NULL, NULL) == 0);
329 memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
330 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
331 &memt, &memh, NULL, NULL) == 0);
332
333 if (memh_valid) {
334 sc->sc_st = memt;
335 sc->sc_sh = memh;
336 } else if (ioh_valid) {
337 sc->sc_st = iot;
338 sc->sc_sh = ioh;
339 } else {
340 aprint_error_dev(self, "unable to map device registers\n");
341 return;
342 }
343
344 sc->sc_dmat = pa->pa_dmat;
345
346 /* Enable bus mastering. */
347 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
348 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
349 PCI_COMMAND_MASTER_ENABLE);
350
351 /* power up chip */
352 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
353 NULL)) && error != EOPNOTSUPP) {
354 aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
355 return;
356 }
357
358 /*
359 * Map and establish our interrupt.
360 */
361 if (pci_intr_map(pa, &ih)) {
362 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
363 return;
364 }
365 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
366 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, ste_intr, sc,
367 device_xname(self));
368 if (sc->sc_ih == NULL) {
369 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
370 if (intrstr != NULL)
371 aprint_error(" at %s", intrstr);
372 aprint_error("\n");
373 return;
374 }
375 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
376
377 /*
378 * Allocate the control data structures, and create and load the
379 * DMA map for it.
380 */
381 if ((error = bus_dmamem_alloc(sc->sc_dmat,
382 sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
383 0)) != 0) {
384 aprint_error_dev(sc->sc_dev,
385 "unable to allocate control data, error = %d\n", error);
386 goto fail_0;
387 }
388
389 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
390 sizeof(struct ste_control_data), (void **)&sc->sc_control_data,
391 BUS_DMA_COHERENT)) != 0) {
392 aprint_error_dev(sc->sc_dev,
393 "unable to map control data, error = %d\n", error);
394 goto fail_1;
395 }
396
397 if ((error = bus_dmamap_create(sc->sc_dmat,
398 sizeof(struct ste_control_data), 1,
399 sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
400 aprint_error_dev(sc->sc_dev,
401 "unable to create control data DMA map, error = %d\n",
402 error);
403 goto fail_2;
404 }
405
406 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
407 sc->sc_control_data, sizeof(struct ste_control_data), NULL,
408 0)) != 0) {
409 aprint_error_dev(sc->sc_dev,
410 "unable to load control data DMA map, error = %d\n",
411 error);
412 goto fail_3;
413 }
414
415 /*
416 * Create the transmit buffer DMA maps.
417 */
418 for (i = 0; i < STE_NTXDESC; i++) {
419 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
420 STE_NTXFRAGS, MCLBYTES, 0, 0,
421 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
422 aprint_error_dev(sc->sc_dev,
423 "unable to create tx DMA map %d, error = %d\n", i,
424 error);
425 goto fail_4;
426 }
427 }
428
429 /*
430 * Create the receive buffer DMA maps.
431 */
432 for (i = 0; i < STE_NRXDESC; i++) {
433 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
434 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
435 aprint_error_dev(sc->sc_dev,
436 "unable to create rx DMA map %d, error = %d\n", i,
437 error);
438 goto fail_5;
439 }
440 sc->sc_rxsoft[i].ds_mbuf = NULL;
441 }
442
443 /*
444 * Reset the chip to a known state.
445 */
446 ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
447 AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
448
449 /*
450 * Read the Ethernet address from the EEPROM.
451 */
452 for (i = 0; i < 3; i++) {
453 ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
454 myea[i] = le16toh(myea[i]);
455 }
456 memcpy(enaddr, myea, sizeof(enaddr));
457
458 printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
459 ether_sprintf(enaddr));
460
461 /*
462 * Initialize our media structures and probe the MII.
463 */
464 mii->mii_ifp = ifp;
465 mii->mii_readreg = ste_mii_readreg;
466 mii->mii_writereg = ste_mii_writereg;
467 mii->mii_statchg = ste_mii_statchg;
468 sc->sc_ethercom.ec_mii = mii;
469 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
470 ether_mediastatus);
471 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
472 MII_OFFSET_ANY, 0);
473 if (LIST_FIRST(&mii->mii_phys) == NULL) {
474 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
475 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
476 } else
477 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
478
479 ifp = &sc->sc_ethercom.ec_if;
480 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
481 ifp->if_softc = sc;
482 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
483 ifp->if_ioctl = ste_ioctl;
484 ifp->if_start = ste_start;
485 ifp->if_watchdog = ste_watchdog;
486 ifp->if_init = ste_init;
487 ifp->if_stop = ste_stop;
488 IFQ_SET_READY(&ifp->if_snd);
489
490 /*
491 * Default the transmit threshold to 128 bytes.
492 */
493 sc->sc_txthresh = 128;
494
495 /*
496 * Disable MWI if the PCI layer tells us to.
497 */
498 sc->sc_DMACtrl = 0;
499 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
500 sc->sc_DMACtrl |= DC_MWIDisable;
501
502 /*
503 * We can support 802.1Q VLAN-sized frames.
504 */
505 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
506
507 /*
508 * Attach the interface.
509 */
510 if_attach(ifp);
511 if_deferred_start_init(ifp, NULL);
512 ether_ifattach(ifp, enaddr);
513
514 /*
515 * Make sure the interface is shutdown during reboot.
516 */
517 if (pmf_device_register1(self, NULL, NULL, ste_shutdown))
518 pmf_class_network_register(self, ifp);
519 else
520 aprint_error_dev(self, "couldn't establish power handler\n");
521
522 return;
523
524 /*
525 * Free any resources we've allocated during the failed attach
526 * attempt. Do this in reverse order and fall through.
527 */
528 fail_5:
529 for (i = 0; i < STE_NRXDESC; i++) {
530 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
531 bus_dmamap_destroy(sc->sc_dmat,
532 sc->sc_rxsoft[i].ds_dmamap);
533 }
534 fail_4:
535 for (i = 0; i < STE_NTXDESC; i++) {
536 if (sc->sc_txsoft[i].ds_dmamap != NULL)
537 bus_dmamap_destroy(sc->sc_dmat,
538 sc->sc_txsoft[i].ds_dmamap);
539 }
540 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
541 fail_3:
542 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
543 fail_2:
544 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
545 sizeof(struct ste_control_data));
546 fail_1:
547 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
548 fail_0:
549 return;
550 }
551
552 /*
553 * ste_shutdown:
554 *
555 * Make sure the interface is stopped at reboot time.
556 */
557 static bool
558 ste_shutdown(device_t self, int howto)
559 {
560 struct ste_softc *sc;
561
562 sc = device_private(self);
563 ste_stop(&sc->sc_ethercom.ec_if, 1);
564
565 return true;
566 }
567
568 static void
569 ste_dmahalt_wait(struct ste_softc *sc)
570 {
571 int i;
572
573 for (i = 0; i < STE_TIMEOUT; i++) {
574 delay(2);
575 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
576 DC_DMAHaltBusy) == 0)
577 break;
578 }
579
580 if (i == STE_TIMEOUT)
581 printf("%s: DMA halt timed out\n", device_xname(sc->sc_dev));
582 }
583
584 /*
585 * ste_start: [ifnet interface function]
586 *
587 * Start packet transmission on the interface.
588 */
589 static void
590 ste_start(struct ifnet *ifp)
591 {
592 struct ste_softc *sc = ifp->if_softc;
593 struct mbuf *m0, *m;
594 struct ste_descsoft *ds;
595 struct ste_tfd *tfd;
596 bus_dmamap_t dmamap;
597 int error, olasttx, nexttx, opending, seg, totlen;
598
599 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
600 return;
601
602 /*
603 * Remember the previous number of pending transmissions
604 * and the current last descriptor in the list.
605 */
606 opending = sc->sc_txpending;
607 olasttx = sc->sc_txlast;
608
609 /*
610 * Loop through the send queue, setting up transmit descriptors
611 * until we drain the queue, or use up all available transmit
612 * descriptors.
613 */
614 while (sc->sc_txpending < STE_NTXDESC) {
615 /*
616 * Grab a packet off the queue.
617 */
618 IFQ_POLL(&ifp->if_snd, m0);
619 if (m0 == NULL)
620 break;
621 m = NULL;
622
623 /*
624 * Get the last and next available transmit descriptor.
625 */
626 nexttx = STE_NEXTTX(sc->sc_txlast);
627 tfd = &sc->sc_txdescs[nexttx];
628 ds = &sc->sc_txsoft[nexttx];
629
630 dmamap = ds->ds_dmamap;
631
632 /*
633 * Load the DMA map. If this fails, the packet either
634 * didn't fit in the alloted number of segments, or we
635 * were short on resources. In this case, we'll copy
636 * and try again.
637 */
638 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
639 BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
640 MGETHDR(m, M_DONTWAIT, MT_DATA);
641 if (m == NULL) {
642 printf("%s: unable to allocate Tx mbuf\n",
643 device_xname(sc->sc_dev));
644 break;
645 }
646 if (m0->m_pkthdr.len > MHLEN) {
647 MCLGET(m, M_DONTWAIT);
648 if ((m->m_flags & M_EXT) == 0) {
649 printf("%s: unable to allocate Tx "
650 "cluster\n",
651 device_xname(sc->sc_dev));
652 m_freem(m);
653 break;
654 }
655 }
656 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
657 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
658 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
659 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
660 if (error) {
661 printf("%s: unable to load Tx buffer, "
662 "error = %d\n", device_xname(sc->sc_dev),
663 error);
664 break;
665 }
666 }
667
668 IFQ_DEQUEUE(&ifp->if_snd, m0);
669 if (m != NULL) {
670 m_freem(m0);
671 m0 = m;
672 }
673
674 /*
675 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
676 */
677
678 /* Sync the DMA map. */
679 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
680 BUS_DMASYNC_PREWRITE);
681
682 /* Initialize the fragment list. */
683 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
684 tfd->tfd_frags[seg].frag_addr =
685 htole32(dmamap->dm_segs[seg].ds_addr);
686 tfd->tfd_frags[seg].frag_len =
687 htole32(dmamap->dm_segs[seg].ds_len);
688 totlen += dmamap->dm_segs[seg].ds_len;
689 }
690 tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
691
692 /* Initialize the descriptor. */
693 tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
694 tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
695
696 /* Sync the descriptor. */
697 STE_CDTXSYNC(sc, nexttx,
698 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
699
700 /*
701 * Store a pointer to the packet so we can free it later,
702 * and remember what txdirty will be once the packet is
703 * done.
704 */
705 ds->ds_mbuf = m0;
706
707 /* Advance the tx pointer. */
708 sc->sc_txpending++;
709 sc->sc_txlast = nexttx;
710
711 /*
712 * Pass the packet to any BPF listeners.
713 */
714 bpf_mtap(ifp, m0, BPF_D_OUT);
715 }
716
717 if (sc->sc_txpending == STE_NTXDESC) {
718 /* No more slots left; notify upper layer. */
719 ifp->if_flags |= IFF_OACTIVE;
720 }
721
722 if (sc->sc_txpending != opending) {
723 /*
724 * We enqueued packets. If the transmitter was idle,
725 * reset the txdirty pointer.
726 */
727 if (opending == 0)
728 sc->sc_txdirty = STE_NEXTTX(olasttx);
729
730 /*
731 * Cause a descriptor interrupt to happen on the
732 * last packet we enqueued, and also cause the
733 * DMA engine to wait after is has finished processing
734 * it.
735 */
736 sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
737 sc->sc_txdescs[sc->sc_txlast].tfd_control |=
738 htole32(TFD_TxDMAIndicate);
739 STE_CDTXSYNC(sc, sc->sc_txlast,
740 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
741
742 /*
743 * Link up the new chain of descriptors to the
744 * last.
745 */
746 sc->sc_txdescs[olasttx].tfd_next =
747 htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
748 STE_CDTXSYNC(sc, olasttx,
749 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
750
751 /*
752 * Kick the transmit DMA logic. Note that since we're
753 * using auto-polling, reading the Tx desc pointer will
754 * give it the nudge it needs to get going.
755 */
756 if (bus_space_read_4(sc->sc_st, sc->sc_sh,
757 STE_TxDMAListPtr) == 0) {
758 bus_space_write_4(sc->sc_st, sc->sc_sh,
759 STE_DMACtrl, DC_TxDMAHalt);
760 ste_dmahalt_wait(sc);
761 bus_space_write_4(sc->sc_st, sc->sc_sh,
762 STE_TxDMAListPtr,
763 STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
764 bus_space_write_4(sc->sc_st, sc->sc_sh,
765 STE_DMACtrl, DC_TxDMAResume);
766 }
767
768 /* Set a watchdog timer in case the chip flakes out. */
769 ifp->if_timer = 5;
770 }
771 }
772
773 /*
774 * ste_watchdog: [ifnet interface function]
775 *
776 * Watchdog timer handler.
777 */
778 static void
779 ste_watchdog(struct ifnet *ifp)
780 {
781 struct ste_softc *sc = ifp->if_softc;
782
783 printf("%s: device timeout\n", device_xname(sc->sc_dev));
784 if_statinc(ifp, if_oerrors);
785
786 ste_txintr(sc);
787 ste_rxintr(sc);
788 (void) ste_init(ifp);
789
790 /* Try to get more packets going. */
791 ste_start(ifp);
792 }
793
794 /*
795 * ste_ioctl: [ifnet interface function]
796 *
797 * Handle control requests from the operator.
798 */
799 static int
800 ste_ioctl(struct ifnet *ifp, u_long cmd, void *data)
801 {
802 struct ste_softc *sc = ifp->if_softc;
803 int s, error;
804
805 s = splnet();
806
807 error = ether_ioctl(ifp, cmd, data);
808 if (error == ENETRESET) {
809 /*
810 * Multicast list has changed; set the hardware filter
811 * accordingly.
812 */
813 if (ifp->if_flags & IFF_RUNNING)
814 ste_set_filter(sc);
815 error = 0;
816 }
817
818 /* Try to get more packets going. */
819 ste_start(ifp);
820
821 splx(s);
822 return (error);
823 }
824
825 /*
826 * ste_intr:
827 *
828 * Interrupt service routine.
829 */
830 static int
831 ste_intr(void *arg)
832 {
833 struct ste_softc *sc = arg;
834 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
835 uint16_t isr;
836 uint8_t txstat;
837 int wantinit;
838
839 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
840 IS_InterruptStatus) == 0)
841 return (0);
842
843 for (wantinit = 0; wantinit == 0;) {
844 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
845 if ((isr & sc->sc_IntEnable) == 0)
846 break;
847
848 /* Receive interrupts. */
849 if (isr & IE_RxDMAComplete)
850 ste_rxintr(sc);
851
852 /* Transmit interrupts. */
853 if (isr & (IE_TxDMAComplete | IE_TxComplete))
854 ste_txintr(sc);
855
856 /* Statistics overflow. */
857 if (isr & IE_UpdateStats)
858 ste_stats_update(sc);
859
860 /* Transmission errors. */
861 if (isr & IE_TxComplete) {
862 for (;;) {
863 txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
864 STE_TxStatus);
865 if ((txstat & TS_TxComplete) == 0)
866 break;
867 if (txstat & TS_TxUnderrun) {
868 sc->sc_txthresh += 32;
869 if (sc->sc_txthresh > 0x1ffc)
870 sc->sc_txthresh = 0x1ffc;
871 printf("%s: transmit underrun, new "
872 "threshold: %d bytes\n",
873 device_xname(sc->sc_dev),
874 sc->sc_txthresh);
875 ste_reset(sc, AC_TxReset | AC_DMA |
876 AC_FIFO | AC_Network);
877 ste_setthresh(sc);
878 bus_space_write_1(sc->sc_st, sc->sc_sh,
879 STE_TxDMAPollPeriod, 127);
880 ste_txrestart(sc,
881 bus_space_read_1(sc->sc_st,
882 sc->sc_sh, STE_TxFrameId));
883 }
884 if (txstat & TS_TxReleaseError) {
885 printf("%s: Tx FIFO release error\n",
886 device_xname(sc->sc_dev));
887 wantinit = 1;
888 }
889 if (txstat & TS_MaxCollisions) {
890 printf("%s: excessive collisions\n",
891 device_xname(sc->sc_dev));
892 wantinit = 1;
893 }
894 if (txstat & TS_TxStatusOverflow) {
895 printf("%s: status overflow\n",
896 device_xname(sc->sc_dev));
897 wantinit = 1;
898 }
899 bus_space_write_2(sc->sc_st, sc->sc_sh,
900 STE_TxStatus, 0);
901 }
902 }
903
904 /* Host interface errors. */
905 if (isr & IE_HostError) {
906 printf("%s: Host interface error\n",
907 device_xname(sc->sc_dev));
908 wantinit = 1;
909 }
910 }
911
912 if (wantinit)
913 ste_init(ifp);
914
915 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
916 sc->sc_IntEnable);
917
918 /* Try to get more packets going. */
919 if_schedule_deferred_start(ifp);
920
921 return (1);
922 }
923
924 /*
925 * ste_txintr:
926 *
927 * Helper; handle transmit interrupts.
928 */
929 static void
930 ste_txintr(struct ste_softc *sc)
931 {
932 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
933 struct ste_descsoft *ds;
934 uint32_t control;
935 int i;
936
937 ifp->if_flags &= ~IFF_OACTIVE;
938
939 /*
940 * Go through our Tx list and free mbufs for those
941 * frames which have been transmitted.
942 */
943 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
944 i = STE_NEXTTX(i), sc->sc_txpending--) {
945 ds = &sc->sc_txsoft[i];
946
947 STE_CDTXSYNC(sc, i,
948 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
949
950 control = le32toh(sc->sc_txdescs[i].tfd_control);
951 if ((control & TFD_TxDMAComplete) == 0)
952 break;
953
954 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
955 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
956 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
957 m_freem(ds->ds_mbuf);
958 ds->ds_mbuf = NULL;
959 }
960
961 /* Update the dirty transmit buffer pointer. */
962 sc->sc_txdirty = i;
963
964 /*
965 * If there are no more pending transmissions, cancel the watchdog
966 * timer.
967 */
968 if (sc->sc_txpending == 0)
969 ifp->if_timer = 0;
970 }
971
972 /*
973 * ste_rxintr:
974 *
975 * Helper; handle receive interrupts.
976 */
977 static void
978 ste_rxintr(struct ste_softc *sc)
979 {
980 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
981 struct ste_descsoft *ds;
982 struct mbuf *m;
983 uint32_t status;
984 int i, len;
985
986 for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
987 ds = &sc->sc_rxsoft[i];
988
989 STE_CDRXSYNC(sc, i,
990 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
991
992 status = le32toh(sc->sc_rxdescs[i].rfd_status);
993
994 if ((status & RFD_RxDMAComplete) == 0)
995 break;
996
997 /*
998 * If the packet had an error, simply recycle the
999 * buffer. Note, we count the error later in the
1000 * periodic stats update.
1001 */
1002 if (status & RFD_RxFrameError) {
1003 STE_INIT_RXDESC(sc, i);
1004 continue;
1005 }
1006
1007 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1008 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1009
1010 /*
1011 * No errors; receive the packet. Note, we have
1012 * configured the chip to not include the CRC at
1013 * the end of the packet.
1014 */
1015 len = RFD_RxDMAFrameLen(status);
1016
1017 /*
1018 * If the packet is small enough to fit in a
1019 * single header mbuf, allocate one and copy
1020 * the data into it. This greatly reduces
1021 * memory consumption when we receive lots
1022 * of small packets.
1023 *
1024 * Otherwise, we add a new buffer to the receive
1025 * chain. If this fails, we drop the packet and
1026 * recycle the old buffer.
1027 */
1028 if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
1029 MGETHDR(m, M_DONTWAIT, MT_DATA);
1030 if (m == NULL)
1031 goto dropit;
1032 m->m_data += 2;
1033 memcpy(mtod(m, void *),
1034 mtod(ds->ds_mbuf, void *), len);
1035 STE_INIT_RXDESC(sc, i);
1036 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1037 ds->ds_dmamap->dm_mapsize,
1038 BUS_DMASYNC_PREREAD);
1039 } else {
1040 m = ds->ds_mbuf;
1041 if (ste_add_rxbuf(sc, i) != 0) {
1042 dropit:
1043 if_statinc(ifp, if_ierrors);
1044 STE_INIT_RXDESC(sc, i);
1045 bus_dmamap_sync(sc->sc_dmat,
1046 ds->ds_dmamap, 0,
1047 ds->ds_dmamap->dm_mapsize,
1048 BUS_DMASYNC_PREREAD);
1049 continue;
1050 }
1051 }
1052
1053 m_set_rcvif(m, ifp);
1054 m->m_pkthdr.len = m->m_len = len;
1055
1056 /* Pass it on. */
1057 if_percpuq_enqueue(ifp->if_percpuq, m);
1058 }
1059
1060 /* Update the receive pointer. */
1061 sc->sc_rxptr = i;
1062 }
1063
1064 /*
1065 * ste_tick:
1066 *
1067 * One second timer, used to tick the MII.
1068 */
1069 static void
1070 ste_tick(void *arg)
1071 {
1072 struct ste_softc *sc = arg;
1073 int s;
1074
1075 s = splnet();
1076 mii_tick(&sc->sc_mii);
1077 ste_stats_update(sc);
1078 splx(s);
1079
1080 callout_schedule(&sc->sc_tick_ch, hz);
1081 }
1082
1083 /*
1084 * ste_stats_update:
1085 *
1086 * Read the ST-201 statistics counters.
1087 */
1088 static void
1089 ste_stats_update(struct ste_softc *sc)
1090 {
1091 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1092 bus_space_tag_t st = sc->sc_st;
1093 bus_space_handle_t sh = sc->sc_sh;
1094
1095 (void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
1096 (void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
1097
1098 (void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
1099 (void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
1100
1101 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1102
1103 if_statadd_ref(nsr, if_opackets,
1104 (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK));
1105
1106 (void) bus_space_read_2(st, sh, STE_FramesReceivedOK);
1107
1108 if_statadd_ref(nsr, if_collisions,
1109 (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
1110 (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
1111 (u_int) bus_space_read_1(st, sh, STE_SingleColFrames));
1112
1113 (void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
1114
1115 if_statadd_ref(nsr, if_ierrors,
1116 (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors));
1117
1118 if_statadd_ref(nsr, if_oerrors,
1119 (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
1120 (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
1121 bus_space_read_1(st, sh, STE_CarrierSenseErrors));
1122
1123 IF_STAT_PUTREF(ifp);
1124
1125 (void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
1126 (void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
1127 (void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
1128 (void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
1129 }
1130
1131 /*
1132 * ste_reset:
1133 *
1134 * Perform a soft reset on the ST-201.
1135 */
1136 static void
1137 ste_reset(struct ste_softc *sc, uint32_t rstbits)
1138 {
1139 uint32_t ac;
1140 int i;
1141
1142 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
1143
1144 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
1145
1146 delay(50000);
1147
1148 for (i = 0; i < STE_TIMEOUT; i++) {
1149 delay(1000);
1150 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
1151 AC_ResetBusy) == 0)
1152 break;
1153 }
1154
1155 if (i == STE_TIMEOUT)
1156 printf("%s: reset failed to complete\n",
1157 device_xname(sc->sc_dev));
1158
1159 delay(1000);
1160 }
1161
1162 /*
1163 * ste_setthresh:
1164 *
1165 * set the various transmit threshold registers
1166 */
1167 static void
1168 ste_setthresh(struct ste_softc *sc)
1169 {
1170 /* set the TX threhold */
1171 bus_space_write_2(sc->sc_st, sc->sc_sh,
1172 STE_TxStartThresh, sc->sc_txthresh);
1173 /* Urgent threshold: set to sc_txthresh / 2 */
1174 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
1175 sc->sc_txthresh >> 6);
1176 /* Burst threshold: use default value (256 bytes) */
1177 }
1178
1179 /*
1180 * restart TX at the given frame ID in the transmitter ring
1181 */
1182 static void
1183 ste_txrestart(struct ste_softc *sc, uint8_t id)
1184 {
1185 uint32_t control;
1186
1187 STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1188 control = le32toh(sc->sc_txdescs[id].tfd_control);
1189 control &= ~TFD_TxDMAComplete;
1190 sc->sc_txdescs[id].tfd_control = htole32(control);
1191 STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1192
1193 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
1194 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
1195 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
1196 ste_dmahalt_wait(sc);
1197 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
1198 STE_CDTXADDR(sc, id));
1199 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
1200 }
1201
1202 /*
1203 * ste_init: [ ifnet interface function ]
1204 *
1205 * Initialize the interface. Must be called at splnet().
1206 */
1207 static int
1208 ste_init(struct ifnet *ifp)
1209 {
1210 struct ste_softc *sc = ifp->if_softc;
1211 bus_space_tag_t st = sc->sc_st;
1212 bus_space_handle_t sh = sc->sc_sh;
1213 struct ste_descsoft *ds;
1214 int i, error = 0;
1215
1216 /*
1217 * Cancel any pending I/O.
1218 */
1219 ste_stop(ifp, 0);
1220
1221 /*
1222 * Reset the chip to a known state.
1223 */
1224 ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
1225 AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
1226
1227 /*
1228 * Initialize the transmit descriptor ring.
1229 */
1230 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1231 sc->sc_txpending = 0;
1232 sc->sc_txdirty = 0;
1233 sc->sc_txlast = STE_NTXDESC - 1;
1234
1235 /*
1236 * Initialize the receive descriptor and receive job
1237 * descriptor rings.
1238 */
1239 for (i = 0; i < STE_NRXDESC; i++) {
1240 ds = &sc->sc_rxsoft[i];
1241 if (ds->ds_mbuf == NULL) {
1242 if ((error = ste_add_rxbuf(sc, i)) != 0) {
1243 printf("%s: unable to allocate or map rx "
1244 "buffer %d, error = %d\n",
1245 device_xname(sc->sc_dev), i, error);
1246 /*
1247 * XXX Should attempt to run with fewer receive
1248 * XXX buffers instead of just failing.
1249 */
1250 ste_rxdrain(sc);
1251 goto out;
1252 }
1253 } else
1254 STE_INIT_RXDESC(sc, i);
1255 }
1256 sc->sc_rxptr = 0;
1257
1258 /* Set the station address. */
1259 for (i = 0; i < ETHER_ADDR_LEN; i++)
1260 bus_space_write_1(st, sh, STE_StationAddress0 + 1,
1261 CLLADDR(ifp->if_sadl)[i]);
1262
1263 /* Set up the receive filter. */
1264 ste_set_filter(sc);
1265
1266 /*
1267 * Give the receive ring to the chip.
1268 */
1269 bus_space_write_4(st, sh, STE_RxDMAListPtr,
1270 STE_CDRXADDR(sc, sc->sc_rxptr));
1271
1272 /*
1273 * We defer giving the transmit ring to the chip until we
1274 * transmit the first packet.
1275 */
1276
1277 /*
1278 * Initialize the Tx auto-poll period. It's OK to make this number
1279 * large (127 is the max) -- we explicitly kick the transmit engine
1280 * when there's actually a packet. We are using auto-polling only
1281 * to make the interface to the transmit engine not suck.
1282 */
1283 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
1284
1285 /* ..and the Rx auto-poll period. */
1286 bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
1287
1288 /* Initialize the Tx start threshold. */
1289 ste_setthresh(sc);
1290
1291 /* Set the FIFO release threshold to 512 bytes. */
1292 bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
1293
1294 /* Set maximum packet size for VLAN. */
1295 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1296 bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN + 4);
1297 else
1298 bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN);
1299
1300 /*
1301 * Initialize the interrupt mask.
1302 */
1303 sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1304 IE_TxDMAComplete | IE_RxDMAComplete;
1305
1306 bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
1307 bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
1308
1309 /*
1310 * Start the receive DMA engine.
1311 */
1312 bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
1313
1314 /*
1315 * Initialize MacCtrl0 -- do it before setting the media,
1316 * as setting the media will actually program the register.
1317 */
1318 sc->sc_MacCtrl0 = MC0_IFSSelect(0);
1319 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1320 sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
1321
1322 /*
1323 * Set the current media.
1324 */
1325 if ((error = ether_mediachange(ifp)) != 0)
1326 goto out;
1327
1328 /*
1329 * Start the MAC.
1330 */
1331 bus_space_write_2(st, sh, STE_MacCtrl1,
1332 MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
1333
1334 /*
1335 * Start the one second MII clock.
1336 */
1337 callout_schedule(&sc->sc_tick_ch, hz);
1338
1339 /*
1340 * ...all done!
1341 */
1342 ifp->if_flags |= IFF_RUNNING;
1343 ifp->if_flags &= ~IFF_OACTIVE;
1344
1345 out:
1346 if (error)
1347 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1348 return (error);
1349 }
1350
1351 /*
1352 * ste_drain:
1353 *
1354 * Drain the receive queue.
1355 */
1356 static void
1357 ste_rxdrain(struct ste_softc *sc)
1358 {
1359 struct ste_descsoft *ds;
1360 int i;
1361
1362 for (i = 0; i < STE_NRXDESC; i++) {
1363 ds = &sc->sc_rxsoft[i];
1364 if (ds->ds_mbuf != NULL) {
1365 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1366 m_freem(ds->ds_mbuf);
1367 ds->ds_mbuf = NULL;
1368 }
1369 }
1370 }
1371
1372 /*
1373 * ste_stop: [ ifnet interface function ]
1374 *
1375 * Stop transmission on the interface.
1376 */
1377 static void
1378 ste_stop(struct ifnet *ifp, int disable)
1379 {
1380 struct ste_softc *sc = ifp->if_softc;
1381 struct ste_descsoft *ds;
1382 int i;
1383
1384 /*
1385 * Stop the one second clock.
1386 */
1387 callout_stop(&sc->sc_tick_ch);
1388
1389 /* Down the MII. */
1390 mii_down(&sc->sc_mii);
1391
1392 /*
1393 * Disable interrupts.
1394 */
1395 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
1396
1397 /*
1398 * Stop receiver, transmitter, and stats update.
1399 */
1400 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
1401 MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
1402
1403 /*
1404 * Stop the transmit and receive DMA.
1405 */
1406 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
1407 DC_RxDMAHalt | DC_TxDMAHalt);
1408 ste_dmahalt_wait(sc);
1409
1410 /*
1411 * Release any queued transmit buffers.
1412 */
1413 for (i = 0; i < STE_NTXDESC; i++) {
1414 ds = &sc->sc_txsoft[i];
1415 if (ds->ds_mbuf != NULL) {
1416 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1417 m_freem(ds->ds_mbuf);
1418 ds->ds_mbuf = NULL;
1419 }
1420 }
1421
1422 /*
1423 * Mark the interface down and cancel the watchdog timer.
1424 */
1425 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1426 ifp->if_timer = 0;
1427
1428 if (disable)
1429 ste_rxdrain(sc);
1430 }
1431
1432 static int
1433 ste_eeprom_wait(struct ste_softc *sc)
1434 {
1435 int i;
1436
1437 for (i = 0; i < STE_TIMEOUT; i++) {
1438 delay(1000);
1439 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
1440 EC_EepromBusy) == 0)
1441 return (0);
1442 }
1443 return (1);
1444 }
1445
1446 /*
1447 * ste_read_eeprom:
1448 *
1449 * Read data from the serial EEPROM.
1450 */
1451 static void
1452 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
1453 {
1454
1455 if (ste_eeprom_wait(sc))
1456 printf("%s: EEPROM failed to come ready\n",
1457 device_xname(sc->sc_dev));
1458
1459 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
1460 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
1461 if (ste_eeprom_wait(sc))
1462 printf("%s: EEPROM read timed out\n",
1463 device_xname(sc->sc_dev));
1464 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
1465 }
1466
1467 /*
1468 * ste_add_rxbuf:
1469 *
1470 * Add a receive buffer to the indicated descriptor.
1471 */
1472 static int
1473 ste_add_rxbuf(struct ste_softc *sc, int idx)
1474 {
1475 struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
1476 struct mbuf *m;
1477 int error;
1478
1479 MGETHDR(m, M_DONTWAIT, MT_DATA);
1480 if (m == NULL)
1481 return (ENOBUFS);
1482
1483 MCLGET(m, M_DONTWAIT);
1484 if ((m->m_flags & M_EXT) == 0) {
1485 m_freem(m);
1486 return (ENOBUFS);
1487 }
1488
1489 if (ds->ds_mbuf != NULL)
1490 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1491
1492 ds->ds_mbuf = m;
1493
1494 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1495 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1496 BUS_DMA_READ | BUS_DMA_NOWAIT);
1497 if (error) {
1498 printf("%s: can't load rx DMA map %d, error = %d\n",
1499 device_xname(sc->sc_dev), idx, error);
1500 panic("ste_add_rxbuf"); /* XXX */
1501 }
1502
1503 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1504 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1505
1506 STE_INIT_RXDESC(sc, idx);
1507
1508 return (0);
1509 }
1510
1511 /*
1512 * ste_set_filter:
1513 *
1514 * Set up the receive filter.
1515 */
1516 static void
1517 ste_set_filter(struct ste_softc *sc)
1518 {
1519 struct ethercom *ec = &sc->sc_ethercom;
1520 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1521 struct ether_multi *enm;
1522 struct ether_multistep step;
1523 uint32_t crc;
1524 uint16_t mchash[4];
1525
1526 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1527 if (ifp->if_flags & IFF_BROADCAST)
1528 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1529
1530 if (ifp->if_flags & IFF_PROMISC) {
1531 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1532 goto allmulti;
1533 }
1534
1535 /*
1536 * Set up the multicast address filter by passing all multicast
1537 * addresses through a CRC generator, and then using the low-order
1538 * 6 bits as an index into the 64 bit multicast hash table. The
1539 * high order bits select the register, while the rest of the bits
1540 * select the bit within the register.
1541 */
1542
1543 memset(mchash, 0, sizeof(mchash));
1544
1545 ETHER_LOCK(ec);
1546 ETHER_FIRST_MULTI(step, ec, enm);
1547 if (enm == NULL) {
1548 ETHER_UNLOCK(ec);
1549 goto done;
1550 }
1551
1552 while (enm != NULL) {
1553 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1554 /*
1555 * We must listen to a range of multicast addresses.
1556 * For now, just accept all multicasts, rather than
1557 * trying to set only those filter bits needed to match
1558 * the range. (At this time, the only use of address
1559 * ranges is for IP multicast routing, for which the
1560 * range is big enough to require all bits set.)
1561 */
1562 ETHER_UNLOCK(ec);
1563 goto allmulti;
1564 }
1565
1566 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1567
1568 /* Just want the 6 least significant bits. */
1569 crc &= 0x3f;
1570
1571 /* Set the corresponding bit in the hash table. */
1572 mchash[crc >> 4] |= 1 << (crc & 0xf);
1573
1574 ETHER_NEXT_MULTI(step, enm);
1575 }
1576 ETHER_UNLOCK(ec);
1577
1578 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1579
1580 ifp->if_flags &= ~IFF_ALLMULTI;
1581 goto done;
1582
1583 allmulti:
1584 ifp->if_flags |= IFF_ALLMULTI;
1585 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1586
1587 done:
1588 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1589 /*
1590 * Program the multicast hash table.
1591 */
1592 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
1593 mchash[0]);
1594 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
1595 mchash[1]);
1596 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
1597 mchash[2]);
1598 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
1599 mchash[3]);
1600 }
1601
1602 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
1603 sc->sc_ReceiveMode);
1604 }
1605
1606 /*
1607 * ste_mii_readreg: [mii interface function]
1608 *
1609 * Read a PHY register on the MII of the ST-201.
1610 */
1611 static int
1612 ste_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1613 {
1614
1615 return mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg, val);
1616 }
1617
1618 /*
1619 * ste_mii_writereg: [mii interface function]
1620 *
1621 * Write a PHY register on the MII of the ST-201.
1622 */
1623 static int
1624 ste_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1625 {
1626
1627 return mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
1628 }
1629
1630 /*
1631 * ste_mii_statchg: [mii interface function]
1632 *
1633 * Callback from MII layer when media changes.
1634 */
1635 static void
1636 ste_mii_statchg(struct ifnet *ifp)
1637 {
1638 struct ste_softc *sc = ifp->if_softc;
1639
1640 if (sc->sc_mii.mii_media_active & IFM_FDX)
1641 sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
1642 else
1643 sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
1644
1645 /* XXX 802.1x flow-control? */
1646
1647 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
1648 }
1649
1650 /*
1651 * ste_mii_bitbang_read: [mii bit-bang interface function]
1652 *
1653 * Read the MII serial port for the MII bit-bang module.
1654 */
1655 static uint32_t
1656 ste_mii_bitbang_read(device_t self)
1657 {
1658 struct ste_softc *sc = device_private(self);
1659
1660 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
1661 }
1662
1663 /*
1664 * ste_mii_bitbang_write: [mii big-bang interface function]
1665 *
1666 * Write the MII serial port for the MII bit-bang module.
1667 */
1668 static void
1669 ste_mii_bitbang_write(device_t self, uint32_t val)
1670 {
1671 struct ste_softc *sc = device_private(self);
1672
1673 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
1674 }
1675