Home | History | Annotate | Line # | Download | only in pci
if_ste.c revision 1.61
      1 /*	$NetBSD: if_ste.c,v 1.61 2020/03/13 00:41:24 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Device driver for the Sundance Tech. ST-201 10/100
     34  * Ethernet controller.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.61 2020/03/13 00:41:24 thorpej Exp $");
     39 
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/callout.h>
     44 #include <sys/mbuf.h>
     45 #include <sys/malloc.h>
     46 #include <sys/kernel.h>
     47 #include <sys/socket.h>
     48 #include <sys/ioctl.h>
     49 #include <sys/errno.h>
     50 #include <sys/device.h>
     51 #include <sys/queue.h>
     52 
     53 #include <net/if.h>
     54 #include <net/if_dl.h>
     55 #include <net/if_media.h>
     56 #include <net/if_ether.h>
     57 
     58 #include <net/bpf.h>
     59 
     60 #include <sys/bus.h>
     61 #include <sys/intr.h>
     62 
     63 #include <dev/mii/mii.h>
     64 #include <dev/mii/miivar.h>
     65 #include <dev/mii/mii_bitbang.h>
     66 
     67 #include <dev/pci/pcireg.h>
     68 #include <dev/pci/pcivar.h>
     69 #include <dev/pci/pcidevs.h>
     70 
     71 #include <dev/pci/if_stereg.h>
     72 
     73 /*
     74  * Transmit descriptor list size.
     75  */
     76 #define	STE_NTXDESC		256
     77 #define	STE_NTXDESC_MASK	(STE_NTXDESC - 1)
     78 #define	STE_NEXTTX(x)		(((x) + 1) & STE_NTXDESC_MASK)
     79 
     80 /*
     81  * Receive descriptor list size.
     82  */
     83 #define	STE_NRXDESC		128
     84 #define	STE_NRXDESC_MASK	(STE_NRXDESC - 1)
     85 #define	STE_NEXTRX(x)		(((x) + 1) & STE_NRXDESC_MASK)
     86 
     87 /*
     88  * Control structures are DMA'd to the ST-201 chip.  We allocate them in
     89  * a single clump that maps to a single DMA segment to make several things
     90  * easier.
     91  */
     92 struct ste_control_data {
     93 	/*
     94 	 * The transmit descriptors.
     95 	 */
     96 	struct ste_tfd scd_txdescs[STE_NTXDESC];
     97 
     98 	/*
     99 	 * The receive descriptors.
    100 	 */
    101 	struct ste_rfd scd_rxdescs[STE_NRXDESC];
    102 };
    103 
    104 #define	STE_CDOFF(x)	offsetof(struct ste_control_data, x)
    105 #define	STE_CDTXOFF(x)	STE_CDOFF(scd_txdescs[(x)])
    106 #define	STE_CDRXOFF(x)	STE_CDOFF(scd_rxdescs[(x)])
    107 
    108 /*
    109  * Software state for transmit and receive jobs.
    110  */
    111 struct ste_descsoft {
    112 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
    113 	bus_dmamap_t ds_dmamap;		/* our DMA map */
    114 };
    115 
    116 /*
    117  * Software state per device.
    118  */
    119 struct ste_softc {
    120 	device_t sc_dev;		/* generic device information */
    121 	bus_space_tag_t sc_st;		/* bus space tag */
    122 	bus_space_handle_t sc_sh;	/* bus space handle */
    123 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    124 	struct ethercom sc_ethercom;	/* ethernet common data */
    125 
    126 	void *sc_ih;			/* interrupt cookie */
    127 
    128 	struct mii_data sc_mii;		/* MII/media information */
    129 
    130 	callout_t sc_tick_ch;		/* tick callout */
    131 
    132 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    133 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    134 
    135 	/*
    136 	 * Software state for transmit and receive descriptors.
    137 	 */
    138 	struct ste_descsoft sc_txsoft[STE_NTXDESC];
    139 	struct ste_descsoft sc_rxsoft[STE_NRXDESC];
    140 
    141 	/*
    142 	 * Control data structures.
    143 	 */
    144 	struct ste_control_data *sc_control_data;
    145 #define	sc_txdescs	sc_control_data->scd_txdescs
    146 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    147 
    148 	int	sc_txpending;		/* number of Tx requests pending */
    149 	int	sc_txdirty;		/* first dirty Tx descriptor */
    150 	int	sc_txlast;		/* last used Tx descriptor */
    151 
    152 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    153 
    154 	int	sc_txthresh;		/* Tx threshold */
    155 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
    156 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
    157 	uint16_t sc_MacCtrl0;		/* prototype MacCtrl0 register */
    158 	uint8_t	sc_ReceiveMode;		/* prototype ReceiveMode register */
    159 
    160 	bool	sc_enable_phy0;		/* access to phy #0 allowed */
    161 };
    162 
    163 #define	STE_CDTXADDR(sc, x)	((sc)->sc_cddma + STE_CDTXOFF((x)))
    164 #define	STE_CDRXADDR(sc, x)	((sc)->sc_cddma + STE_CDRXOFF((x)))
    165 
    166 #define	STE_CDTXSYNC(sc, x, ops)					\
    167 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    168 	    STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
    169 
    170 #define	STE_CDRXSYNC(sc, x, ops)					\
    171 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    172 	    STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
    173 
    174 #define	STE_INIT_RXDESC(sc, x)						\
    175 do {									\
    176 	struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
    177 	struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)];			\
    178 	struct mbuf *__m = __ds->ds_mbuf;				\
    179 									\
    180 	/*								\
    181 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    182 	 * so that the payload after the Ethernet header is aligned	\
    183 	 * to a 4-byte boundary.					\
    184 	 */								\
    185 	__m->m_data = __m->m_ext.ext_buf + 2;				\
    186 	__rfd->rfd_frag.frag_addr =					\
    187 	    htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2);		\
    188 	__rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST);	\
    189 	__rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x))));	\
    190 	__rfd->rfd_status = 0;						\
    191 	STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
    192 } while (/*CONSTCOND*/0)
    193 
    194 #define STE_TIMEOUT 1000
    195 
    196 static void	ste_start(struct ifnet *);
    197 static void	ste_watchdog(struct ifnet *);
    198 static int	ste_ioctl(struct ifnet *, u_long, void *);
    199 static int	ste_init(struct ifnet *);
    200 static void	ste_stop(struct ifnet *, int);
    201 
    202 static bool	ste_shutdown(device_t, int);
    203 
    204 static void	ste_reset(struct ste_softc *, uint32_t);
    205 static void	ste_setthresh(struct ste_softc *);
    206 static void	ste_txrestart(struct ste_softc *, uint8_t);
    207 static void	ste_rxdrain(struct ste_softc *);
    208 static int	ste_add_rxbuf(struct ste_softc *, int);
    209 static void	ste_read_eeprom(struct ste_softc *, int, uint16_t *);
    210 static void	ste_tick(void *);
    211 
    212 static void	ste_stats_update(struct ste_softc *);
    213 
    214 static void	ste_set_filter(struct ste_softc *);
    215 
    216 static int	ste_intr(void *);
    217 static void	ste_txintr(struct ste_softc *);
    218 static void	ste_rxintr(struct ste_softc *);
    219 
    220 static int	ste_mii_readreg(device_t, int, int, uint16_t *);
    221 static int	ste_mii_writereg(device_t, int, int, uint16_t);
    222 static void	ste_mii_statchg(struct ifnet *);
    223 
    224 static int	ste_match(device_t, cfdata_t, void *);
    225 static void	ste_attach(device_t, device_t, void *);
    226 
    227 int	ste_copy_small = 0;
    228 
    229 CFATTACH_DECL_NEW(ste, sizeof(struct ste_softc),
    230     ste_match, ste_attach, NULL, NULL);
    231 
    232 static uint32_t ste_mii_bitbang_read(device_t);
    233 static void	ste_mii_bitbang_write(device_t, uint32_t);
    234 
    235 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
    236 	ste_mii_bitbang_read,
    237 	ste_mii_bitbang_write,
    238 	{
    239 		PC_MgmtData,		/* MII_BIT_MDO */
    240 		PC_MgmtData,		/* MII_BIT_MDI */
    241 		PC_MgmtClk,		/* MII_BIT_MDC */
    242 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
    243 		0,			/* MII_BIT_DIR_PHY_HOST */
    244 	}
    245 };
    246 
    247 /*
    248  * Devices supported by this driver.
    249  */
    250 struct ste_product {
    251 	pci_vendor_id_t		ste_vendor;
    252 	pci_product_id_t	ste_product;
    253 	const char		*ste_name;
    254 	const struct ste_product *ste_subs;
    255 };
    256 
    257 static const struct ste_product ste_dlink_products[] = {
    258 	{ PCI_VENDOR_DLINK,		0x1002,
    259 	  "D-Link DFE-550TX 10/100 Ethernet",
    260 	  NULL },
    261 
    262 	{ PCI_VENDOR_DLINK,		0x1003,
    263 	  "D-Link DFE-550FX Ethernet",
    264 	  NULL },
    265 
    266 	{ PCI_VENDOR_DLINK,		0x1012,
    267 	  "D-Link DFE-580TX 4-port 10/100 Ethernet",
    268 	  NULL },
    269 
    270 	{ PCI_VENDOR_DLINK,		0x1040,
    271 	  "D-Link DFE-530TXS 10/100 Ethernet",
    272 	  NULL },
    273 
    274 	{ 0,				0,
    275 	  NULL,
    276 	  NULL },
    277 };
    278 
    279 static const struct ste_product ste_products[] = {
    280 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_IP100A,
    281 	  "IC Plus Corp. IP00A 10/100 Fast Ethernet Adapter",
    282 	  NULL },
    283 
    284 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST201,
    285 	  "Sundance ST-201 10/100 Ethernet",
    286 	  NULL },
    287 
    288 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL1002,
    289 	  "D-Link DL-1002 10/100 Ethernet",
    290 	  ste_dlink_products },
    291 
    292 	{ 0,				0,
    293 	  NULL,
    294 	  NULL },
    295 };
    296 
    297 static const struct ste_product *
    298 ste_lookup_table(pcireg_t pci_id, const struct ste_product * const products)
    299 {
    300 	const struct ste_product *sp;
    301 
    302 	for (sp = products; sp->ste_name != NULL; sp++) {
    303 		if (PCI_VENDOR(pci_id) == sp->ste_vendor &&
    304 		    PCI_PRODUCT(pci_id) == sp->ste_product)
    305 			return (sp);
    306 	}
    307 	return (NULL);
    308 }
    309 
    310 static const struct ste_product *
    311 ste_lookup(const struct pci_attach_args *pa)
    312 {
    313 	const struct ste_product *sp;
    314 
    315 	sp = ste_lookup_table(pa->pa_id, ste_products);
    316 	if (sp && sp->ste_subs) {
    317 		const pcireg_t subsys =
    318 		    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    319 		const struct ste_product *ssp =
    320 		    ste_lookup_table(subsys, sp->ste_subs);
    321 		if (ssp)
    322 			sp = ssp;
    323 	}
    324 	return (sp);
    325 }
    326 
    327 static int
    328 ste_match(device_t parent, cfdata_t cf, void *aux)
    329 {
    330 	struct pci_attach_args *pa = aux;
    331 
    332 	if (ste_lookup(pa) != NULL)
    333 		return (1);
    334 
    335 	return (0);
    336 }
    337 
    338 static void
    339 ste_attach(device_t parent, device_t self, void *aux)
    340 {
    341 	struct ste_softc *sc = device_private(self);
    342 	struct pci_attach_args *pa = aux;
    343 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    344 	struct mii_data * const mii = &sc->sc_mii;
    345 	pci_chipset_tag_t pc = pa->pa_pc;
    346 	pci_intr_handle_t ih;
    347 	const char *intrstr = NULL;
    348 	bus_space_tag_t iot, memt;
    349 	bus_space_handle_t ioh, memh;
    350 	bus_dma_segment_t seg;
    351 	int ioh_valid, memh_valid;
    352 	int i, rseg, error;
    353 	const struct ste_product *sp;
    354 	uint8_t enaddr[ETHER_ADDR_LEN];
    355 	uint16_t myea[ETHER_ADDR_LEN / 2];
    356 	char intrbuf[PCI_INTRSTR_LEN];
    357 
    358 	sc->sc_dev = self;
    359 
    360 	callout_init(&sc->sc_tick_ch, 0);
    361 	callout_setfunc(&sc->sc_tick_ch, ste_tick, sc);
    362 
    363 	sp = ste_lookup(pa);
    364 	if (sp == NULL) {
    365 		printf("\n");
    366 		panic("ste_attach: impossible");
    367 	}
    368 
    369 	printf(": %s\n", sp->ste_name);
    370 
    371 	/*
    372 	 * Map the device.
    373 	 */
    374 	ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
    375 	    PCI_MAPREG_TYPE_IO, 0,
    376 	    &iot, &ioh, NULL, NULL) == 0);
    377 	memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
    378 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
    379 	    &memt, &memh, NULL, NULL) == 0);
    380 
    381 	if (memh_valid) {
    382 		sc->sc_st = memt;
    383 		sc->sc_sh = memh;
    384 	} else if (ioh_valid) {
    385 		sc->sc_st = iot;
    386 		sc->sc_sh = ioh;
    387 	} else {
    388 		aprint_error_dev(self, "unable to map device registers\n");
    389 		return;
    390 	}
    391 
    392 	sc->sc_dmat = pa->pa_dmat;
    393 
    394 	/* Enable bus mastering. */
    395 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    396 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    397 	    PCI_COMMAND_MASTER_ENABLE);
    398 
    399 	/* power up chip */
    400 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
    401 	    NULL)) && error != EOPNOTSUPP) {
    402 		aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
    403 		return;
    404 	}
    405 
    406 	/*
    407 	 * Map and establish our interrupt.
    408 	 */
    409 	if (pci_intr_map(pa, &ih)) {
    410 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
    411 		return;
    412 	}
    413 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    414 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, ste_intr, sc,
    415 	    device_xname(self));
    416 	if (sc->sc_ih == NULL) {
    417 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
    418 		if (intrstr != NULL)
    419 			aprint_error(" at %s", intrstr);
    420 		aprint_error("\n");
    421 		return;
    422 	}
    423 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
    424 
    425 	/*
    426 	 * Allocate the control data structures, and create and load the
    427 	 * DMA map for it.
    428 	 */
    429 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    430 	    sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    431 	    0)) != 0) {
    432 		aprint_error_dev(sc->sc_dev,
    433 		    "unable to allocate control data, error = %d\n", error);
    434 		goto fail_0;
    435 	}
    436 
    437 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    438 	    sizeof(struct ste_control_data), (void **)&sc->sc_control_data,
    439 	    BUS_DMA_COHERENT)) != 0) {
    440 		aprint_error_dev(sc->sc_dev,
    441 		    "unable to map control data, error = %d\n", error);
    442 		goto fail_1;
    443 	}
    444 
    445 	if ((error = bus_dmamap_create(sc->sc_dmat,
    446 	    sizeof(struct ste_control_data), 1,
    447 	    sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    448 		aprint_error_dev(sc->sc_dev,
    449 		    "unable to create control data DMA map, error = %d\n",
    450 		    error);
    451 		goto fail_2;
    452 	}
    453 
    454 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    455 	    sc->sc_control_data, sizeof(struct ste_control_data), NULL,
    456 	    0)) != 0) {
    457 		aprint_error_dev(sc->sc_dev,
    458 		    "unable to load control data DMA map, error = %d\n",
    459 		    error);
    460 		goto fail_3;
    461 	}
    462 
    463 	/*
    464 	 * Create the transmit buffer DMA maps.
    465 	 */
    466 	for (i = 0; i < STE_NTXDESC; i++) {
    467 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    468 		    STE_NTXFRAGS, MCLBYTES, 0, 0,
    469 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
    470 			aprint_error_dev(sc->sc_dev,
    471 			    "unable to create tx DMA map %d, error = %d\n", i,
    472 			    error);
    473 			goto fail_4;
    474 		}
    475 	}
    476 
    477 	/*
    478 	 * Create the receive buffer DMA maps.
    479 	 */
    480 	for (i = 0; i < STE_NRXDESC; i++) {
    481 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    482 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
    483 			aprint_error_dev(sc->sc_dev,
    484 			    "unable to create rx DMA map %d, error = %d\n", i,
    485 			    error);
    486 			goto fail_5;
    487 		}
    488 		sc->sc_rxsoft[i].ds_mbuf = NULL;
    489 	}
    490 
    491 	/*
    492 	 * Reset the chip to a known state.
    493 	 */
    494 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
    495 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
    496 
    497 	/*
    498 	 * Read the Ethernet address from the EEPROM.
    499 	 */
    500 	for (i = 0; i < 3; i++) {
    501 		ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
    502 		myea[i] = le16toh(myea[i]);
    503 	}
    504 	memcpy(enaddr, myea, sizeof(enaddr));
    505 
    506 	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
    507 	    ether_sprintf(enaddr));
    508 
    509 	/*
    510 	 * Initialize our media structures and probe the MII.
    511 	 */
    512 	mii->mii_ifp = ifp;
    513 	mii->mii_readreg = ste_mii_readreg;
    514 	mii->mii_writereg = ste_mii_writereg;
    515 	mii->mii_statchg = ste_mii_statchg;
    516 	sc->sc_ethercom.ec_mii = mii;
    517 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
    518 	    ether_mediastatus);
    519 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
    520 	    MII_OFFSET_ANY, 0);
    521 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    522 		/*
    523 		 * It seems that some variants of this chip "ghost" the
    524 		 * single PHY at #0 and #1.  We will try probing the MII
    525 		 * first while ignoring #0 access.  If we find the PHY,
    526 		 * great!  If not, un-ignore #0 and try probing *just*
    527 		 * #0 to see if we can find it.
    528 		 */
    529 		sc->sc_enable_phy0 = true;
    530 		mii_attach(sc->sc_dev, mii, 0xffffffff, 0,
    531 		    MII_OFFSET_ANY, 0);
    532 	}
    533 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    534 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
    535 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
    536 	} else
    537 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    538 
    539 	ifp = &sc->sc_ethercom.ec_if;
    540 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    541 	ifp->if_softc = sc;
    542 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    543 	ifp->if_ioctl = ste_ioctl;
    544 	ifp->if_start = ste_start;
    545 	ifp->if_watchdog = ste_watchdog;
    546 	ifp->if_init = ste_init;
    547 	ifp->if_stop = ste_stop;
    548 	IFQ_SET_READY(&ifp->if_snd);
    549 
    550 	/*
    551 	 * Default the transmit threshold to 128 bytes.
    552 	 */
    553 	sc->sc_txthresh = 128;
    554 
    555 	/*
    556 	 * Disable MWI if the PCI layer tells us to.
    557 	 */
    558 	sc->sc_DMACtrl = 0;
    559 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
    560 		sc->sc_DMACtrl |= DC_MWIDisable;
    561 
    562 	/*
    563 	 * We can support 802.1Q VLAN-sized frames.
    564 	 */
    565 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    566 
    567 	/*
    568 	 * Attach the interface.
    569 	 */
    570 	if_attach(ifp);
    571 	if_deferred_start_init(ifp, NULL);
    572 	ether_ifattach(ifp, enaddr);
    573 
    574 	/*
    575 	 * Make sure the interface is shutdown during reboot.
    576 	 */
    577 	if (pmf_device_register1(self, NULL, NULL, ste_shutdown))
    578 		pmf_class_network_register(self, ifp);
    579 	else
    580 		aprint_error_dev(self, "couldn't establish power handler\n");
    581 
    582 	return;
    583 
    584 	/*
    585 	 * Free any resources we've allocated during the failed attach
    586 	 * attempt.  Do this in reverse order and fall through.
    587 	 */
    588  fail_5:
    589 	for (i = 0; i < STE_NRXDESC; i++) {
    590 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
    591 			bus_dmamap_destroy(sc->sc_dmat,
    592 			    sc->sc_rxsoft[i].ds_dmamap);
    593 	}
    594  fail_4:
    595 	for (i = 0; i < STE_NTXDESC; i++) {
    596 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
    597 			bus_dmamap_destroy(sc->sc_dmat,
    598 			    sc->sc_txsoft[i].ds_dmamap);
    599 	}
    600 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    601  fail_3:
    602 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    603  fail_2:
    604 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    605 	    sizeof(struct ste_control_data));
    606  fail_1:
    607 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    608  fail_0:
    609 	return;
    610 }
    611 
    612 /*
    613  * ste_shutdown:
    614  *
    615  *	Make sure the interface is stopped at reboot time.
    616  */
    617 static bool
    618 ste_shutdown(device_t self, int howto)
    619 {
    620 	struct ste_softc *sc;
    621 
    622 	sc = device_private(self);
    623 	ste_stop(&sc->sc_ethercom.ec_if, 1);
    624 
    625 	return true;
    626 }
    627 
    628 static void
    629 ste_dmahalt_wait(struct ste_softc *sc)
    630 {
    631 	int i;
    632 
    633 	for (i = 0; i < STE_TIMEOUT; i++) {
    634 		delay(2);
    635 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
    636 		     DC_DMAHaltBusy) == 0)
    637 			break;
    638 	}
    639 
    640 	if (i == STE_TIMEOUT)
    641 		printf("%s: DMA halt timed out\n", device_xname(sc->sc_dev));
    642 }
    643 
    644 /*
    645  * ste_start:		[ifnet interface function]
    646  *
    647  *	Start packet transmission on the interface.
    648  */
    649 static void
    650 ste_start(struct ifnet *ifp)
    651 {
    652 	struct ste_softc *sc = ifp->if_softc;
    653 	struct mbuf *m0, *m;
    654 	struct ste_descsoft *ds;
    655 	struct ste_tfd *tfd;
    656 	bus_dmamap_t dmamap;
    657 	int error, olasttx, nexttx, opending, seg, totlen;
    658 
    659 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    660 		return;
    661 
    662 	/*
    663 	 * Remember the previous number of pending transmissions
    664 	 * and the current last descriptor in the list.
    665 	 */
    666 	opending = sc->sc_txpending;
    667 	olasttx = sc->sc_txlast;
    668 
    669 	/*
    670 	 * Loop through the send queue, setting up transmit descriptors
    671 	 * until we drain the queue, or use up all available transmit
    672 	 * descriptors.
    673 	 */
    674 	while (sc->sc_txpending < STE_NTXDESC) {
    675 		/*
    676 		 * Grab a packet off the queue.
    677 		 */
    678 		IFQ_POLL(&ifp->if_snd, m0);
    679 		if (m0 == NULL)
    680 			break;
    681 		m = NULL;
    682 
    683 		/*
    684 		 * Get the last and next available transmit descriptor.
    685 		 */
    686 		nexttx = STE_NEXTTX(sc->sc_txlast);
    687 		tfd = &sc->sc_txdescs[nexttx];
    688 		ds = &sc->sc_txsoft[nexttx];
    689 
    690 		dmamap = ds->ds_dmamap;
    691 
    692 		/*
    693 		 * Load the DMA map.  If this fails, the packet either
    694 		 * didn't fit in the alloted number of segments, or we
    695 		 * were short on resources.  In this case, we'll copy
    696 		 * and try again.
    697 		 */
    698 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    699 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
    700 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    701 			if (m == NULL) {
    702 				printf("%s: unable to allocate Tx mbuf\n",
    703 				    device_xname(sc->sc_dev));
    704 				break;
    705 			}
    706 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
    707 			if (m0->m_pkthdr.len > MHLEN) {
    708 				MCLGET(m, M_DONTWAIT);
    709 				if ((m->m_flags & M_EXT) == 0) {
    710 					printf("%s: unable to allocate Tx "
    711 					    "cluster\n",
    712 					    device_xname(sc->sc_dev));
    713 					m_freem(m);
    714 					break;
    715 				}
    716 			}
    717 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
    718 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    719 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    720 			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
    721 			if (error) {
    722 				printf("%s: unable to load Tx buffer, "
    723 				    "error = %d\n", device_xname(sc->sc_dev),
    724 				    error);
    725 				break;
    726 			}
    727 		}
    728 
    729 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    730 		if (m != NULL) {
    731 			m_freem(m0);
    732 			m0 = m;
    733 		}
    734 
    735 		/*
    736 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    737 		 */
    738 
    739 		/* Sync the DMA map. */
    740 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    741 		    BUS_DMASYNC_PREWRITE);
    742 
    743 		/* Initialize the fragment list. */
    744 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
    745 			tfd->tfd_frags[seg].frag_addr =
    746 			    htole32(dmamap->dm_segs[seg].ds_addr);
    747 			tfd->tfd_frags[seg].frag_len =
    748 			    htole32(dmamap->dm_segs[seg].ds_len);
    749 			totlen += dmamap->dm_segs[seg].ds_len;
    750 		}
    751 		tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
    752 
    753 		/* Initialize the descriptor. */
    754 		tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
    755 		tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
    756 
    757 		/* Sync the descriptor. */
    758 		STE_CDTXSYNC(sc, nexttx,
    759 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    760 
    761 		/*
    762 		 * Store a pointer to the packet so we can free it later,
    763 		 * and remember what txdirty will be once the packet is
    764 		 * done.
    765 		 */
    766 		ds->ds_mbuf = m0;
    767 
    768 		/* Advance the tx pointer. */
    769 		sc->sc_txpending++;
    770 		sc->sc_txlast = nexttx;
    771 
    772 		/*
    773 		 * Pass the packet to any BPF listeners.
    774 		 */
    775 		bpf_mtap(ifp, m0, BPF_D_OUT);
    776 	}
    777 
    778 	if (sc->sc_txpending == STE_NTXDESC) {
    779 		/* No more slots left; notify upper layer. */
    780 		ifp->if_flags |= IFF_OACTIVE;
    781 	}
    782 
    783 	if (sc->sc_txpending != opending) {
    784 		/*
    785 		 * We enqueued packets.  If the transmitter was idle,
    786 		 * reset the txdirty pointer.
    787 		 */
    788 		if (opending == 0)
    789 			sc->sc_txdirty = STE_NEXTTX(olasttx);
    790 
    791 		/*
    792 		 * Cause a descriptor interrupt to happen on the
    793 		 * last packet we enqueued, and also cause the
    794 		 * DMA engine to wait after is has finished processing
    795 		 * it.
    796 		 */
    797 		sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
    798 		sc->sc_txdescs[sc->sc_txlast].tfd_control |=
    799 		    htole32(TFD_TxDMAIndicate);
    800 		STE_CDTXSYNC(sc, sc->sc_txlast,
    801 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    802 
    803 		/*
    804 		 * Link up the new chain of descriptors to the
    805 		 * last.
    806 		 */
    807 		sc->sc_txdescs[olasttx].tfd_next =
    808 		    htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
    809 		STE_CDTXSYNC(sc, olasttx,
    810 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    811 
    812 		/*
    813 		 * Kick the transmit DMA logic.  Note that since we're
    814 		 * using auto-polling, reading the Tx desc pointer will
    815 		 * give it the nudge it needs to get going.
    816 		 */
    817 		if (bus_space_read_4(sc->sc_st, sc->sc_sh,
    818 		    STE_TxDMAListPtr) == 0) {
    819 			bus_space_write_4(sc->sc_st, sc->sc_sh,
    820 			    STE_DMACtrl, DC_TxDMAHalt);
    821 			ste_dmahalt_wait(sc);
    822 			bus_space_write_4(sc->sc_st, sc->sc_sh,
    823 			    STE_TxDMAListPtr,
    824 			    STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
    825 			bus_space_write_4(sc->sc_st, sc->sc_sh,
    826 			    STE_DMACtrl, DC_TxDMAResume);
    827 		}
    828 
    829 		/* Set a watchdog timer in case the chip flakes out. */
    830 		ifp->if_timer = 5;
    831 	}
    832 }
    833 
    834 /*
    835  * ste_watchdog:	[ifnet interface function]
    836  *
    837  *	Watchdog timer handler.
    838  */
    839 static void
    840 ste_watchdog(struct ifnet *ifp)
    841 {
    842 	struct ste_softc *sc = ifp->if_softc;
    843 
    844 	printf("%s: device timeout\n", device_xname(sc->sc_dev));
    845 	if_statinc(ifp, if_oerrors);
    846 
    847 	ste_txintr(sc);
    848 	ste_rxintr(sc);
    849 	(void) ste_init(ifp);
    850 
    851 	/* Try to get more packets going. */
    852 	ste_start(ifp);
    853 }
    854 
    855 /*
    856  * ste_ioctl:		[ifnet interface function]
    857  *
    858  *	Handle control requests from the operator.
    859  */
    860 static int
    861 ste_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    862 {
    863 	struct ste_softc *sc = ifp->if_softc;
    864 	int s, error;
    865 
    866 	s = splnet();
    867 
    868 	error = ether_ioctl(ifp, cmd, data);
    869 	if (error == ENETRESET) {
    870 		/*
    871 		 * Multicast list has changed; set the hardware filter
    872 		 * accordingly.
    873 		 */
    874 		if (ifp->if_flags & IFF_RUNNING)
    875 			ste_set_filter(sc);
    876 		error = 0;
    877 	}
    878 
    879 	/* Try to get more packets going. */
    880 	ste_start(ifp);
    881 
    882 	splx(s);
    883 	return (error);
    884 }
    885 
    886 /*
    887  * ste_intr:
    888  *
    889  *	Interrupt service routine.
    890  */
    891 static int
    892 ste_intr(void *arg)
    893 {
    894 	struct ste_softc *sc = arg;
    895 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    896 	uint16_t isr;
    897 	uint8_t txstat;
    898 	int wantinit;
    899 
    900 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
    901 	     IS_InterruptStatus) == 0)
    902 		return (0);
    903 
    904 	for (wantinit = 0; wantinit == 0;) {
    905 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
    906 		if ((isr & sc->sc_IntEnable) == 0)
    907 			break;
    908 
    909 		/* Receive interrupts. */
    910 		if (isr & IE_RxDMAComplete)
    911 			ste_rxintr(sc);
    912 
    913 		/* Transmit interrupts. */
    914 		if (isr & (IE_TxDMAComplete | IE_TxComplete))
    915 			ste_txintr(sc);
    916 
    917 		/* Statistics overflow. */
    918 		if (isr & IE_UpdateStats)
    919 			ste_stats_update(sc);
    920 
    921 		/* Transmission errors. */
    922 		if (isr & IE_TxComplete) {
    923 			for (;;) {
    924 				txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
    925 				    STE_TxStatus);
    926 				if ((txstat & TS_TxComplete) == 0)
    927 					break;
    928 				if (txstat & TS_TxUnderrun) {
    929 					sc->sc_txthresh += 32;
    930 					if (sc->sc_txthresh > 0x1ffc)
    931 						sc->sc_txthresh = 0x1ffc;
    932 					printf("%s: transmit underrun, new "
    933 					    "threshold: %d bytes\n",
    934 					    device_xname(sc->sc_dev),
    935 					    sc->sc_txthresh);
    936 					ste_reset(sc, AC_TxReset | AC_DMA |
    937 					    AC_FIFO | AC_Network);
    938 					ste_setthresh(sc);
    939 					bus_space_write_1(sc->sc_st, sc->sc_sh,
    940 					    STE_TxDMAPollPeriod, 127);
    941 					ste_txrestart(sc,
    942 					    bus_space_read_1(sc->sc_st,
    943 						sc->sc_sh, STE_TxFrameId));
    944 				}
    945 				if (txstat & TS_TxReleaseError) {
    946 					printf("%s: Tx FIFO release error\n",
    947 					    device_xname(sc->sc_dev));
    948 					wantinit = 1;
    949 				}
    950 				if (txstat & TS_MaxCollisions) {
    951 					printf("%s: excessive collisions\n",
    952 					    device_xname(sc->sc_dev));
    953 					wantinit = 1;
    954 				}
    955 				if (txstat & TS_TxStatusOverflow) {
    956 					printf("%s: status overflow\n",
    957 					    device_xname(sc->sc_dev));
    958 					wantinit = 1;
    959 				}
    960 				bus_space_write_2(sc->sc_st, sc->sc_sh,
    961 				    STE_TxStatus, 0);
    962 			}
    963 		}
    964 
    965 		/* Host interface errors. */
    966 		if (isr & IE_HostError) {
    967 			printf("%s: Host interface error\n",
    968 			    device_xname(sc->sc_dev));
    969 			wantinit = 1;
    970 		}
    971 	}
    972 
    973 	if (wantinit)
    974 		ste_init(ifp);
    975 
    976 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
    977 	    sc->sc_IntEnable);
    978 
    979 	/* Try to get more packets going. */
    980 	if_schedule_deferred_start(ifp);
    981 
    982 	return (1);
    983 }
    984 
    985 /*
    986  * ste_txintr:
    987  *
    988  *	Helper; handle transmit interrupts.
    989  */
    990 static void
    991 ste_txintr(struct ste_softc *sc)
    992 {
    993 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    994 	struct ste_descsoft *ds;
    995 	uint32_t control;
    996 	int i;
    997 
    998 	ifp->if_flags &= ~IFF_OACTIVE;
    999 
   1000 	/*
   1001 	 * Go through our Tx list and free mbufs for those
   1002 	 * frames which have been transmitted.
   1003 	 */
   1004 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
   1005 	     i = STE_NEXTTX(i), sc->sc_txpending--) {
   1006 		ds = &sc->sc_txsoft[i];
   1007 
   1008 		STE_CDTXSYNC(sc, i,
   1009 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1010 
   1011 		control = le32toh(sc->sc_txdescs[i].tfd_control);
   1012 		if ((control & TFD_TxDMAComplete) == 0)
   1013 			break;
   1014 
   1015 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
   1016 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1017 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1018 		m_freem(ds->ds_mbuf);
   1019 		ds->ds_mbuf = NULL;
   1020 	}
   1021 
   1022 	/* Update the dirty transmit buffer pointer. */
   1023 	sc->sc_txdirty = i;
   1024 
   1025 	/*
   1026 	 * If there are no more pending transmissions, cancel the watchdog
   1027 	 * timer.
   1028 	 */
   1029 	if (sc->sc_txpending == 0)
   1030 		ifp->if_timer = 0;
   1031 }
   1032 
   1033 /*
   1034  * ste_rxintr:
   1035  *
   1036  *	Helper; handle receive interrupts.
   1037  */
   1038 static void
   1039 ste_rxintr(struct ste_softc *sc)
   1040 {
   1041 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1042 	struct ste_descsoft *ds;
   1043 	struct mbuf *m;
   1044 	uint32_t status;
   1045 	int i, len;
   1046 
   1047 	for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
   1048 		ds = &sc->sc_rxsoft[i];
   1049 
   1050 		STE_CDRXSYNC(sc, i,
   1051 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1052 
   1053 		status = le32toh(sc->sc_rxdescs[i].rfd_status);
   1054 
   1055 		if ((status & RFD_RxDMAComplete) == 0)
   1056 			break;
   1057 
   1058 		/*
   1059 		 * If the packet had an error, simply recycle the
   1060 		 * buffer.  Note, we count the error later in the
   1061 		 * periodic stats update.
   1062 		 */
   1063 		if (status & RFD_RxFrameError) {
   1064 			STE_INIT_RXDESC(sc, i);
   1065 			continue;
   1066 		}
   1067 
   1068 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1069 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1070 
   1071 		/*
   1072 		 * No errors; receive the packet.  Note, we have
   1073 		 * configured the chip to not include the CRC at
   1074 		 * the end of the packet.
   1075 		 */
   1076 		len = RFD_RxDMAFrameLen(status);
   1077 
   1078 		/*
   1079 		 * If the packet is small enough to fit in a
   1080 		 * single header mbuf, allocate one and copy
   1081 		 * the data into it.  This greatly reduces
   1082 		 * memory consumption when we receive lots
   1083 		 * of small packets.
   1084 		 *
   1085 		 * Otherwise, we add a new buffer to the receive
   1086 		 * chain.  If this fails, we drop the packet and
   1087 		 * recycle the old buffer.
   1088 		 */
   1089 		if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
   1090 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1091 			if (m == NULL)
   1092 				goto dropit;
   1093 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   1094 			m->m_data += 2;
   1095 			memcpy(mtod(m, void *),
   1096 			    mtod(ds->ds_mbuf, void *), len);
   1097 			STE_INIT_RXDESC(sc, i);
   1098 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1099 			    ds->ds_dmamap->dm_mapsize,
   1100 			    BUS_DMASYNC_PREREAD);
   1101 		} else {
   1102 			m = ds->ds_mbuf;
   1103 			if (ste_add_rxbuf(sc, i) != 0) {
   1104  dropit:
   1105 				if_statinc(ifp, if_ierrors);
   1106 				STE_INIT_RXDESC(sc, i);
   1107 				bus_dmamap_sync(sc->sc_dmat,
   1108 				    ds->ds_dmamap, 0,
   1109 				    ds->ds_dmamap->dm_mapsize,
   1110 				    BUS_DMASYNC_PREREAD);
   1111 				continue;
   1112 			}
   1113 		}
   1114 
   1115 		m_set_rcvif(m, ifp);
   1116 		m->m_pkthdr.len = m->m_len = len;
   1117 
   1118 		/* Pass it on. */
   1119 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1120 	}
   1121 
   1122 	/* Update the receive pointer. */
   1123 	sc->sc_rxptr = i;
   1124 }
   1125 
   1126 /*
   1127  * ste_tick:
   1128  *
   1129  *	One second timer, used to tick the MII.
   1130  */
   1131 static void
   1132 ste_tick(void *arg)
   1133 {
   1134 	struct ste_softc *sc = arg;
   1135 	int s;
   1136 
   1137 	s = splnet();
   1138 	mii_tick(&sc->sc_mii);
   1139 	ste_stats_update(sc);
   1140 	splx(s);
   1141 
   1142 	callout_schedule(&sc->sc_tick_ch, hz);
   1143 }
   1144 
   1145 /*
   1146  * ste_stats_update:
   1147  *
   1148  *	Read the ST-201 statistics counters.
   1149  */
   1150 static void
   1151 ste_stats_update(struct ste_softc *sc)
   1152 {
   1153 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1154 	bus_space_tag_t st = sc->sc_st;
   1155 	bus_space_handle_t sh = sc->sc_sh;
   1156 
   1157 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
   1158 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
   1159 
   1160 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
   1161 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
   1162 
   1163 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   1164 
   1165 	if_statadd_ref(nsr, if_opackets,
   1166 	    (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK));
   1167 
   1168 	(void) bus_space_read_2(st, sh, STE_FramesReceivedOK);
   1169 
   1170 	if_statadd_ref(nsr, if_collisions,
   1171 	    (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
   1172 	    (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
   1173 	    (u_int) bus_space_read_1(st, sh, STE_SingleColFrames));
   1174 
   1175 	(void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
   1176 
   1177 	if_statadd_ref(nsr, if_ierrors,
   1178 	    (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors));
   1179 
   1180 	if_statadd_ref(nsr, if_oerrors,
   1181 	    (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
   1182 	    (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
   1183 	    bus_space_read_1(st, sh, STE_CarrierSenseErrors));
   1184 
   1185 	IF_STAT_PUTREF(ifp);
   1186 
   1187 	(void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
   1188 	(void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
   1189 	(void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
   1190 	(void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
   1191 }
   1192 
   1193 /*
   1194  * ste_reset:
   1195  *
   1196  *	Perform a soft reset on the ST-201.
   1197  */
   1198 static void
   1199 ste_reset(struct ste_softc *sc, uint32_t rstbits)
   1200 {
   1201 	uint32_t ac;
   1202 	int i;
   1203 
   1204 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
   1205 
   1206 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
   1207 
   1208 	delay(50000);
   1209 
   1210 	for (i = 0; i < STE_TIMEOUT; i++) {
   1211 		delay(1000);
   1212 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
   1213 		     AC_ResetBusy) == 0)
   1214 			break;
   1215 	}
   1216 
   1217 	if (i == STE_TIMEOUT)
   1218 		printf("%s: reset failed to complete\n",
   1219 		    device_xname(sc->sc_dev));
   1220 
   1221 	delay(1000);
   1222 }
   1223 
   1224 /*
   1225  * ste_setthresh:
   1226  *
   1227  * 	set the various transmit threshold registers
   1228  */
   1229 static void
   1230 ste_setthresh(struct ste_softc *sc)
   1231 {
   1232 	/* set the TX threhold */
   1233 	bus_space_write_2(sc->sc_st, sc->sc_sh,
   1234 	    STE_TxStartThresh, sc->sc_txthresh);
   1235 	/* Urgent threshold: set to sc_txthresh / 2 */
   1236 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
   1237 	    sc->sc_txthresh >> 6);
   1238 	/* Burst threshold: use default value (256 bytes) */
   1239 }
   1240 
   1241 /*
   1242  * restart TX at the given frame ID in the transmitter ring
   1243  */
   1244 static void
   1245 ste_txrestart(struct ste_softc *sc, uint8_t id)
   1246 {
   1247 	uint32_t control;
   1248 
   1249 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1250 	control = le32toh(sc->sc_txdescs[id].tfd_control);
   1251 	control &= ~TFD_TxDMAComplete;
   1252 	sc->sc_txdescs[id].tfd_control = htole32(control);
   1253 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1254 
   1255 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
   1256 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
   1257 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
   1258 	ste_dmahalt_wait(sc);
   1259 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
   1260 	    STE_CDTXADDR(sc, id));
   1261 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
   1262 }
   1263 
   1264 /*
   1265  * ste_init:		[ ifnet interface function ]
   1266  *
   1267  *	Initialize the interface.  Must be called at splnet().
   1268  */
   1269 static int
   1270 ste_init(struct ifnet *ifp)
   1271 {
   1272 	struct ste_softc *sc = ifp->if_softc;
   1273 	bus_space_tag_t st = sc->sc_st;
   1274 	bus_space_handle_t sh = sc->sc_sh;
   1275 	struct ste_descsoft *ds;
   1276 	int i, error = 0;
   1277 
   1278 	/*
   1279 	 * Cancel any pending I/O.
   1280 	 */
   1281 	ste_stop(ifp, 0);
   1282 
   1283 	/*
   1284 	 * Reset the chip to a known state.
   1285 	 */
   1286 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
   1287 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
   1288 
   1289 	/*
   1290 	 * Initialize the transmit descriptor ring.
   1291 	 */
   1292 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1293 	sc->sc_txpending = 0;
   1294 	sc->sc_txdirty = 0;
   1295 	sc->sc_txlast = STE_NTXDESC - 1;
   1296 
   1297 	/*
   1298 	 * Initialize the receive descriptor and receive job
   1299 	 * descriptor rings.
   1300 	 */
   1301 	for (i = 0; i < STE_NRXDESC; i++) {
   1302 		ds = &sc->sc_rxsoft[i];
   1303 		if (ds->ds_mbuf == NULL) {
   1304 			if ((error = ste_add_rxbuf(sc, i)) != 0) {
   1305 				printf("%s: unable to allocate or map rx "
   1306 				    "buffer %d, error = %d\n",
   1307 				    device_xname(sc->sc_dev), i, error);
   1308 				/*
   1309 				 * XXX Should attempt to run with fewer receive
   1310 				 * XXX buffers instead of just failing.
   1311 				 */
   1312 				ste_rxdrain(sc);
   1313 				goto out;
   1314 			}
   1315 		} else
   1316 			STE_INIT_RXDESC(sc, i);
   1317 	}
   1318 	sc->sc_rxptr = 0;
   1319 
   1320 	/* Set the station address. */
   1321 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1322 		bus_space_write_1(st, sh, STE_StationAddress0 + 1,
   1323 		    CLLADDR(ifp->if_sadl)[i]);
   1324 
   1325 	/* Set up the receive filter. */
   1326 	ste_set_filter(sc);
   1327 
   1328 	/*
   1329 	 * Give the receive ring to the chip.
   1330 	 */
   1331 	bus_space_write_4(st, sh, STE_RxDMAListPtr,
   1332 	    STE_CDRXADDR(sc, sc->sc_rxptr));
   1333 
   1334 	/*
   1335 	 * We defer giving the transmit ring to the chip until we
   1336 	 * transmit the first packet.
   1337 	 */
   1338 
   1339 	/*
   1340 	 * Initialize the Tx auto-poll period.  It's OK to make this number
   1341 	 * large (127 is the max) -- we explicitly kick the transmit engine
   1342 	 * when there's actually a packet.  We are using auto-polling only
   1343 	 * to make the interface to the transmit engine not suck.
   1344 	 */
   1345 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
   1346 
   1347 	/* ..and the Rx auto-poll period. */
   1348 	bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
   1349 
   1350 	/* Initialize the Tx start threshold. */
   1351 	ste_setthresh(sc);
   1352 
   1353 	/* Set the FIFO release threshold to 512 bytes. */
   1354 	bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
   1355 
   1356 	/* Set maximum packet size for VLAN. */
   1357 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   1358 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN + 4);
   1359 	else
   1360 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN);
   1361 
   1362 	/*
   1363 	 * Initialize the interrupt mask.
   1364 	 */
   1365 	sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
   1366 	    IE_TxDMAComplete | IE_RxDMAComplete;
   1367 
   1368 	bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
   1369 	bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
   1370 
   1371 	/*
   1372 	 * Start the receive DMA engine.
   1373 	 */
   1374 	bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
   1375 
   1376 	/*
   1377 	 * Initialize MacCtrl0 -- do it before setting the media,
   1378 	 * as setting the media will actually program the register.
   1379 	 */
   1380 	sc->sc_MacCtrl0 = MC0_IFSSelect(0);
   1381 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   1382 		sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
   1383 
   1384 	/*
   1385 	 * Set the current media.
   1386 	 */
   1387 	if ((error = ether_mediachange(ifp)) != 0)
   1388 		goto out;
   1389 
   1390 	/*
   1391 	 * Start the MAC.
   1392 	 */
   1393 	bus_space_write_2(st, sh, STE_MacCtrl1,
   1394 	    MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
   1395 
   1396 	/*
   1397 	 * Start the one second MII clock.
   1398 	 */
   1399 	callout_schedule(&sc->sc_tick_ch, hz);
   1400 
   1401 	/*
   1402 	 * ...all done!
   1403 	 */
   1404 	ifp->if_flags |= IFF_RUNNING;
   1405 	ifp->if_flags &= ~IFF_OACTIVE;
   1406 
   1407  out:
   1408 	if (error)
   1409 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
   1410 	return (error);
   1411 }
   1412 
   1413 /*
   1414  * ste_drain:
   1415  *
   1416  *	Drain the receive queue.
   1417  */
   1418 static void
   1419 ste_rxdrain(struct ste_softc *sc)
   1420 {
   1421 	struct ste_descsoft *ds;
   1422 	int i;
   1423 
   1424 	for (i = 0; i < STE_NRXDESC; i++) {
   1425 		ds = &sc->sc_rxsoft[i];
   1426 		if (ds->ds_mbuf != NULL) {
   1427 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1428 			m_freem(ds->ds_mbuf);
   1429 			ds->ds_mbuf = NULL;
   1430 		}
   1431 	}
   1432 }
   1433 
   1434 /*
   1435  * ste_stop:		[ ifnet interface function ]
   1436  *
   1437  *	Stop transmission on the interface.
   1438  */
   1439 static void
   1440 ste_stop(struct ifnet *ifp, int disable)
   1441 {
   1442 	struct ste_softc *sc = ifp->if_softc;
   1443 	struct ste_descsoft *ds;
   1444 	int i;
   1445 
   1446 	/*
   1447 	 * Stop the one second clock.
   1448 	 */
   1449 	callout_stop(&sc->sc_tick_ch);
   1450 
   1451 	/* Down the MII. */
   1452 	mii_down(&sc->sc_mii);
   1453 
   1454 	/*
   1455 	 * Disable interrupts.
   1456 	 */
   1457 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
   1458 
   1459 	/*
   1460 	 * Stop receiver, transmitter, and stats update.
   1461 	 */
   1462 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
   1463 	    MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
   1464 
   1465 	/*
   1466 	 * Stop the transmit and receive DMA.
   1467 	 */
   1468 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
   1469 	    DC_RxDMAHalt | DC_TxDMAHalt);
   1470 	ste_dmahalt_wait(sc);
   1471 
   1472 	/*
   1473 	 * Release any queued transmit buffers.
   1474 	 */
   1475 	for (i = 0; i < STE_NTXDESC; i++) {
   1476 		ds = &sc->sc_txsoft[i];
   1477 		if (ds->ds_mbuf != NULL) {
   1478 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1479 			m_freem(ds->ds_mbuf);
   1480 			ds->ds_mbuf = NULL;
   1481 		}
   1482 	}
   1483 
   1484 	/*
   1485 	 * Mark the interface down and cancel the watchdog timer.
   1486 	 */
   1487 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1488 	ifp->if_timer = 0;
   1489 
   1490 	if (disable)
   1491 		ste_rxdrain(sc);
   1492 }
   1493 
   1494 static int
   1495 ste_eeprom_wait(struct ste_softc *sc)
   1496 {
   1497 	int i;
   1498 
   1499 	for (i = 0; i < STE_TIMEOUT; i++) {
   1500 		delay(1000);
   1501 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
   1502 		     EC_EepromBusy) == 0)
   1503 			return (0);
   1504 	}
   1505 	return (1);
   1506 }
   1507 
   1508 /*
   1509  * ste_read_eeprom:
   1510  *
   1511  *	Read data from the serial EEPROM.
   1512  */
   1513 static void
   1514 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
   1515 {
   1516 
   1517 	if (ste_eeprom_wait(sc))
   1518 		printf("%s: EEPROM failed to come ready\n",
   1519 		    device_xname(sc->sc_dev));
   1520 
   1521 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
   1522 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
   1523 	if (ste_eeprom_wait(sc))
   1524 		printf("%s: EEPROM read timed out\n",
   1525 		    device_xname(sc->sc_dev));
   1526 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
   1527 }
   1528 
   1529 /*
   1530  * ste_add_rxbuf:
   1531  *
   1532  *	Add a receive buffer to the indicated descriptor.
   1533  */
   1534 static int
   1535 ste_add_rxbuf(struct ste_softc *sc, int idx)
   1536 {
   1537 	struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
   1538 	struct mbuf *m;
   1539 	int error;
   1540 
   1541 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1542 	if (m == NULL)
   1543 		return (ENOBUFS);
   1544 
   1545 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   1546 	MCLGET(m, M_DONTWAIT);
   1547 	if ((m->m_flags & M_EXT) == 0) {
   1548 		m_freem(m);
   1549 		return (ENOBUFS);
   1550 	}
   1551 
   1552 	if (ds->ds_mbuf != NULL)
   1553 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1554 
   1555 	ds->ds_mbuf = m;
   1556 
   1557 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
   1558 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1559 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
   1560 	if (error) {
   1561 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1562 		    device_xname(sc->sc_dev), idx, error);
   1563 		panic("ste_add_rxbuf");		/* XXX */
   1564 	}
   1565 
   1566 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1567 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1568 
   1569 	STE_INIT_RXDESC(sc, idx);
   1570 
   1571 	return (0);
   1572 }
   1573 
   1574 /*
   1575  * ste_set_filter:
   1576  *
   1577  *	Set up the receive filter.
   1578  */
   1579 static void
   1580 ste_set_filter(struct ste_softc *sc)
   1581 {
   1582 	struct ethercom *ec = &sc->sc_ethercom;
   1583 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1584 	struct ether_multi *enm;
   1585 	struct ether_multistep step;
   1586 	uint32_t crc;
   1587 	uint16_t mchash[4];
   1588 
   1589 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
   1590 	if (ifp->if_flags & IFF_BROADCAST)
   1591 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
   1592 
   1593 	if (ifp->if_flags & IFF_PROMISC) {
   1594 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
   1595 		goto allmulti;
   1596 	}
   1597 
   1598 	/*
   1599 	 * Set up the multicast address filter by passing all multicast
   1600 	 * addresses through a CRC generator, and then using the low-order
   1601 	 * 6 bits as an index into the 64 bit multicast hash table.  The
   1602 	 * high order bits select the register, while the rest of the bits
   1603 	 * select the bit within the register.
   1604 	 */
   1605 
   1606 	memset(mchash, 0, sizeof(mchash));
   1607 
   1608 	ETHER_LOCK(ec);
   1609 	ETHER_FIRST_MULTI(step, ec, enm);
   1610 	if (enm == NULL) {
   1611 		ETHER_UNLOCK(ec);
   1612 		goto done;
   1613 	}
   1614 
   1615 	while (enm != NULL) {
   1616 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1617 			/*
   1618 			 * We must listen to a range of multicast addresses.
   1619 			 * For now, just accept all multicasts, rather than
   1620 			 * trying to set only those filter bits needed to match
   1621 			 * the range.  (At this time, the only use of address
   1622 			 * ranges is for IP multicast routing, for which the
   1623 			 * range is big enough to require all bits set.)
   1624 			 */
   1625 			ETHER_UNLOCK(ec);
   1626 			goto allmulti;
   1627 		}
   1628 
   1629 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1630 
   1631 		/* Just want the 6 least significant bits. */
   1632 		crc &= 0x3f;
   1633 
   1634 		/* Set the corresponding bit in the hash table. */
   1635 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   1636 
   1637 		ETHER_NEXT_MULTI(step, enm);
   1638 	}
   1639 	ETHER_UNLOCK(ec);
   1640 
   1641 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
   1642 
   1643 	ifp->if_flags &= ~IFF_ALLMULTI;
   1644 	goto done;
   1645 
   1646  allmulti:
   1647 	ifp->if_flags |= IFF_ALLMULTI;
   1648 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
   1649 
   1650  done:
   1651 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1652 		/*
   1653 		 * Program the multicast hash table.
   1654 		 */
   1655 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
   1656 		    mchash[0]);
   1657 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
   1658 		    mchash[1]);
   1659 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
   1660 		    mchash[2]);
   1661 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
   1662 		    mchash[3]);
   1663 	}
   1664 
   1665 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
   1666 	    sc->sc_ReceiveMode);
   1667 }
   1668 
   1669 /*
   1670  * ste_mii_readreg:	[mii interface function]
   1671  *
   1672  *	Read a PHY register on the MII of the ST-201.
   1673  */
   1674 static int
   1675 ste_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   1676 {
   1677 	struct ste_softc *sc = device_private(self);
   1678 
   1679 	if (phy == 0 && !sc->sc_enable_phy0)
   1680 		return EIO;
   1681 
   1682 	return mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg, val);
   1683 }
   1684 
   1685 /*
   1686  * ste_mii_writereg:	[mii interface function]
   1687  *
   1688  *	Write a PHY register on the MII of the ST-201.
   1689  */
   1690 static int
   1691 ste_mii_writereg(device_t self, int phy, int reg, uint16_t val)
   1692 {
   1693 	struct ste_softc *sc = device_private(self);
   1694 
   1695 	if (phy == 0 && !sc->sc_enable_phy0)
   1696 		return EIO;
   1697 
   1698 	return mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
   1699 }
   1700 
   1701 /*
   1702  * ste_mii_statchg:	[mii interface function]
   1703  *
   1704  *	Callback from MII layer when media changes.
   1705  */
   1706 static void
   1707 ste_mii_statchg(struct ifnet *ifp)
   1708 {
   1709 	struct ste_softc *sc = ifp->if_softc;
   1710 
   1711 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   1712 		sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
   1713 	else
   1714 		sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
   1715 
   1716 	/* XXX 802.1x flow-control? */
   1717 
   1718 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
   1719 }
   1720 
   1721 /*
   1722  * ste_mii_bitbang_read: [mii bit-bang interface function]
   1723  *
   1724  *	Read the MII serial port for the MII bit-bang module.
   1725  */
   1726 static uint32_t
   1727 ste_mii_bitbang_read(device_t self)
   1728 {
   1729 	struct ste_softc *sc = device_private(self);
   1730 
   1731 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
   1732 }
   1733 
   1734 /*
   1735  * ste_mii_bitbang_write: [mii big-bang interface function]
   1736  *
   1737  *	Write the MII serial port for the MII bit-bang module.
   1738  */
   1739 static void
   1740 ste_mii_bitbang_write(device_t self, uint32_t val)
   1741 {
   1742 	struct ste_softc *sc = device_private(self);
   1743 
   1744 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
   1745 }
   1746