Home | History | Annotate | Line # | Download | only in pci
if_ste.c revision 1.63
      1 /*	$NetBSD: if_ste.c,v 1.63 2022/09/21 20:23:56 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Device driver for the Sundance Tech. ST-201 10/100
     34  * Ethernet controller.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.63 2022/09/21 20:23:56 thorpej Exp $");
     39 
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/callout.h>
     44 #include <sys/mbuf.h>
     45 #include <sys/malloc.h>
     46 #include <sys/kernel.h>
     47 #include <sys/socket.h>
     48 #include <sys/ioctl.h>
     49 #include <sys/errno.h>
     50 #include <sys/device.h>
     51 #include <sys/queue.h>
     52 
     53 #include <net/if.h>
     54 #include <net/if_dl.h>
     55 #include <net/if_media.h>
     56 #include <net/if_ether.h>
     57 
     58 #include <net/bpf.h>
     59 
     60 #include <sys/bus.h>
     61 #include <sys/intr.h>
     62 
     63 #include <dev/mii/mii.h>
     64 #include <dev/mii/miivar.h>
     65 #include <dev/mii/mii_bitbang.h>
     66 
     67 #include <dev/pci/pcireg.h>
     68 #include <dev/pci/pcivar.h>
     69 #include <dev/pci/pcidevs.h>
     70 
     71 #include <dev/pci/if_stereg.h>
     72 
     73 /*
     74  * Transmit descriptor list size.
     75  */
     76 #define	STE_NTXDESC		256
     77 #define	STE_NTXDESC_MASK	(STE_NTXDESC - 1)
     78 #define	STE_NEXTTX(x)		(((x) + 1) & STE_NTXDESC_MASK)
     79 
     80 /*
     81  * Receive descriptor list size.
     82  */
     83 #define	STE_NRXDESC		128
     84 #define	STE_NRXDESC_MASK	(STE_NRXDESC - 1)
     85 #define	STE_NEXTRX(x)		(((x) + 1) & STE_NRXDESC_MASK)
     86 
     87 /*
     88  * Control structures are DMA'd to the ST-201 chip.  We allocate them in
     89  * a single clump that maps to a single DMA segment to make several things
     90  * easier.
     91  */
     92 struct ste_control_data {
     93 	/*
     94 	 * The transmit descriptors.
     95 	 */
     96 	struct ste_tfd scd_txdescs[STE_NTXDESC];
     97 
     98 	/*
     99 	 * The receive descriptors.
    100 	 */
    101 	struct ste_rfd scd_rxdescs[STE_NRXDESC];
    102 };
    103 
    104 #define	STE_CDOFF(x)	offsetof(struct ste_control_data, x)
    105 #define	STE_CDTXOFF(x)	STE_CDOFF(scd_txdescs[(x)])
    106 #define	STE_CDRXOFF(x)	STE_CDOFF(scd_rxdescs[(x)])
    107 
    108 /*
    109  * Software state for transmit and receive jobs.
    110  */
    111 struct ste_descsoft {
    112 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
    113 	bus_dmamap_t ds_dmamap;		/* our DMA map */
    114 };
    115 
    116 /*
    117  * Software state per device.
    118  */
    119 struct ste_softc {
    120 	device_t sc_dev;		/* generic device information */
    121 	bus_space_tag_t sc_st;		/* bus space tag */
    122 	bus_space_handle_t sc_sh;	/* bus space handle */
    123 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    124 	struct ethercom sc_ethercom;	/* ethernet common data */
    125 
    126 	void *sc_ih;			/* interrupt cookie */
    127 
    128 	struct mii_data sc_mii;		/* MII/media information */
    129 
    130 	callout_t sc_tick_ch;		/* tick callout */
    131 
    132 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    133 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    134 
    135 	/*
    136 	 * Software state for transmit and receive descriptors.
    137 	 */
    138 	struct ste_descsoft sc_txsoft[STE_NTXDESC];
    139 	struct ste_descsoft sc_rxsoft[STE_NRXDESC];
    140 
    141 	/*
    142 	 * Control data structures.
    143 	 */
    144 	struct ste_control_data *sc_control_data;
    145 #define	sc_txdescs	sc_control_data->scd_txdescs
    146 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    147 
    148 	int	sc_txpending;		/* number of Tx requests pending */
    149 	int	sc_txdirty;		/* first dirty Tx descriptor */
    150 	int	sc_txlast;		/* last used Tx descriptor */
    151 
    152 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    153 
    154 	int	sc_txthresh;		/* Tx threshold */
    155 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
    156 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
    157 	uint16_t sc_MacCtrl0;		/* prototype MacCtrl0 register */
    158 	uint8_t	sc_ReceiveMode;		/* prototype ReceiveMode register */
    159 
    160 	bool	sc_enable_phy0;		/* access to phy #0 allowed */
    161 };
    162 
    163 #define	STE_CDTXADDR(sc, x)	((sc)->sc_cddma + STE_CDTXOFF((x)))
    164 #define	STE_CDRXADDR(sc, x)	((sc)->sc_cddma + STE_CDRXOFF((x)))
    165 
    166 #define	STE_CDTXSYNC(sc, x, ops)					\
    167 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    168 	    STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
    169 
    170 #define	STE_CDRXSYNC(sc, x, ops)					\
    171 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    172 	    STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
    173 
    174 #define	STE_INIT_RXDESC(sc, x)						\
    175 do {									\
    176 	struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
    177 	struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)];			\
    178 	struct mbuf *__m = __ds->ds_mbuf;				\
    179 									\
    180 	/*								\
    181 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    182 	 * so that the payload after the Ethernet header is aligned	\
    183 	 * to a 4-byte boundary.					\
    184 	 */								\
    185 	__m->m_data = __m->m_ext.ext_buf + 2;				\
    186 	__rfd->rfd_frag.frag_addr =					\
    187 	    htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2);		\
    188 	__rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST);	\
    189 	__rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x))));	\
    190 	__rfd->rfd_status = 0;						\
    191 	STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
    192 } while (/*CONSTCOND*/0)
    193 
    194 #define STE_TIMEOUT 1000
    195 
    196 static void	ste_start(struct ifnet *);
    197 static void	ste_watchdog(struct ifnet *);
    198 static int	ste_ioctl(struct ifnet *, u_long, void *);
    199 static int	ste_init(struct ifnet *);
    200 static void	ste_stop(struct ifnet *, int);
    201 
    202 static bool	ste_shutdown(device_t, int);
    203 
    204 static void	ste_reset(struct ste_softc *, uint32_t);
    205 static void	ste_setthresh(struct ste_softc *);
    206 static void	ste_txrestart(struct ste_softc *, uint8_t);
    207 static void	ste_rxdrain(struct ste_softc *);
    208 static int	ste_add_rxbuf(struct ste_softc *, int);
    209 static void	ste_read_eeprom(struct ste_softc *, int, uint16_t *);
    210 static void	ste_tick(void *);
    211 
    212 static void	ste_stats_update(struct ste_softc *);
    213 
    214 static void	ste_set_filter(struct ste_softc *);
    215 
    216 static int	ste_intr(void *);
    217 static void	ste_txintr(struct ste_softc *);
    218 static void	ste_rxintr(struct ste_softc *);
    219 
    220 static int	ste_mii_readreg(device_t, int, int, uint16_t *);
    221 static int	ste_mii_writereg(device_t, int, int, uint16_t);
    222 static void	ste_mii_statchg(struct ifnet *);
    223 
    224 static int	ste_match(device_t, cfdata_t, void *);
    225 static void	ste_attach(device_t, device_t, void *);
    226 
    227 int	ste_copy_small = 0;
    228 
    229 CFATTACH_DECL_NEW(ste, sizeof(struct ste_softc),
    230     ste_match, ste_attach, NULL, NULL);
    231 
    232 static uint32_t ste_mii_bitbang_read(device_t);
    233 static void	ste_mii_bitbang_write(device_t, uint32_t);
    234 
    235 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
    236 	ste_mii_bitbang_read,
    237 	ste_mii_bitbang_write,
    238 	{
    239 		PC_MgmtData,		/* MII_BIT_MDO */
    240 		PC_MgmtData,		/* MII_BIT_MDI */
    241 		PC_MgmtClk,		/* MII_BIT_MDC */
    242 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
    243 		0,			/* MII_BIT_DIR_PHY_HOST */
    244 	}
    245 };
    246 
    247 /*
    248  * Devices supported by this driver.
    249  */
    250 struct ste_product {
    251 	pci_vendor_id_t		ste_vendor;
    252 	pci_product_id_t	ste_product;
    253 	const char		*ste_name;
    254 	const struct ste_product *ste_subs;
    255 };
    256 
    257 static const struct ste_product ste_dlink_products[] = {
    258 	{ PCI_VENDOR_DLINK,		0x1002,
    259 	  "D-Link DFE-550TX 10/100 Ethernet",
    260 	  NULL },
    261 
    262 	{ PCI_VENDOR_DLINK,		0x1003,
    263 	  "D-Link DFE-550FX Ethernet",
    264 	  NULL },
    265 
    266 	{ PCI_VENDOR_DLINK,		0x1012,
    267 	  "D-Link DFE-580TX 4-port 10/100 Ethernet",
    268 	  NULL },
    269 
    270 	{ PCI_VENDOR_DLINK,		0x1040,
    271 	  "D-Link DFE-530TXS 10/100 Ethernet",
    272 	  NULL },
    273 
    274 	{ 0,				0,
    275 	  NULL,
    276 	  NULL },
    277 };
    278 
    279 static const struct ste_product ste_products[] = {
    280 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_IP100A,
    281 	  "IC Plus Corp. IP00A 10/100 Fast Ethernet Adapter",
    282 	  NULL },
    283 
    284 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST201,
    285 	  "Sundance ST-201 10/100 Ethernet",
    286 	  NULL },
    287 
    288 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL1002,
    289 	  "D-Link DL-1002 10/100 Ethernet",
    290 	  ste_dlink_products },
    291 
    292 	{ 0,				0,
    293 	  NULL,
    294 	  NULL },
    295 };
    296 
    297 static const struct ste_product *
    298 ste_lookup_table(pcireg_t pci_id, const struct ste_product * const products)
    299 {
    300 	const struct ste_product *sp;
    301 
    302 	for (sp = products; sp->ste_name != NULL; sp++) {
    303 		if (PCI_VENDOR(pci_id) == sp->ste_vendor &&
    304 		    PCI_PRODUCT(pci_id) == sp->ste_product)
    305 			return (sp);
    306 	}
    307 	return (NULL);
    308 }
    309 
    310 static const struct ste_product *
    311 ste_lookup(const struct pci_attach_args *pa)
    312 {
    313 	const struct ste_product *sp;
    314 
    315 	sp = ste_lookup_table(pa->pa_id, ste_products);
    316 	if (sp && sp->ste_subs) {
    317 		const pcireg_t subsys =
    318 		    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    319 		const struct ste_product *ssp =
    320 		    ste_lookup_table(subsys, sp->ste_subs);
    321 		if (ssp)
    322 			sp = ssp;
    323 	}
    324 	return (sp);
    325 }
    326 
    327 static int
    328 ste_match(device_t parent, cfdata_t cf, void *aux)
    329 {
    330 	struct pci_attach_args *pa = aux;
    331 
    332 	if (ste_lookup(pa) != NULL)
    333 		return (1);
    334 
    335 	return (0);
    336 }
    337 
    338 static void
    339 ste_attach(device_t parent, device_t self, void *aux)
    340 {
    341 	struct ste_softc *sc = device_private(self);
    342 	struct pci_attach_args *pa = aux;
    343 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    344 	struct mii_data * const mii = &sc->sc_mii;
    345 	pci_chipset_tag_t pc = pa->pa_pc;
    346 	pci_intr_handle_t ih;
    347 	const char *intrstr = NULL;
    348 	bus_space_tag_t iot, memt;
    349 	bus_space_handle_t ioh, memh;
    350 	bus_dma_segment_t seg;
    351 	int ioh_valid, memh_valid;
    352 	int i, rseg, error;
    353 	const struct ste_product *sp;
    354 	uint8_t enaddr[ETHER_ADDR_LEN];
    355 	uint16_t myea[ETHER_ADDR_LEN / 2];
    356 	char intrbuf[PCI_INTRSTR_LEN];
    357 
    358 	sc->sc_dev = self;
    359 
    360 	callout_init(&sc->sc_tick_ch, 0);
    361 	callout_setfunc(&sc->sc_tick_ch, ste_tick, sc);
    362 
    363 	sp = ste_lookup(pa);
    364 	if (sp == NULL) {
    365 		printf("\n");
    366 		panic("ste_attach: impossible");
    367 	}
    368 
    369 	printf(": %s\n", sp->ste_name);
    370 
    371 	/*
    372 	 * Map the device.
    373 	 */
    374 	ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
    375 	    PCI_MAPREG_TYPE_IO, 0,
    376 	    &iot, &ioh, NULL, NULL) == 0);
    377 	memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
    378 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
    379 	    &memt, &memh, NULL, NULL) == 0);
    380 
    381 	if (memh_valid) {
    382 		sc->sc_st = memt;
    383 		sc->sc_sh = memh;
    384 	} else if (ioh_valid) {
    385 		sc->sc_st = iot;
    386 		sc->sc_sh = ioh;
    387 	} else {
    388 		aprint_error_dev(self, "unable to map device registers\n");
    389 		return;
    390 	}
    391 
    392 	sc->sc_dmat = pa->pa_dmat;
    393 
    394 	/* Enable bus mastering. */
    395 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    396 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    397 	    PCI_COMMAND_MASTER_ENABLE);
    398 
    399 	/* power up chip */
    400 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
    401 	    NULL)) && error != EOPNOTSUPP) {
    402 		aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
    403 		return;
    404 	}
    405 
    406 	/*
    407 	 * Map and establish our interrupt.
    408 	 */
    409 	if (pci_intr_map(pa, &ih)) {
    410 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
    411 		return;
    412 	}
    413 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    414 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, ste_intr, sc,
    415 	    device_xname(self));
    416 	if (sc->sc_ih == NULL) {
    417 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
    418 		if (intrstr != NULL)
    419 			aprint_error(" at %s", intrstr);
    420 		aprint_error("\n");
    421 		return;
    422 	}
    423 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
    424 
    425 	/*
    426 	 * Allocate the control data structures, and create and load the
    427 	 * DMA map for it.
    428 	 */
    429 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    430 	    sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    431 	    0)) != 0) {
    432 		aprint_error_dev(sc->sc_dev,
    433 		    "unable to allocate control data, error = %d\n", error);
    434 		goto fail_0;
    435 	}
    436 
    437 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    438 	    sizeof(struct ste_control_data), (void **)&sc->sc_control_data,
    439 	    BUS_DMA_COHERENT)) != 0) {
    440 		aprint_error_dev(sc->sc_dev,
    441 		    "unable to map control data, error = %d\n", error);
    442 		goto fail_1;
    443 	}
    444 
    445 	if ((error = bus_dmamap_create(sc->sc_dmat,
    446 	    sizeof(struct ste_control_data), 1,
    447 	    sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    448 		aprint_error_dev(sc->sc_dev,
    449 		    "unable to create control data DMA map, error = %d\n",
    450 		    error);
    451 		goto fail_2;
    452 	}
    453 
    454 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    455 	    sc->sc_control_data, sizeof(struct ste_control_data), NULL,
    456 	    0)) != 0) {
    457 		aprint_error_dev(sc->sc_dev,
    458 		    "unable to load control data DMA map, error = %d\n",
    459 		    error);
    460 		goto fail_3;
    461 	}
    462 
    463 	/*
    464 	 * Create the transmit buffer DMA maps.
    465 	 */
    466 	for (i = 0; i < STE_NTXDESC; i++) {
    467 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    468 		    STE_NTXFRAGS, MCLBYTES, 0, 0,
    469 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
    470 			aprint_error_dev(sc->sc_dev,
    471 			    "unable to create tx DMA map %d, error = %d\n", i,
    472 			    error);
    473 			goto fail_4;
    474 		}
    475 	}
    476 
    477 	/*
    478 	 * Create the receive buffer DMA maps.
    479 	 */
    480 	for (i = 0; i < STE_NRXDESC; i++) {
    481 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    482 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
    483 			aprint_error_dev(sc->sc_dev,
    484 			    "unable to create rx DMA map %d, error = %d\n", i,
    485 			    error);
    486 			goto fail_5;
    487 		}
    488 		sc->sc_rxsoft[i].ds_mbuf = NULL;
    489 	}
    490 
    491 	/*
    492 	 * Reset the chip to a known state.
    493 	 */
    494 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
    495 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
    496 
    497 	/*
    498 	 * Read the Ethernet address from the EEPROM.
    499 	 */
    500 	for (i = 0; i < 3; i++) {
    501 		ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
    502 		myea[i] = le16toh(myea[i]);
    503 	}
    504 	memcpy(enaddr, myea, sizeof(enaddr));
    505 
    506 	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
    507 	    ether_sprintf(enaddr));
    508 
    509 	/*
    510 	 * Initialize our media structures and probe the MII.
    511 	 */
    512 	mii->mii_ifp = ifp;
    513 	mii->mii_readreg = ste_mii_readreg;
    514 	mii->mii_writereg = ste_mii_writereg;
    515 	mii->mii_statchg = ste_mii_statchg;
    516 	sc->sc_ethercom.ec_mii = mii;
    517 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
    518 	    ether_mediastatus);
    519 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
    520 	    MII_OFFSET_ANY, 0);
    521 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    522 		/*
    523 		 * It seems that some variants of this chip "ghost" the
    524 		 * single PHY at #0 and #1.  We will try probing the MII
    525 		 * first while ignoring #0 access.  If we find the PHY,
    526 		 * great!  If not, un-ignore #0 and try probing *just*
    527 		 * #0 to see if we can find it.
    528 		 */
    529 		sc->sc_enable_phy0 = true;
    530 		mii_attach(sc->sc_dev, mii, 0xffffffff, 0,
    531 		    MII_OFFSET_ANY, 0);
    532 	}
    533 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    534 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
    535 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
    536 	} else
    537 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    538 
    539 	ifp = &sc->sc_ethercom.ec_if;
    540 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    541 	ifp->if_softc = sc;
    542 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    543 	ifp->if_ioctl = ste_ioctl;
    544 	ifp->if_start = ste_start;
    545 	ifp->if_watchdog = ste_watchdog;
    546 	ifp->if_init = ste_init;
    547 	ifp->if_stop = ste_stop;
    548 	IFQ_SET_READY(&ifp->if_snd);
    549 
    550 	/*
    551 	 * Default the transmit threshold to 128 bytes.
    552 	 */
    553 	sc->sc_txthresh = 128;
    554 
    555 	/*
    556 	 * Disable MWI if the PCI layer tells us to.
    557 	 */
    558 	sc->sc_DMACtrl = 0;
    559 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
    560 		sc->sc_DMACtrl |= DC_MWIDisable;
    561 
    562 	/*
    563 	 * We can support 802.1Q VLAN-sized frames.
    564 	 */
    565 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    566 
    567 	/*
    568 	 * Attach the interface.
    569 	 */
    570 	if_attach(ifp);
    571 	if_deferred_start_init(ifp, NULL);
    572 	ether_ifattach(ifp, enaddr);
    573 
    574 	/*
    575 	 * Make sure the interface is shutdown during reboot.
    576 	 */
    577 	if (pmf_device_register1(self, NULL, NULL, ste_shutdown))
    578 		pmf_class_network_register(self, ifp);
    579 	else
    580 		aprint_error_dev(self, "couldn't establish power handler\n");
    581 
    582 	return;
    583 
    584 	/*
    585 	 * Free any resources we've allocated during the failed attach
    586 	 * attempt.  Do this in reverse order and fall through.
    587 	 */
    588  fail_5:
    589 	for (i = 0; i < STE_NRXDESC; i++) {
    590 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
    591 			bus_dmamap_destroy(sc->sc_dmat,
    592 			    sc->sc_rxsoft[i].ds_dmamap);
    593 	}
    594  fail_4:
    595 	for (i = 0; i < STE_NTXDESC; i++) {
    596 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
    597 			bus_dmamap_destroy(sc->sc_dmat,
    598 			    sc->sc_txsoft[i].ds_dmamap);
    599 	}
    600 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    601  fail_3:
    602 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    603  fail_2:
    604 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    605 	    sizeof(struct ste_control_data));
    606  fail_1:
    607 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    608  fail_0:
    609 	return;
    610 }
    611 
    612 /*
    613  * ste_shutdown:
    614  *
    615  *	Make sure the interface is stopped at reboot time.
    616  */
    617 static bool
    618 ste_shutdown(device_t self, int howto)
    619 {
    620 	struct ste_softc *sc;
    621 
    622 	sc = device_private(self);
    623 	ste_stop(&sc->sc_ethercom.ec_if, 1);
    624 
    625 	return true;
    626 }
    627 
    628 static void
    629 ste_dmahalt_wait(struct ste_softc *sc)
    630 {
    631 	int i;
    632 
    633 	for (i = 0; i < STE_TIMEOUT; i++) {
    634 		delay(2);
    635 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
    636 		     DC_DMAHaltBusy) == 0)
    637 			break;
    638 	}
    639 
    640 	if (i == STE_TIMEOUT)
    641 		printf("%s: DMA halt timed out\n", device_xname(sc->sc_dev));
    642 }
    643 
    644 /*
    645  * ste_start:		[ifnet interface function]
    646  *
    647  *	Start packet transmission on the interface.
    648  */
    649 static void
    650 ste_start(struct ifnet *ifp)
    651 {
    652 	struct ste_softc *sc = ifp->if_softc;
    653 	struct mbuf *m0, *m;
    654 	struct ste_descsoft *ds;
    655 	struct ste_tfd *tfd;
    656 	bus_dmamap_t dmamap;
    657 	int error, olasttx, nexttx, opending, seg, totlen;
    658 
    659 	if ((ifp->if_flags & IFF_RUNNING) != IFF_RUNNING)
    660 		return;
    661 
    662 	/*
    663 	 * Remember the previous number of pending transmissions
    664 	 * and the current last descriptor in the list.
    665 	 */
    666 	opending = sc->sc_txpending;
    667 	olasttx = sc->sc_txlast;
    668 
    669 	/*
    670 	 * Loop through the send queue, setting up transmit descriptors
    671 	 * until we drain the queue, or use up all available transmit
    672 	 * descriptors.
    673 	 */
    674 	while (sc->sc_txpending < STE_NTXDESC) {
    675 		/*
    676 		 * Grab a packet off the queue.
    677 		 */
    678 		IFQ_POLL(&ifp->if_snd, m0);
    679 		if (m0 == NULL)
    680 			break;
    681 		m = NULL;
    682 
    683 		/*
    684 		 * Get the last and next available transmit descriptor.
    685 		 */
    686 		nexttx = STE_NEXTTX(sc->sc_txlast);
    687 		tfd = &sc->sc_txdescs[nexttx];
    688 		ds = &sc->sc_txsoft[nexttx];
    689 
    690 		dmamap = ds->ds_dmamap;
    691 
    692 		/*
    693 		 * Load the DMA map.  If this fails, the packet either
    694 		 * didn't fit in the alloted number of segments, or we
    695 		 * were short on resources.  In this case, we'll copy
    696 		 * and try again.
    697 		 */
    698 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    699 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
    700 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    701 			if (m == NULL) {
    702 				printf("%s: unable to allocate Tx mbuf\n",
    703 				    device_xname(sc->sc_dev));
    704 				break;
    705 			}
    706 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
    707 			if (m0->m_pkthdr.len > MHLEN) {
    708 				MCLGET(m, M_DONTWAIT);
    709 				if ((m->m_flags & M_EXT) == 0) {
    710 					printf("%s: unable to allocate Tx "
    711 					    "cluster\n",
    712 					    device_xname(sc->sc_dev));
    713 					m_freem(m);
    714 					break;
    715 				}
    716 			}
    717 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
    718 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    719 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    720 			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
    721 			if (error) {
    722 				printf("%s: unable to load Tx buffer, "
    723 				    "error = %d\n", device_xname(sc->sc_dev),
    724 				    error);
    725 				m_freem(m);
    726 				break;
    727 			}
    728 		}
    729 
    730 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    731 		if (m != NULL) {
    732 			m_freem(m0);
    733 			m0 = m;
    734 		}
    735 
    736 		/*
    737 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    738 		 */
    739 
    740 		/* Sync the DMA map. */
    741 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    742 		    BUS_DMASYNC_PREWRITE);
    743 
    744 		/* Initialize the fragment list. */
    745 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
    746 			tfd->tfd_frags[seg].frag_addr =
    747 			    htole32(dmamap->dm_segs[seg].ds_addr);
    748 			tfd->tfd_frags[seg].frag_len =
    749 			    htole32(dmamap->dm_segs[seg].ds_len);
    750 			totlen += dmamap->dm_segs[seg].ds_len;
    751 		}
    752 		tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
    753 
    754 		/* Initialize the descriptor. */
    755 		tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
    756 		tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
    757 
    758 		/* Sync the descriptor. */
    759 		STE_CDTXSYNC(sc, nexttx,
    760 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    761 
    762 		/*
    763 		 * Store a pointer to the packet so we can free it later,
    764 		 * and remember what txdirty will be once the packet is
    765 		 * done.
    766 		 */
    767 		ds->ds_mbuf = m0;
    768 
    769 		/* Advance the tx pointer. */
    770 		sc->sc_txpending++;
    771 		sc->sc_txlast = nexttx;
    772 
    773 		/*
    774 		 * Pass the packet to any BPF listeners.
    775 		 */
    776 		bpf_mtap(ifp, m0, BPF_D_OUT);
    777 	}
    778 
    779 	if (sc->sc_txpending != opending) {
    780 		/*
    781 		 * We enqueued packets.  If the transmitter was idle,
    782 		 * reset the txdirty pointer.
    783 		 */
    784 		if (opending == 0)
    785 			sc->sc_txdirty = STE_NEXTTX(olasttx);
    786 
    787 		/*
    788 		 * Cause a descriptor interrupt to happen on the
    789 		 * last packet we enqueued, and also cause the
    790 		 * DMA engine to wait after is has finished processing
    791 		 * it.
    792 		 */
    793 		sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
    794 		sc->sc_txdescs[sc->sc_txlast].tfd_control |=
    795 		    htole32(TFD_TxDMAIndicate);
    796 		STE_CDTXSYNC(sc, sc->sc_txlast,
    797 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    798 
    799 		/*
    800 		 * Link up the new chain of descriptors to the
    801 		 * last.
    802 		 */
    803 		sc->sc_txdescs[olasttx].tfd_next =
    804 		    htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
    805 		STE_CDTXSYNC(sc, olasttx,
    806 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    807 
    808 		/*
    809 		 * Kick the transmit DMA logic.  Note that since we're
    810 		 * using auto-polling, reading the Tx desc pointer will
    811 		 * give it the nudge it needs to get going.
    812 		 */
    813 		if (bus_space_read_4(sc->sc_st, sc->sc_sh,
    814 		    STE_TxDMAListPtr) == 0) {
    815 			bus_space_write_4(sc->sc_st, sc->sc_sh,
    816 			    STE_DMACtrl, DC_TxDMAHalt);
    817 			ste_dmahalt_wait(sc);
    818 			bus_space_write_4(sc->sc_st, sc->sc_sh,
    819 			    STE_TxDMAListPtr,
    820 			    STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
    821 			bus_space_write_4(sc->sc_st, sc->sc_sh,
    822 			    STE_DMACtrl, DC_TxDMAResume);
    823 		}
    824 
    825 		/* Set a watchdog timer in case the chip flakes out. */
    826 		ifp->if_timer = 5;
    827 	}
    828 }
    829 
    830 /*
    831  * ste_watchdog:	[ifnet interface function]
    832  *
    833  *	Watchdog timer handler.
    834  */
    835 static void
    836 ste_watchdog(struct ifnet *ifp)
    837 {
    838 	struct ste_softc *sc = ifp->if_softc;
    839 
    840 	printf("%s: device timeout\n", device_xname(sc->sc_dev));
    841 	if_statinc(ifp, if_oerrors);
    842 
    843 	ste_txintr(sc);
    844 	ste_rxintr(sc);
    845 	(void) ste_init(ifp);
    846 
    847 	/* Try to get more packets going. */
    848 	ste_start(ifp);
    849 }
    850 
    851 /*
    852  * ste_ioctl:		[ifnet interface function]
    853  *
    854  *	Handle control requests from the operator.
    855  */
    856 static int
    857 ste_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    858 {
    859 	struct ste_softc *sc = ifp->if_softc;
    860 	int s, error;
    861 
    862 	s = splnet();
    863 
    864 	error = ether_ioctl(ifp, cmd, data);
    865 	if (error == ENETRESET) {
    866 		/*
    867 		 * Multicast list has changed; set the hardware filter
    868 		 * accordingly.
    869 		 */
    870 		if (ifp->if_flags & IFF_RUNNING)
    871 			ste_set_filter(sc);
    872 		error = 0;
    873 	}
    874 
    875 	/* Try to get more packets going. */
    876 	ste_start(ifp);
    877 
    878 	splx(s);
    879 	return (error);
    880 }
    881 
    882 /*
    883  * ste_intr:
    884  *
    885  *	Interrupt service routine.
    886  */
    887 static int
    888 ste_intr(void *arg)
    889 {
    890 	struct ste_softc *sc = arg;
    891 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    892 	uint16_t isr;
    893 	uint8_t txstat;
    894 	int wantinit;
    895 
    896 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
    897 	     IS_InterruptStatus) == 0)
    898 		return (0);
    899 
    900 	for (wantinit = 0; wantinit == 0;) {
    901 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
    902 		if ((isr & sc->sc_IntEnable) == 0)
    903 			break;
    904 
    905 		/* Receive interrupts. */
    906 		if (isr & IE_RxDMAComplete)
    907 			ste_rxintr(sc);
    908 
    909 		/* Transmit interrupts. */
    910 		if (isr & (IE_TxDMAComplete | IE_TxComplete))
    911 			ste_txintr(sc);
    912 
    913 		/* Statistics overflow. */
    914 		if (isr & IE_UpdateStats)
    915 			ste_stats_update(sc);
    916 
    917 		/* Transmission errors. */
    918 		if (isr & IE_TxComplete) {
    919 			for (;;) {
    920 				txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
    921 				    STE_TxStatus);
    922 				if ((txstat & TS_TxComplete) == 0)
    923 					break;
    924 				if (txstat & TS_TxUnderrun) {
    925 					sc->sc_txthresh += 32;
    926 					if (sc->sc_txthresh > 0x1ffc)
    927 						sc->sc_txthresh = 0x1ffc;
    928 					printf("%s: transmit underrun, new "
    929 					    "threshold: %d bytes\n",
    930 					    device_xname(sc->sc_dev),
    931 					    sc->sc_txthresh);
    932 					ste_reset(sc, AC_TxReset | AC_DMA |
    933 					    AC_FIFO | AC_Network);
    934 					ste_setthresh(sc);
    935 					bus_space_write_1(sc->sc_st, sc->sc_sh,
    936 					    STE_TxDMAPollPeriod, 127);
    937 					ste_txrestart(sc,
    938 					    bus_space_read_1(sc->sc_st,
    939 						sc->sc_sh, STE_TxFrameId));
    940 				}
    941 				if (txstat & TS_TxReleaseError) {
    942 					printf("%s: Tx FIFO release error\n",
    943 					    device_xname(sc->sc_dev));
    944 					wantinit = 1;
    945 				}
    946 				if (txstat & TS_MaxCollisions) {
    947 					printf("%s: excessive collisions\n",
    948 					    device_xname(sc->sc_dev));
    949 					wantinit = 1;
    950 				}
    951 				if (txstat & TS_TxStatusOverflow) {
    952 					printf("%s: status overflow\n",
    953 					    device_xname(sc->sc_dev));
    954 					wantinit = 1;
    955 				}
    956 				bus_space_write_2(sc->sc_st, sc->sc_sh,
    957 				    STE_TxStatus, 0);
    958 			}
    959 		}
    960 
    961 		/* Host interface errors. */
    962 		if (isr & IE_HostError) {
    963 			printf("%s: Host interface error\n",
    964 			    device_xname(sc->sc_dev));
    965 			wantinit = 1;
    966 		}
    967 	}
    968 
    969 	if (wantinit)
    970 		ste_init(ifp);
    971 
    972 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
    973 	    sc->sc_IntEnable);
    974 
    975 	/* Try to get more packets going. */
    976 	if_schedule_deferred_start(ifp);
    977 
    978 	return (1);
    979 }
    980 
    981 /*
    982  * ste_txintr:
    983  *
    984  *	Helper; handle transmit interrupts.
    985  */
    986 static void
    987 ste_txintr(struct ste_softc *sc)
    988 {
    989 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    990 	struct ste_descsoft *ds;
    991 	uint32_t control;
    992 	int i;
    993 
    994 	/*
    995 	 * Go through our Tx list and free mbufs for those
    996 	 * frames which have been transmitted.
    997 	 */
    998 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
    999 	     i = STE_NEXTTX(i), sc->sc_txpending--) {
   1000 		ds = &sc->sc_txsoft[i];
   1001 
   1002 		STE_CDTXSYNC(sc, i,
   1003 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1004 
   1005 		control = le32toh(sc->sc_txdescs[i].tfd_control);
   1006 		if ((control & TFD_TxDMAComplete) == 0)
   1007 			break;
   1008 
   1009 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
   1010 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1011 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1012 		m_freem(ds->ds_mbuf);
   1013 		ds->ds_mbuf = NULL;
   1014 	}
   1015 
   1016 	/* Update the dirty transmit buffer pointer. */
   1017 	sc->sc_txdirty = i;
   1018 
   1019 	/*
   1020 	 * If there are no more pending transmissions, cancel the watchdog
   1021 	 * timer.
   1022 	 */
   1023 	if (sc->sc_txpending == 0)
   1024 		ifp->if_timer = 0;
   1025 }
   1026 
   1027 /*
   1028  * ste_rxintr:
   1029  *
   1030  *	Helper; handle receive interrupts.
   1031  */
   1032 static void
   1033 ste_rxintr(struct ste_softc *sc)
   1034 {
   1035 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1036 	struct ste_descsoft *ds;
   1037 	struct mbuf *m;
   1038 	uint32_t status;
   1039 	int i, len;
   1040 
   1041 	for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
   1042 		ds = &sc->sc_rxsoft[i];
   1043 
   1044 		STE_CDRXSYNC(sc, i,
   1045 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1046 
   1047 		status = le32toh(sc->sc_rxdescs[i].rfd_status);
   1048 
   1049 		if ((status & RFD_RxDMAComplete) == 0)
   1050 			break;
   1051 
   1052 		/*
   1053 		 * If the packet had an error, simply recycle the
   1054 		 * buffer.  Note, we count the error later in the
   1055 		 * periodic stats update.
   1056 		 */
   1057 		if (status & RFD_RxFrameError) {
   1058 			STE_INIT_RXDESC(sc, i);
   1059 			continue;
   1060 		}
   1061 
   1062 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1063 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1064 
   1065 		/*
   1066 		 * No errors; receive the packet.  Note, we have
   1067 		 * configured the chip to not include the CRC at
   1068 		 * the end of the packet.
   1069 		 */
   1070 		len = RFD_RxDMAFrameLen(status);
   1071 
   1072 		/*
   1073 		 * If the packet is small enough to fit in a
   1074 		 * single header mbuf, allocate one and copy
   1075 		 * the data into it.  This greatly reduces
   1076 		 * memory consumption when we receive lots
   1077 		 * of small packets.
   1078 		 *
   1079 		 * Otherwise, we add a new buffer to the receive
   1080 		 * chain.  If this fails, we drop the packet and
   1081 		 * recycle the old buffer.
   1082 		 */
   1083 		if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
   1084 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1085 			if (m == NULL)
   1086 				goto dropit;
   1087 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   1088 			m->m_data += 2;
   1089 			memcpy(mtod(m, void *),
   1090 			    mtod(ds->ds_mbuf, void *), len);
   1091 			STE_INIT_RXDESC(sc, i);
   1092 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1093 			    ds->ds_dmamap->dm_mapsize,
   1094 			    BUS_DMASYNC_PREREAD);
   1095 		} else {
   1096 			m = ds->ds_mbuf;
   1097 			if (ste_add_rxbuf(sc, i) != 0) {
   1098  dropit:
   1099 				if_statinc(ifp, if_ierrors);
   1100 				STE_INIT_RXDESC(sc, i);
   1101 				bus_dmamap_sync(sc->sc_dmat,
   1102 				    ds->ds_dmamap, 0,
   1103 				    ds->ds_dmamap->dm_mapsize,
   1104 				    BUS_DMASYNC_PREREAD);
   1105 				continue;
   1106 			}
   1107 		}
   1108 
   1109 		m_set_rcvif(m, ifp);
   1110 		m->m_pkthdr.len = m->m_len = len;
   1111 
   1112 		/* Pass it on. */
   1113 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1114 	}
   1115 
   1116 	/* Update the receive pointer. */
   1117 	sc->sc_rxptr = i;
   1118 }
   1119 
   1120 /*
   1121  * ste_tick:
   1122  *
   1123  *	One second timer, used to tick the MII.
   1124  */
   1125 static void
   1126 ste_tick(void *arg)
   1127 {
   1128 	struct ste_softc *sc = arg;
   1129 	int s;
   1130 
   1131 	s = splnet();
   1132 	mii_tick(&sc->sc_mii);
   1133 	ste_stats_update(sc);
   1134 	splx(s);
   1135 
   1136 	callout_schedule(&sc->sc_tick_ch, hz);
   1137 }
   1138 
   1139 /*
   1140  * ste_stats_update:
   1141  *
   1142  *	Read the ST-201 statistics counters.
   1143  */
   1144 static void
   1145 ste_stats_update(struct ste_softc *sc)
   1146 {
   1147 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1148 	bus_space_tag_t st = sc->sc_st;
   1149 	bus_space_handle_t sh = sc->sc_sh;
   1150 
   1151 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
   1152 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
   1153 
   1154 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
   1155 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
   1156 
   1157 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   1158 
   1159 	if_statadd_ref(nsr, if_opackets,
   1160 	    (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK));
   1161 
   1162 	(void) bus_space_read_2(st, sh, STE_FramesReceivedOK);
   1163 
   1164 	if_statadd_ref(nsr, if_collisions,
   1165 	    (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
   1166 	    (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
   1167 	    (u_int) bus_space_read_1(st, sh, STE_SingleColFrames));
   1168 
   1169 	(void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
   1170 
   1171 	if_statadd_ref(nsr, if_ierrors,
   1172 	    (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors));
   1173 
   1174 	if_statadd_ref(nsr, if_oerrors,
   1175 	    (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
   1176 	    (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
   1177 	    bus_space_read_1(st, sh, STE_CarrierSenseErrors));
   1178 
   1179 	IF_STAT_PUTREF(ifp);
   1180 
   1181 	(void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
   1182 	(void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
   1183 	(void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
   1184 	(void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
   1185 }
   1186 
   1187 /*
   1188  * ste_reset:
   1189  *
   1190  *	Perform a soft reset on the ST-201.
   1191  */
   1192 static void
   1193 ste_reset(struct ste_softc *sc, uint32_t rstbits)
   1194 {
   1195 	uint32_t ac;
   1196 	int i;
   1197 
   1198 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
   1199 
   1200 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
   1201 
   1202 	delay(50000);
   1203 
   1204 	for (i = 0; i < STE_TIMEOUT; i++) {
   1205 		delay(1000);
   1206 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
   1207 		     AC_ResetBusy) == 0)
   1208 			break;
   1209 	}
   1210 
   1211 	if (i == STE_TIMEOUT)
   1212 		printf("%s: reset failed to complete\n",
   1213 		    device_xname(sc->sc_dev));
   1214 
   1215 	delay(1000);
   1216 }
   1217 
   1218 /*
   1219  * ste_setthresh:
   1220  *
   1221  * 	set the various transmit threshold registers
   1222  */
   1223 static void
   1224 ste_setthresh(struct ste_softc *sc)
   1225 {
   1226 	/* set the TX threhold */
   1227 	bus_space_write_2(sc->sc_st, sc->sc_sh,
   1228 	    STE_TxStartThresh, sc->sc_txthresh);
   1229 	/* Urgent threshold: set to sc_txthresh / 2 */
   1230 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
   1231 	    sc->sc_txthresh >> 6);
   1232 	/* Burst threshold: use default value (256 bytes) */
   1233 }
   1234 
   1235 /*
   1236  * restart TX at the given frame ID in the transmitter ring
   1237  */
   1238 static void
   1239 ste_txrestart(struct ste_softc *sc, uint8_t id)
   1240 {
   1241 	uint32_t control;
   1242 
   1243 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1244 	control = le32toh(sc->sc_txdescs[id].tfd_control);
   1245 	control &= ~TFD_TxDMAComplete;
   1246 	sc->sc_txdescs[id].tfd_control = htole32(control);
   1247 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1248 
   1249 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
   1250 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
   1251 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
   1252 	ste_dmahalt_wait(sc);
   1253 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
   1254 	    STE_CDTXADDR(sc, id));
   1255 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
   1256 }
   1257 
   1258 /*
   1259  * ste_init:		[ ifnet interface function ]
   1260  *
   1261  *	Initialize the interface.  Must be called at splnet().
   1262  */
   1263 static int
   1264 ste_init(struct ifnet *ifp)
   1265 {
   1266 	struct ste_softc *sc = ifp->if_softc;
   1267 	bus_space_tag_t st = sc->sc_st;
   1268 	bus_space_handle_t sh = sc->sc_sh;
   1269 	struct ste_descsoft *ds;
   1270 	int i, error = 0;
   1271 
   1272 	/*
   1273 	 * Cancel any pending I/O.
   1274 	 */
   1275 	ste_stop(ifp, 0);
   1276 
   1277 	/*
   1278 	 * Reset the chip to a known state.
   1279 	 */
   1280 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
   1281 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
   1282 
   1283 	/*
   1284 	 * Initialize the transmit descriptor ring.
   1285 	 */
   1286 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1287 	sc->sc_txpending = 0;
   1288 	sc->sc_txdirty = 0;
   1289 	sc->sc_txlast = STE_NTXDESC - 1;
   1290 
   1291 	/*
   1292 	 * Initialize the receive descriptor and receive job
   1293 	 * descriptor rings.
   1294 	 */
   1295 	for (i = 0; i < STE_NRXDESC; i++) {
   1296 		ds = &sc->sc_rxsoft[i];
   1297 		if (ds->ds_mbuf == NULL) {
   1298 			if ((error = ste_add_rxbuf(sc, i)) != 0) {
   1299 				printf("%s: unable to allocate or map rx "
   1300 				    "buffer %d, error = %d\n",
   1301 				    device_xname(sc->sc_dev), i, error);
   1302 				/*
   1303 				 * XXX Should attempt to run with fewer receive
   1304 				 * XXX buffers instead of just failing.
   1305 				 */
   1306 				ste_rxdrain(sc);
   1307 				goto out;
   1308 			}
   1309 		} else
   1310 			STE_INIT_RXDESC(sc, i);
   1311 	}
   1312 	sc->sc_rxptr = 0;
   1313 
   1314 	/* Set the station address. */
   1315 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1316 		bus_space_write_1(st, sh, STE_StationAddress0 + 1,
   1317 		    CLLADDR(ifp->if_sadl)[i]);
   1318 
   1319 	/* Set up the receive filter. */
   1320 	ste_set_filter(sc);
   1321 
   1322 	/*
   1323 	 * Give the receive ring to the chip.
   1324 	 */
   1325 	bus_space_write_4(st, sh, STE_RxDMAListPtr,
   1326 	    STE_CDRXADDR(sc, sc->sc_rxptr));
   1327 
   1328 	/*
   1329 	 * We defer giving the transmit ring to the chip until we
   1330 	 * transmit the first packet.
   1331 	 */
   1332 
   1333 	/*
   1334 	 * Initialize the Tx auto-poll period.  It's OK to make this number
   1335 	 * large (127 is the max) -- we explicitly kick the transmit engine
   1336 	 * when there's actually a packet.  We are using auto-polling only
   1337 	 * to make the interface to the transmit engine not suck.
   1338 	 */
   1339 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
   1340 
   1341 	/* ..and the Rx auto-poll period. */
   1342 	bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
   1343 
   1344 	/* Initialize the Tx start threshold. */
   1345 	ste_setthresh(sc);
   1346 
   1347 	/* Set the FIFO release threshold to 512 bytes. */
   1348 	bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
   1349 
   1350 	/* Set maximum packet size for VLAN. */
   1351 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   1352 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN + 4);
   1353 	else
   1354 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN);
   1355 
   1356 	/*
   1357 	 * Initialize the interrupt mask.
   1358 	 */
   1359 	sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
   1360 	    IE_TxDMAComplete | IE_RxDMAComplete;
   1361 
   1362 	bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
   1363 	bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
   1364 
   1365 	/*
   1366 	 * Start the receive DMA engine.
   1367 	 */
   1368 	bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
   1369 
   1370 	/*
   1371 	 * Initialize MacCtrl0 -- do it before setting the media,
   1372 	 * as setting the media will actually program the register.
   1373 	 */
   1374 	sc->sc_MacCtrl0 = MC0_IFSSelect(0);
   1375 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   1376 		sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
   1377 
   1378 	/*
   1379 	 * Set the current media.
   1380 	 */
   1381 	if ((error = ether_mediachange(ifp)) != 0)
   1382 		goto out;
   1383 
   1384 	/*
   1385 	 * Start the MAC.
   1386 	 */
   1387 	bus_space_write_2(st, sh, STE_MacCtrl1,
   1388 	    MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
   1389 
   1390 	/*
   1391 	 * Start the one second MII clock.
   1392 	 */
   1393 	callout_schedule(&sc->sc_tick_ch, hz);
   1394 
   1395 	/*
   1396 	 * ...all done!
   1397 	 */
   1398 	ifp->if_flags |= IFF_RUNNING;
   1399 
   1400  out:
   1401 	if (error)
   1402 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
   1403 	return (error);
   1404 }
   1405 
   1406 /*
   1407  * ste_drain:
   1408  *
   1409  *	Drain the receive queue.
   1410  */
   1411 static void
   1412 ste_rxdrain(struct ste_softc *sc)
   1413 {
   1414 	struct ste_descsoft *ds;
   1415 	int i;
   1416 
   1417 	for (i = 0; i < STE_NRXDESC; i++) {
   1418 		ds = &sc->sc_rxsoft[i];
   1419 		if (ds->ds_mbuf != NULL) {
   1420 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1421 			m_freem(ds->ds_mbuf);
   1422 			ds->ds_mbuf = NULL;
   1423 		}
   1424 	}
   1425 }
   1426 
   1427 /*
   1428  * ste_stop:		[ ifnet interface function ]
   1429  *
   1430  *	Stop transmission on the interface.
   1431  */
   1432 static void
   1433 ste_stop(struct ifnet *ifp, int disable)
   1434 {
   1435 	struct ste_softc *sc = ifp->if_softc;
   1436 	struct ste_descsoft *ds;
   1437 	int i;
   1438 
   1439 	/*
   1440 	 * Stop the one second clock.
   1441 	 */
   1442 	callout_stop(&sc->sc_tick_ch);
   1443 
   1444 	/* Down the MII. */
   1445 	mii_down(&sc->sc_mii);
   1446 
   1447 	/*
   1448 	 * Disable interrupts.
   1449 	 */
   1450 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
   1451 
   1452 	/*
   1453 	 * Stop receiver, transmitter, and stats update.
   1454 	 */
   1455 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
   1456 	    MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
   1457 
   1458 	/*
   1459 	 * Stop the transmit and receive DMA.
   1460 	 */
   1461 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
   1462 	    DC_RxDMAHalt | DC_TxDMAHalt);
   1463 	ste_dmahalt_wait(sc);
   1464 
   1465 	/*
   1466 	 * Release any queued transmit buffers.
   1467 	 */
   1468 	for (i = 0; i < STE_NTXDESC; i++) {
   1469 		ds = &sc->sc_txsoft[i];
   1470 		if (ds->ds_mbuf != NULL) {
   1471 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1472 			m_freem(ds->ds_mbuf);
   1473 			ds->ds_mbuf = NULL;
   1474 		}
   1475 	}
   1476 
   1477 	/*
   1478 	 * Mark the interface down and cancel the watchdog timer.
   1479 	 */
   1480 	ifp->if_flags &= ~IFF_RUNNING;
   1481 	ifp->if_timer = 0;
   1482 
   1483 	if (disable)
   1484 		ste_rxdrain(sc);
   1485 }
   1486 
   1487 static int
   1488 ste_eeprom_wait(struct ste_softc *sc)
   1489 {
   1490 	int i;
   1491 
   1492 	for (i = 0; i < STE_TIMEOUT; i++) {
   1493 		delay(1000);
   1494 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
   1495 		     EC_EepromBusy) == 0)
   1496 			return (0);
   1497 	}
   1498 	return (1);
   1499 }
   1500 
   1501 /*
   1502  * ste_read_eeprom:
   1503  *
   1504  *	Read data from the serial EEPROM.
   1505  */
   1506 static void
   1507 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
   1508 {
   1509 
   1510 	if (ste_eeprom_wait(sc))
   1511 		printf("%s: EEPROM failed to come ready\n",
   1512 		    device_xname(sc->sc_dev));
   1513 
   1514 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
   1515 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
   1516 	if (ste_eeprom_wait(sc))
   1517 		printf("%s: EEPROM read timed out\n",
   1518 		    device_xname(sc->sc_dev));
   1519 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
   1520 }
   1521 
   1522 /*
   1523  * ste_add_rxbuf:
   1524  *
   1525  *	Add a receive buffer to the indicated descriptor.
   1526  */
   1527 static int
   1528 ste_add_rxbuf(struct ste_softc *sc, int idx)
   1529 {
   1530 	struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
   1531 	struct mbuf *m;
   1532 	int error;
   1533 
   1534 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1535 	if (m == NULL)
   1536 		return (ENOBUFS);
   1537 
   1538 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   1539 	MCLGET(m, M_DONTWAIT);
   1540 	if ((m->m_flags & M_EXT) == 0) {
   1541 		m_freem(m);
   1542 		return (ENOBUFS);
   1543 	}
   1544 
   1545 	if (ds->ds_mbuf != NULL)
   1546 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1547 
   1548 	ds->ds_mbuf = m;
   1549 
   1550 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
   1551 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1552 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
   1553 	if (error) {
   1554 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1555 		    device_xname(sc->sc_dev), idx, error);
   1556 		panic("ste_add_rxbuf");		/* XXX */
   1557 	}
   1558 
   1559 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1560 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1561 
   1562 	STE_INIT_RXDESC(sc, idx);
   1563 
   1564 	return (0);
   1565 }
   1566 
   1567 /*
   1568  * ste_set_filter:
   1569  *
   1570  *	Set up the receive filter.
   1571  */
   1572 static void
   1573 ste_set_filter(struct ste_softc *sc)
   1574 {
   1575 	struct ethercom *ec = &sc->sc_ethercom;
   1576 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1577 	struct ether_multi *enm;
   1578 	struct ether_multistep step;
   1579 	uint32_t crc;
   1580 	uint16_t mchash[4];
   1581 
   1582 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
   1583 	if (ifp->if_flags & IFF_BROADCAST)
   1584 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
   1585 
   1586 	if (ifp->if_flags & IFF_PROMISC) {
   1587 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
   1588 		goto allmulti;
   1589 	}
   1590 
   1591 	/*
   1592 	 * Set up the multicast address filter by passing all multicast
   1593 	 * addresses through a CRC generator, and then using the low-order
   1594 	 * 6 bits as an index into the 64 bit multicast hash table.  The
   1595 	 * high order bits select the register, while the rest of the bits
   1596 	 * select the bit within the register.
   1597 	 */
   1598 
   1599 	memset(mchash, 0, sizeof(mchash));
   1600 
   1601 	ETHER_LOCK(ec);
   1602 	ETHER_FIRST_MULTI(step, ec, enm);
   1603 	if (enm == NULL) {
   1604 		ETHER_UNLOCK(ec);
   1605 		goto done;
   1606 	}
   1607 
   1608 	while (enm != NULL) {
   1609 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1610 			/*
   1611 			 * We must listen to a range of multicast addresses.
   1612 			 * For now, just accept all multicasts, rather than
   1613 			 * trying to set only those filter bits needed to match
   1614 			 * the range.  (At this time, the only use of address
   1615 			 * ranges is for IP multicast routing, for which the
   1616 			 * range is big enough to require all bits set.)
   1617 			 */
   1618 			ETHER_UNLOCK(ec);
   1619 			goto allmulti;
   1620 		}
   1621 
   1622 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1623 
   1624 		/* Just want the 6 least significant bits. */
   1625 		crc &= 0x3f;
   1626 
   1627 		/* Set the corresponding bit in the hash table. */
   1628 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   1629 
   1630 		ETHER_NEXT_MULTI(step, enm);
   1631 	}
   1632 	ETHER_UNLOCK(ec);
   1633 
   1634 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
   1635 
   1636 	ifp->if_flags &= ~IFF_ALLMULTI;
   1637 	goto done;
   1638 
   1639  allmulti:
   1640 	ifp->if_flags |= IFF_ALLMULTI;
   1641 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
   1642 
   1643  done:
   1644 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1645 		/*
   1646 		 * Program the multicast hash table.
   1647 		 */
   1648 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
   1649 		    mchash[0]);
   1650 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
   1651 		    mchash[1]);
   1652 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
   1653 		    mchash[2]);
   1654 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
   1655 		    mchash[3]);
   1656 	}
   1657 
   1658 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
   1659 	    sc->sc_ReceiveMode);
   1660 }
   1661 
   1662 /*
   1663  * ste_mii_readreg:	[mii interface function]
   1664  *
   1665  *	Read a PHY register on the MII of the ST-201.
   1666  */
   1667 static int
   1668 ste_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   1669 {
   1670 	struct ste_softc *sc = device_private(self);
   1671 
   1672 	if (phy == 0 && !sc->sc_enable_phy0)
   1673 		return EIO;
   1674 
   1675 	return mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg, val);
   1676 }
   1677 
   1678 /*
   1679  * ste_mii_writereg:	[mii interface function]
   1680  *
   1681  *	Write a PHY register on the MII of the ST-201.
   1682  */
   1683 static int
   1684 ste_mii_writereg(device_t self, int phy, int reg, uint16_t val)
   1685 {
   1686 	struct ste_softc *sc = device_private(self);
   1687 
   1688 	if (phy == 0 && !sc->sc_enable_phy0)
   1689 		return EIO;
   1690 
   1691 	return mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
   1692 }
   1693 
   1694 /*
   1695  * ste_mii_statchg:	[mii interface function]
   1696  *
   1697  *	Callback from MII layer when media changes.
   1698  */
   1699 static void
   1700 ste_mii_statchg(struct ifnet *ifp)
   1701 {
   1702 	struct ste_softc *sc = ifp->if_softc;
   1703 
   1704 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   1705 		sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
   1706 	else
   1707 		sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
   1708 
   1709 	/* XXX 802.1x flow-control? */
   1710 
   1711 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
   1712 }
   1713 
   1714 /*
   1715  * ste_mii_bitbang_read: [mii bit-bang interface function]
   1716  *
   1717  *	Read the MII serial port for the MII bit-bang module.
   1718  */
   1719 static uint32_t
   1720 ste_mii_bitbang_read(device_t self)
   1721 {
   1722 	struct ste_softc *sc = device_private(self);
   1723 
   1724 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
   1725 }
   1726 
   1727 /*
   1728  * ste_mii_bitbang_write: [mii big-bang interface function]
   1729  *
   1730  *	Write the MII serial port for the MII bit-bang module.
   1731  */
   1732 static void
   1733 ste_mii_bitbang_write(device_t self, uint32_t val)
   1734 {
   1735 	struct ste_softc *sc = device_private(self);
   1736 
   1737 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
   1738 }
   1739