if_ste.c revision 1.7 1 /* $NetBSD: if_ste.c,v 1.7 2001/11/13 07:48:44 lukem Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the Sundance Tech. ST-201 10/100
41 * Ethernet controller.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.7 2001/11/13 07:48:44 lukem Exp $");
46
47 #include "bpfilter.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/socket.h>
56 #include <sys/ioctl.h>
57 #include <sys/errno.h>
58 #include <sys/device.h>
59 #include <sys/queue.h>
60
61 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
62
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_ether.h>
67
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71
72 #include <machine/bus.h>
73 #include <machine/intr.h>
74
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 #include <dev/mii/mii_bitbang.h>
78
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 #include <dev/pci/pcidevs.h>
82
83 #include <dev/pci/if_stereg.h>
84
85 /*
86 * Transmit descriptor list size.
87 */
88 #define STE_NTXDESC 256
89 #define STE_NTXDESC_MASK (STE_NTXDESC - 1)
90 #define STE_NEXTTX(x) (((x) + 1) & STE_NTXDESC_MASK)
91
92 /*
93 * Receive descriptor list size.
94 */
95 #define STE_NRXDESC 128
96 #define STE_NRXDESC_MASK (STE_NRXDESC - 1)
97 #define STE_NEXTRX(x) (((x) + 1) & STE_NRXDESC_MASK)
98
99 /*
100 * Control structures are DMA'd to the ST-201 chip. We allocate them in
101 * a single clump that maps to a single DMA segment to make several things
102 * easier.
103 */
104 struct ste_control_data {
105 /*
106 * The transmit descriptors.
107 */
108 struct ste_tfd scd_txdescs[STE_NTXDESC];
109
110 /*
111 * The receive descriptors.
112 */
113 struct ste_rfd scd_rxdescs[STE_NRXDESC];
114 };
115
116 #define STE_CDOFF(x) offsetof(struct ste_control_data, x)
117 #define STE_CDTXOFF(x) STE_CDOFF(scd_txdescs[(x)])
118 #define STE_CDRXOFF(x) STE_CDOFF(scd_rxdescs[(x)])
119
120 /*
121 * Software state for transmit and receive jobs.
122 */
123 struct ste_descsoft {
124 struct mbuf *ds_mbuf; /* head of our mbuf chain */
125 bus_dmamap_t ds_dmamap; /* our DMA map */
126 };
127
128 /*
129 * Software state per device.
130 */
131 struct ste_softc {
132 struct device sc_dev; /* generic device information */
133 bus_space_tag_t sc_st; /* bus space tag */
134 bus_space_handle_t sc_sh; /* bus space handle */
135 bus_dma_tag_t sc_dmat; /* bus DMA tag */
136 struct ethercom sc_ethercom; /* ethernet common data */
137 void *sc_sdhook; /* shutdown hook */
138
139 void *sc_ih; /* interrupt cookie */
140
141 struct mii_data sc_mii; /* MII/media information */
142
143 struct callout sc_tick_ch; /* tick callout */
144
145 bus_dmamap_t sc_cddmamap; /* control data DMA map */
146 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
147
148 /*
149 * Software state for transmit and receive descriptors.
150 */
151 struct ste_descsoft sc_txsoft[STE_NTXDESC];
152 struct ste_descsoft sc_rxsoft[STE_NRXDESC];
153
154 /*
155 * Control data structures.
156 */
157 struct ste_control_data *sc_control_data;
158 #define sc_txdescs sc_control_data->scd_txdescs
159 #define sc_rxdescs sc_control_data->scd_rxdescs
160
161 int sc_txpending; /* number of Tx requests pending */
162 int sc_txdirty; /* first dirty Tx descriptor */
163 int sc_txlast; /* last used Tx descriptor */
164
165 int sc_rxptr; /* next ready Rx descriptor/descsoft */
166
167 int sc_txthresh; /* Tx threshold */
168 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
169 uint16_t sc_IntEnable; /* prototype IntEnable register */
170 uint16_t sc_MacCtrl0; /* prototype MacCtrl0 register */
171 uint8_t sc_ReceiveMode; /* prototype ReceiveMode register */
172 };
173
174 #define STE_CDTXADDR(sc, x) ((sc)->sc_cddma + STE_CDTXOFF((x)))
175 #define STE_CDRXADDR(sc, x) ((sc)->sc_cddma + STE_CDRXOFF((x)))
176
177 #define STE_CDTXSYNC(sc, x, ops) \
178 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
179 STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
180
181 #define STE_CDRXSYNC(sc, x, ops) \
182 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
183 STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
184
185 #define STE_INIT_RXDESC(sc, x) \
186 do { \
187 struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
188 struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
189 struct mbuf *__m = __ds->ds_mbuf; \
190 \
191 /* \
192 * Note: We scoot the packet forward 2 bytes in the buffer \
193 * so that the payload after the Ethernet header is aligned \
194 * to a 4-byte boundary. \
195 */ \
196 __m->m_data = __m->m_ext.ext_buf + 2; \
197 __rfd->rfd_frag.frag_addr = \
198 htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2); \
199 __rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST); \
200 __rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x)))); \
201 __rfd->rfd_status = 0; \
202 STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
203 } while (/*CONSTCOND*/0)
204
205 #define STE_TIMEOUT 1000
206
207 void ste_start(struct ifnet *);
208 void ste_watchdog(struct ifnet *);
209 int ste_ioctl(struct ifnet *, u_long, caddr_t);
210 int ste_init(struct ifnet *);
211 void ste_stop(struct ifnet *, int);
212
213 void ste_shutdown(void *);
214
215 void ste_reset(struct ste_softc *);
216 void ste_rxdrain(struct ste_softc *);
217 int ste_add_rxbuf(struct ste_softc *, int);
218 void ste_read_eeprom(struct ste_softc *, int, uint16_t *);
219 void ste_tick(void *);
220
221 void ste_stats_update(struct ste_softc *);
222
223 void ste_set_filter(struct ste_softc *);
224
225 int ste_intr(void *);
226 void ste_txintr(struct ste_softc *);
227 void ste_rxintr(struct ste_softc *);
228
229 int ste_mii_readreg(struct device *, int, int);
230 void ste_mii_writereg(struct device *, int, int, int);
231 void ste_mii_statchg(struct device *);
232
233 int ste_mediachange(struct ifnet *);
234 void ste_mediastatus(struct ifnet *, struct ifmediareq *);
235
236 int ste_match(struct device *, struct cfdata *, void *);
237 void ste_attach(struct device *, struct device *, void *);
238
239 int ste_copy_small = 0;
240
241 struct cfattach ste_ca = {
242 sizeof(struct ste_softc), ste_match, ste_attach,
243 };
244
245 uint32_t ste_mii_bitbang_read(struct device *);
246 void ste_mii_bitbang_write(struct device *, uint32_t);
247
248 const struct mii_bitbang_ops ste_mii_bitbang_ops = {
249 ste_mii_bitbang_read,
250 ste_mii_bitbang_write,
251 {
252 PC_MgmtData, /* MII_BIT_MDO */
253 PC_MgmtData, /* MII_BIT_MDI */
254 PC_MgmtClk, /* MII_BIT_MDC */
255 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
256 0, /* MII_BIT_DIR_PHY_HOST */
257 }
258 };
259
260 /*
261 * Devices supported by this driver.
262 */
263 const struct ste_product {
264 pci_vendor_id_t ste_vendor;
265 pci_product_id_t ste_product;
266 const char *ste_name;
267 } ste_products[] = {
268 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST201,
269 "Sundance ST-201 10/100 Ethernet" },
270
271 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL1002,
272 "D-Link DL-1002 10/100 Ethernet" },
273
274 { 0, 0,
275 NULL },
276 };
277
278 static const struct ste_product *
279 ste_lookup(const struct pci_attach_args *pa)
280 {
281 const struct ste_product *sp;
282
283 for (sp = ste_products; sp->ste_name != NULL; sp++) {
284 if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
285 PCI_PRODUCT(pa->pa_id) == sp->ste_product)
286 return (sp);
287 }
288 return (NULL);
289 }
290
291 int
292 ste_match(struct device *parent, struct cfdata *cf, void *aux)
293 {
294 struct pci_attach_args *pa = aux;
295
296 if (ste_lookup(pa) != NULL)
297 return (1);
298
299 return (0);
300 }
301
302 void
303 ste_attach(struct device *parent, struct device *self, void *aux)
304 {
305 struct ste_softc *sc = (struct ste_softc *) self;
306 struct pci_attach_args *pa = aux;
307 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
308 pci_chipset_tag_t pc = pa->pa_pc;
309 pci_intr_handle_t ih;
310 const char *intrstr = NULL;
311 bus_space_tag_t iot, memt;
312 bus_space_handle_t ioh, memh;
313 bus_dma_segment_t seg;
314 int ioh_valid, memh_valid;
315 int i, rseg, error;
316 const struct ste_product *sp;
317 pcireg_t pmode;
318 uint8_t enaddr[ETHER_ADDR_LEN];
319 uint16_t myea[ETHER_ADDR_LEN / 2];
320 int pmreg;
321
322 callout_init(&sc->sc_tick_ch);
323
324 sp = ste_lookup(pa);
325 if (sp == NULL) {
326 printf("\n");
327 panic("ste_attach: impossible");
328 }
329
330 printf(": %s\n", sp->ste_name);
331
332 /*
333 * Map the device.
334 */
335 ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
336 PCI_MAPREG_TYPE_IO, 0,
337 &iot, &ioh, NULL, NULL) == 0);
338 memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
339 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
340 &memt, &memh, NULL, NULL) == 0);
341
342 if (memh_valid) {
343 sc->sc_st = memt;
344 sc->sc_sh = memh;
345 } else if (ioh_valid) {
346 sc->sc_st = iot;
347 sc->sc_sh = ioh;
348 } else {
349 printf("%s: unable to map device registers\n",
350 sc->sc_dev.dv_xname);
351 return;
352 }
353
354 sc->sc_dmat = pa->pa_dmat;
355
356 /* Enable bus mastering. */
357 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
358 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
359 PCI_COMMAND_MASTER_ENABLE);
360
361 /* Get it out of power save mode if needed. */
362 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
363 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
364 if (pmode == 3) {
365 /*
366 * The card has lost all configuration data in
367 * this state, so punt.
368 */
369 printf("%s: unable to wake up from power state D3\n",
370 sc->sc_dev.dv_xname);
371 return;
372 }
373 if (pmode != 0) {
374 printf("%s: waking up from power state D%d\n",
375 sc->sc_dev.dv_xname, pmode);
376 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
377 }
378 }
379
380 /*
381 * Map and establish our interrupt.
382 */
383 if (pci_intr_map(pa, &ih)) {
384 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
385 return;
386 }
387 intrstr = pci_intr_string(pc, ih);
388 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
389 if (sc->sc_ih == NULL) {
390 printf("%s: unable to establish interrupt",
391 sc->sc_dev.dv_xname);
392 if (intrstr != NULL)
393 printf(" at %s", intrstr);
394 printf("\n");
395 return;
396 }
397 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
398
399 /*
400 * Allocate the control data structures, and create and load the
401 * DMA map for it.
402 */
403 if ((error = bus_dmamem_alloc(sc->sc_dmat,
404 sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
405 0)) != 0) {
406 printf("%s: unable to allocate control data, error = %d\n",
407 sc->sc_dev.dv_xname, error);
408 goto fail_0;
409 }
410
411 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
412 sizeof(struct ste_control_data), (caddr_t *)&sc->sc_control_data,
413 BUS_DMA_COHERENT)) != 0) {
414 printf("%s: unable to map control data, error = %d\n",
415 sc->sc_dev.dv_xname, error);
416 goto fail_1;
417 }
418
419 if ((error = bus_dmamap_create(sc->sc_dmat,
420 sizeof(struct ste_control_data), 1,
421 sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
422 printf("%s: unable to create control data DMA map, "
423 "error = %d\n", sc->sc_dev.dv_xname, error);
424 goto fail_2;
425 }
426
427 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
428 sc->sc_control_data, sizeof(struct ste_control_data), NULL,
429 0)) != 0) {
430 printf("%s: unable to load control data DMA map, error = %d\n",
431 sc->sc_dev.dv_xname, error);
432 goto fail_3;
433 }
434
435 /*
436 * Create the transmit buffer DMA maps.
437 */
438 for (i = 0; i < STE_NTXDESC; i++) {
439 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
440 STE_NTXFRAGS, MCLBYTES, 0, 0,
441 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
442 printf("%s: unable to create tx DMA map %d, "
443 "error = %d\n", sc->sc_dev.dv_xname, i, error);
444 goto fail_4;
445 }
446 }
447
448 /*
449 * Create the receive buffer DMA maps.
450 */
451 for (i = 0; i < STE_NRXDESC; i++) {
452 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
453 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
454 printf("%s: unable to create rx DMA map %d, "
455 "error = %d\n", sc->sc_dev.dv_xname, i, error);
456 goto fail_5;
457 }
458 sc->sc_rxsoft[i].ds_mbuf = NULL;
459 }
460
461 /*
462 * Reset the chip to a known state.
463 */
464 ste_reset(sc);
465
466 /*
467 * Read the Ethernet address from the EEPROM.
468 */
469 for (i = 0; i < 3; i++) {
470 ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
471 myea[i] = le16toh(myea[i]);
472 }
473 memcpy(enaddr, myea, sizeof(enaddr));
474
475 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
476 ether_sprintf(enaddr));
477
478 /*
479 * Initialize our media structures and probe the MII.
480 */
481 sc->sc_mii.mii_ifp = ifp;
482 sc->sc_mii.mii_readreg = ste_mii_readreg;
483 sc->sc_mii.mii_writereg = ste_mii_writereg;
484 sc->sc_mii.mii_statchg = ste_mii_statchg;
485 ifmedia_init(&sc->sc_mii.mii_media, 0, ste_mediachange,
486 ste_mediastatus);
487 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
488 MII_OFFSET_ANY, 0);
489 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
490 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
491 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
492 } else
493 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
494
495 ifp = &sc->sc_ethercom.ec_if;
496 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
497 ifp->if_softc = sc;
498 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
499 ifp->if_ioctl = ste_ioctl;
500 ifp->if_start = ste_start;
501 ifp->if_watchdog = ste_watchdog;
502 ifp->if_init = ste_init;
503 ifp->if_stop = ste_stop;
504 IFQ_SET_READY(&ifp->if_snd);
505
506 /*
507 * Default the transmit threshold to 128 bytes.
508 */
509 sc->sc_txthresh = 128;
510
511 /*
512 * Disable MWI if the PCI layer tells us to.
513 */
514 sc->sc_DMACtrl = 0;
515 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
516 sc->sc_DMACtrl |= DC_MWIDisable;
517
518 /*
519 * We can support 802.1Q VLAN-sized frames.
520 */
521 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
522
523 /*
524 * Attach the interface.
525 */
526 if_attach(ifp);
527 ether_ifattach(ifp, enaddr);
528
529 /*
530 * Make sure the interface is shutdown during reboot.
531 */
532 sc->sc_sdhook = shutdownhook_establish(ste_shutdown, sc);
533 if (sc->sc_sdhook == NULL)
534 printf("%s: WARNING: unable to establish shutdown hook\n",
535 sc->sc_dev.dv_xname);
536 return;
537
538 /*
539 * Free any resources we've allocated during the failed attach
540 * attempt. Do this in reverse order and fall through.
541 */
542 fail_5:
543 for (i = 0; i < STE_NRXDESC; i++) {
544 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
545 bus_dmamap_destroy(sc->sc_dmat,
546 sc->sc_rxsoft[i].ds_dmamap);
547 }
548 fail_4:
549 for (i = 0; i < STE_NTXDESC; i++) {
550 if (sc->sc_txsoft[i].ds_dmamap != NULL)
551 bus_dmamap_destroy(sc->sc_dmat,
552 sc->sc_txsoft[i].ds_dmamap);
553 }
554 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
555 fail_3:
556 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
557 fail_2:
558 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
559 sizeof(struct ste_control_data));
560 fail_1:
561 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
562 fail_0:
563 return;
564 }
565
566 /*
567 * ste_shutdown:
568 *
569 * Make sure the interface is stopped at reboot time.
570 */
571 void
572 ste_shutdown(void *arg)
573 {
574 struct ste_softc *sc = arg;
575
576 ste_stop(&sc->sc_ethercom.ec_if, 1);
577 }
578
579 static void
580 ste_dmahalt_wait(struct ste_softc *sc)
581 {
582 int i;
583
584 for (i = 0; i < STE_TIMEOUT; i++) {
585 delay(2);
586 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
587 DC_DMAHaltBusy) == 0)
588 break;
589 }
590
591 if (i == STE_TIMEOUT)
592 printf("%s: DMA halt timed out\n", sc->sc_dev.dv_xname);
593 }
594
595 /*
596 * ste_start: [ifnet interface function]
597 *
598 * Start packet transmission on the interface.
599 */
600 void
601 ste_start(struct ifnet *ifp)
602 {
603 struct ste_softc *sc = ifp->if_softc;
604 struct mbuf *m0, *m;
605 struct ste_descsoft *ds;
606 struct ste_tfd *tfd;
607 bus_dmamap_t dmamap;
608 int error, olasttx, nexttx, opending, seg, totlen;
609
610 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
611 return;
612
613 /*
614 * Remember the previous number of pending transmissions
615 * and the current last descriptor in the list.
616 */
617 opending = sc->sc_txpending;
618 olasttx = sc->sc_txlast;
619
620 /*
621 * Loop through the send queue, setting up transmit descriptors
622 * until we drain the queue, or use up all available transmit
623 * descriptors.
624 */
625 while (sc->sc_txpending < STE_NTXDESC) {
626 /*
627 * Grab a packet off the queue.
628 */
629 IFQ_POLL(&ifp->if_snd, m0);
630 if (m0 == NULL)
631 break;
632 m = NULL;
633
634 /*
635 * Get the last and next available transmit descriptor.
636 */
637 nexttx = STE_NEXTTX(sc->sc_txlast);
638 tfd = &sc->sc_txdescs[nexttx];
639 ds = &sc->sc_txsoft[nexttx];
640
641 dmamap = ds->ds_dmamap;
642
643 /*
644 * Load the DMA map. If this fails, the packet either
645 * didn't fit in the alloted number of segments, or we
646 * were short on resources. In this case, we'll copy
647 * and try again.
648 */
649 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
650 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
651 MGETHDR(m, M_DONTWAIT, MT_DATA);
652 if (m == NULL) {
653 printf("%s: unable to allocate Tx mbuf\n",
654 sc->sc_dev.dv_xname);
655 break;
656 }
657 if (m0->m_pkthdr.len > MHLEN) {
658 MCLGET(m, M_DONTWAIT);
659 if ((m->m_flags & M_EXT) == 0) {
660 printf("%s: unable to allocate Tx "
661 "cluster\n", sc->sc_dev.dv_xname);
662 m_freem(m);
663 break;
664 }
665 }
666 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
667 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
668 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
669 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
670 if (error) {
671 printf("%s: unable to load Tx buffer, "
672 "error = %d\n", sc->sc_dev.dv_xname, error);
673 break;
674 }
675 }
676
677 IFQ_DEQUEUE(&ifp->if_snd, m0);
678 if (m != NULL) {
679 m_freem(m0);
680 m0 = m;
681 }
682
683 /*
684 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
685 */
686
687 /* Sync the DMA map. */
688 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
689 BUS_DMASYNC_PREWRITE);
690
691 /* Initialize the fragment list. */
692 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
693 tfd->tfd_frags[seg].frag_addr =
694 htole32(dmamap->dm_segs[seg].ds_addr);
695 tfd->tfd_frags[seg].frag_len =
696 htole32(dmamap->dm_segs[seg].ds_len);
697 totlen += dmamap->dm_segs[seg].ds_len;
698 }
699 tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
700
701 /* Initialize the descriptor. */
702 tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
703 tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
704
705 /* Sync the descriptor. */
706 STE_CDTXSYNC(sc, nexttx,
707 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
708
709 /*
710 * Store a pointer to the packet so we can free it later,
711 * and remember what txdirty will be once the packet is
712 * done.
713 */
714 ds->ds_mbuf = m0;
715
716 /* Advance the tx pointer. */
717 sc->sc_txpending++;
718 sc->sc_txlast = nexttx;
719
720 #if NBPFILTER > 0
721 /*
722 * Pass the packet to any BPF listeners.
723 */
724 if (ifp->if_bpf)
725 bpf_mtap(ifp->if_bpf, m0);
726 #endif /* NBPFILTER > 0 */
727 }
728
729 if (sc->sc_txpending == STE_NTXDESC) {
730 /* No more slots left; notify upper layer. */
731 ifp->if_flags |= IFF_OACTIVE;
732 }
733
734 if (sc->sc_txpending != opending) {
735 /*
736 * We enqueued packets. If the transmitter was idle,
737 * reset the txdirty pointer.
738 */
739 if (opending == 0)
740 sc->sc_txdirty = STE_NEXTTX(olasttx);
741
742 /*
743 * Cause a descriptor interrupt to happen on the
744 * last packet we enqueued, and also cause the
745 * DMA engine to wait after is has finished processing
746 * it.
747 */
748 sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
749 sc->sc_txdescs[sc->sc_txlast].tfd_control |=
750 htole32(TFD_TxDMAIndicate);
751 STE_CDTXSYNC(sc, sc->sc_txlast,
752 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
753
754 /*
755 * Link up the new chain of descriptors to the
756 * last.
757 */
758 sc->sc_txdescs[olasttx].tfd_next =
759 STE_CDTXADDR(sc, STE_NEXTTX(olasttx));
760 STE_CDTXSYNC(sc, olasttx,
761 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
762
763 /*
764 * Kick the transmit DMA logic. Note that since we're
765 * using auto-polling, reading the Tx desc pointer will
766 * give it the nudge it needs to get going.
767 */
768 if (bus_space_read_4(sc->sc_st, sc->sc_sh,
769 STE_TxDMAListPtr) == 0) {
770 bus_space_write_4(sc->sc_st, sc->sc_sh,
771 STE_DMACtrl, DC_TxDMAHalt);
772 ste_dmahalt_wait(sc);
773 bus_space_write_4(sc->sc_st, sc->sc_sh,
774 STE_TxDMAListPtr,
775 STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
776 bus_space_write_4(sc->sc_st, sc->sc_sh,
777 STE_DMACtrl, DC_TxDMAResume);
778 }
779
780 /* Set a watchdog timer in case the chip flakes out. */
781 ifp->if_timer = 5;
782 }
783 }
784
785 /*
786 * ste_watchdog: [ifnet interface function]
787 *
788 * Watchdog timer handler.
789 */
790 void
791 ste_watchdog(struct ifnet *ifp)
792 {
793 struct ste_softc *sc = ifp->if_softc;
794
795 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
796 ifp->if_oerrors++;
797
798 (void) ste_init(ifp);
799
800 /* Try to get more packets going. */
801 ste_start(ifp);
802 }
803
804 /*
805 * ste_ioctl: [ifnet interface function]
806 *
807 * Handle control requests from the operator.
808 */
809 int
810 ste_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
811 {
812 struct ste_softc *sc = ifp->if_softc;
813 struct ifreq *ifr = (struct ifreq *)data;
814 int s, error;
815
816 s = splnet();
817
818 switch (cmd) {
819 case SIOCSIFMEDIA:
820 case SIOCGIFMEDIA:
821 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
822 break;
823
824 default:
825 error = ether_ioctl(ifp, cmd, data);
826 if (error == ENETRESET) {
827 /*
828 * Multicast list has changed; set the hardware filter
829 * accordingly.
830 */
831 ste_set_filter(sc);
832 error = 0;
833 }
834 break;
835 }
836
837 /* Try to get more packets going. */
838 ste_start(ifp);
839
840 splx(s);
841 return (error);
842 }
843
844 /*
845 * ste_intr:
846 *
847 * Interrupt service routine.
848 */
849 int
850 ste_intr(void *arg)
851 {
852 struct ste_softc *sc = arg;
853 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
854 uint16_t isr;
855 uint8_t txstat;
856 int wantinit;
857
858 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
859 IS_InterruptStatus) == 0)
860 return (0);
861
862 for (wantinit = 0; wantinit == 0;) {
863 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
864 if ((isr & sc->sc_IntEnable) == 0)
865 break;
866
867 /* Receive interrupts. */
868 if (isr & IE_RxDMAComplete)
869 ste_rxintr(sc);
870
871 /* Transmit interrupts. */
872 if (isr & (IE_TxDMAComplete|IE_TxComplete))
873 ste_txintr(sc);
874
875 /* Statistics overflow. */
876 if (isr & IE_UpdateStats)
877 ste_stats_update(sc);
878
879 /* Transmission errors. */
880 if (isr & IE_TxComplete) {
881 for (;;) {
882 txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
883 STE_TxStatus);
884 if ((txstat & TS_TxComplete) == 0)
885 break;
886 if (txstat & TS_TxUnderrun) {
887 sc->sc_txthresh += 32;
888 if (sc->sc_txthresh > 0x1ffc)
889 sc->sc_txthresh = 0x1ffc;
890 printf("%s: transmit underrun, new "
891 "threshold: %d bytes\n",
892 sc->sc_dev.dv_xname,
893 sc->sc_txthresh);
894 }
895 if (txstat & TS_TxReleaseError)
896 printf("%s: Tx FIFO release error\n",
897 sc->sc_dev.dv_xname);
898 if (txstat & TS_MaxCollisions)
899 printf("%s: excessive collisions\n",
900 sc->sc_dev.dv_xname);
901 bus_space_write_2(sc->sc_st, sc->sc_sh,
902 STE_TxStatus, 0);
903 }
904 wantinit = 1;
905 }
906
907 /* Host interface errors. */
908 if (isr & IE_HostError) {
909 printf("%s: Host interface error\n",
910 sc->sc_dev.dv_xname);
911 wantinit = 1;
912 }
913 }
914
915 if (wantinit)
916 ste_init(ifp);
917
918 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
919 sc->sc_IntEnable);
920
921 /* Try to get more packets going. */
922 ste_start(ifp);
923
924 return (1);
925 }
926
927 /*
928 * ste_txintr:
929 *
930 * Helper; handle transmit interrupts.
931 */
932 void
933 ste_txintr(struct ste_softc *sc)
934 {
935 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
936 struct ste_descsoft *ds;
937 uint32_t control;
938 int i;
939
940 ifp->if_flags &= ~IFF_OACTIVE;
941
942 /*
943 * Go through our Tx list and free mbufs for those
944 * frames which have been transmitted.
945 */
946 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
947 i = STE_NEXTTX(i), sc->sc_txpending--) {
948 ds = &sc->sc_txsoft[i];
949
950 STE_CDTXSYNC(sc, i,
951 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
952
953 control = le32toh(sc->sc_txdescs[i].tfd_control);
954 if ((control & TFD_TxDMAComplete) == 0)
955 break;
956
957 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
958 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
959 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
960 m_freem(ds->ds_mbuf);
961 ds->ds_mbuf = NULL;
962 }
963
964 /* Update the dirty transmit buffer pointer. */
965 sc->sc_txdirty = i;
966
967 /*
968 * If there are no more pending transmissions, cancel the watchdog
969 * timer.
970 */
971 if (sc->sc_txpending == 0)
972 ifp->if_timer = 0;
973 }
974
975 /*
976 * ste_rxintr:
977 *
978 * Helper; handle receive interrupts.
979 */
980 void
981 ste_rxintr(struct ste_softc *sc)
982 {
983 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
984 struct ste_descsoft *ds;
985 struct mbuf *m;
986 uint32_t status;
987 int i, len;
988
989 for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
990 ds = &sc->sc_rxsoft[i];
991
992 STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
993
994 status = le32toh(sc->sc_rxdescs[i].rfd_status);
995
996 if ((status & RFD_RxDMAComplete) == 0)
997 break;
998
999 /*
1000 * If the packet had an error, simply recycle the
1001 * buffer. Note, we count the error later in the
1002 * periodic stats update.
1003 */
1004 if (status & RFD_RxFrameError) {
1005 STE_INIT_RXDESC(sc, i);
1006 continue;
1007 }
1008
1009 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1010 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1011
1012 /*
1013 * No errors; receive the packet. Note, we have
1014 * configured the chip to not include the CRC at
1015 * the end of the packet.
1016 */
1017 len = RFD_RxDMAFrameLen(status);
1018
1019 /*
1020 * If the packet is small enough to fit in a
1021 * single header mbuf, allocate one and copy
1022 * the data into it. This greatly reduces
1023 * memory consumption when we receive lots
1024 * of small packets.
1025 *
1026 * Otherwise, we add a new buffer to the receive
1027 * chain. If this fails, we drop the packet and
1028 * recycle the old buffer.
1029 */
1030 if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
1031 MGETHDR(m, M_DONTWAIT, MT_DATA);
1032 if (m == NULL)
1033 goto dropit;
1034 m->m_data += 2;
1035 memcpy(mtod(m, caddr_t),
1036 mtod(ds->ds_mbuf, caddr_t), len);
1037 STE_INIT_RXDESC(sc, i);
1038 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1039 ds->ds_dmamap->dm_mapsize,
1040 BUS_DMASYNC_PREREAD);
1041 } else {
1042 m = ds->ds_mbuf;
1043 if (ste_add_rxbuf(sc, i) != 0) {
1044 dropit:
1045 ifp->if_ierrors++;
1046 STE_INIT_RXDESC(sc, i);
1047 bus_dmamap_sync(sc->sc_dmat,
1048 ds->ds_dmamap, 0,
1049 ds->ds_dmamap->dm_mapsize,
1050 BUS_DMASYNC_PREREAD);
1051 continue;
1052 }
1053 }
1054
1055 m->m_pkthdr.rcvif = ifp;
1056 m->m_pkthdr.len = m->m_len = len;
1057
1058 #if NBPFILTER > 0
1059 /*
1060 * Pass this up to any BPF listeners, but only
1061 * pass if up the stack if it's for us.
1062 */
1063 if (ifp->if_bpf)
1064 bpf_mtap(ifp->if_bpf, m);
1065 #endif /* NBPFILTER > 0 */
1066
1067 /* Pass it on. */
1068 (*ifp->if_input)(ifp, m);
1069 }
1070
1071 /* Update the receive pointer. */
1072 sc->sc_rxptr = i;
1073 }
1074
1075 /*
1076 * ste_tick:
1077 *
1078 * One second timer, used to tick the MII.
1079 */
1080 void
1081 ste_tick(void *arg)
1082 {
1083 struct ste_softc *sc = arg;
1084 int s;
1085
1086 s = splnet();
1087 mii_tick(&sc->sc_mii);
1088 ste_stats_update(sc);
1089 splx(s);
1090
1091 callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1092 }
1093
1094 /*
1095 * ste_stats_update:
1096 *
1097 * Read the ST-201 statistics counters.
1098 */
1099 void
1100 ste_stats_update(struct ste_softc *sc)
1101 {
1102 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1103 bus_space_tag_t st = sc->sc_st;
1104 bus_space_handle_t sh = sc->sc_sh;
1105
1106 (void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
1107 (void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
1108
1109 (void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
1110 (void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
1111
1112 ifp->if_opackets +=
1113 (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
1114 ifp->if_ipackets +=
1115 (u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
1116
1117 (void) bus_space_read_2(st, sh, STE_CarrierSenseErrors);
1118
1119 ifp->if_collisions +=
1120 (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
1121 (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
1122 (u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
1123
1124 (void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
1125
1126 ifp->if_ierrors +=
1127 (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
1128
1129 ifp->if_oerrors +=
1130 (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
1131 (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls);
1132
1133 (void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
1134 (void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
1135 (void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
1136 (void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
1137 }
1138
1139 /*
1140 * ste_reset:
1141 *
1142 * Perform a soft reset on the ST-201.
1143 */
1144 void
1145 ste_reset(struct ste_softc *sc)
1146 {
1147 uint32_t ac;
1148 int i;
1149
1150 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
1151
1152 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl,
1153 ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1154 AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1155 AC_RstOut);
1156
1157 delay(50000);
1158
1159 for (i = 0; i < STE_TIMEOUT; i++) {
1160 delay(1000);
1161 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
1162 AC_ResetBusy) == 0)
1163 break;
1164 }
1165
1166 if (i == STE_TIMEOUT)
1167 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1168
1169 delay(1000);
1170 }
1171
1172 /*
1173 * ste_init: [ ifnet interface function ]
1174 *
1175 * Initialize the interface. Must be called at splnet().
1176 */
1177 int
1178 ste_init(struct ifnet *ifp)
1179 {
1180 struct ste_softc *sc = ifp->if_softc;
1181 bus_space_tag_t st = sc->sc_st;
1182 bus_space_handle_t sh = sc->sc_sh;
1183 struct ste_descsoft *ds;
1184 int i, error = 0;
1185
1186 /*
1187 * Cancel any pending I/O.
1188 */
1189 ste_stop(ifp, 0);
1190
1191 /*
1192 * Reset the chip to a known state.
1193 */
1194 ste_reset(sc);
1195
1196 /*
1197 * Initialize the transmit descriptor ring.
1198 */
1199 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1200 sc->sc_txpending = 0;
1201 sc->sc_txdirty = 0;
1202 sc->sc_txlast = STE_NTXDESC - 1;
1203
1204 /*
1205 * Initialize the receive descriptor and receive job
1206 * descriptor rings.
1207 */
1208 for (i = 0; i < STE_NRXDESC; i++) {
1209 ds = &sc->sc_rxsoft[i];
1210 if (ds->ds_mbuf == NULL) {
1211 if ((error = ste_add_rxbuf(sc, i)) != 0) {
1212 printf("%s: unable to allocate or map rx "
1213 "buffer %d, error = %d\n",
1214 sc->sc_dev.dv_xname, i, error);
1215 /*
1216 * XXX Should attempt to run with fewer receive
1217 * XXX buffers instead of just failing.
1218 */
1219 ste_rxdrain(sc);
1220 goto out;
1221 }
1222 } else
1223 STE_INIT_RXDESC(sc, i);
1224 }
1225 sc->sc_rxptr = 0;
1226
1227 /* Set the station address. */
1228 for (i = 0; i < ETHER_ADDR_LEN; i++)
1229 bus_space_write_1(st, sh, STE_StationAddress0 + 1,
1230 LLADDR(ifp->if_sadl)[i]);
1231
1232 /* Set up the receive filter. */
1233 ste_set_filter(sc);
1234
1235 /*
1236 * Give the receive ring to the chip.
1237 */
1238 bus_space_write_4(st, sh, STE_RxDMAListPtr,
1239 STE_CDRXADDR(sc, sc->sc_rxptr));
1240
1241 /*
1242 * We defer giving the transmit ring to the chip until we
1243 * transmit the first packet.
1244 */
1245
1246 /*
1247 * Initialize the Tx auto-poll period. It's OK to make this number
1248 * large (127 is the max) -- we explicitly kick the transmit engine
1249 * when there's actually a packet. We are using auto-polling only
1250 * to make the interface to the transmit engine not suck.
1251 */
1252 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
1253
1254 /* ..and the Rx auto-poll period. */
1255 bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
1256
1257 /* Initialize the Tx start threshold. */
1258 bus_space_write_2(st, sh, STE_TxStartThresh, sc->sc_txthresh);
1259
1260 /* Set the FIFO release threshold to 512 bytes. */
1261 bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
1262
1263 /*
1264 * Initialize the interrupt mask.
1265 */
1266 sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1267 IE_TxDMAComplete | IE_RxDMAComplete;
1268 bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
1269 bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
1270
1271 /*
1272 * Start the receive DMA engine.
1273 */
1274 bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
1275
1276 /*
1277 * Initialize MacCtrl0 -- do it before setting the media,
1278 * as setting the media will actually program the register.
1279 */
1280 sc->sc_MacCtrl0 = MC0_IFSSelect(0);
1281 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1282 sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
1283
1284 /*
1285 * Set the current media.
1286 */
1287 mii_mediachg(&sc->sc_mii);
1288
1289 /*
1290 * Start the MAC.
1291 */
1292 bus_space_write_2(st, sh, STE_MacCtrl1,
1293 MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
1294
1295 /*
1296 * Start the one second MII clock.
1297 */
1298 callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
1299
1300 /*
1301 * ...all done!
1302 */
1303 ifp->if_flags |= IFF_RUNNING;
1304 ifp->if_flags &= ~IFF_OACTIVE;
1305
1306 out:
1307 if (error)
1308 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1309 return (error);
1310 }
1311
1312 /*
1313 * ste_drain:
1314 *
1315 * Drain the receive queue.
1316 */
1317 void
1318 ste_rxdrain(struct ste_softc *sc)
1319 {
1320 struct ste_descsoft *ds;
1321 int i;
1322
1323 for (i = 0; i < STE_NRXDESC; i++) {
1324 ds = &sc->sc_rxsoft[i];
1325 if (ds->ds_mbuf != NULL) {
1326 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1327 m_freem(ds->ds_mbuf);
1328 ds->ds_mbuf = NULL;
1329 }
1330 }
1331 }
1332
1333 /*
1334 * ste_stop: [ ifnet interface function ]
1335 *
1336 * Stop transmission on the interface.
1337 */
1338 void
1339 ste_stop(struct ifnet *ifp, int disable)
1340 {
1341 struct ste_softc *sc = ifp->if_softc;
1342 struct ste_descsoft *ds;
1343 int i;
1344
1345 /*
1346 * Stop the one second clock.
1347 */
1348 callout_stop(&sc->sc_tick_ch);
1349
1350 /* Down the MII. */
1351 mii_down(&sc->sc_mii);
1352
1353 /*
1354 * Disable interrupts.
1355 */
1356 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
1357
1358 /*
1359 * Stop receiver, transmitter, and stats update.
1360 */
1361 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
1362 MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
1363
1364 /*
1365 * Stop the transmit and receive DMA.
1366 */
1367 bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
1368 DC_RxDMAHalt | DC_TxDMAHalt);
1369 ste_dmahalt_wait(sc);
1370
1371 /*
1372 * Release any queued transmit buffers.
1373 */
1374 for (i = 0; i < STE_NTXDESC; i++) {
1375 ds = &sc->sc_txsoft[i];
1376 if (ds->ds_mbuf != NULL) {
1377 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1378 m_freem(ds->ds_mbuf);
1379 ds->ds_mbuf = NULL;
1380 }
1381 }
1382
1383 if (disable)
1384 ste_rxdrain(sc);
1385
1386 /*
1387 * Mark the interface down and cancel the watchdog timer.
1388 */
1389 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1390 ifp->if_timer = 0;
1391 }
1392
1393 static int
1394 ste_eeprom_wait(struct ste_softc *sc)
1395 {
1396 int i;
1397
1398 for (i = 0; i < STE_TIMEOUT; i++) {
1399 delay(1000);
1400 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
1401 EC_EepromBusy) == 0)
1402 return (0);
1403 }
1404 return (1);
1405 }
1406
1407 /*
1408 * ste_read_eeprom:
1409 *
1410 * Read data from the serial EEPROM.
1411 */
1412 void
1413 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
1414 {
1415
1416 if (ste_eeprom_wait(sc))
1417 printf("%s: EEPROM failed to come ready\n",
1418 sc->sc_dev.dv_xname);
1419
1420 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
1421 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
1422 if (ste_eeprom_wait(sc))
1423 printf("%s: EEPROM read timed out\n",
1424 sc->sc_dev.dv_xname);
1425 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
1426 }
1427
1428 /*
1429 * ste_add_rxbuf:
1430 *
1431 * Add a receive buffer to the indicated descriptor.
1432 */
1433 int
1434 ste_add_rxbuf(struct ste_softc *sc, int idx)
1435 {
1436 struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
1437 struct mbuf *m;
1438 int error;
1439
1440 MGETHDR(m, M_DONTWAIT, MT_DATA);
1441 if (m == NULL)
1442 return (ENOBUFS);
1443
1444 MCLGET(m, M_DONTWAIT);
1445 if ((m->m_flags & M_EXT) == 0) {
1446 m_freem(m);
1447 return (ENOBUFS);
1448 }
1449
1450 if (ds->ds_mbuf != NULL)
1451 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1452
1453 ds->ds_mbuf = m;
1454
1455 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1456 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1457 BUS_DMA_READ|BUS_DMA_NOWAIT);
1458 if (error) {
1459 printf("%s: can't load rx DMA map %d, error = %d\n",
1460 sc->sc_dev.dv_xname, idx, error);
1461 panic("ste_add_rxbuf"); /* XXX */
1462 }
1463
1464 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1465 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1466
1467 STE_INIT_RXDESC(sc, idx);
1468
1469 return (0);
1470 }
1471
1472 /*
1473 * ste_set_filter:
1474 *
1475 * Set up the receive filter.
1476 */
1477 void
1478 ste_set_filter(struct ste_softc *sc)
1479 {
1480 struct ethercom *ec = &sc->sc_ethercom;
1481 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1482 struct ether_multi *enm;
1483 struct ether_multistep step;
1484 uint32_t crc;
1485 uint16_t mchash[4];
1486
1487 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1488 if (ifp->if_flags & IFF_BROADCAST)
1489 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1490
1491 if (ifp->if_flags & IFF_PROMISC) {
1492 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1493 goto allmulti;
1494 }
1495
1496 /*
1497 * Set up the multicast address filter by passing all multicast
1498 * addresses through a CRC generator, and then using the low-order
1499 * 6 bits as an index into the 64 bit multicast hash table. The
1500 * high order bits select the register, while the rest of the bits
1501 * select the bit within the register.
1502 */
1503
1504 memset(mchash, 0, sizeof(mchash));
1505
1506 ETHER_FIRST_MULTI(step, ec, enm);
1507 if (enm == NULL)
1508 goto done;
1509
1510 while (enm != NULL) {
1511 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1512 /*
1513 * We must listen to a range of multicast addresses.
1514 * For now, just accept all multicasts, rather than
1515 * trying to set only those filter bits needed to match
1516 * the range. (At this time, the only use of address
1517 * ranges is for IP multicast routing, for which the
1518 * range is big enough to require all bits set.)
1519 */
1520 goto allmulti;
1521 }
1522
1523 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1524
1525 /* Just want the 6 least significant bits. */
1526 crc &= 0x3f;
1527
1528 /* Set the corresponding bit in the hash table. */
1529 mchash[crc >> 4] |= 1 << (crc & 0xf);
1530
1531 ETHER_NEXT_MULTI(step, enm);
1532 }
1533
1534 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1535
1536 ifp->if_flags &= ~IFF_ALLMULTI;
1537 goto done;
1538
1539 allmulti:
1540 ifp->if_flags |= IFF_ALLMULTI;
1541 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1542
1543 done:
1544 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1545 /*
1546 * Program the multicast hash table.
1547 */
1548 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
1549 mchash[0]);
1550 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
1551 mchash[1]);
1552 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
1553 mchash[2]);
1554 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
1555 mchash[3]);
1556 }
1557
1558 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
1559 sc->sc_ReceiveMode);
1560 }
1561
1562 /*
1563 * ste_mii_readreg: [mii interface function]
1564 *
1565 * Read a PHY register on the MII of the ST-201.
1566 */
1567 int
1568 ste_mii_readreg(struct device *self, int phy, int reg)
1569 {
1570
1571 return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
1572 }
1573
1574 /*
1575 * ste_mii_writereg: [mii interface function]
1576 *
1577 * Write a PHY register on the MII of the ST-201.
1578 */
1579 void
1580 ste_mii_writereg(struct device *self, int phy, int reg, int val)
1581 {
1582
1583 mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
1584 }
1585
1586 /*
1587 * ste_mii_statchg: [mii interface function]
1588 *
1589 * Callback from MII layer when media changes.
1590 */
1591 void
1592 ste_mii_statchg(struct device *self)
1593 {
1594 struct ste_softc *sc = (struct ste_softc *) self;
1595
1596 if (sc->sc_mii.mii_media_active & IFM_FDX)
1597 sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
1598 else
1599 sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
1600
1601 /* XXX 802.1x flow-control? */
1602
1603 bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
1604 }
1605
1606 /*
1607 * ste_mii_bitbang_read: [mii bit-bang interface function]
1608 *
1609 * Read the MII serial port for the MII bit-bang module.
1610 */
1611 uint32_t
1612 ste_mii_bitbang_read(struct device *self)
1613 {
1614 struct ste_softc *sc = (void *) self;
1615
1616 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
1617 }
1618
1619 /*
1620 * ste_mii_bitbang_write: [mii big-bang interface function]
1621 *
1622 * Write the MII serial port for the MII bit-bang module.
1623 */
1624 void
1625 ste_mii_bitbang_write(struct device *self, uint32_t val)
1626 {
1627 struct ste_softc *sc = (void *) self;
1628
1629 bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
1630 }
1631
1632 /*
1633 * ste_mediastatus: [ifmedia interface function]
1634 *
1635 * Get the current interface media status.
1636 */
1637 void
1638 ste_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1639 {
1640 struct ste_softc *sc = ifp->if_softc;
1641
1642 mii_pollstat(&sc->sc_mii);
1643 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1644 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1645 }
1646
1647 /*
1648 * ste_mediachange: [ifmedia interface function]
1649 *
1650 * Set hardware to newly-selected media.
1651 */
1652 int
1653 ste_mediachange(struct ifnet *ifp)
1654 {
1655 struct ste_softc *sc = ifp->if_softc;
1656
1657 if (ifp->if_flags & IFF_UP)
1658 mii_mediachg(&sc->sc_mii);
1659 return (0);
1660 }
1661