if_stge.c revision 1.6.4.5 1 1.6.4.5 nathanw /* $NetBSD: if_stge.c,v 1.6.4.5 2002/10/18 02:43:06 nathanw Exp $ */
2 1.6.4.2 nathanw
3 1.6.4.2 nathanw /*-
4 1.6.4.2 nathanw * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 1.6.4.2 nathanw * All rights reserved.
6 1.6.4.2 nathanw *
7 1.6.4.2 nathanw * This code is derived from software contributed to The NetBSD Foundation
8 1.6.4.2 nathanw * by Jason R. Thorpe.
9 1.6.4.2 nathanw *
10 1.6.4.2 nathanw * Redistribution and use in source and binary forms, with or without
11 1.6.4.2 nathanw * modification, are permitted provided that the following conditions
12 1.6.4.2 nathanw * are met:
13 1.6.4.2 nathanw * 1. Redistributions of source code must retain the above copyright
14 1.6.4.2 nathanw * notice, this list of conditions and the following disclaimer.
15 1.6.4.2 nathanw * 2. Redistributions in binary form must reproduce the above copyright
16 1.6.4.2 nathanw * notice, this list of conditions and the following disclaimer in the
17 1.6.4.2 nathanw * documentation and/or other materials provided with the distribution.
18 1.6.4.2 nathanw * 3. All advertising materials mentioning features or use of this software
19 1.6.4.2 nathanw * must display the following acknowledgement:
20 1.6.4.2 nathanw * This product includes software developed by the NetBSD
21 1.6.4.2 nathanw * Foundation, Inc. and its contributors.
22 1.6.4.2 nathanw * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.6.4.2 nathanw * contributors may be used to endorse or promote products derived
24 1.6.4.2 nathanw * from this software without specific prior written permission.
25 1.6.4.2 nathanw *
26 1.6.4.2 nathanw * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.6.4.2 nathanw * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.6.4.2 nathanw * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.6.4.2 nathanw * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.6.4.2 nathanw * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.6.4.2 nathanw * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.6.4.2 nathanw * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.6.4.2 nathanw * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.6.4.2 nathanw * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.6.4.2 nathanw * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.6.4.2 nathanw * POSSIBILITY OF SUCH DAMAGE.
37 1.6.4.2 nathanw */
38 1.6.4.2 nathanw
39 1.6.4.2 nathanw /*
40 1.6.4.2 nathanw * Device driver for the Sundance Tech. TC9021 10/100/1000
41 1.6.4.2 nathanw * Ethernet controller.
42 1.6.4.2 nathanw */
43 1.6.4.2 nathanw
44 1.6.4.4 nathanw #include <sys/cdefs.h>
45 1.6.4.5 nathanw __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.6.4.5 2002/10/18 02:43:06 nathanw Exp $");
46 1.6.4.4 nathanw
47 1.6.4.2 nathanw #include "bpfilter.h"
48 1.6.4.2 nathanw
49 1.6.4.2 nathanw #include <sys/param.h>
50 1.6.4.2 nathanw #include <sys/systm.h>
51 1.6.4.2 nathanw #include <sys/callout.h>
52 1.6.4.2 nathanw #include <sys/mbuf.h>
53 1.6.4.2 nathanw #include <sys/malloc.h>
54 1.6.4.2 nathanw #include <sys/kernel.h>
55 1.6.4.2 nathanw #include <sys/socket.h>
56 1.6.4.2 nathanw #include <sys/ioctl.h>
57 1.6.4.2 nathanw #include <sys/errno.h>
58 1.6.4.2 nathanw #include <sys/device.h>
59 1.6.4.2 nathanw #include <sys/queue.h>
60 1.6.4.2 nathanw
61 1.6.4.2 nathanw #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
62 1.6.4.2 nathanw
63 1.6.4.2 nathanw #include <net/if.h>
64 1.6.4.2 nathanw #include <net/if_dl.h>
65 1.6.4.2 nathanw #include <net/if_media.h>
66 1.6.4.2 nathanw #include <net/if_ether.h>
67 1.6.4.2 nathanw
68 1.6.4.2 nathanw #if NBPFILTER > 0
69 1.6.4.2 nathanw #include <net/bpf.h>
70 1.6.4.2 nathanw #endif
71 1.6.4.2 nathanw
72 1.6.4.2 nathanw #include <machine/bus.h>
73 1.6.4.2 nathanw #include <machine/intr.h>
74 1.6.4.2 nathanw
75 1.6.4.2 nathanw #include <dev/mii/mii.h>
76 1.6.4.2 nathanw #include <dev/mii/miivar.h>
77 1.6.4.2 nathanw #include <dev/mii/mii_bitbang.h>
78 1.6.4.2 nathanw
79 1.6.4.2 nathanw #include <dev/pci/pcireg.h>
80 1.6.4.2 nathanw #include <dev/pci/pcivar.h>
81 1.6.4.2 nathanw #include <dev/pci/pcidevs.h>
82 1.6.4.2 nathanw
83 1.6.4.2 nathanw #include <dev/pci/if_stgereg.h>
84 1.6.4.2 nathanw
85 1.6.4.2 nathanw /*
86 1.6.4.2 nathanw * Transmit descriptor list size.
87 1.6.4.2 nathanw */
88 1.6.4.2 nathanw #define STGE_NTXDESC 256
89 1.6.4.2 nathanw #define STGE_NTXDESC_MASK (STGE_NTXDESC - 1)
90 1.6.4.2 nathanw #define STGE_NEXTTX(x) (((x) + 1) & STGE_NTXDESC_MASK)
91 1.6.4.2 nathanw
92 1.6.4.2 nathanw /*
93 1.6.4.2 nathanw * Receive descriptor list size.
94 1.6.4.2 nathanw */
95 1.6.4.2 nathanw #define STGE_NRXDESC 256
96 1.6.4.2 nathanw #define STGE_NRXDESC_MASK (STGE_NRXDESC - 1)
97 1.6.4.2 nathanw #define STGE_NEXTRX(x) (((x) + 1) & STGE_NRXDESC_MASK)
98 1.6.4.2 nathanw
99 1.6.4.2 nathanw /*
100 1.6.4.2 nathanw * Only interrupt every N frames. Must be a power-of-two.
101 1.6.4.2 nathanw */
102 1.6.4.2 nathanw #define STGE_TXINTR_SPACING 16
103 1.6.4.2 nathanw #define STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
104 1.6.4.2 nathanw
105 1.6.4.2 nathanw /*
106 1.6.4.2 nathanw * Control structures are DMA'd to the TC9021 chip. We allocate them in
107 1.6.4.2 nathanw * a single clump that maps to a single DMA segment to make several things
108 1.6.4.2 nathanw * easier.
109 1.6.4.2 nathanw */
110 1.6.4.2 nathanw struct stge_control_data {
111 1.6.4.2 nathanw /*
112 1.6.4.2 nathanw * The transmit descriptors.
113 1.6.4.2 nathanw */
114 1.6.4.2 nathanw struct stge_tfd scd_txdescs[STGE_NTXDESC];
115 1.6.4.2 nathanw
116 1.6.4.2 nathanw /*
117 1.6.4.2 nathanw * The receive descriptors.
118 1.6.4.2 nathanw */
119 1.6.4.2 nathanw struct stge_rfd scd_rxdescs[STGE_NRXDESC];
120 1.6.4.2 nathanw };
121 1.6.4.2 nathanw
122 1.6.4.2 nathanw #define STGE_CDOFF(x) offsetof(struct stge_control_data, x)
123 1.6.4.2 nathanw #define STGE_CDTXOFF(x) STGE_CDOFF(scd_txdescs[(x)])
124 1.6.4.2 nathanw #define STGE_CDRXOFF(x) STGE_CDOFF(scd_rxdescs[(x)])
125 1.6.4.2 nathanw
126 1.6.4.2 nathanw /*
127 1.6.4.2 nathanw * Software state for transmit and receive jobs.
128 1.6.4.2 nathanw */
129 1.6.4.2 nathanw struct stge_descsoft {
130 1.6.4.2 nathanw struct mbuf *ds_mbuf; /* head of our mbuf chain */
131 1.6.4.2 nathanw bus_dmamap_t ds_dmamap; /* our DMA map */
132 1.6.4.2 nathanw };
133 1.6.4.2 nathanw
134 1.6.4.2 nathanw /*
135 1.6.4.2 nathanw * Software state per device.
136 1.6.4.2 nathanw */
137 1.6.4.2 nathanw struct stge_softc {
138 1.6.4.2 nathanw struct device sc_dev; /* generic device information */
139 1.6.4.2 nathanw bus_space_tag_t sc_st; /* bus space tag */
140 1.6.4.2 nathanw bus_space_handle_t sc_sh; /* bus space handle */
141 1.6.4.2 nathanw bus_dma_tag_t sc_dmat; /* bus DMA tag */
142 1.6.4.2 nathanw struct ethercom sc_ethercom; /* ethernet common data */
143 1.6.4.2 nathanw void *sc_sdhook; /* shutdown hook */
144 1.6.4.2 nathanw int sc_rev; /* silicon revision */
145 1.6.4.2 nathanw
146 1.6.4.2 nathanw void *sc_ih; /* interrupt cookie */
147 1.6.4.2 nathanw
148 1.6.4.2 nathanw struct mii_data sc_mii; /* MII/media information */
149 1.6.4.2 nathanw
150 1.6.4.2 nathanw struct callout sc_tick_ch; /* tick callout */
151 1.6.4.2 nathanw
152 1.6.4.2 nathanw bus_dmamap_t sc_cddmamap; /* control data DMA map */
153 1.6.4.2 nathanw #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
154 1.6.4.2 nathanw
155 1.6.4.2 nathanw /*
156 1.6.4.2 nathanw * Software state for transmit and receive descriptors.
157 1.6.4.2 nathanw */
158 1.6.4.2 nathanw struct stge_descsoft sc_txsoft[STGE_NTXDESC];
159 1.6.4.2 nathanw struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
160 1.6.4.2 nathanw
161 1.6.4.2 nathanw /*
162 1.6.4.2 nathanw * Control data structures.
163 1.6.4.2 nathanw */
164 1.6.4.2 nathanw struct stge_control_data *sc_control_data;
165 1.6.4.2 nathanw #define sc_txdescs sc_control_data->scd_txdescs
166 1.6.4.2 nathanw #define sc_rxdescs sc_control_data->scd_rxdescs
167 1.6.4.2 nathanw
168 1.6.4.2 nathanw #ifdef STGE_EVENT_COUNTERS
169 1.6.4.2 nathanw /*
170 1.6.4.2 nathanw * Event counters.
171 1.6.4.2 nathanw */
172 1.6.4.2 nathanw struct evcnt sc_ev_txstall; /* Tx stalled */
173 1.6.4.2 nathanw struct evcnt sc_ev_txdmaintr; /* Tx DMA interrupts */
174 1.6.4.2 nathanw struct evcnt sc_ev_txindintr; /* Tx Indicate interrupts */
175 1.6.4.2 nathanw struct evcnt sc_ev_rxintr; /* Rx interrupts */
176 1.6.4.2 nathanw
177 1.6.4.2 nathanw struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
178 1.6.4.2 nathanw struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
179 1.6.4.2 nathanw struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
180 1.6.4.2 nathanw struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
181 1.6.4.2 nathanw struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
182 1.6.4.2 nathanw struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
183 1.6.4.2 nathanw struct evcnt sc_ev_txcopy; /* Tx packets that we had to copy */
184 1.6.4.2 nathanw
185 1.6.4.2 nathanw struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
186 1.6.4.2 nathanw struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
187 1.6.4.2 nathanw struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-bound */
188 1.6.4.2 nathanw
189 1.6.4.2 nathanw struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
190 1.6.4.2 nathanw struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
191 1.6.4.2 nathanw struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
192 1.6.4.2 nathanw #endif /* STGE_EVENT_COUNTERS */
193 1.6.4.2 nathanw
194 1.6.4.2 nathanw int sc_txpending; /* number of Tx requests pending */
195 1.6.4.2 nathanw int sc_txdirty; /* first dirty Tx descriptor */
196 1.6.4.2 nathanw int sc_txlast; /* last used Tx descriptor */
197 1.6.4.2 nathanw
198 1.6.4.2 nathanw int sc_rxptr; /* next ready Rx descriptor/descsoft */
199 1.6.4.2 nathanw int sc_rxdiscard;
200 1.6.4.2 nathanw int sc_rxlen;
201 1.6.4.2 nathanw struct mbuf *sc_rxhead;
202 1.6.4.2 nathanw struct mbuf *sc_rxtail;
203 1.6.4.2 nathanw struct mbuf **sc_rxtailp;
204 1.6.4.2 nathanw
205 1.6.4.2 nathanw int sc_txthresh; /* Tx threshold */
206 1.6.4.2 nathanw int sc_usefiber; /* if we're fiber */
207 1.6.4.2 nathanw uint32_t sc_DMACtrl; /* prototype DMACtrl register */
208 1.6.4.2 nathanw uint32_t sc_MACCtrl; /* prototype MacCtrl register */
209 1.6.4.2 nathanw uint16_t sc_IntEnable; /* prototype IntEnable register */
210 1.6.4.2 nathanw uint16_t sc_ReceiveMode; /* prototype ReceiveMode register */
211 1.6.4.2 nathanw uint8_t sc_PhyCtrl; /* prototype PhyCtrl register */
212 1.6.4.2 nathanw };
213 1.6.4.2 nathanw
214 1.6.4.2 nathanw #define STGE_RXCHAIN_RESET(sc) \
215 1.6.4.2 nathanw do { \
216 1.6.4.2 nathanw (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
217 1.6.4.2 nathanw *(sc)->sc_rxtailp = NULL; \
218 1.6.4.2 nathanw (sc)->sc_rxlen = 0; \
219 1.6.4.2 nathanw } while (/*CONSTCOND*/0)
220 1.6.4.2 nathanw
221 1.6.4.2 nathanw #define STGE_RXCHAIN_LINK(sc, m) \
222 1.6.4.2 nathanw do { \
223 1.6.4.2 nathanw *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
224 1.6.4.2 nathanw (sc)->sc_rxtailp = &(m)->m_next; \
225 1.6.4.2 nathanw } while (/*CONSTCOND*/0)
226 1.6.4.2 nathanw
227 1.6.4.2 nathanw #ifdef STGE_EVENT_COUNTERS
228 1.6.4.2 nathanw #define STGE_EVCNT_INCR(ev) (ev)->ev_count++
229 1.6.4.2 nathanw #else
230 1.6.4.2 nathanw #define STGE_EVCNT_INCR(ev) /* nothing */
231 1.6.4.2 nathanw #endif
232 1.6.4.2 nathanw
233 1.6.4.2 nathanw #define STGE_CDTXADDR(sc, x) ((sc)->sc_cddma + STGE_CDTXOFF((x)))
234 1.6.4.2 nathanw #define STGE_CDRXADDR(sc, x) ((sc)->sc_cddma + STGE_CDRXOFF((x)))
235 1.6.4.2 nathanw
236 1.6.4.2 nathanw #define STGE_CDTXSYNC(sc, x, ops) \
237 1.6.4.2 nathanw bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
238 1.6.4.2 nathanw STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
239 1.6.4.2 nathanw
240 1.6.4.2 nathanw #define STGE_CDRXSYNC(sc, x, ops) \
241 1.6.4.2 nathanw bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
242 1.6.4.2 nathanw STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
243 1.6.4.2 nathanw
244 1.6.4.2 nathanw #define STGE_INIT_RXDESC(sc, x) \
245 1.6.4.2 nathanw do { \
246 1.6.4.2 nathanw struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
247 1.6.4.2 nathanw struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
248 1.6.4.2 nathanw \
249 1.6.4.2 nathanw /* \
250 1.6.4.2 nathanw * Note: We scoot the packet forward 2 bytes in the buffer \
251 1.6.4.2 nathanw * so that the payload after the Ethernet header is aligned \
252 1.6.4.2 nathanw * to a 4-byte boundary. \
253 1.6.4.2 nathanw */ \
254 1.6.4.2 nathanw __rfd->rfd_frag.frag_word0 = \
255 1.6.4.2 nathanw htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
256 1.6.4.2 nathanw FRAG_LEN(MCLBYTES - 2)); \
257 1.6.4.2 nathanw __rfd->rfd_next = \
258 1.6.4.2 nathanw htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x)))); \
259 1.6.4.2 nathanw __rfd->rfd_status = 0; \
260 1.6.4.2 nathanw STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
261 1.6.4.2 nathanw } while (/*CONSTCOND*/0)
262 1.6.4.2 nathanw
263 1.6.4.2 nathanw #define STGE_TIMEOUT 1000
264 1.6.4.2 nathanw
265 1.6.4.2 nathanw void stge_start(struct ifnet *);
266 1.6.4.2 nathanw void stge_watchdog(struct ifnet *);
267 1.6.4.2 nathanw int stge_ioctl(struct ifnet *, u_long, caddr_t);
268 1.6.4.2 nathanw int stge_init(struct ifnet *);
269 1.6.4.2 nathanw void stge_stop(struct ifnet *, int);
270 1.6.4.2 nathanw
271 1.6.4.2 nathanw void stge_shutdown(void *);
272 1.6.4.2 nathanw
273 1.6.4.2 nathanw void stge_reset(struct stge_softc *);
274 1.6.4.2 nathanw void stge_rxdrain(struct stge_softc *);
275 1.6.4.2 nathanw int stge_add_rxbuf(struct stge_softc *, int);
276 1.6.4.2 nathanw #if 0
277 1.6.4.2 nathanw void stge_read_eeprom(struct stge_softc *, int, uint16_t *);
278 1.6.4.2 nathanw #endif
279 1.6.4.2 nathanw void stge_tick(void *);
280 1.6.4.2 nathanw
281 1.6.4.2 nathanw void stge_stats_update(struct stge_softc *);
282 1.6.4.2 nathanw
283 1.6.4.2 nathanw void stge_set_filter(struct stge_softc *);
284 1.6.4.2 nathanw
285 1.6.4.2 nathanw int stge_intr(void *);
286 1.6.4.2 nathanw void stge_txintr(struct stge_softc *);
287 1.6.4.2 nathanw void stge_rxintr(struct stge_softc *);
288 1.6.4.2 nathanw
289 1.6.4.2 nathanw int stge_mii_readreg(struct device *, int, int);
290 1.6.4.2 nathanw void stge_mii_writereg(struct device *, int, int, int);
291 1.6.4.2 nathanw void stge_mii_statchg(struct device *);
292 1.6.4.2 nathanw
293 1.6.4.2 nathanw int stge_mediachange(struct ifnet *);
294 1.6.4.2 nathanw void stge_mediastatus(struct ifnet *, struct ifmediareq *);
295 1.6.4.2 nathanw
296 1.6.4.2 nathanw int stge_match(struct device *, struct cfdata *, void *);
297 1.6.4.2 nathanw void stge_attach(struct device *, struct device *, void *);
298 1.6.4.2 nathanw
299 1.6.4.2 nathanw int stge_copy_small = 0;
300 1.6.4.2 nathanw
301 1.6.4.5 nathanw CFATTACH_DECL(stge, sizeof(struct stge_softc),
302 1.6.4.5 nathanw stge_match, stge_attach, NULL, NULL);
303 1.6.4.2 nathanw
304 1.6.4.2 nathanw uint32_t stge_mii_bitbang_read(struct device *);
305 1.6.4.2 nathanw void stge_mii_bitbang_write(struct device *, uint32_t);
306 1.6.4.2 nathanw
307 1.6.4.2 nathanw const struct mii_bitbang_ops stge_mii_bitbang_ops = {
308 1.6.4.2 nathanw stge_mii_bitbang_read,
309 1.6.4.2 nathanw stge_mii_bitbang_write,
310 1.6.4.2 nathanw {
311 1.6.4.2 nathanw PC_MgmtData, /* MII_BIT_MDO */
312 1.6.4.2 nathanw PC_MgmtData, /* MII_BIT_MDI */
313 1.6.4.2 nathanw PC_MgmtClk, /* MII_BIT_MDC */
314 1.6.4.2 nathanw PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
315 1.6.4.2 nathanw 0, /* MII_BIT_DIR_PHY_HOST */
316 1.6.4.2 nathanw }
317 1.6.4.2 nathanw };
318 1.6.4.2 nathanw
319 1.6.4.2 nathanw /*
320 1.6.4.2 nathanw * Devices supported by this driver.
321 1.6.4.2 nathanw */
322 1.6.4.2 nathanw const struct stge_product {
323 1.6.4.2 nathanw pci_vendor_id_t stge_vendor;
324 1.6.4.2 nathanw pci_product_id_t stge_product;
325 1.6.4.2 nathanw const char *stge_name;
326 1.6.4.2 nathanw } stge_products[] = {
327 1.6.4.2 nathanw { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST2021,
328 1.6.4.2 nathanw "Sundance ST-2021 Gigabit Ethernet" },
329 1.6.4.2 nathanw
330 1.6.4.2 nathanw { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021,
331 1.6.4.2 nathanw "Tamarack TC9021 Gigabit Ethernet" },
332 1.6.4.2 nathanw
333 1.6.4.2 nathanw { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021_ALT,
334 1.6.4.2 nathanw "Tamarack TC9021 Gigabit Ethernet" },
335 1.6.4.2 nathanw
336 1.6.4.2 nathanw /*
337 1.6.4.2 nathanw * The Sundance sample boards use the Sundance vendor ID,
338 1.6.4.2 nathanw * but the Tamarack product ID.
339 1.6.4.2 nathanw */
340 1.6.4.2 nathanw { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021,
341 1.6.4.2 nathanw "Sundance TC9021 Gigabit Ethernet" },
342 1.6.4.2 nathanw
343 1.6.4.2 nathanw { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021_ALT,
344 1.6.4.2 nathanw "Sundance TC9021 Gigabit Ethernet" },
345 1.6.4.2 nathanw
346 1.6.4.2 nathanw { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL4000,
347 1.6.4.2 nathanw "D-Link DL-4000 Gigabit Ethernet" },
348 1.6.4.2 nathanw
349 1.6.4.2 nathanw { PCI_VENDOR_ANTARES, PCI_PRODUCT_ANTARES_TC9021,
350 1.6.4.2 nathanw "Antares Gigabit Ethernet" },
351 1.6.4.2 nathanw
352 1.6.4.2 nathanw { 0, 0,
353 1.6.4.2 nathanw NULL },
354 1.6.4.2 nathanw };
355 1.6.4.2 nathanw
356 1.6.4.2 nathanw static const struct stge_product *
357 1.6.4.2 nathanw stge_lookup(const struct pci_attach_args *pa)
358 1.6.4.2 nathanw {
359 1.6.4.2 nathanw const struct stge_product *sp;
360 1.6.4.2 nathanw
361 1.6.4.2 nathanw for (sp = stge_products; sp->stge_name != NULL; sp++) {
362 1.6.4.2 nathanw if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
363 1.6.4.2 nathanw PCI_PRODUCT(pa->pa_id) == sp->stge_product)
364 1.6.4.2 nathanw return (sp);
365 1.6.4.2 nathanw }
366 1.6.4.2 nathanw return (NULL);
367 1.6.4.2 nathanw }
368 1.6.4.2 nathanw
369 1.6.4.2 nathanw int
370 1.6.4.2 nathanw stge_match(struct device *parent, struct cfdata *cf, void *aux)
371 1.6.4.2 nathanw {
372 1.6.4.2 nathanw struct pci_attach_args *pa = aux;
373 1.6.4.2 nathanw
374 1.6.4.2 nathanw if (stge_lookup(pa) != NULL)
375 1.6.4.2 nathanw return (1);
376 1.6.4.2 nathanw
377 1.6.4.2 nathanw return (0);
378 1.6.4.2 nathanw }
379 1.6.4.2 nathanw
380 1.6.4.2 nathanw void
381 1.6.4.2 nathanw stge_attach(struct device *parent, struct device *self, void *aux)
382 1.6.4.2 nathanw {
383 1.6.4.2 nathanw struct stge_softc *sc = (struct stge_softc *) self;
384 1.6.4.2 nathanw struct pci_attach_args *pa = aux;
385 1.6.4.2 nathanw struct ifnet *ifp = &sc->sc_ethercom.ec_if;
386 1.6.4.2 nathanw pci_chipset_tag_t pc = pa->pa_pc;
387 1.6.4.2 nathanw pci_intr_handle_t ih;
388 1.6.4.2 nathanw const char *intrstr = NULL;
389 1.6.4.2 nathanw bus_space_tag_t iot, memt;
390 1.6.4.2 nathanw bus_space_handle_t ioh, memh;
391 1.6.4.2 nathanw bus_dma_segment_t seg;
392 1.6.4.2 nathanw int ioh_valid, memh_valid;
393 1.6.4.2 nathanw int i, rseg, error;
394 1.6.4.2 nathanw const struct stge_product *sp;
395 1.6.4.2 nathanw pcireg_t pmode;
396 1.6.4.2 nathanw uint8_t enaddr[ETHER_ADDR_LEN];
397 1.6.4.2 nathanw int pmreg;
398 1.6.4.2 nathanw
399 1.6.4.2 nathanw callout_init(&sc->sc_tick_ch);
400 1.6.4.2 nathanw
401 1.6.4.2 nathanw sp = stge_lookup(pa);
402 1.6.4.2 nathanw if (sp == NULL) {
403 1.6.4.2 nathanw printf("\n");
404 1.6.4.2 nathanw panic("ste_attach: impossible");
405 1.6.4.2 nathanw }
406 1.6.4.2 nathanw
407 1.6.4.2 nathanw sc->sc_rev = PCI_REVISION(pa->pa_class);
408 1.6.4.2 nathanw
409 1.6.4.2 nathanw printf(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
410 1.6.4.2 nathanw
411 1.6.4.2 nathanw /*
412 1.6.4.2 nathanw * Map the device.
413 1.6.4.2 nathanw */
414 1.6.4.2 nathanw ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
415 1.6.4.2 nathanw PCI_MAPREG_TYPE_IO, 0,
416 1.6.4.2 nathanw &iot, &ioh, NULL, NULL) == 0);
417 1.6.4.2 nathanw memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
418 1.6.4.2 nathanw PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
419 1.6.4.2 nathanw &memt, &memh, NULL, NULL) == 0);
420 1.6.4.2 nathanw
421 1.6.4.2 nathanw if (memh_valid) {
422 1.6.4.2 nathanw sc->sc_st = memt;
423 1.6.4.2 nathanw sc->sc_sh = memh;
424 1.6.4.2 nathanw } else if (ioh_valid) {
425 1.6.4.2 nathanw sc->sc_st = iot;
426 1.6.4.2 nathanw sc->sc_sh = ioh;
427 1.6.4.2 nathanw } else {
428 1.6.4.2 nathanw printf("%s: unable to map device registers\n",
429 1.6.4.2 nathanw sc->sc_dev.dv_xname);
430 1.6.4.2 nathanw return;
431 1.6.4.2 nathanw }
432 1.6.4.2 nathanw
433 1.6.4.2 nathanw sc->sc_dmat = pa->pa_dmat;
434 1.6.4.2 nathanw
435 1.6.4.2 nathanw /* Enable bus mastering. */
436 1.6.4.2 nathanw pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
437 1.6.4.2 nathanw pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
438 1.6.4.2 nathanw PCI_COMMAND_MASTER_ENABLE);
439 1.6.4.2 nathanw
440 1.6.4.2 nathanw /* Get it out of power save mode if needed. */
441 1.6.4.2 nathanw if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
442 1.6.4.2 nathanw pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
443 1.6.4.2 nathanw if (pmode == 3) {
444 1.6.4.2 nathanw /*
445 1.6.4.2 nathanw * The card has lost all configuration data in
446 1.6.4.2 nathanw * this state, so punt.
447 1.6.4.2 nathanw */
448 1.6.4.2 nathanw printf("%s: unable to wake up from power state D3\n",
449 1.6.4.2 nathanw sc->sc_dev.dv_xname);
450 1.6.4.2 nathanw return;
451 1.6.4.2 nathanw }
452 1.6.4.2 nathanw if (pmode != 0) {
453 1.6.4.2 nathanw printf("%s: waking up from power state D%d\n",
454 1.6.4.2 nathanw sc->sc_dev.dv_xname, pmode);
455 1.6.4.2 nathanw pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
456 1.6.4.2 nathanw }
457 1.6.4.2 nathanw }
458 1.6.4.2 nathanw
459 1.6.4.2 nathanw /*
460 1.6.4.2 nathanw * Map and establish our interrupt.
461 1.6.4.2 nathanw */
462 1.6.4.2 nathanw if (pci_intr_map(pa, &ih)) {
463 1.6.4.2 nathanw printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
464 1.6.4.2 nathanw return;
465 1.6.4.2 nathanw }
466 1.6.4.2 nathanw intrstr = pci_intr_string(pc, ih);
467 1.6.4.2 nathanw sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
468 1.6.4.2 nathanw if (sc->sc_ih == NULL) {
469 1.6.4.2 nathanw printf("%s: unable to establish interrupt",
470 1.6.4.2 nathanw sc->sc_dev.dv_xname);
471 1.6.4.2 nathanw if (intrstr != NULL)
472 1.6.4.2 nathanw printf(" at %s", intrstr);
473 1.6.4.2 nathanw printf("\n");
474 1.6.4.2 nathanw return;
475 1.6.4.2 nathanw }
476 1.6.4.2 nathanw printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
477 1.6.4.2 nathanw
478 1.6.4.2 nathanw /*
479 1.6.4.2 nathanw * Allocate the control data structures, and create and load the
480 1.6.4.2 nathanw * DMA map for it.
481 1.6.4.2 nathanw */
482 1.6.4.2 nathanw if ((error = bus_dmamem_alloc(sc->sc_dmat,
483 1.6.4.2 nathanw sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
484 1.6.4.2 nathanw 0)) != 0) {
485 1.6.4.2 nathanw printf("%s: unable to allocate control data, error = %d\n",
486 1.6.4.2 nathanw sc->sc_dev.dv_xname, error);
487 1.6.4.2 nathanw goto fail_0;
488 1.6.4.2 nathanw }
489 1.6.4.2 nathanw
490 1.6.4.2 nathanw if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
491 1.6.4.2 nathanw sizeof(struct stge_control_data), (caddr_t *)&sc->sc_control_data,
492 1.6.4.2 nathanw BUS_DMA_COHERENT)) != 0) {
493 1.6.4.2 nathanw printf("%s: unable to map control data, error = %d\n",
494 1.6.4.2 nathanw sc->sc_dev.dv_xname, error);
495 1.6.4.2 nathanw goto fail_1;
496 1.6.4.2 nathanw }
497 1.6.4.2 nathanw
498 1.6.4.2 nathanw if ((error = bus_dmamap_create(sc->sc_dmat,
499 1.6.4.2 nathanw sizeof(struct stge_control_data), 1,
500 1.6.4.2 nathanw sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
501 1.6.4.2 nathanw printf("%s: unable to create control data DMA map, "
502 1.6.4.2 nathanw "error = %d\n", sc->sc_dev.dv_xname, error);
503 1.6.4.2 nathanw goto fail_2;
504 1.6.4.2 nathanw }
505 1.6.4.2 nathanw
506 1.6.4.2 nathanw if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
507 1.6.4.2 nathanw sc->sc_control_data, sizeof(struct stge_control_data), NULL,
508 1.6.4.2 nathanw 0)) != 0) {
509 1.6.4.2 nathanw printf("%s: unable to load control data DMA map, error = %d\n",
510 1.6.4.2 nathanw sc->sc_dev.dv_xname, error);
511 1.6.4.2 nathanw goto fail_3;
512 1.6.4.2 nathanw }
513 1.6.4.2 nathanw
514 1.6.4.2 nathanw /*
515 1.6.4.2 nathanw * Create the transmit buffer DMA maps. Note that rev B.3
516 1.6.4.2 nathanw * and earlier seem to have a bug regarding multi-fragment
517 1.6.4.2 nathanw * packets. We need to limit the number of Tx segments on
518 1.6.4.2 nathanw * such chips to 1.
519 1.6.4.2 nathanw */
520 1.6.4.2 nathanw for (i = 0; i < STGE_NTXDESC; i++) {
521 1.6.4.3 nathanw if ((error = bus_dmamap_create(sc->sc_dmat,
522 1.6.4.3 nathanw ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
523 1.6.4.2 nathanw &sc->sc_txsoft[i].ds_dmamap)) != 0) {
524 1.6.4.2 nathanw printf("%s: unable to create tx DMA map %d, "
525 1.6.4.2 nathanw "error = %d\n", sc->sc_dev.dv_xname, i, error);
526 1.6.4.2 nathanw goto fail_4;
527 1.6.4.2 nathanw }
528 1.6.4.2 nathanw }
529 1.6.4.2 nathanw
530 1.6.4.2 nathanw /*
531 1.6.4.2 nathanw * Create the receive buffer DMA maps.
532 1.6.4.2 nathanw */
533 1.6.4.2 nathanw for (i = 0; i < STGE_NRXDESC; i++) {
534 1.6.4.2 nathanw if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
535 1.6.4.2 nathanw MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
536 1.6.4.2 nathanw printf("%s: unable to create rx DMA map %d, "
537 1.6.4.2 nathanw "error = %d\n", sc->sc_dev.dv_xname, i, error);
538 1.6.4.2 nathanw goto fail_5;
539 1.6.4.2 nathanw }
540 1.6.4.2 nathanw sc->sc_rxsoft[i].ds_mbuf = NULL;
541 1.6.4.2 nathanw }
542 1.6.4.2 nathanw
543 1.6.4.2 nathanw /*
544 1.6.4.2 nathanw * Determine if we're copper or fiber. It affects how we
545 1.6.4.2 nathanw * reset the card.
546 1.6.4.2 nathanw */
547 1.6.4.2 nathanw if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
548 1.6.4.2 nathanw AC_PhyMedia)
549 1.6.4.2 nathanw sc->sc_usefiber = 1;
550 1.6.4.2 nathanw else
551 1.6.4.2 nathanw sc->sc_usefiber = 0;
552 1.6.4.2 nathanw
553 1.6.4.2 nathanw /*
554 1.6.4.2 nathanw * Reset the chip to a known state.
555 1.6.4.2 nathanw */
556 1.6.4.2 nathanw stge_reset(sc);
557 1.6.4.2 nathanw
558 1.6.4.2 nathanw /*
559 1.6.4.2 nathanw * Reading the station address from the EEPROM doesn't seem
560 1.6.4.2 nathanw * to work, at least on my sample boards. Instread, since
561 1.6.4.2 nathanw * the reset sequence does AutoInit, read it from the station
562 1.6.4.2 nathanw * address registers.
563 1.6.4.2 nathanw */
564 1.6.4.2 nathanw enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
565 1.6.4.2 nathanw STGE_StationAddress0) & 0xff;
566 1.6.4.2 nathanw enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
567 1.6.4.2 nathanw STGE_StationAddress0) >> 8;
568 1.6.4.2 nathanw enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
569 1.6.4.2 nathanw STGE_StationAddress1) & 0xff;
570 1.6.4.2 nathanw enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
571 1.6.4.2 nathanw STGE_StationAddress1) >> 8;
572 1.6.4.2 nathanw enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
573 1.6.4.2 nathanw STGE_StationAddress2) & 0xff;
574 1.6.4.2 nathanw enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
575 1.6.4.2 nathanw STGE_StationAddress2) >> 8;
576 1.6.4.2 nathanw
577 1.6.4.2 nathanw printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
578 1.6.4.2 nathanw ether_sprintf(enaddr));
579 1.6.4.2 nathanw
580 1.6.4.2 nathanw /*
581 1.6.4.2 nathanw * Read some important bits from the PhyCtrl register.
582 1.6.4.2 nathanw */
583 1.6.4.2 nathanw sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
584 1.6.4.2 nathanw STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
585 1.6.4.2 nathanw
586 1.6.4.2 nathanw /*
587 1.6.4.2 nathanw * Initialize our media structures and probe the MII.
588 1.6.4.2 nathanw */
589 1.6.4.2 nathanw sc->sc_mii.mii_ifp = ifp;
590 1.6.4.2 nathanw sc->sc_mii.mii_readreg = stge_mii_readreg;
591 1.6.4.2 nathanw sc->sc_mii.mii_writereg = stge_mii_writereg;
592 1.6.4.2 nathanw sc->sc_mii.mii_statchg = stge_mii_statchg;
593 1.6.4.2 nathanw ifmedia_init(&sc->sc_mii.mii_media, 0, stge_mediachange,
594 1.6.4.2 nathanw stge_mediastatus);
595 1.6.4.2 nathanw mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
596 1.6.4.2 nathanw MII_OFFSET_ANY, MIIF_DOPAUSE);
597 1.6.4.2 nathanw if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
598 1.6.4.2 nathanw ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
599 1.6.4.2 nathanw ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
600 1.6.4.2 nathanw } else
601 1.6.4.2 nathanw ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
602 1.6.4.2 nathanw
603 1.6.4.2 nathanw ifp = &sc->sc_ethercom.ec_if;
604 1.6.4.2 nathanw strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
605 1.6.4.2 nathanw ifp->if_softc = sc;
606 1.6.4.2 nathanw ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
607 1.6.4.2 nathanw ifp->if_ioctl = stge_ioctl;
608 1.6.4.2 nathanw ifp->if_start = stge_start;
609 1.6.4.2 nathanw ifp->if_watchdog = stge_watchdog;
610 1.6.4.2 nathanw ifp->if_init = stge_init;
611 1.6.4.2 nathanw ifp->if_stop = stge_stop;
612 1.6.4.2 nathanw IFQ_SET_READY(&ifp->if_snd);
613 1.6.4.2 nathanw
614 1.6.4.2 nathanw /*
615 1.6.4.2 nathanw * The manual recommends disabling early transmit, so we
616 1.6.4.2 nathanw * do. It's disabled anyway, if using IP checksumming,
617 1.6.4.2 nathanw * since the entire packet must be in the FIFO in order
618 1.6.4.2 nathanw * for the chip to perform the checksum.
619 1.6.4.2 nathanw */
620 1.6.4.2 nathanw sc->sc_txthresh = 0x0fff;
621 1.6.4.2 nathanw
622 1.6.4.2 nathanw /*
623 1.6.4.2 nathanw * Disable MWI if the PCI layer tells us to.
624 1.6.4.2 nathanw */
625 1.6.4.2 nathanw sc->sc_DMACtrl = 0;
626 1.6.4.2 nathanw if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
627 1.6.4.2 nathanw sc->sc_DMACtrl |= DMAC_MWIDisable;
628 1.6.4.2 nathanw
629 1.6.4.2 nathanw /*
630 1.6.4.2 nathanw * We can support 802.1Q VLAN-sized frames and jumbo
631 1.6.4.2 nathanw * Ethernet frames.
632 1.6.4.2 nathanw *
633 1.6.4.2 nathanw * XXX Figure out how to do hw-assisted VLAN tagging in
634 1.6.4.2 nathanw * XXX a reasonable way on this chip.
635 1.6.4.2 nathanw */
636 1.6.4.2 nathanw sc->sc_ethercom.ec_capabilities |=
637 1.6.4.2 nathanw ETHERCAP_VLAN_MTU /* XXX | ETHERCAP_JUMBO_MTU */;
638 1.6.4.2 nathanw
639 1.6.4.2 nathanw /*
640 1.6.4.2 nathanw * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
641 1.6.4.2 nathanw */
642 1.6.4.2 nathanw sc->sc_ethercom.ec_if.if_capabilities |= IFCAP_CSUM_IPv4 |
643 1.6.4.2 nathanw IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
644 1.6.4.2 nathanw
645 1.6.4.2 nathanw /*
646 1.6.4.2 nathanw * Attach the interface.
647 1.6.4.2 nathanw */
648 1.6.4.2 nathanw if_attach(ifp);
649 1.6.4.2 nathanw ether_ifattach(ifp, enaddr);
650 1.6.4.2 nathanw
651 1.6.4.2 nathanw #ifdef STGE_EVENT_COUNTERS
652 1.6.4.2 nathanw /*
653 1.6.4.2 nathanw * Attach event counters.
654 1.6.4.2 nathanw */
655 1.6.4.2 nathanw evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
656 1.6.4.2 nathanw NULL, sc->sc_dev.dv_xname, "txstall");
657 1.6.4.2 nathanw evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
658 1.6.4.2 nathanw NULL, sc->sc_dev.dv_xname, "txdmaintr");
659 1.6.4.2 nathanw evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
660 1.6.4.2 nathanw NULL, sc->sc_dev.dv_xname, "txindintr");
661 1.6.4.2 nathanw evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
662 1.6.4.2 nathanw NULL, sc->sc_dev.dv_xname, "rxintr");
663 1.6.4.2 nathanw
664 1.6.4.2 nathanw evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
665 1.6.4.2 nathanw NULL, sc->sc_dev.dv_xname, "txseg1");
666 1.6.4.2 nathanw evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
667 1.6.4.2 nathanw NULL, sc->sc_dev.dv_xname, "txseg2");
668 1.6.4.2 nathanw evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
669 1.6.4.2 nathanw NULL, sc->sc_dev.dv_xname, "txseg3");
670 1.6.4.2 nathanw evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
671 1.6.4.2 nathanw NULL, sc->sc_dev.dv_xname, "txseg4");
672 1.6.4.2 nathanw evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
673 1.6.4.2 nathanw NULL, sc->sc_dev.dv_xname, "txseg5");
674 1.6.4.2 nathanw evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
675 1.6.4.2 nathanw NULL, sc->sc_dev.dv_xname, "txsegmore");
676 1.6.4.2 nathanw evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
677 1.6.4.2 nathanw NULL, sc->sc_dev.dv_xname, "txcopy");
678 1.6.4.2 nathanw
679 1.6.4.2 nathanw evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
680 1.6.4.2 nathanw NULL, sc->sc_dev.dv_xname, "rxipsum");
681 1.6.4.2 nathanw evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
682 1.6.4.2 nathanw NULL, sc->sc_dev.dv_xname, "rxtcpsum");
683 1.6.4.2 nathanw evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
684 1.6.4.2 nathanw NULL, sc->sc_dev.dv_xname, "rxudpsum");
685 1.6.4.2 nathanw evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
686 1.6.4.2 nathanw NULL, sc->sc_dev.dv_xname, "txipsum");
687 1.6.4.2 nathanw evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
688 1.6.4.2 nathanw NULL, sc->sc_dev.dv_xname, "txtcpsum");
689 1.6.4.2 nathanw evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
690 1.6.4.2 nathanw NULL, sc->sc_dev.dv_xname, "txudpsum");
691 1.6.4.2 nathanw #endif /* STGE_EVENT_COUNTERS */
692 1.6.4.2 nathanw
693 1.6.4.2 nathanw /*
694 1.6.4.2 nathanw * Make sure the interface is shutdown during reboot.
695 1.6.4.2 nathanw */
696 1.6.4.2 nathanw sc->sc_sdhook = shutdownhook_establish(stge_shutdown, sc);
697 1.6.4.2 nathanw if (sc->sc_sdhook == NULL)
698 1.6.4.2 nathanw printf("%s: WARNING: unable to establish shutdown hook\n",
699 1.6.4.2 nathanw sc->sc_dev.dv_xname);
700 1.6.4.2 nathanw return;
701 1.6.4.2 nathanw
702 1.6.4.2 nathanw /*
703 1.6.4.2 nathanw * Free any resources we've allocated during the failed attach
704 1.6.4.2 nathanw * attempt. Do this in reverse order and fall through.
705 1.6.4.2 nathanw */
706 1.6.4.2 nathanw fail_5:
707 1.6.4.2 nathanw for (i = 0; i < STGE_NRXDESC; i++) {
708 1.6.4.2 nathanw if (sc->sc_rxsoft[i].ds_dmamap != NULL)
709 1.6.4.2 nathanw bus_dmamap_destroy(sc->sc_dmat,
710 1.6.4.2 nathanw sc->sc_rxsoft[i].ds_dmamap);
711 1.6.4.2 nathanw }
712 1.6.4.2 nathanw fail_4:
713 1.6.4.2 nathanw for (i = 0; i < STGE_NTXDESC; i++) {
714 1.6.4.2 nathanw if (sc->sc_txsoft[i].ds_dmamap != NULL)
715 1.6.4.2 nathanw bus_dmamap_destroy(sc->sc_dmat,
716 1.6.4.2 nathanw sc->sc_txsoft[i].ds_dmamap);
717 1.6.4.2 nathanw }
718 1.6.4.2 nathanw bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
719 1.6.4.2 nathanw fail_3:
720 1.6.4.2 nathanw bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
721 1.6.4.2 nathanw fail_2:
722 1.6.4.2 nathanw bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
723 1.6.4.2 nathanw sizeof(struct stge_control_data));
724 1.6.4.2 nathanw fail_1:
725 1.6.4.2 nathanw bus_dmamem_free(sc->sc_dmat, &seg, rseg);
726 1.6.4.2 nathanw fail_0:
727 1.6.4.2 nathanw return;
728 1.6.4.2 nathanw }
729 1.6.4.2 nathanw
730 1.6.4.2 nathanw /*
731 1.6.4.2 nathanw * stge_shutdown:
732 1.6.4.2 nathanw *
733 1.6.4.2 nathanw * Make sure the interface is stopped at reboot time.
734 1.6.4.2 nathanw */
735 1.6.4.2 nathanw void
736 1.6.4.2 nathanw stge_shutdown(void *arg)
737 1.6.4.2 nathanw {
738 1.6.4.2 nathanw struct stge_softc *sc = arg;
739 1.6.4.2 nathanw
740 1.6.4.2 nathanw stge_stop(&sc->sc_ethercom.ec_if, 1);
741 1.6.4.2 nathanw }
742 1.6.4.2 nathanw
743 1.6.4.2 nathanw static void
744 1.6.4.2 nathanw stge_dma_wait(struct stge_softc *sc)
745 1.6.4.2 nathanw {
746 1.6.4.2 nathanw int i;
747 1.6.4.2 nathanw
748 1.6.4.2 nathanw for (i = 0; i < STGE_TIMEOUT; i++) {
749 1.6.4.2 nathanw delay(2);
750 1.6.4.2 nathanw if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
751 1.6.4.2 nathanw DMAC_TxDMAInProg) == 0)
752 1.6.4.2 nathanw break;
753 1.6.4.2 nathanw }
754 1.6.4.2 nathanw
755 1.6.4.2 nathanw if (i == STGE_TIMEOUT)
756 1.6.4.2 nathanw printf("%s: DMA wait timed out\n", sc->sc_dev.dv_xname);
757 1.6.4.2 nathanw }
758 1.6.4.2 nathanw
759 1.6.4.2 nathanw /*
760 1.6.4.2 nathanw * stge_start: [ifnet interface function]
761 1.6.4.2 nathanw *
762 1.6.4.2 nathanw * Start packet transmission on the interface.
763 1.6.4.2 nathanw */
764 1.6.4.2 nathanw void
765 1.6.4.2 nathanw stge_start(struct ifnet *ifp)
766 1.6.4.2 nathanw {
767 1.6.4.2 nathanw struct stge_softc *sc = ifp->if_softc;
768 1.6.4.2 nathanw struct mbuf *m0;
769 1.6.4.2 nathanw struct stge_descsoft *ds;
770 1.6.4.2 nathanw struct stge_tfd *tfd;
771 1.6.4.2 nathanw bus_dmamap_t dmamap;
772 1.6.4.2 nathanw int error, firsttx, nexttx, opending, seg, totlen;
773 1.6.4.2 nathanw uint64_t csum_flags;
774 1.6.4.2 nathanw
775 1.6.4.2 nathanw if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
776 1.6.4.2 nathanw return;
777 1.6.4.2 nathanw
778 1.6.4.2 nathanw /*
779 1.6.4.2 nathanw * Remember the previous number of pending transmissions
780 1.6.4.2 nathanw * and the first descriptor we will use.
781 1.6.4.2 nathanw */
782 1.6.4.2 nathanw opending = sc->sc_txpending;
783 1.6.4.2 nathanw firsttx = STGE_NEXTTX(sc->sc_txlast);
784 1.6.4.2 nathanw
785 1.6.4.2 nathanw /*
786 1.6.4.2 nathanw * Loop through the send queue, setting up transmit descriptors
787 1.6.4.2 nathanw * until we drain the queue, or use up all available transmit
788 1.6.4.2 nathanw * descriptors.
789 1.6.4.2 nathanw */
790 1.6.4.2 nathanw for (;;) {
791 1.6.4.2 nathanw /*
792 1.6.4.2 nathanw * Grab a packet off the queue.
793 1.6.4.2 nathanw */
794 1.6.4.2 nathanw IFQ_POLL(&ifp->if_snd, m0);
795 1.6.4.2 nathanw if (m0 == NULL)
796 1.6.4.2 nathanw break;
797 1.6.4.2 nathanw
798 1.6.4.2 nathanw /*
799 1.6.4.2 nathanw * Leave one unused descriptor at the end of the
800 1.6.4.2 nathanw * list to prevent wrapping completely around.
801 1.6.4.2 nathanw */
802 1.6.4.2 nathanw if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
803 1.6.4.2 nathanw STGE_EVCNT_INCR(&sc->sc_ev_txstall);
804 1.6.4.2 nathanw break;
805 1.6.4.2 nathanw }
806 1.6.4.2 nathanw
807 1.6.4.2 nathanw /*
808 1.6.4.2 nathanw * Get the last and next available transmit descriptor.
809 1.6.4.2 nathanw */
810 1.6.4.2 nathanw nexttx = STGE_NEXTTX(sc->sc_txlast);
811 1.6.4.2 nathanw tfd = &sc->sc_txdescs[nexttx];
812 1.6.4.2 nathanw ds = &sc->sc_txsoft[nexttx];
813 1.6.4.2 nathanw
814 1.6.4.2 nathanw dmamap = ds->ds_dmamap;
815 1.6.4.2 nathanw
816 1.6.4.2 nathanw /*
817 1.6.4.2 nathanw * Load the DMA map. If this fails, the packet either
818 1.6.4.2 nathanw * didn't fit in the alloted number of segments, or we
819 1.6.4.2 nathanw * were short on resources. For the too-may-segments
820 1.6.4.2 nathanw * case, we simply report an error and drop the packet,
821 1.6.4.2 nathanw * since we can't sanely copy a jumbo packet to a single
822 1.6.4.2 nathanw * buffer.
823 1.6.4.2 nathanw */
824 1.6.4.2 nathanw error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
825 1.6.4.2 nathanw BUS_DMA_NOWAIT);
826 1.6.4.2 nathanw if (error) {
827 1.6.4.2 nathanw if (error == EFBIG) {
828 1.6.4.2 nathanw printf("%s: Tx packet consumes too many "
829 1.6.4.2 nathanw "DMA segments, dropping...\n",
830 1.6.4.2 nathanw sc->sc_dev.dv_xname);
831 1.6.4.2 nathanw IFQ_DEQUEUE(&ifp->if_snd, m0);
832 1.6.4.2 nathanw m_freem(m0);
833 1.6.4.2 nathanw continue;
834 1.6.4.2 nathanw }
835 1.6.4.2 nathanw /*
836 1.6.4.2 nathanw * Short on resources, just stop for now.
837 1.6.4.2 nathanw */
838 1.6.4.2 nathanw break;
839 1.6.4.2 nathanw }
840 1.6.4.2 nathanw
841 1.6.4.2 nathanw IFQ_DEQUEUE(&ifp->if_snd, m0);
842 1.6.4.2 nathanw
843 1.6.4.2 nathanw /*
844 1.6.4.2 nathanw * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
845 1.6.4.2 nathanw */
846 1.6.4.2 nathanw
847 1.6.4.2 nathanw /* Sync the DMA map. */
848 1.6.4.2 nathanw bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
849 1.6.4.2 nathanw BUS_DMASYNC_PREWRITE);
850 1.6.4.2 nathanw
851 1.6.4.2 nathanw /* Initialize the fragment list. */
852 1.6.4.2 nathanw for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
853 1.6.4.2 nathanw tfd->tfd_frags[seg].frag_word0 =
854 1.6.4.2 nathanw htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
855 1.6.4.2 nathanw FRAG_LEN(dmamap->dm_segs[seg].ds_len));
856 1.6.4.2 nathanw totlen += dmamap->dm_segs[seg].ds_len;
857 1.6.4.2 nathanw }
858 1.6.4.2 nathanw
859 1.6.4.2 nathanw #ifdef STGE_EVENT_COUNTERS
860 1.6.4.2 nathanw switch (dmamap->dm_nsegs) {
861 1.6.4.2 nathanw case 1:
862 1.6.4.2 nathanw STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
863 1.6.4.2 nathanw break;
864 1.6.4.2 nathanw case 2:
865 1.6.4.2 nathanw STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
866 1.6.4.2 nathanw break;
867 1.6.4.2 nathanw case 3:
868 1.6.4.2 nathanw STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
869 1.6.4.2 nathanw break;
870 1.6.4.2 nathanw case 4:
871 1.6.4.2 nathanw STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
872 1.6.4.2 nathanw break;
873 1.6.4.2 nathanw case 5:
874 1.6.4.2 nathanw STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
875 1.6.4.2 nathanw break;
876 1.6.4.2 nathanw default:
877 1.6.4.2 nathanw STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
878 1.6.4.2 nathanw break;
879 1.6.4.2 nathanw }
880 1.6.4.2 nathanw #endif /* STGE_EVENT_COUNTERS */
881 1.6.4.2 nathanw
882 1.6.4.2 nathanw /*
883 1.6.4.2 nathanw * Initialize checksumming flags in the descriptor.
884 1.6.4.2 nathanw * Byte-swap constants so the compiler can optimize.
885 1.6.4.2 nathanw */
886 1.6.4.2 nathanw csum_flags = 0;
887 1.6.4.2 nathanw if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
888 1.6.4.2 nathanw STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
889 1.6.4.2 nathanw csum_flags |= htole64(TFD_IPChecksumEnable);
890 1.6.4.2 nathanw }
891 1.6.4.2 nathanw
892 1.6.4.2 nathanw if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
893 1.6.4.2 nathanw STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
894 1.6.4.2 nathanw csum_flags |= htole64(TFD_TCPChecksumEnable);
895 1.6.4.2 nathanw }
896 1.6.4.2 nathanw else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
897 1.6.4.2 nathanw STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
898 1.6.4.2 nathanw csum_flags |= htole64(TFD_UDPChecksumEnable);
899 1.6.4.2 nathanw }
900 1.6.4.2 nathanw
901 1.6.4.2 nathanw /*
902 1.6.4.2 nathanw * Initialize the descriptor and give it to the chip.
903 1.6.4.2 nathanw */
904 1.6.4.2 nathanw tfd->tfd_control = htole64(TFD_FrameId(nexttx) |
905 1.6.4.2 nathanw TFD_WordAlign(/*totlen & */3) |
906 1.6.4.2 nathanw TFD_FragCount(seg) | csum_flags |
907 1.6.4.2 nathanw (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
908 1.6.4.2 nathanw TFD_TxDMAIndicate : 0));
909 1.6.4.2 nathanw
910 1.6.4.2 nathanw /* Sync the descriptor. */
911 1.6.4.2 nathanw STGE_CDTXSYNC(sc, nexttx,
912 1.6.4.2 nathanw BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
913 1.6.4.2 nathanw
914 1.6.4.2 nathanw /*
915 1.6.4.2 nathanw * Kick the transmit DMA logic.
916 1.6.4.2 nathanw */
917 1.6.4.2 nathanw bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
918 1.6.4.2 nathanw sc->sc_DMACtrl | DMAC_TxDMAPollNow);
919 1.6.4.2 nathanw
920 1.6.4.2 nathanw /*
921 1.6.4.2 nathanw * Store a pointer to the packet so we can free it later.
922 1.6.4.2 nathanw */
923 1.6.4.2 nathanw ds->ds_mbuf = m0;
924 1.6.4.2 nathanw
925 1.6.4.2 nathanw /* Advance the tx pointer. */
926 1.6.4.2 nathanw sc->sc_txpending++;
927 1.6.4.2 nathanw sc->sc_txlast = nexttx;
928 1.6.4.2 nathanw
929 1.6.4.2 nathanw #if NBPFILTER > 0
930 1.6.4.2 nathanw /*
931 1.6.4.2 nathanw * Pass the packet to any BPF listeners.
932 1.6.4.2 nathanw */
933 1.6.4.2 nathanw if (ifp->if_bpf)
934 1.6.4.2 nathanw bpf_mtap(ifp->if_bpf, m0);
935 1.6.4.2 nathanw #endif /* NBPFILTER > 0 */
936 1.6.4.2 nathanw }
937 1.6.4.2 nathanw
938 1.6.4.2 nathanw if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
939 1.6.4.2 nathanw /* No more slots left; notify upper layer. */
940 1.6.4.2 nathanw ifp->if_flags |= IFF_OACTIVE;
941 1.6.4.2 nathanw }
942 1.6.4.2 nathanw
943 1.6.4.2 nathanw if (sc->sc_txpending != opending) {
944 1.6.4.2 nathanw /*
945 1.6.4.2 nathanw * We enqueued packets. If the transmitter was idle,
946 1.6.4.2 nathanw * reset the txdirty pointer.
947 1.6.4.2 nathanw */
948 1.6.4.2 nathanw if (opending == 0)
949 1.6.4.2 nathanw sc->sc_txdirty = firsttx;
950 1.6.4.2 nathanw
951 1.6.4.2 nathanw /* Set a watchdog timer in case the chip flakes out. */
952 1.6.4.2 nathanw ifp->if_timer = 5;
953 1.6.4.2 nathanw }
954 1.6.4.2 nathanw }
955 1.6.4.2 nathanw
956 1.6.4.2 nathanw /*
957 1.6.4.2 nathanw * stge_watchdog: [ifnet interface function]
958 1.6.4.2 nathanw *
959 1.6.4.2 nathanw * Watchdog timer handler.
960 1.6.4.2 nathanw */
961 1.6.4.2 nathanw void
962 1.6.4.2 nathanw stge_watchdog(struct ifnet *ifp)
963 1.6.4.2 nathanw {
964 1.6.4.2 nathanw struct stge_softc *sc = ifp->if_softc;
965 1.6.4.2 nathanw
966 1.6.4.2 nathanw /*
967 1.6.4.2 nathanw * Sweep up first, since we don't interrupt every frame.
968 1.6.4.2 nathanw */
969 1.6.4.2 nathanw stge_txintr(sc);
970 1.6.4.2 nathanw if (sc->sc_txpending != 0) {
971 1.6.4.2 nathanw printf("%s: device timeout\n", sc->sc_dev.dv_xname);
972 1.6.4.2 nathanw ifp->if_oerrors++;
973 1.6.4.2 nathanw
974 1.6.4.2 nathanw (void) stge_init(ifp);
975 1.6.4.2 nathanw
976 1.6.4.2 nathanw /* Try to get more packets going. */
977 1.6.4.2 nathanw stge_start(ifp);
978 1.6.4.2 nathanw }
979 1.6.4.2 nathanw }
980 1.6.4.2 nathanw
981 1.6.4.2 nathanw /*
982 1.6.4.2 nathanw * stge_ioctl: [ifnet interface function]
983 1.6.4.2 nathanw *
984 1.6.4.2 nathanw * Handle control requests from the operator.
985 1.6.4.2 nathanw */
986 1.6.4.2 nathanw int
987 1.6.4.2 nathanw stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
988 1.6.4.2 nathanw {
989 1.6.4.2 nathanw struct stge_softc *sc = ifp->if_softc;
990 1.6.4.2 nathanw struct ifreq *ifr = (struct ifreq *)data;
991 1.6.4.2 nathanw int s, error;
992 1.6.4.2 nathanw
993 1.6.4.2 nathanw s = splnet();
994 1.6.4.2 nathanw
995 1.6.4.2 nathanw switch (cmd) {
996 1.6.4.2 nathanw case SIOCSIFMEDIA:
997 1.6.4.2 nathanw case SIOCGIFMEDIA:
998 1.6.4.2 nathanw error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
999 1.6.4.2 nathanw break;
1000 1.6.4.2 nathanw
1001 1.6.4.2 nathanw default:
1002 1.6.4.2 nathanw error = ether_ioctl(ifp, cmd, data);
1003 1.6.4.2 nathanw if (error == ENETRESET) {
1004 1.6.4.2 nathanw /*
1005 1.6.4.2 nathanw * Multicast list has changed; set the hardware filter
1006 1.6.4.2 nathanw * accordingly.
1007 1.6.4.2 nathanw */
1008 1.6.4.2 nathanw stge_set_filter(sc);
1009 1.6.4.2 nathanw error = 0;
1010 1.6.4.2 nathanw }
1011 1.6.4.2 nathanw break;
1012 1.6.4.2 nathanw }
1013 1.6.4.2 nathanw
1014 1.6.4.2 nathanw /* Try to get more packets going. */
1015 1.6.4.2 nathanw stge_start(ifp);
1016 1.6.4.2 nathanw
1017 1.6.4.2 nathanw splx(s);
1018 1.6.4.2 nathanw return (error);
1019 1.6.4.2 nathanw }
1020 1.6.4.2 nathanw
1021 1.6.4.2 nathanw /*
1022 1.6.4.2 nathanw * stge_intr:
1023 1.6.4.2 nathanw *
1024 1.6.4.2 nathanw * Interrupt service routine.
1025 1.6.4.2 nathanw */
1026 1.6.4.2 nathanw int
1027 1.6.4.2 nathanw stge_intr(void *arg)
1028 1.6.4.2 nathanw {
1029 1.6.4.2 nathanw struct stge_softc *sc = arg;
1030 1.6.4.2 nathanw struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1031 1.6.4.2 nathanw uint32_t txstat;
1032 1.6.4.2 nathanw int wantinit;
1033 1.6.4.2 nathanw uint16_t isr;
1034 1.6.4.2 nathanw
1035 1.6.4.2 nathanw if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1036 1.6.4.2 nathanw IS_InterruptStatus) == 0)
1037 1.6.4.2 nathanw return (0);
1038 1.6.4.2 nathanw
1039 1.6.4.2 nathanw for (wantinit = 0; wantinit == 0;) {
1040 1.6.4.2 nathanw isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1041 1.6.4.2 nathanw if ((isr & sc->sc_IntEnable) == 0)
1042 1.6.4.2 nathanw break;
1043 1.6.4.2 nathanw
1044 1.6.4.2 nathanw /* Receive interrupts. */
1045 1.6.4.2 nathanw if (isr & (IE_RxDMAComplete|IE_RFDListEnd)) {
1046 1.6.4.2 nathanw STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1047 1.6.4.2 nathanw stge_rxintr(sc);
1048 1.6.4.2 nathanw if (isr & IE_RFDListEnd) {
1049 1.6.4.2 nathanw printf("%s: receive ring overflow\n",
1050 1.6.4.2 nathanw sc->sc_dev.dv_xname);
1051 1.6.4.2 nathanw /*
1052 1.6.4.2 nathanw * XXX Should try to recover from this
1053 1.6.4.2 nathanw * XXX more gracefully.
1054 1.6.4.2 nathanw */
1055 1.6.4.2 nathanw wantinit = 1;
1056 1.6.4.2 nathanw }
1057 1.6.4.2 nathanw }
1058 1.6.4.2 nathanw
1059 1.6.4.2 nathanw /* Transmit interrupts. */
1060 1.6.4.2 nathanw if (isr & (IE_TxDMAComplete|IE_TxComplete)) {
1061 1.6.4.2 nathanw #ifdef STGE_EVENT_COUNTERS
1062 1.6.4.2 nathanw if (isr & IE_TxDMAComplete)
1063 1.6.4.2 nathanw STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1064 1.6.4.2 nathanw #endif
1065 1.6.4.2 nathanw stge_txintr(sc);
1066 1.6.4.2 nathanw }
1067 1.6.4.2 nathanw
1068 1.6.4.2 nathanw /* Statistics overflow. */
1069 1.6.4.2 nathanw if (isr & IE_UpdateStats)
1070 1.6.4.2 nathanw stge_stats_update(sc);
1071 1.6.4.2 nathanw
1072 1.6.4.2 nathanw /* Transmission errors. */
1073 1.6.4.2 nathanw if (isr & IE_TxComplete) {
1074 1.6.4.2 nathanw STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1075 1.6.4.2 nathanw for (;;) {
1076 1.6.4.2 nathanw txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1077 1.6.4.2 nathanw STGE_TxStatus);
1078 1.6.4.2 nathanw if ((txstat & TS_TxComplete) == 0)
1079 1.6.4.2 nathanw break;
1080 1.6.4.2 nathanw if (txstat & TS_TxUnderrun) {
1081 1.6.4.2 nathanw sc->sc_txthresh++;
1082 1.6.4.2 nathanw if (sc->sc_txthresh > 0x0fff)
1083 1.6.4.2 nathanw sc->sc_txthresh = 0x0fff;
1084 1.6.4.2 nathanw printf("%s: transmit underrun, new "
1085 1.6.4.2 nathanw "threshold: %d bytes\n",
1086 1.6.4.2 nathanw sc->sc_dev.dv_xname,
1087 1.6.4.2 nathanw sc->sc_txthresh << 5);
1088 1.6.4.2 nathanw }
1089 1.6.4.2 nathanw if (txstat & TS_MaxCollisions)
1090 1.6.4.2 nathanw printf("%s: excessive collisions\n",
1091 1.6.4.2 nathanw sc->sc_dev.dv_xname);
1092 1.6.4.2 nathanw }
1093 1.6.4.2 nathanw wantinit = 1;
1094 1.6.4.2 nathanw }
1095 1.6.4.2 nathanw
1096 1.6.4.2 nathanw /* Host interface errors. */
1097 1.6.4.2 nathanw if (isr & IE_HostError) {
1098 1.6.4.2 nathanw printf("%s: Host interface error\n",
1099 1.6.4.2 nathanw sc->sc_dev.dv_xname);
1100 1.6.4.2 nathanw wantinit = 1;
1101 1.6.4.2 nathanw }
1102 1.6.4.2 nathanw }
1103 1.6.4.2 nathanw
1104 1.6.4.2 nathanw if (wantinit)
1105 1.6.4.2 nathanw stge_init(ifp);
1106 1.6.4.2 nathanw
1107 1.6.4.2 nathanw bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1108 1.6.4.2 nathanw sc->sc_IntEnable);
1109 1.6.4.2 nathanw
1110 1.6.4.2 nathanw /* Try to get more packets going. */
1111 1.6.4.2 nathanw stge_start(ifp);
1112 1.6.4.2 nathanw
1113 1.6.4.2 nathanw return (1);
1114 1.6.4.2 nathanw }
1115 1.6.4.2 nathanw
1116 1.6.4.2 nathanw /*
1117 1.6.4.2 nathanw * stge_txintr:
1118 1.6.4.2 nathanw *
1119 1.6.4.2 nathanw * Helper; handle transmit interrupts.
1120 1.6.4.2 nathanw */
1121 1.6.4.2 nathanw void
1122 1.6.4.2 nathanw stge_txintr(struct stge_softc *sc)
1123 1.6.4.2 nathanw {
1124 1.6.4.2 nathanw struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1125 1.6.4.2 nathanw struct stge_descsoft *ds;
1126 1.6.4.2 nathanw uint64_t control;
1127 1.6.4.2 nathanw int i;
1128 1.6.4.2 nathanw
1129 1.6.4.2 nathanw ifp->if_flags &= ~IFF_OACTIVE;
1130 1.6.4.2 nathanw
1131 1.6.4.2 nathanw /*
1132 1.6.4.2 nathanw * Go through our Tx list and free mbufs for those
1133 1.6.4.2 nathanw * frames which have been transmitted.
1134 1.6.4.2 nathanw */
1135 1.6.4.2 nathanw for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1136 1.6.4.2 nathanw i = STGE_NEXTTX(i), sc->sc_txpending--) {
1137 1.6.4.2 nathanw ds = &sc->sc_txsoft[i];
1138 1.6.4.2 nathanw
1139 1.6.4.2 nathanw STGE_CDTXSYNC(sc, i,
1140 1.6.4.2 nathanw BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1141 1.6.4.2 nathanw
1142 1.6.4.2 nathanw control = le64toh(sc->sc_txdescs[i].tfd_control);
1143 1.6.4.2 nathanw if ((control & TFD_TFDDone) == 0)
1144 1.6.4.2 nathanw break;
1145 1.6.4.2 nathanw
1146 1.6.4.2 nathanw bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1147 1.6.4.2 nathanw 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1148 1.6.4.2 nathanw bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1149 1.6.4.2 nathanw m_freem(ds->ds_mbuf);
1150 1.6.4.2 nathanw ds->ds_mbuf = NULL;
1151 1.6.4.2 nathanw }
1152 1.6.4.2 nathanw
1153 1.6.4.2 nathanw /* Update the dirty transmit buffer pointer. */
1154 1.6.4.2 nathanw sc->sc_txdirty = i;
1155 1.6.4.2 nathanw
1156 1.6.4.2 nathanw /*
1157 1.6.4.2 nathanw * If there are no more pending transmissions, cancel the watchdog
1158 1.6.4.2 nathanw * timer.
1159 1.6.4.2 nathanw */
1160 1.6.4.2 nathanw if (sc->sc_txpending == 0)
1161 1.6.4.2 nathanw ifp->if_timer = 0;
1162 1.6.4.2 nathanw }
1163 1.6.4.2 nathanw
1164 1.6.4.2 nathanw /*
1165 1.6.4.2 nathanw * stge_rxintr:
1166 1.6.4.2 nathanw *
1167 1.6.4.2 nathanw * Helper; handle receive interrupts.
1168 1.6.4.2 nathanw */
1169 1.6.4.2 nathanw void
1170 1.6.4.2 nathanw stge_rxintr(struct stge_softc *sc)
1171 1.6.4.2 nathanw {
1172 1.6.4.2 nathanw struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1173 1.6.4.2 nathanw struct stge_descsoft *ds;
1174 1.6.4.2 nathanw struct mbuf *m, *tailm;
1175 1.6.4.2 nathanw uint64_t status;
1176 1.6.4.2 nathanw int i, len;
1177 1.6.4.2 nathanw
1178 1.6.4.2 nathanw for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1179 1.6.4.2 nathanw ds = &sc->sc_rxsoft[i];
1180 1.6.4.2 nathanw
1181 1.6.4.2 nathanw STGE_CDRXSYNC(sc, i,
1182 1.6.4.2 nathanw BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1183 1.6.4.2 nathanw
1184 1.6.4.2 nathanw status = le64toh(sc->sc_rxdescs[i].rfd_status);
1185 1.6.4.2 nathanw
1186 1.6.4.2 nathanw if ((status & RFD_RFDDone) == 0)
1187 1.6.4.2 nathanw break;
1188 1.6.4.2 nathanw
1189 1.6.4.2 nathanw if (__predict_false(sc->sc_rxdiscard)) {
1190 1.6.4.2 nathanw STGE_INIT_RXDESC(sc, i);
1191 1.6.4.2 nathanw if (status & RFD_FrameEnd) {
1192 1.6.4.2 nathanw /* Reset our state. */
1193 1.6.4.2 nathanw sc->sc_rxdiscard = 0;
1194 1.6.4.2 nathanw }
1195 1.6.4.2 nathanw continue;
1196 1.6.4.2 nathanw }
1197 1.6.4.2 nathanw
1198 1.6.4.2 nathanw bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1199 1.6.4.2 nathanw ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1200 1.6.4.2 nathanw
1201 1.6.4.2 nathanw m = ds->ds_mbuf;
1202 1.6.4.2 nathanw
1203 1.6.4.2 nathanw /*
1204 1.6.4.2 nathanw * Add a new receive buffer to the ring.
1205 1.6.4.2 nathanw */
1206 1.6.4.2 nathanw if (stge_add_rxbuf(sc, i) != 0) {
1207 1.6.4.2 nathanw /*
1208 1.6.4.2 nathanw * Failed, throw away what we've done so
1209 1.6.4.2 nathanw * far, and discard the rest of the packet.
1210 1.6.4.2 nathanw */
1211 1.6.4.2 nathanw ifp->if_ierrors++;
1212 1.6.4.2 nathanw bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1213 1.6.4.2 nathanw ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1214 1.6.4.2 nathanw STGE_INIT_RXDESC(sc, i);
1215 1.6.4.2 nathanw if ((status & RFD_FrameEnd) == 0)
1216 1.6.4.2 nathanw sc->sc_rxdiscard = 1;
1217 1.6.4.2 nathanw if (sc->sc_rxhead != NULL)
1218 1.6.4.2 nathanw m_freem(sc->sc_rxhead);
1219 1.6.4.2 nathanw STGE_RXCHAIN_RESET(sc);
1220 1.6.4.2 nathanw continue;
1221 1.6.4.2 nathanw }
1222 1.6.4.2 nathanw
1223 1.6.4.2 nathanw #ifdef DIAGNOSTIC
1224 1.6.4.2 nathanw if (status & RFD_FrameStart) {
1225 1.6.4.2 nathanw KASSERT(sc->sc_rxhead == NULL);
1226 1.6.4.2 nathanw KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1227 1.6.4.2 nathanw }
1228 1.6.4.2 nathanw #endif
1229 1.6.4.2 nathanw
1230 1.6.4.2 nathanw STGE_RXCHAIN_LINK(sc, m);
1231 1.6.4.2 nathanw
1232 1.6.4.2 nathanw /*
1233 1.6.4.2 nathanw * If this is not the end of the packet, keep
1234 1.6.4.2 nathanw * looking.
1235 1.6.4.2 nathanw */
1236 1.6.4.2 nathanw if ((status & RFD_FrameEnd) == 0) {
1237 1.6.4.2 nathanw sc->sc_rxlen += m->m_len;
1238 1.6.4.2 nathanw continue;
1239 1.6.4.2 nathanw }
1240 1.6.4.2 nathanw
1241 1.6.4.2 nathanw /*
1242 1.6.4.2 nathanw * Okay, we have the entire packet now...
1243 1.6.4.2 nathanw */
1244 1.6.4.2 nathanw *sc->sc_rxtailp = NULL;
1245 1.6.4.2 nathanw m = sc->sc_rxhead;
1246 1.6.4.2 nathanw tailm = sc->sc_rxtail;
1247 1.6.4.2 nathanw
1248 1.6.4.2 nathanw STGE_RXCHAIN_RESET(sc);
1249 1.6.4.2 nathanw
1250 1.6.4.2 nathanw /*
1251 1.6.4.2 nathanw * If the packet had an error, drop it. Note we
1252 1.6.4.2 nathanw * count the error later in the periodic stats update.
1253 1.6.4.2 nathanw */
1254 1.6.4.2 nathanw if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1255 1.6.4.2 nathanw RFD_RxAlignmentError | RFD_RxFCSError |
1256 1.6.4.2 nathanw RFD_RxLengthError)) {
1257 1.6.4.2 nathanw m_freem(m);
1258 1.6.4.2 nathanw continue;
1259 1.6.4.2 nathanw }
1260 1.6.4.2 nathanw
1261 1.6.4.2 nathanw /*
1262 1.6.4.2 nathanw * No errors.
1263 1.6.4.2 nathanw *
1264 1.6.4.2 nathanw * Note we have configured the chip to not include
1265 1.6.4.2 nathanw * the CRC at the end of the packet.
1266 1.6.4.2 nathanw */
1267 1.6.4.2 nathanw len = RFD_RxDMAFrameLen(status);
1268 1.6.4.2 nathanw tailm->m_len = len - sc->sc_rxlen;
1269 1.6.4.2 nathanw
1270 1.6.4.2 nathanw /*
1271 1.6.4.2 nathanw * If the packet is small enough to fit in a
1272 1.6.4.2 nathanw * single header mbuf, allocate one and copy
1273 1.6.4.2 nathanw * the data into it. This greatly reduces
1274 1.6.4.2 nathanw * memory consumption when we receive lots
1275 1.6.4.2 nathanw * of small packets.
1276 1.6.4.2 nathanw */
1277 1.6.4.2 nathanw if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1278 1.6.4.2 nathanw struct mbuf *nm;
1279 1.6.4.2 nathanw MGETHDR(nm, M_DONTWAIT, MT_DATA);
1280 1.6.4.2 nathanw if (nm == NULL) {
1281 1.6.4.2 nathanw ifp->if_ierrors++;
1282 1.6.4.2 nathanw m_freem(m);
1283 1.6.4.2 nathanw continue;
1284 1.6.4.2 nathanw }
1285 1.6.4.2 nathanw nm->m_data += 2;
1286 1.6.4.2 nathanw nm->m_pkthdr.len = nm->m_len = len;
1287 1.6.4.2 nathanw m_copydata(m, 0, len, mtod(nm, caddr_t));
1288 1.6.4.2 nathanw m_freem(m);
1289 1.6.4.2 nathanw m = nm;
1290 1.6.4.2 nathanw }
1291 1.6.4.2 nathanw
1292 1.6.4.2 nathanw /*
1293 1.6.4.2 nathanw * Set the incoming checksum information for the packet.
1294 1.6.4.2 nathanw */
1295 1.6.4.2 nathanw if (status & RFD_IPDetected) {
1296 1.6.4.2 nathanw STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1297 1.6.4.2 nathanw m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1298 1.6.4.2 nathanw if (status & RFD_IPError)
1299 1.6.4.2 nathanw m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1300 1.6.4.2 nathanw if (status & RFD_TCPDetected) {
1301 1.6.4.2 nathanw STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1302 1.6.4.2 nathanw m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1303 1.6.4.2 nathanw if (status & RFD_TCPError)
1304 1.6.4.2 nathanw m->m_pkthdr.csum_flags |=
1305 1.6.4.2 nathanw M_CSUM_TCP_UDP_BAD;
1306 1.6.4.2 nathanw } else if (status & RFD_UDPDetected) {
1307 1.6.4.2 nathanw STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1308 1.6.4.2 nathanw m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1309 1.6.4.2 nathanw if (status & RFD_UDPError)
1310 1.6.4.2 nathanw m->m_pkthdr.csum_flags |=
1311 1.6.4.2 nathanw M_CSUM_TCP_UDP_BAD;
1312 1.6.4.2 nathanw }
1313 1.6.4.2 nathanw }
1314 1.6.4.2 nathanw
1315 1.6.4.2 nathanw m->m_pkthdr.rcvif = ifp;
1316 1.6.4.2 nathanw m->m_pkthdr.len = len;
1317 1.6.4.2 nathanw
1318 1.6.4.2 nathanw #if NBPFILTER > 0
1319 1.6.4.2 nathanw /*
1320 1.6.4.2 nathanw * Pass this up to any BPF listeners, but only
1321 1.6.4.2 nathanw * pass if up the stack if it's for us.
1322 1.6.4.2 nathanw */
1323 1.6.4.2 nathanw if (ifp->if_bpf)
1324 1.6.4.2 nathanw bpf_mtap(ifp->if_bpf, m);
1325 1.6.4.2 nathanw #endif /* NBPFILTER > 0 */
1326 1.6.4.2 nathanw
1327 1.6.4.2 nathanw /* Pass it on. */
1328 1.6.4.2 nathanw (*ifp->if_input)(ifp, m);
1329 1.6.4.2 nathanw }
1330 1.6.4.2 nathanw
1331 1.6.4.2 nathanw /* Update the receive pointer. */
1332 1.6.4.2 nathanw sc->sc_rxptr = i;
1333 1.6.4.2 nathanw }
1334 1.6.4.2 nathanw
1335 1.6.4.2 nathanw /*
1336 1.6.4.2 nathanw * stge_tick:
1337 1.6.4.2 nathanw *
1338 1.6.4.2 nathanw * One second timer, used to tick the MII.
1339 1.6.4.2 nathanw */
1340 1.6.4.2 nathanw void
1341 1.6.4.2 nathanw stge_tick(void *arg)
1342 1.6.4.2 nathanw {
1343 1.6.4.2 nathanw struct stge_softc *sc = arg;
1344 1.6.4.2 nathanw int s;
1345 1.6.4.2 nathanw
1346 1.6.4.2 nathanw s = splnet();
1347 1.6.4.2 nathanw mii_tick(&sc->sc_mii);
1348 1.6.4.2 nathanw stge_stats_update(sc);
1349 1.6.4.2 nathanw splx(s);
1350 1.6.4.2 nathanw
1351 1.6.4.2 nathanw callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1352 1.6.4.2 nathanw }
1353 1.6.4.2 nathanw
1354 1.6.4.2 nathanw /*
1355 1.6.4.2 nathanw * stge_stats_update:
1356 1.6.4.2 nathanw *
1357 1.6.4.2 nathanw * Read the TC9021 statistics counters.
1358 1.6.4.2 nathanw */
1359 1.6.4.2 nathanw void
1360 1.6.4.2 nathanw stge_stats_update(struct stge_softc *sc)
1361 1.6.4.2 nathanw {
1362 1.6.4.2 nathanw struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1363 1.6.4.2 nathanw bus_space_tag_t st = sc->sc_st;
1364 1.6.4.2 nathanw bus_space_handle_t sh = sc->sc_sh;
1365 1.6.4.2 nathanw
1366 1.6.4.2 nathanw (void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1367 1.6.4.2 nathanw
1368 1.6.4.2 nathanw ifp->if_ipackets +=
1369 1.6.4.2 nathanw bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1370 1.6.4.2 nathanw
1371 1.6.4.2 nathanw ifp->if_ierrors +=
1372 1.6.4.2 nathanw (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1373 1.6.4.2 nathanw
1374 1.6.4.2 nathanw (void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1375 1.6.4.2 nathanw
1376 1.6.4.2 nathanw ifp->if_opackets +=
1377 1.6.4.2 nathanw bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1378 1.6.4.2 nathanw
1379 1.6.4.2 nathanw ifp->if_collisions +=
1380 1.6.4.2 nathanw bus_space_read_4(st, sh, STGE_LateCollisions) +
1381 1.6.4.2 nathanw bus_space_read_4(st, sh, STGE_MultiColFrames) +
1382 1.6.4.2 nathanw bus_space_read_4(st, sh, STGE_SingleColFrames);
1383 1.6.4.2 nathanw
1384 1.6.4.2 nathanw ifp->if_oerrors +=
1385 1.6.4.2 nathanw (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1386 1.6.4.2 nathanw (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1387 1.6.4.2 nathanw }
1388 1.6.4.2 nathanw
1389 1.6.4.2 nathanw /*
1390 1.6.4.2 nathanw * stge_reset:
1391 1.6.4.2 nathanw *
1392 1.6.4.2 nathanw * Perform a soft reset on the TC9021.
1393 1.6.4.2 nathanw */
1394 1.6.4.2 nathanw void
1395 1.6.4.2 nathanw stge_reset(struct stge_softc *sc)
1396 1.6.4.2 nathanw {
1397 1.6.4.2 nathanw uint32_t ac;
1398 1.6.4.2 nathanw int i;
1399 1.6.4.2 nathanw
1400 1.6.4.2 nathanw ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1401 1.6.4.2 nathanw
1402 1.6.4.2 nathanw /*
1403 1.6.4.2 nathanw * Only assert RstOut if we're fiber. We need GMII clocks
1404 1.6.4.2 nathanw * to be present in order for the reset to complete on fiber
1405 1.6.4.2 nathanw * cards.
1406 1.6.4.2 nathanw */
1407 1.6.4.2 nathanw bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1408 1.6.4.2 nathanw ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1409 1.6.4.2 nathanw AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1410 1.6.4.2 nathanw (sc->sc_usefiber ? AC_RstOut : 0));
1411 1.6.4.2 nathanw
1412 1.6.4.2 nathanw delay(50000);
1413 1.6.4.2 nathanw
1414 1.6.4.2 nathanw for (i = 0; i < STGE_TIMEOUT; i++) {
1415 1.6.4.2 nathanw delay(5000);
1416 1.6.4.2 nathanw if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1417 1.6.4.2 nathanw AC_ResetBusy) == 0)
1418 1.6.4.2 nathanw break;
1419 1.6.4.2 nathanw }
1420 1.6.4.2 nathanw
1421 1.6.4.2 nathanw if (i == STGE_TIMEOUT)
1422 1.6.4.2 nathanw printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1423 1.6.4.2 nathanw
1424 1.6.4.2 nathanw delay(1000);
1425 1.6.4.2 nathanw }
1426 1.6.4.2 nathanw
1427 1.6.4.2 nathanw /*
1428 1.6.4.2 nathanw * stge_init: [ ifnet interface function ]
1429 1.6.4.2 nathanw *
1430 1.6.4.2 nathanw * Initialize the interface. Must be called at splnet().
1431 1.6.4.2 nathanw */
1432 1.6.4.2 nathanw int
1433 1.6.4.2 nathanw stge_init(struct ifnet *ifp)
1434 1.6.4.2 nathanw {
1435 1.6.4.2 nathanw struct stge_softc *sc = ifp->if_softc;
1436 1.6.4.2 nathanw bus_space_tag_t st = sc->sc_st;
1437 1.6.4.2 nathanw bus_space_handle_t sh = sc->sc_sh;
1438 1.6.4.2 nathanw struct stge_descsoft *ds;
1439 1.6.4.2 nathanw int i, error = 0;
1440 1.6.4.2 nathanw
1441 1.6.4.2 nathanw /*
1442 1.6.4.2 nathanw * Cancel any pending I/O.
1443 1.6.4.2 nathanw */
1444 1.6.4.2 nathanw stge_stop(ifp, 0);
1445 1.6.4.2 nathanw
1446 1.6.4.2 nathanw /*
1447 1.6.4.2 nathanw * Reset the chip to a known state.
1448 1.6.4.2 nathanw */
1449 1.6.4.2 nathanw stge_reset(sc);
1450 1.6.4.2 nathanw
1451 1.6.4.2 nathanw /*
1452 1.6.4.2 nathanw * Initialize the transmit descriptor ring.
1453 1.6.4.2 nathanw */
1454 1.6.4.2 nathanw memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1455 1.6.4.2 nathanw for (i = 0; i < STGE_NTXDESC; i++) {
1456 1.6.4.2 nathanw sc->sc_txdescs[i].tfd_next =
1457 1.6.4.2 nathanw (uint64_t) STGE_CDTXADDR(sc, STGE_NEXTTX(i));
1458 1.6.4.2 nathanw sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1459 1.6.4.2 nathanw }
1460 1.6.4.2 nathanw sc->sc_txpending = 0;
1461 1.6.4.2 nathanw sc->sc_txdirty = 0;
1462 1.6.4.2 nathanw sc->sc_txlast = STGE_NTXDESC - 1;
1463 1.6.4.2 nathanw
1464 1.6.4.2 nathanw /*
1465 1.6.4.2 nathanw * Initialize the receive descriptor and receive job
1466 1.6.4.2 nathanw * descriptor rings.
1467 1.6.4.2 nathanw */
1468 1.6.4.2 nathanw for (i = 0; i < STGE_NRXDESC; i++) {
1469 1.6.4.2 nathanw ds = &sc->sc_rxsoft[i];
1470 1.6.4.2 nathanw if (ds->ds_mbuf == NULL) {
1471 1.6.4.2 nathanw if ((error = stge_add_rxbuf(sc, i)) != 0) {
1472 1.6.4.2 nathanw printf("%s: unable to allocate or map rx "
1473 1.6.4.2 nathanw "buffer %d, error = %d\n",
1474 1.6.4.2 nathanw sc->sc_dev.dv_xname, i, error);
1475 1.6.4.2 nathanw /*
1476 1.6.4.2 nathanw * XXX Should attempt to run with fewer receive
1477 1.6.4.2 nathanw * XXX buffers instead of just failing.
1478 1.6.4.2 nathanw */
1479 1.6.4.2 nathanw stge_rxdrain(sc);
1480 1.6.4.2 nathanw goto out;
1481 1.6.4.2 nathanw }
1482 1.6.4.2 nathanw } else
1483 1.6.4.2 nathanw STGE_INIT_RXDESC(sc, i);
1484 1.6.4.2 nathanw }
1485 1.6.4.2 nathanw sc->sc_rxptr = 0;
1486 1.6.4.2 nathanw sc->sc_rxdiscard = 0;
1487 1.6.4.2 nathanw STGE_RXCHAIN_RESET(sc);
1488 1.6.4.2 nathanw
1489 1.6.4.2 nathanw /* Set the station address. */
1490 1.6.4.2 nathanw bus_space_write_2(st, sh, STGE_StationAddress0,
1491 1.6.4.2 nathanw LLADDR(ifp->if_sadl)[0] | (LLADDR(ifp->if_sadl)[1] << 8));
1492 1.6.4.2 nathanw bus_space_write_2(st, sh, STGE_StationAddress1,
1493 1.6.4.2 nathanw LLADDR(ifp->if_sadl)[2] | (LLADDR(ifp->if_sadl)[3] << 8));
1494 1.6.4.2 nathanw bus_space_write_2(st, sh, STGE_StationAddress2,
1495 1.6.4.2 nathanw LLADDR(ifp->if_sadl)[4] | (LLADDR(ifp->if_sadl)[5] << 8));
1496 1.6.4.2 nathanw
1497 1.6.4.2 nathanw /*
1498 1.6.4.2 nathanw * Set the statistics masks. Disable all the RMON stats,
1499 1.6.4.2 nathanw * and disable selected stats in the non-RMON stats registers.
1500 1.6.4.2 nathanw */
1501 1.6.4.2 nathanw bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1502 1.6.4.2 nathanw bus_space_write_4(st, sh, STGE_StatisticsMask,
1503 1.6.4.2 nathanw (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1504 1.6.4.2 nathanw (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1505 1.6.4.2 nathanw (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1506 1.6.4.2 nathanw (1U << 21));
1507 1.6.4.2 nathanw
1508 1.6.4.2 nathanw /* Set up the receive filter. */
1509 1.6.4.2 nathanw stge_set_filter(sc);
1510 1.6.4.2 nathanw
1511 1.6.4.2 nathanw /*
1512 1.6.4.2 nathanw * Give the transmit and receive ring to the chip.
1513 1.6.4.2 nathanw */
1514 1.6.4.2 nathanw bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1515 1.6.4.2 nathanw bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1516 1.6.4.2 nathanw STGE_CDTXADDR(sc, sc->sc_txdirty));
1517 1.6.4.2 nathanw
1518 1.6.4.2 nathanw bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1519 1.6.4.2 nathanw bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1520 1.6.4.2 nathanw STGE_CDRXADDR(sc, sc->sc_rxptr));
1521 1.6.4.2 nathanw
1522 1.6.4.2 nathanw /*
1523 1.6.4.2 nathanw * Initialize the Tx auto-poll period. It's OK to make this number
1524 1.6.4.2 nathanw * large (255 is the max, but we use 127) -- we explicitly kick the
1525 1.6.4.2 nathanw * transmit engine when there's actually a packet.
1526 1.6.4.2 nathanw */
1527 1.6.4.2 nathanw bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1528 1.6.4.2 nathanw
1529 1.6.4.2 nathanw /* ..and the Rx auto-poll period. */
1530 1.6.4.2 nathanw bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1531 1.6.4.2 nathanw
1532 1.6.4.2 nathanw /* Initialize the Tx start threshold. */
1533 1.6.4.2 nathanw bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1534 1.6.4.2 nathanw
1535 1.6.4.2 nathanw /*
1536 1.6.4.2 nathanw * Initialize the Rx DMA interrupt control register. We
1537 1.6.4.2 nathanw * request an interrupt after every incoming packet, but
1538 1.6.4.2 nathanw * defer it for 32us (64 * 512 ns). When the number of
1539 1.6.4.2 nathanw * interrupts pending reaches 8, we stop deferring the
1540 1.6.4.2 nathanw * interrupt, and signal it immediately.
1541 1.6.4.2 nathanw */
1542 1.6.4.2 nathanw bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1543 1.6.4.2 nathanw RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1544 1.6.4.2 nathanw
1545 1.6.4.2 nathanw /*
1546 1.6.4.2 nathanw * Initialize the interrupt mask.
1547 1.6.4.2 nathanw */
1548 1.6.4.2 nathanw sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1549 1.6.4.2 nathanw IE_TxDMAComplete | IE_RxDMAComplete | IE_RFDListEnd;
1550 1.6.4.2 nathanw bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1551 1.6.4.2 nathanw bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1552 1.6.4.2 nathanw
1553 1.6.4.2 nathanw /*
1554 1.6.4.2 nathanw * Configure the DMA engine.
1555 1.6.4.2 nathanw * XXX Should auto-tune TxBurstLimit.
1556 1.6.4.2 nathanw */
1557 1.6.4.2 nathanw bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1558 1.6.4.2 nathanw DMAC_TxBurstLimit(3));
1559 1.6.4.2 nathanw
1560 1.6.4.2 nathanw /*
1561 1.6.4.2 nathanw * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1562 1.6.4.2 nathanw * FIFO, and send an un-PAUSE frame when the FIFO is totally
1563 1.6.4.2 nathanw * empty again.
1564 1.6.4.2 nathanw */
1565 1.6.4.3 nathanw bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1566 1.6.4.3 nathanw bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1567 1.6.4.2 nathanw
1568 1.6.4.2 nathanw /*
1569 1.6.4.2 nathanw * Set the maximum frame size.
1570 1.6.4.2 nathanw */
1571 1.6.4.2 nathanw bus_space_write_2(st, sh, STGE_MaxFrameSize,
1572 1.6.4.2 nathanw ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1573 1.6.4.2 nathanw ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1574 1.6.4.2 nathanw ETHER_VLAN_ENCAP_LEN : 0));
1575 1.6.4.2 nathanw
1576 1.6.4.2 nathanw /*
1577 1.6.4.2 nathanw * Initialize MacCtrl -- do it before setting the media,
1578 1.6.4.2 nathanw * as setting the media will actually program the register.
1579 1.6.4.2 nathanw *
1580 1.6.4.2 nathanw * Note: We have to poke the IFS value before poking
1581 1.6.4.2 nathanw * anything else.
1582 1.6.4.2 nathanw */
1583 1.6.4.2 nathanw sc->sc_MACCtrl = MC_IFSSelect(0);
1584 1.6.4.2 nathanw bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1585 1.6.4.2 nathanw sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1586 1.6.4.2 nathanw
1587 1.6.4.2 nathanw if (sc->sc_rev >= 6) { /* >= B.2 */
1588 1.6.4.2 nathanw /* Multi-frag frame bug work-around. */
1589 1.6.4.2 nathanw bus_space_write_2(st, sh, STGE_DebugCtrl,
1590 1.6.4.2 nathanw bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1591 1.6.4.2 nathanw
1592 1.6.4.2 nathanw /* Tx Poll Now bug work-around. */
1593 1.6.4.2 nathanw bus_space_write_2(st, sh, STGE_DebugCtrl,
1594 1.6.4.2 nathanw bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1595 1.6.4.2 nathanw }
1596 1.6.4.2 nathanw
1597 1.6.4.2 nathanw /*
1598 1.6.4.2 nathanw * Set the current media.
1599 1.6.4.2 nathanw */
1600 1.6.4.2 nathanw mii_mediachg(&sc->sc_mii);
1601 1.6.4.2 nathanw
1602 1.6.4.2 nathanw /*
1603 1.6.4.2 nathanw * Start the one second MII clock.
1604 1.6.4.2 nathanw */
1605 1.6.4.2 nathanw callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1606 1.6.4.2 nathanw
1607 1.6.4.2 nathanw /*
1608 1.6.4.2 nathanw * ...all done!
1609 1.6.4.2 nathanw */
1610 1.6.4.2 nathanw ifp->if_flags |= IFF_RUNNING;
1611 1.6.4.2 nathanw ifp->if_flags &= ~IFF_OACTIVE;
1612 1.6.4.2 nathanw
1613 1.6.4.2 nathanw out:
1614 1.6.4.2 nathanw if (error)
1615 1.6.4.2 nathanw printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1616 1.6.4.2 nathanw return (error);
1617 1.6.4.2 nathanw }
1618 1.6.4.2 nathanw
1619 1.6.4.2 nathanw /*
1620 1.6.4.2 nathanw * stge_drain:
1621 1.6.4.2 nathanw *
1622 1.6.4.2 nathanw * Drain the receive queue.
1623 1.6.4.2 nathanw */
1624 1.6.4.2 nathanw void
1625 1.6.4.2 nathanw stge_rxdrain(struct stge_softc *sc)
1626 1.6.4.2 nathanw {
1627 1.6.4.2 nathanw struct stge_descsoft *ds;
1628 1.6.4.2 nathanw int i;
1629 1.6.4.2 nathanw
1630 1.6.4.2 nathanw for (i = 0; i < STGE_NRXDESC; i++) {
1631 1.6.4.2 nathanw ds = &sc->sc_rxsoft[i];
1632 1.6.4.2 nathanw if (ds->ds_mbuf != NULL) {
1633 1.6.4.2 nathanw bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1634 1.6.4.2 nathanw ds->ds_mbuf->m_next = NULL;
1635 1.6.4.2 nathanw m_freem(ds->ds_mbuf);
1636 1.6.4.2 nathanw ds->ds_mbuf = NULL;
1637 1.6.4.2 nathanw }
1638 1.6.4.2 nathanw }
1639 1.6.4.2 nathanw }
1640 1.6.4.2 nathanw
1641 1.6.4.2 nathanw /*
1642 1.6.4.2 nathanw * stge_stop: [ ifnet interface function ]
1643 1.6.4.2 nathanw *
1644 1.6.4.2 nathanw * Stop transmission on the interface.
1645 1.6.4.2 nathanw */
1646 1.6.4.2 nathanw void
1647 1.6.4.2 nathanw stge_stop(struct ifnet *ifp, int disable)
1648 1.6.4.2 nathanw {
1649 1.6.4.2 nathanw struct stge_softc *sc = ifp->if_softc;
1650 1.6.4.2 nathanw struct stge_descsoft *ds;
1651 1.6.4.2 nathanw int i;
1652 1.6.4.2 nathanw
1653 1.6.4.2 nathanw /*
1654 1.6.4.2 nathanw * Stop the one second clock.
1655 1.6.4.2 nathanw */
1656 1.6.4.2 nathanw callout_stop(&sc->sc_tick_ch);
1657 1.6.4.2 nathanw
1658 1.6.4.2 nathanw /* Down the MII. */
1659 1.6.4.2 nathanw mii_down(&sc->sc_mii);
1660 1.6.4.2 nathanw
1661 1.6.4.2 nathanw /*
1662 1.6.4.2 nathanw * Disable interrupts.
1663 1.6.4.2 nathanw */
1664 1.6.4.2 nathanw bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1665 1.6.4.2 nathanw
1666 1.6.4.2 nathanw /*
1667 1.6.4.2 nathanw * Stop receiver, transmitter, and stats update.
1668 1.6.4.2 nathanw */
1669 1.6.4.2 nathanw bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1670 1.6.4.2 nathanw MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1671 1.6.4.2 nathanw
1672 1.6.4.2 nathanw /*
1673 1.6.4.2 nathanw * Stop the transmit and receive DMA.
1674 1.6.4.2 nathanw */
1675 1.6.4.2 nathanw stge_dma_wait(sc);
1676 1.6.4.2 nathanw bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1677 1.6.4.2 nathanw bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1678 1.6.4.2 nathanw bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1679 1.6.4.2 nathanw bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1680 1.6.4.2 nathanw
1681 1.6.4.2 nathanw /*
1682 1.6.4.2 nathanw * Release any queued transmit buffers.
1683 1.6.4.2 nathanw */
1684 1.6.4.2 nathanw for (i = 0; i < STGE_NTXDESC; i++) {
1685 1.6.4.2 nathanw ds = &sc->sc_txsoft[i];
1686 1.6.4.2 nathanw if (ds->ds_mbuf != NULL) {
1687 1.6.4.2 nathanw bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1688 1.6.4.2 nathanw m_freem(ds->ds_mbuf);
1689 1.6.4.2 nathanw ds->ds_mbuf = NULL;
1690 1.6.4.2 nathanw }
1691 1.6.4.2 nathanw }
1692 1.6.4.2 nathanw
1693 1.6.4.2 nathanw if (disable)
1694 1.6.4.2 nathanw stge_rxdrain(sc);
1695 1.6.4.2 nathanw
1696 1.6.4.2 nathanw /*
1697 1.6.4.2 nathanw * Mark the interface down and cancel the watchdog timer.
1698 1.6.4.2 nathanw */
1699 1.6.4.2 nathanw ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1700 1.6.4.2 nathanw ifp->if_timer = 0;
1701 1.6.4.2 nathanw }
1702 1.6.4.2 nathanw
1703 1.6.4.2 nathanw #if 0
1704 1.6.4.2 nathanw static int
1705 1.6.4.2 nathanw stge_eeprom_wait(struct stge_softc *sc)
1706 1.6.4.2 nathanw {
1707 1.6.4.2 nathanw int i;
1708 1.6.4.2 nathanw
1709 1.6.4.2 nathanw for (i = 0; i < STGE_TIMEOUT; i++) {
1710 1.6.4.2 nathanw delay(1000);
1711 1.6.4.2 nathanw if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1712 1.6.4.2 nathanw EC_EepromBusy) == 0)
1713 1.6.4.2 nathanw return (0);
1714 1.6.4.2 nathanw }
1715 1.6.4.2 nathanw return (1);
1716 1.6.4.2 nathanw }
1717 1.6.4.2 nathanw
1718 1.6.4.2 nathanw /*
1719 1.6.4.2 nathanw * stge_read_eeprom:
1720 1.6.4.2 nathanw *
1721 1.6.4.2 nathanw * Read data from the serial EEPROM.
1722 1.6.4.2 nathanw */
1723 1.6.4.2 nathanw void
1724 1.6.4.2 nathanw stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1725 1.6.4.2 nathanw {
1726 1.6.4.2 nathanw
1727 1.6.4.2 nathanw if (stge_eeprom_wait(sc))
1728 1.6.4.2 nathanw printf("%s: EEPROM failed to come ready\n",
1729 1.6.4.2 nathanw sc->sc_dev.dv_xname);
1730 1.6.4.2 nathanw
1731 1.6.4.2 nathanw bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1732 1.6.4.2 nathanw EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1733 1.6.4.2 nathanw if (stge_eeprom_wait(sc))
1734 1.6.4.2 nathanw printf("%s: EEPROM read timed out\n",
1735 1.6.4.2 nathanw sc->sc_dev.dv_xname);
1736 1.6.4.2 nathanw *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1737 1.6.4.2 nathanw }
1738 1.6.4.2 nathanw #endif /* 0 */
1739 1.6.4.2 nathanw
1740 1.6.4.2 nathanw /*
1741 1.6.4.2 nathanw * stge_add_rxbuf:
1742 1.6.4.2 nathanw *
1743 1.6.4.2 nathanw * Add a receive buffer to the indicated descriptor.
1744 1.6.4.2 nathanw */
1745 1.6.4.2 nathanw int
1746 1.6.4.2 nathanw stge_add_rxbuf(struct stge_softc *sc, int idx)
1747 1.6.4.2 nathanw {
1748 1.6.4.2 nathanw struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1749 1.6.4.2 nathanw struct mbuf *m;
1750 1.6.4.2 nathanw int error;
1751 1.6.4.2 nathanw
1752 1.6.4.2 nathanw MGETHDR(m, M_DONTWAIT, MT_DATA);
1753 1.6.4.2 nathanw if (m == NULL)
1754 1.6.4.2 nathanw return (ENOBUFS);
1755 1.6.4.2 nathanw
1756 1.6.4.2 nathanw MCLGET(m, M_DONTWAIT);
1757 1.6.4.2 nathanw if ((m->m_flags & M_EXT) == 0) {
1758 1.6.4.2 nathanw m_freem(m);
1759 1.6.4.2 nathanw return (ENOBUFS);
1760 1.6.4.2 nathanw }
1761 1.6.4.2 nathanw
1762 1.6.4.2 nathanw m->m_data = m->m_ext.ext_buf + 2;
1763 1.6.4.2 nathanw m->m_len = MCLBYTES - 2;
1764 1.6.4.2 nathanw
1765 1.6.4.2 nathanw if (ds->ds_mbuf != NULL)
1766 1.6.4.2 nathanw bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1767 1.6.4.2 nathanw
1768 1.6.4.2 nathanw ds->ds_mbuf = m;
1769 1.6.4.2 nathanw
1770 1.6.4.2 nathanw error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1771 1.6.4.2 nathanw m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1772 1.6.4.2 nathanw if (error) {
1773 1.6.4.2 nathanw printf("%s: can't load rx DMA map %d, error = %d\n",
1774 1.6.4.2 nathanw sc->sc_dev.dv_xname, idx, error);
1775 1.6.4.2 nathanw panic("stge_add_rxbuf"); /* XXX */
1776 1.6.4.2 nathanw }
1777 1.6.4.2 nathanw
1778 1.6.4.2 nathanw bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1779 1.6.4.2 nathanw ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1780 1.6.4.2 nathanw
1781 1.6.4.2 nathanw STGE_INIT_RXDESC(sc, idx);
1782 1.6.4.2 nathanw
1783 1.6.4.2 nathanw return (0);
1784 1.6.4.2 nathanw }
1785 1.6.4.2 nathanw
1786 1.6.4.2 nathanw /*
1787 1.6.4.2 nathanw * stge_set_filter:
1788 1.6.4.2 nathanw *
1789 1.6.4.2 nathanw * Set up the receive filter.
1790 1.6.4.2 nathanw */
1791 1.6.4.2 nathanw void
1792 1.6.4.2 nathanw stge_set_filter(struct stge_softc *sc)
1793 1.6.4.2 nathanw {
1794 1.6.4.2 nathanw struct ethercom *ec = &sc->sc_ethercom;
1795 1.6.4.2 nathanw struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1796 1.6.4.2 nathanw struct ether_multi *enm;
1797 1.6.4.2 nathanw struct ether_multistep step;
1798 1.6.4.2 nathanw uint32_t crc;
1799 1.6.4.2 nathanw uint32_t mchash[2];
1800 1.6.4.2 nathanw
1801 1.6.4.2 nathanw sc->sc_ReceiveMode = RM_ReceiveUnicast;
1802 1.6.4.2 nathanw if (ifp->if_flags & IFF_BROADCAST)
1803 1.6.4.2 nathanw sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1804 1.6.4.2 nathanw
1805 1.6.4.2 nathanw if (ifp->if_flags & IFF_PROMISC) {
1806 1.6.4.2 nathanw sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1807 1.6.4.2 nathanw goto allmulti;
1808 1.6.4.2 nathanw }
1809 1.6.4.2 nathanw
1810 1.6.4.2 nathanw /*
1811 1.6.4.2 nathanw * Set up the multicast address filter by passing all multicast
1812 1.6.4.2 nathanw * addresses through a CRC generator, and then using the low-order
1813 1.6.4.2 nathanw * 6 bits as an index into the 64 bit multicast hash table. The
1814 1.6.4.2 nathanw * high order bits select the register, while the rest of the bits
1815 1.6.4.2 nathanw * select the bit within the register.
1816 1.6.4.2 nathanw */
1817 1.6.4.2 nathanw
1818 1.6.4.2 nathanw memset(mchash, 0, sizeof(mchash));
1819 1.6.4.2 nathanw
1820 1.6.4.2 nathanw ETHER_FIRST_MULTI(step, ec, enm);
1821 1.6.4.2 nathanw if (enm == NULL)
1822 1.6.4.2 nathanw goto done;
1823 1.6.4.2 nathanw
1824 1.6.4.2 nathanw while (enm != NULL) {
1825 1.6.4.2 nathanw if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1826 1.6.4.2 nathanw /*
1827 1.6.4.2 nathanw * We must listen to a range of multicast addresses.
1828 1.6.4.2 nathanw * For now, just accept all multicasts, rather than
1829 1.6.4.2 nathanw * trying to set only those filter bits needed to match
1830 1.6.4.2 nathanw * the range. (At this time, the only use of address
1831 1.6.4.2 nathanw * ranges is for IP multicast routing, for which the
1832 1.6.4.2 nathanw * range is big enough to require all bits set.)
1833 1.6.4.2 nathanw */
1834 1.6.4.2 nathanw goto allmulti;
1835 1.6.4.2 nathanw }
1836 1.6.4.2 nathanw
1837 1.6.4.2 nathanw crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1838 1.6.4.2 nathanw
1839 1.6.4.2 nathanw /* Just want the 6 least significant bits. */
1840 1.6.4.2 nathanw crc &= 0x3f;
1841 1.6.4.2 nathanw
1842 1.6.4.2 nathanw /* Set the corresponding bit in the hash table. */
1843 1.6.4.2 nathanw mchash[crc >> 5] |= 1 << (crc & 0x1f);
1844 1.6.4.2 nathanw
1845 1.6.4.2 nathanw ETHER_NEXT_MULTI(step, enm);
1846 1.6.4.2 nathanw }
1847 1.6.4.2 nathanw
1848 1.6.4.2 nathanw sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1849 1.6.4.2 nathanw
1850 1.6.4.2 nathanw ifp->if_flags &= ~IFF_ALLMULTI;
1851 1.6.4.2 nathanw goto done;
1852 1.6.4.2 nathanw
1853 1.6.4.2 nathanw allmulti:
1854 1.6.4.2 nathanw ifp->if_flags |= IFF_ALLMULTI;
1855 1.6.4.2 nathanw sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1856 1.6.4.2 nathanw
1857 1.6.4.2 nathanw done:
1858 1.6.4.2 nathanw if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1859 1.6.4.2 nathanw /*
1860 1.6.4.2 nathanw * Program the multicast hash table.
1861 1.6.4.2 nathanw */
1862 1.6.4.2 nathanw bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1863 1.6.4.2 nathanw mchash[0]);
1864 1.6.4.2 nathanw bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1865 1.6.4.2 nathanw mchash[1]);
1866 1.6.4.2 nathanw }
1867 1.6.4.2 nathanw
1868 1.6.4.2 nathanw bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1869 1.6.4.2 nathanw sc->sc_ReceiveMode);
1870 1.6.4.2 nathanw }
1871 1.6.4.2 nathanw
1872 1.6.4.2 nathanw /*
1873 1.6.4.2 nathanw * stge_mii_readreg: [mii interface function]
1874 1.6.4.2 nathanw *
1875 1.6.4.2 nathanw * Read a PHY register on the MII of the TC9021.
1876 1.6.4.2 nathanw */
1877 1.6.4.2 nathanw int
1878 1.6.4.2 nathanw stge_mii_readreg(struct device *self, int phy, int reg)
1879 1.6.4.2 nathanw {
1880 1.6.4.2 nathanw
1881 1.6.4.2 nathanw return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1882 1.6.4.2 nathanw }
1883 1.6.4.2 nathanw
1884 1.6.4.2 nathanw /*
1885 1.6.4.2 nathanw * stge_mii_writereg: [mii interface function]
1886 1.6.4.2 nathanw *
1887 1.6.4.2 nathanw * Write a PHY register on the MII of the TC9021.
1888 1.6.4.2 nathanw */
1889 1.6.4.2 nathanw void
1890 1.6.4.2 nathanw stge_mii_writereg(struct device *self, int phy, int reg, int val)
1891 1.6.4.2 nathanw {
1892 1.6.4.2 nathanw
1893 1.6.4.2 nathanw mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1894 1.6.4.2 nathanw }
1895 1.6.4.2 nathanw
1896 1.6.4.2 nathanw /*
1897 1.6.4.2 nathanw * stge_mii_statchg: [mii interface function]
1898 1.6.4.2 nathanw *
1899 1.6.4.2 nathanw * Callback from MII layer when media changes.
1900 1.6.4.2 nathanw */
1901 1.6.4.2 nathanw void
1902 1.6.4.2 nathanw stge_mii_statchg(struct device *self)
1903 1.6.4.2 nathanw {
1904 1.6.4.2 nathanw struct stge_softc *sc = (struct stge_softc *) self;
1905 1.6.4.2 nathanw
1906 1.6.4.2 nathanw if (sc->sc_mii.mii_media_active & IFM_FDX)
1907 1.6.4.2 nathanw sc->sc_MACCtrl |= MC_DuplexSelect;
1908 1.6.4.2 nathanw else
1909 1.6.4.2 nathanw sc->sc_MACCtrl &= ~MC_DuplexSelect;
1910 1.6.4.2 nathanw
1911 1.6.4.2 nathanw /* XXX 802.1x flow-control? */
1912 1.6.4.2 nathanw
1913 1.6.4.2 nathanw bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1914 1.6.4.2 nathanw }
1915 1.6.4.2 nathanw
1916 1.6.4.2 nathanw /*
1917 1.6.4.2 nathanw * sste_mii_bitbang_read: [mii bit-bang interface function]
1918 1.6.4.2 nathanw *
1919 1.6.4.2 nathanw * Read the MII serial port for the MII bit-bang module.
1920 1.6.4.2 nathanw */
1921 1.6.4.2 nathanw uint32_t
1922 1.6.4.2 nathanw stge_mii_bitbang_read(struct device *self)
1923 1.6.4.2 nathanw {
1924 1.6.4.2 nathanw struct stge_softc *sc = (void *) self;
1925 1.6.4.2 nathanw
1926 1.6.4.2 nathanw return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
1927 1.6.4.2 nathanw }
1928 1.6.4.2 nathanw
1929 1.6.4.2 nathanw /*
1930 1.6.4.2 nathanw * stge_mii_bitbang_write: [mii big-bang interface function]
1931 1.6.4.2 nathanw *
1932 1.6.4.2 nathanw * Write the MII serial port for the MII bit-bang module.
1933 1.6.4.2 nathanw */
1934 1.6.4.2 nathanw void
1935 1.6.4.2 nathanw stge_mii_bitbang_write(struct device *self, uint32_t val)
1936 1.6.4.2 nathanw {
1937 1.6.4.2 nathanw struct stge_softc *sc = (void *) self;
1938 1.6.4.2 nathanw
1939 1.6.4.2 nathanw bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
1940 1.6.4.2 nathanw val | sc->sc_PhyCtrl);
1941 1.6.4.2 nathanw }
1942 1.6.4.2 nathanw
1943 1.6.4.2 nathanw /*
1944 1.6.4.2 nathanw * stge_mediastatus: [ifmedia interface function]
1945 1.6.4.2 nathanw *
1946 1.6.4.2 nathanw * Get the current interface media status.
1947 1.6.4.2 nathanw */
1948 1.6.4.2 nathanw void
1949 1.6.4.2 nathanw stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1950 1.6.4.2 nathanw {
1951 1.6.4.2 nathanw struct stge_softc *sc = ifp->if_softc;
1952 1.6.4.2 nathanw
1953 1.6.4.2 nathanw mii_pollstat(&sc->sc_mii);
1954 1.6.4.2 nathanw ifmr->ifm_status = sc->sc_mii.mii_media_status;
1955 1.6.4.2 nathanw ifmr->ifm_active = sc->sc_mii.mii_media_active;
1956 1.6.4.2 nathanw }
1957 1.6.4.2 nathanw
1958 1.6.4.2 nathanw /*
1959 1.6.4.2 nathanw * stge_mediachange: [ifmedia interface function]
1960 1.6.4.2 nathanw *
1961 1.6.4.2 nathanw * Set hardware to newly-selected media.
1962 1.6.4.2 nathanw */
1963 1.6.4.2 nathanw int
1964 1.6.4.2 nathanw stge_mediachange(struct ifnet *ifp)
1965 1.6.4.2 nathanw {
1966 1.6.4.2 nathanw struct stge_softc *sc = ifp->if_softc;
1967 1.6.4.2 nathanw
1968 1.6.4.2 nathanw if (ifp->if_flags & IFF_UP)
1969 1.6.4.2 nathanw mii_mediachg(&sc->sc_mii);
1970 1.6.4.2 nathanw return (0);
1971 1.6.4.2 nathanw }
1972