Home | History | Annotate | Line # | Download | only in pci
if_stge.c revision 1.1
      1 #define	STGE_EVENT_COUNTERS
      2 /*	$NetBSD: if_stge.c,v 1.1 2001/07/25 00:11:51 thorpej Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Device driver for the Sundance Tech. TC9021 10/100/1000
     42  * Ethernet controller.
     43  */
     44 
     45 #include "bpfilter.h"
     46 
     47 #include <sys/param.h>
     48 #include <sys/systm.h>
     49 #include <sys/callout.h>
     50 #include <sys/mbuf.h>
     51 #include <sys/malloc.h>
     52 #include <sys/kernel.h>
     53 #include <sys/socket.h>
     54 #include <sys/ioctl.h>
     55 #include <sys/errno.h>
     56 #include <sys/device.h>
     57 #include <sys/queue.h>
     58 
     59 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     60 
     61 #include <net/if.h>
     62 #include <net/if_dl.h>
     63 #include <net/if_media.h>
     64 #include <net/if_ether.h>
     65 
     66 #if NBPFILTER > 0
     67 #include <net/bpf.h>
     68 #endif
     69 
     70 #include <machine/bus.h>
     71 #include <machine/intr.h>
     72 
     73 #include <dev/mii/mii.h>
     74 #include <dev/mii/miivar.h>
     75 #include <dev/mii/mii_bitbang.h>
     76 
     77 #include <dev/pci/pcireg.h>
     78 #include <dev/pci/pcivar.h>
     79 #include <dev/pci/pcidevs.h>
     80 
     81 #include <dev/pci/if_stgereg.h>
     82 
     83 /*
     84  * Transmit descriptor list size.
     85  */
     86 #define	STGE_NTXDESC		256
     87 #define	STGE_NTXDESC_MASK	(STGE_NTXDESC - 1)
     88 #define	STGE_NEXTTX(x)		(((x) + 1) & STGE_NTXDESC_MASK)
     89 
     90 /*
     91  * Receive descriptor list size.
     92  */
     93 #define	STGE_NRXDESC		256
     94 #define	STGE_NRXDESC_MASK	(STGE_NRXDESC - 1)
     95 #define	STGE_NEXTRX(x)		(((x) + 1) & STGE_NRXDESC_MASK)
     96 
     97 /*
     98  * Only interrupt every N frames.  Must be a power-of-two.
     99  */
    100 #define	STGE_TXINTR_SPACING	16
    101 #define	STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
    102 
    103 /*
    104  * Control structures are DMA'd to the TC9021 chip.  We allocate them in
    105  * a single clump that maps to a single DMA segment to make several things
    106  * easier.
    107  */
    108 struct stge_control_data {
    109 	/*
    110 	 * The transmit descriptors.
    111 	 */
    112 	struct stge_tfd scd_txdescs[STGE_NTXDESC];
    113 
    114 	/*
    115 	 * The receive descriptors.
    116 	 */
    117 	struct stge_rfd scd_rxdescs[STGE_NRXDESC];
    118 };
    119 
    120 #define	STGE_CDOFF(x)	offsetof(struct stge_control_data, x)
    121 #define	STGE_CDTXOFF(x)	STGE_CDOFF(scd_txdescs[(x)])
    122 #define	STGE_CDRXOFF(x)	STGE_CDOFF(scd_rxdescs[(x)])
    123 
    124 /*
    125  * Software state for transmit and receive jobs.
    126  */
    127 struct stge_descsoft {
    128 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
    129 	bus_dmamap_t ds_dmamap;		/* our DMA map */
    130 };
    131 
    132 /*
    133  * Software state per device.
    134  */
    135 struct stge_softc {
    136 	struct device sc_dev;		/* generic device information */
    137 	bus_space_tag_t sc_st;		/* bus space tag */
    138 	bus_space_handle_t sc_sh;	/* bus space handle */
    139 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    140 	struct ethercom sc_ethercom;	/* ethernet common data */
    141 	void *sc_sdhook;		/* shutdown hook */
    142 	int sc_rev;			/* silicon revision */
    143 
    144 	void *sc_ih;			/* interrupt cookie */
    145 
    146 	struct mii_data sc_mii;		/* MII/media information */
    147 
    148 	struct callout sc_tick_ch;	/* tick callout */
    149 
    150 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    151 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    152 
    153 	/*
    154 	 * Software state for transmit and receive descriptors.
    155 	 */
    156 	struct stge_descsoft sc_txsoft[STGE_NTXDESC];
    157 	struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
    158 
    159 	/*
    160 	 * Control data structures.
    161 	 */
    162 	struct stge_control_data *sc_control_data;
    163 #define	sc_txdescs	sc_control_data->scd_txdescs
    164 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    165 
    166 #ifdef STGE_EVENT_COUNTERS
    167 	/*
    168 	 * Event counters.
    169 	 */
    170 	struct evcnt sc_ev_txstall;	/* Tx stalled */
    171 	struct evcnt sc_ev_txdmaintr;	/* Tx DMA interrupts */
    172 	struct evcnt sc_ev_txindintr;	/* Tx Indicate interrupts */
    173 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    174 
    175 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
    176 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
    177 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
    178 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
    179 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
    180 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
    181 	struct evcnt sc_ev_txcopy;	/* Tx packets that we had to copy */
    182 
    183 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    184 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    185 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
    186 
    187 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    188 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    189 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    190 #endif /* STGE_EVENT_COUNTERS */
    191 
    192 	int	sc_txpending;		/* number of Tx requests pending */
    193 	int	sc_txdirty;		/* first dirty Tx descriptor */
    194 	int	sc_txlast;		/* last used Tx descriptor */
    195 
    196 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    197 	int	sc_rxdiscard;
    198 	int	sc_rxlen;
    199 	struct mbuf *sc_rxhead;
    200 	struct mbuf *sc_rxtail;
    201 	struct mbuf **sc_rxtailp;
    202 
    203 	int	sc_txthresh;		/* Tx threshold */
    204 	int	sc_usefiber;		/* if we're fiber */
    205 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
    206 	uint32_t sc_MACCtrl;		/* prototype MacCtrl register */
    207 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
    208 	uint16_t sc_ReceiveMode;	/* prototype ReceiveMode register */
    209 	uint8_t sc_PhyCtrl;		/* prototype PhyCtrl register */
    210 };
    211 
    212 #define	STGE_RXCHAIN_RESET(sc)						\
    213 do {									\
    214 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    215 	*(sc)->sc_rxtailp = NULL;					\
    216 	(sc)->sc_rxlen = 0;						\
    217 } while (/*CONSTCOND*/0)
    218 
    219 #define	STGE_RXCHAIN_LINK(sc, m)					\
    220 do {									\
    221 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    222 	(sc)->sc_rxtailp = &(m)->m_next;				\
    223 } while (/*CONSTCOND*/0)
    224 
    225 #ifdef STGE_EVENT_COUNTERS
    226 #define	STGE_EVCNT_INCR(ev)	(ev)->ev_count++
    227 #else
    228 #define	STGE_EVCNT_INCR(ev)	/* nothing */
    229 #endif
    230 
    231 #define	STGE_CDTXADDR(sc, x)	((sc)->sc_cddma + STGE_CDTXOFF((x)))
    232 #define	STGE_CDRXADDR(sc, x)	((sc)->sc_cddma + STGE_CDRXOFF((x)))
    233 
    234 #define	STGE_CDTXSYNC(sc, x, ops)					\
    235 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    236 	    STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
    237 
    238 #define	STGE_CDRXSYNC(sc, x, ops)					\
    239 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    240 	    STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
    241 
    242 #define	STGE_INIT_RXDESC(sc, x)						\
    243 do {									\
    244 	struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
    245 	struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)];		\
    246 									\
    247 	/*								\
    248 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    249 	 * so that the payload after the Ethernet header is aligned	\
    250 	 * to a 4-byte boundary.					\
    251 	 */								\
    252 	__rfd->rfd_frag.frag_word0 =					\
    253 	    htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
    254 	    FRAG_LEN(MCLBYTES - 2));					\
    255 	__rfd->rfd_next =						\
    256 	    htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x))));	\
    257 	__rfd->rfd_status = 0;						\
    258 	STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    259 } while (/*CONSTCOND*/0)
    260 
    261 #define STGE_TIMEOUT 1000
    262 
    263 void	stge_start(struct ifnet *);
    264 void	stge_watchdog(struct ifnet *);
    265 int	stge_ioctl(struct ifnet *, u_long, caddr_t);
    266 int	stge_init(struct ifnet *);
    267 void	stge_stop(struct ifnet *, int);
    268 
    269 void	stge_shutdown(void *);
    270 
    271 void	stge_reset(struct stge_softc *);
    272 void	stge_rxdrain(struct stge_softc *);
    273 int	stge_add_rxbuf(struct stge_softc *, int);
    274 #if 0
    275 void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
    276 #endif
    277 void	stge_tick(void *);
    278 
    279 void	stge_stats_update(struct stge_softc *);
    280 
    281 void	stge_set_filter(struct stge_softc *);
    282 
    283 int	stge_intr(void *);
    284 void	stge_txintr(struct stge_softc *);
    285 void	stge_rxintr(struct stge_softc *);
    286 
    287 int	stge_mii_readreg(struct device *, int, int);
    288 void	stge_mii_writereg(struct device *, int, int, int);
    289 void	stge_mii_statchg(struct device *);
    290 
    291 int	stge_mediachange(struct ifnet *);
    292 void	stge_mediastatus(struct ifnet *, struct ifmediareq *);
    293 
    294 int	stge_match(struct device *, struct cfdata *, void *);
    295 void	stge_attach(struct device *, struct device *, void *);
    296 
    297 int	stge_copy_small = 0;
    298 
    299 struct cfattach stge_ca = {
    300 	sizeof(struct stge_softc), stge_match, stge_attach,
    301 };
    302 
    303 uint32_t stge_mii_bitbang_read(struct device *);
    304 void	stge_mii_bitbang_write(struct device *, uint32_t);
    305 
    306 const struct mii_bitbang_ops stge_mii_bitbang_ops = {
    307 	stge_mii_bitbang_read,
    308 	stge_mii_bitbang_write,
    309 	{
    310 		PC_MgmtData,		/* MII_BIT_MDO */
    311 		PC_MgmtData,		/* MII_BIT_MDI */
    312 		PC_MgmtClk,		/* MII_BIT_MDC */
    313 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
    314 		0,			/* MII_BIT_DIR_PHY_HOST */
    315 	}
    316 };
    317 
    318 /*
    319  * Devices supported by this driver.
    320  */
    321 const struct stge_product {
    322 	pci_vendor_id_t		stge_vendor;
    323 	pci_product_id_t	stge_product;
    324 	const char		*stge_name;
    325 } stge_products[] = {
    326 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST2021,
    327 	  "Sundance ST-2021 Gigabit Ethernet" },
    328 
    329 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021,
    330 	  "Tamarack TC9021 Gigabit Ethernet" },
    331 
    332 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021_ALT,
    333 	  "Tamarack TC9021 Gigabit Ethernet" },
    334 
    335 	/*
    336 	 * The Sundance sample boards use the Sundance vendor ID,
    337 	 * but the Tamarack product ID.
    338 	 */
    339 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021,
    340 	  "Sundance TC9021 Gigabit Ethernet" },
    341 
    342 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021_ALT,
    343 	  "Sundance TC9021 Gigabit Ethernet" },
    344 
    345 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL4000,
    346 	  "D-Link DL-4000 Gigabit Ethernet" },
    347 
    348 	{ 0,				0,
    349 	  NULL },
    350 };
    351 
    352 static const struct stge_product *
    353 stge_lookup(const struct pci_attach_args *pa)
    354 {
    355 	const struct stge_product *sp;
    356 
    357 	for (sp = stge_products; sp->stge_name != NULL; sp++) {
    358 		if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
    359 		    PCI_PRODUCT(pa->pa_id) == sp->stge_product)
    360 			return (sp);
    361 	}
    362 	return (NULL);
    363 }
    364 
    365 int
    366 stge_match(struct device *parent, struct cfdata *cf, void *aux)
    367 {
    368 	struct pci_attach_args *pa = aux;
    369 
    370 	if (stge_lookup(pa) != NULL)
    371 		return (1);
    372 
    373 	return (0);
    374 }
    375 
    376 void
    377 stge_attach(struct device *parent, struct device *self, void *aux)
    378 {
    379 	struct stge_softc *sc = (struct stge_softc *) self;
    380 	struct pci_attach_args *pa = aux;
    381 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    382 	pci_chipset_tag_t pc = pa->pa_pc;
    383 	pci_intr_handle_t ih;
    384 	const char *intrstr = NULL;
    385 	bus_space_tag_t iot, memt;
    386 	bus_space_handle_t ioh, memh;
    387 	bus_dma_segment_t seg;
    388 	int ioh_valid, memh_valid;
    389 	int i, rseg, error;
    390 	const struct stge_product *sp;
    391 	pcireg_t pmode;
    392 	uint8_t enaddr[ETHER_ADDR_LEN];
    393 	int pmreg;
    394 
    395 	callout_init(&sc->sc_tick_ch);
    396 
    397 	sp = stge_lookup(pa);
    398 	if (sp == NULL) {
    399 		printf("\n");
    400 		panic("ste_attach: impossible");
    401 	}
    402 
    403 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    404 
    405 	printf(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
    406 
    407 	/*
    408 	 * Map the device.
    409 	 */
    410 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
    411 	    PCI_MAPREG_TYPE_IO, 0,
    412 	    &iot, &ioh, NULL, NULL) == 0);
    413 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
    414 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    415 	    &memt, &memh, NULL, NULL) == 0);
    416 
    417 	if (memh_valid) {
    418 		sc->sc_st = memt;
    419 		sc->sc_sh = memh;
    420 	} else if (ioh_valid) {
    421 		sc->sc_st = iot;
    422 		sc->sc_sh = ioh;
    423 	} else {
    424 		printf("%s: unable to map device registers\n",
    425 		    sc->sc_dev.dv_xname);
    426 		return;
    427 	}
    428 
    429 	sc->sc_dmat = pa->pa_dmat;
    430 
    431 	/* Enable bus mastering. */
    432 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    433 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    434 	    PCI_COMMAND_MASTER_ENABLE);
    435 
    436 	/* Get it out of power save mode if needed. */
    437 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    438 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
    439 		if (pmode == 3) {
    440 			/*
    441 			 * The card has lost all configuration data in
    442 			 * this state, so punt.
    443 			 */
    444 			printf("%s: unable to wake up from power state D3\n",
    445 			    sc->sc_dev.dv_xname);
    446 			return;
    447 		}
    448 		if (pmode != 0) {
    449 			printf("%s: waking up from power state D%d\n",
    450 			    sc->sc_dev.dv_xname, pmode);
    451 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
    452 		}
    453 	}
    454 
    455 	/*
    456 	 * Map and establish our interrupt.
    457 	 */
    458 	if (pci_intr_map(pa, &ih)) {
    459 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    460 		return;
    461 	}
    462 	intrstr = pci_intr_string(pc, ih);
    463 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
    464 	if (sc->sc_ih == NULL) {
    465 		printf("%s: unable to establish interrupt",
    466 		    sc->sc_dev.dv_xname);
    467 		if (intrstr != NULL)
    468 			printf(" at %s", intrstr);
    469 		printf("\n");
    470 		return;
    471 	}
    472 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    473 
    474 	/*
    475 	 * Allocate the control data structures, and create and load the
    476 	 * DMA map for it.
    477 	 */
    478 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    479 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    480 	    0)) != 0) {
    481 		printf("%s: unable to allocate control data, error = %d\n",
    482 		    sc->sc_dev.dv_xname, error);
    483 		goto fail_0;
    484 	}
    485 
    486 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    487 	    sizeof(struct stge_control_data), (caddr_t *)&sc->sc_control_data,
    488 	    BUS_DMA_COHERENT)) != 0) {
    489 		printf("%s: unable to map control data, error = %d\n",
    490 		    sc->sc_dev.dv_xname, error);
    491 		goto fail_1;
    492 	}
    493 
    494 	if ((error = bus_dmamap_create(sc->sc_dmat,
    495 	    sizeof(struct stge_control_data), 1,
    496 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    497 		printf("%s: unable to create control data DMA map, "
    498 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    499 		goto fail_2;
    500 	}
    501 
    502 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    503 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
    504 	    0)) != 0) {
    505 		printf("%s: unable to load control data DMA map, error = %d\n",
    506 		    sc->sc_dev.dv_xname, error);
    507 		goto fail_3;
    508 	}
    509 
    510 	/*
    511 	 * Create the transmit buffer DMA maps.  Note that rev B.3
    512 	 * and earlier seem to have a bug regarding multi-fragment
    513 	 * packets.  We need to limit the number of Tx segments on
    514 	 * such chips to 1.
    515 	 */
    516 	for (i = 0; i < STGE_NTXDESC; i++) {
    517 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    518 		    STGE_NTXFRAGS, MCLBYTES, 0, 0,
    519 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
    520 			printf("%s: unable to create tx DMA map %d, "
    521 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    522 			goto fail_4;
    523 		}
    524 	}
    525 
    526 	/*
    527 	 * Create the receive buffer DMA maps.
    528 	 */
    529 	for (i = 0; i < STGE_NRXDESC; i++) {
    530 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    531 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
    532 			printf("%s: unable to create rx DMA map %d, "
    533 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    534 			goto fail_5;
    535 		}
    536 		sc->sc_rxsoft[i].ds_mbuf = NULL;
    537 	}
    538 
    539 	/*
    540 	 * Determine if we're copper or fiber.  It affects how we
    541 	 * reset the card.
    542 	 */
    543 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
    544 	    AC_PhyMedia)
    545 		sc->sc_usefiber = 1;
    546 	else
    547 		sc->sc_usefiber = 0;
    548 
    549 	/*
    550 	 * Reset the chip to a known state.
    551 	 */
    552 	stge_reset(sc);
    553 
    554 	/*
    555 	 * Reading the station address from the EEPROM doesn't seem
    556 	 * to work, at least on my sample boards.  Instread, since
    557 	 * the reset sequence does AutoInit, read it from the station
    558 	 * address registers.
    559 	 */
    560 	enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    561 	    STGE_StationAddress0) & 0xff;
    562 	enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    563 	    STGE_StationAddress0) >> 8;
    564 	enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    565 	    STGE_StationAddress1) & 0xff;
    566 	enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    567 	    STGE_StationAddress1) >> 8;
    568 	enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    569 	    STGE_StationAddress2) & 0xff;
    570 	enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    571 	    STGE_StationAddress2) >> 8;
    572 
    573 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    574 	    ether_sprintf(enaddr));
    575 
    576 	/*
    577 	 * Read some important bits from the PhyCtrl register.
    578 	 */
    579 	sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
    580 	    STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
    581 
    582 	/*
    583 	 * Initialize our media structures and probe the MII.
    584 	 */
    585 	sc->sc_mii.mii_ifp = ifp;
    586 	sc->sc_mii.mii_readreg = stge_mii_readreg;
    587 	sc->sc_mii.mii_writereg = stge_mii_writereg;
    588 	sc->sc_mii.mii_statchg = stge_mii_statchg;
    589 	ifmedia_init(&sc->sc_mii.mii_media, 0, stge_mediachange,
    590 	    stge_mediastatus);
    591 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    592 	    MII_OFFSET_ANY, 0);
    593 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    594 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    595 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    596 	} else
    597 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    598 
    599 	ifp = &sc->sc_ethercom.ec_if;
    600 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    601 	ifp->if_softc = sc;
    602 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    603 	ifp->if_ioctl = stge_ioctl;
    604 	ifp->if_start = stge_start;
    605 	ifp->if_watchdog = stge_watchdog;
    606 	ifp->if_init = stge_init;
    607 	ifp->if_stop = stge_stop;
    608 	IFQ_SET_READY(&ifp->if_snd);
    609 
    610 	/*
    611 	 * The manual recommends disabling early transmit, so we
    612 	 * do.  It's disabled anyway, if using IP checksumming,
    613 	 * since the entire packet must be in the FIFO in order
    614 	 * for the chip to perform the checksum.
    615 	 */
    616 	sc->sc_txthresh = 0x0fff;
    617 
    618 	/*
    619 	 * Disable MWI if the PCI layer tells us to.
    620 	 */
    621 	sc->sc_DMACtrl = 0;
    622 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
    623 		sc->sc_DMACtrl |= DMAC_MWIDisable;
    624 
    625 	/*
    626 	 * We can support 802.1Q VLAN-sized frames and jumbo
    627 	 * Ethernet frames.
    628 	 *
    629 	 * XXX Figure out how to do hw-assisted VLAN tagging in
    630 	 * XXX a reasonable way on this chip.
    631 	 */
    632 	sc->sc_ethercom.ec_capabilities |=
    633 	    ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    634 
    635 	/*
    636 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
    637 	 */
    638 	sc->sc_ethercom.ec_if.if_capabilities |= IFCAP_CSUM_IPv4 |
    639 	    IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
    640 
    641 	/*
    642 	 * Attach the interface.
    643 	 */
    644 	if_attach(ifp);
    645 	ether_ifattach(ifp, enaddr);
    646 
    647 #ifdef STGE_EVENT_COUNTERS
    648 	/*
    649 	 * Attach event counters.
    650 	 */
    651 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
    652 	    NULL, sc->sc_dev.dv_xname, "txstall");
    653 	evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
    654 	    NULL, sc->sc_dev.dv_xname, "txdmaintr");
    655 	evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
    656 	    NULL, sc->sc_dev.dv_xname, "txindintr");
    657 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    658 	    NULL, sc->sc_dev.dv_xname, "rxintr");
    659 
    660 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
    661 	    NULL, sc->sc_dev.dv_xname, "txseg1");
    662 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
    663 	    NULL, sc->sc_dev.dv_xname, "txseg2");
    664 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
    665 	    NULL, sc->sc_dev.dv_xname, "txseg3");
    666 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
    667 	    NULL, sc->sc_dev.dv_xname, "txseg4");
    668 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
    669 	    NULL, sc->sc_dev.dv_xname, "txseg5");
    670 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
    671 	    NULL, sc->sc_dev.dv_xname, "txsegmore");
    672 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
    673 	    NULL, sc->sc_dev.dv_xname, "txcopy");
    674 
    675 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    676 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
    677 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
    678 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
    679 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
    680 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
    681 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    682 	    NULL, sc->sc_dev.dv_xname, "txipsum");
    683 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
    684 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
    685 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
    686 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
    687 #endif /* STGE_EVENT_COUNTERS */
    688 
    689 	/*
    690 	 * Make sure the interface is shutdown during reboot.
    691 	 */
    692 	sc->sc_sdhook = shutdownhook_establish(stge_shutdown, sc);
    693 	if (sc->sc_sdhook == NULL)
    694 		printf("%s: WARNING: unable to establish shutdown hook\n",
    695 		    sc->sc_dev.dv_xname);
    696 	return;
    697 
    698 	/*
    699 	 * Free any resources we've allocated during the failed attach
    700 	 * attempt.  Do this in reverse order and fall through.
    701 	 */
    702  fail_5:
    703 	for (i = 0; i < STGE_NRXDESC; i++) {
    704 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
    705 			bus_dmamap_destroy(sc->sc_dmat,
    706 			    sc->sc_rxsoft[i].ds_dmamap);
    707 	}
    708  fail_4:
    709 	for (i = 0; i < STGE_NTXDESC; i++) {
    710 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
    711 			bus_dmamap_destroy(sc->sc_dmat,
    712 			    sc->sc_txsoft[i].ds_dmamap);
    713 	}
    714 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    715  fail_3:
    716 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    717  fail_2:
    718 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    719 	    sizeof(struct stge_control_data));
    720  fail_1:
    721 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    722  fail_0:
    723 	return;
    724 }
    725 
    726 /*
    727  * stge_shutdown:
    728  *
    729  *	Make sure the interface is stopped at reboot time.
    730  */
    731 void
    732 stge_shutdown(void *arg)
    733 {
    734 	struct stge_softc *sc = arg;
    735 
    736 	stge_stop(&sc->sc_ethercom.ec_if, 1);
    737 }
    738 
    739 static void
    740 stge_dma_wait(struct stge_softc *sc)
    741 {
    742 	int i;
    743 
    744 	for (i = 0; i < STGE_TIMEOUT; i++) {
    745 		delay(2);
    746 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
    747 		     DMAC_TxDMAInProg) == 0)
    748 			break;
    749 	}
    750 
    751 	if (i == STGE_TIMEOUT)
    752 		printf("%s: DMA wait timed out\n", sc->sc_dev.dv_xname);
    753 }
    754 
    755 /*
    756  * stge_start:		[ifnet interface function]
    757  *
    758  *	Start packet transmission on the interface.
    759  */
    760 void
    761 stge_start(struct ifnet *ifp)
    762 {
    763 	struct stge_softc *sc = ifp->if_softc;
    764 	struct mbuf *m0;
    765 	struct stge_descsoft *ds;
    766 	struct stge_tfd *tfd;
    767 	bus_dmamap_t dmamap;
    768 	int error, firsttx, nexttx, opending, seg, totlen;
    769 	uint64_t csum_flags;
    770 
    771 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    772 		return;
    773 
    774 	/*
    775 	 * Remember the previous number of pending transmissions
    776 	 * and the first descriptor we will use.
    777 	 */
    778 	opending = sc->sc_txpending;
    779 	firsttx = STGE_NEXTTX(sc->sc_txlast);
    780 
    781 	/*
    782 	 * Loop through the send queue, setting up transmit descriptors
    783 	 * until we drain the queue, or use up all available transmit
    784 	 * descriptors.
    785 	 */
    786 	for (;;) {
    787 		/*
    788 		 * Grab a packet off the queue.
    789 		 */
    790 		IFQ_POLL(&ifp->if_snd, m0);
    791 		if (m0 == NULL)
    792 			break;
    793 
    794 		/*
    795 		 * Leave one unused descriptor at the end of the
    796 		 * list to prevent wrapping completely around.
    797 		 */
    798 		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
    799 			STGE_EVCNT_INCR(&sc->sc_ev_txstall);
    800 			break;
    801 		}
    802 
    803 		/*
    804 		 * Get the last and next available transmit descriptor.
    805 		 */
    806 		nexttx = STGE_NEXTTX(sc->sc_txlast);
    807 		tfd = &sc->sc_txdescs[nexttx];
    808 		ds = &sc->sc_txsoft[nexttx];
    809 
    810 		dmamap = ds->ds_dmamap;
    811 
    812 		/*
    813 		 * Load the DMA map.  If this fails, the packet either
    814 		 * didn't fit in the alloted number of segments, or we
    815 		 * were short on resources.  For the too-may-segments
    816 		 * case, we simply report an error and drop the packet,
    817 		 * since we can't sanely copy a jumbo packet to a single
    818 		 * buffer.
    819 		 */
    820 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    821 		    BUS_DMA_NOWAIT);
    822 		if (error) {
    823 			if (error == EFBIG) {
    824 				printf("%s: Tx packet consumes too many "
    825 				    "DMA segments, dropping...\n",
    826 				    sc->sc_dev.dv_xname);
    827 				IFQ_DEQUEUE(&ifp->if_snd, m0);
    828 				m_freem(m0);
    829 				continue;
    830 			}
    831 			/*
    832 			 * Short on resources, just stop for now.
    833 			 */
    834 			break;
    835 		}
    836 
    837 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    838 
    839 		/*
    840 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    841 		 */
    842 
    843 		/* Sync the DMA map. */
    844 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    845 		    BUS_DMASYNC_PREWRITE);
    846 
    847 		/* Initialize the fragment list. */
    848 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
    849 			tfd->tfd_frags[seg].frag_word0 =
    850 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
    851 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
    852 			totlen += dmamap->dm_segs[seg].ds_len;
    853 		}
    854 
    855 #ifdef STGE_EVENT_COUNTERS
    856 		switch (dmamap->dm_nsegs) {
    857 		case 1:
    858 			STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
    859 			break;
    860 		case 2:
    861 			STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
    862 			break;
    863 		case 3:
    864 			STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
    865 			break;
    866 		case 4:
    867 			STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
    868 			break;
    869 		case 5:
    870 			STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
    871 			break;
    872 		default:
    873 			STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
    874 			break;
    875 		}
    876 #endif /* STGE_EVENT_COUNTERS */
    877 
    878 		/*
    879 		 * Initialize checksumming flags in the descriptor.
    880 		 * Byte-swap constants so the compiler can optimize.
    881 		 */
    882 		csum_flags = 0;
    883 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
    884 			STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
    885 			csum_flags |= htole64(TFD_IPChecksumEnable);
    886 		}
    887 
    888 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
    889 			STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
    890 			csum_flags |= htole64(TFD_TCPChecksumEnable);
    891 		}
    892 		else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
    893 			STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
    894 			csum_flags |= htole64(TFD_UDPChecksumEnable);
    895 		}
    896 
    897 		/*
    898 		 * Initialize the descriptor and give it to the chip.
    899 		 */
    900 		tfd->tfd_control = htole64(TFD_FrameId(nexttx) |
    901 		    TFD_WordAlign(/*totlen & */3) |
    902 		    TFD_FragCount(seg) | csum_flags |
    903 		    (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
    904 		     TFD_TxDMAIndicate : 0));
    905 
    906 		/* Sync the descriptor. */
    907 		STGE_CDTXSYNC(sc, nexttx,
    908 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    909 
    910 		/*
    911 		 * Kick the transmit DMA logic.
    912 		 */
    913 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
    914 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
    915 
    916 		/*
    917 		 * Store a pointer to the packet so we can free it later.
    918 		 */
    919 		ds->ds_mbuf = m0;
    920 
    921 		/* Advance the tx pointer. */
    922 		sc->sc_txpending++;
    923 		sc->sc_txlast = nexttx;
    924 
    925 #if NBPFILTER > 0
    926 		/*
    927 		 * Pass the packet to any BPF listeners.
    928 		 */
    929 		if (ifp->if_bpf)
    930 			bpf_mtap(ifp->if_bpf, m0);
    931 #endif /* NBPFILTER > 0 */
    932 	}
    933 
    934 	if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
    935 		/* No more slots left; notify upper layer. */
    936 		ifp->if_flags |= IFF_OACTIVE;
    937 	}
    938 
    939 	if (sc->sc_txpending != opending) {
    940 		/*
    941 		 * We enqueued packets.  If the transmitter was idle,
    942 		 * reset the txdirty pointer.
    943 		 */
    944 		if (opending == 0)
    945 			sc->sc_txdirty = firsttx;
    946 
    947 		/* Set a watchdog timer in case the chip flakes out. */
    948 		ifp->if_timer = 5;
    949 	}
    950 }
    951 
    952 /*
    953  * stge_watchdog:	[ifnet interface function]
    954  *
    955  *	Watchdog timer handler.
    956  */
    957 void
    958 stge_watchdog(struct ifnet *ifp)
    959 {
    960 	struct stge_softc *sc = ifp->if_softc;
    961 
    962 	/*
    963 	 * Sweep up first, since we don't interrupt every frame.
    964 	 */
    965 	stge_txintr(sc);
    966 	if (sc->sc_txpending != 0) {
    967 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
    968 		ifp->if_oerrors++;
    969 
    970 		(void) stge_init(ifp);
    971 
    972 		/* Try to get more packets going. */
    973 		stge_start(ifp);
    974 	}
    975 }
    976 
    977 /*
    978  * stge_ioctl:		[ifnet interface function]
    979  *
    980  *	Handle control requests from the operator.
    981  */
    982 int
    983 stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
    984 {
    985 	struct stge_softc *sc = ifp->if_softc;
    986 	struct ifreq *ifr = (struct ifreq *)data;
    987 	int s, error;
    988 
    989 	s = splnet();
    990 
    991 	switch (cmd) {
    992 	case SIOCSIFMEDIA:
    993 	case SIOCGIFMEDIA:
    994 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
    995 		break;
    996 
    997 	default:
    998 		error = ether_ioctl(ifp, cmd, data);
    999 		if (error == ENETRESET) {
   1000 			/*
   1001 			 * Multicast list has changed; set the hardware filter
   1002 			 * accordingly.
   1003 			 */
   1004 			stge_set_filter(sc);
   1005 			error = 0;
   1006 		}
   1007 		break;
   1008 	}
   1009 
   1010 	/* Try to get more packets going. */
   1011 	stge_start(ifp);
   1012 
   1013 	splx(s);
   1014 	return (error);
   1015 }
   1016 
   1017 /*
   1018  * stge_intr:
   1019  *
   1020  *	Interrupt service routine.
   1021  */
   1022 int
   1023 stge_intr(void *arg)
   1024 {
   1025 	struct stge_softc *sc = arg;
   1026 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1027 	uint32_t txstat;
   1028 	int wantinit;
   1029 	uint16_t isr;
   1030 
   1031 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
   1032 	     IS_InterruptStatus) == 0)
   1033 		return (0);
   1034 
   1035 	for (wantinit = 0; wantinit == 0;) {
   1036 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
   1037 		if ((isr & sc->sc_IntEnable) == 0)
   1038 			break;
   1039 
   1040 		/* Receive interrupts. */
   1041 		if (isr & (IE_RxDMAComplete|IE_RFDListEnd)) {
   1042 			STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
   1043 			stge_rxintr(sc);
   1044 			if (isr & IE_RFDListEnd) {
   1045 				printf("%s: receive ring overflow\n",
   1046 				    sc->sc_dev.dv_xname);
   1047 				/*
   1048 				 * XXX Should try to recover from this
   1049 				 * XXX more gracefully.
   1050 				 */
   1051 				wantinit = 1;
   1052 			}
   1053 		}
   1054 
   1055 		/* Transmit interrupts. */
   1056 		if (isr & (IE_TxDMAComplete|IE_TxComplete)) {
   1057 #ifdef STGE_EVENT_COUNTERS
   1058 			if (isr & IE_TxDMAComplete)
   1059 				STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
   1060 #endif
   1061 			stge_txintr(sc);
   1062 		}
   1063 
   1064 		/* Statistics overflow. */
   1065 		if (isr & IE_UpdateStats)
   1066 			stge_stats_update(sc);
   1067 
   1068 		/* Transmission errors. */
   1069 		if (isr & IE_TxComplete) {
   1070 			STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
   1071 			for (;;) {
   1072 				txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
   1073 				    STGE_TxStatus);
   1074 				if ((txstat & TS_TxComplete) == 0)
   1075 					break;
   1076 				if (txstat & TS_TxUnderrun) {
   1077 					sc->sc_txthresh++;
   1078 					if (sc->sc_txthresh > 0x0fff)
   1079 						sc->sc_txthresh = 0x0fff;
   1080 					printf("%s: transmit underrun, new "
   1081 					    "threshold: %d bytes\n",
   1082 					    sc->sc_dev.dv_xname,
   1083 					    sc->sc_txthresh << 5);
   1084 				}
   1085 				if (txstat & TS_MaxCollisions)
   1086 					printf("%s: excessive collisions\n",
   1087 					    sc->sc_dev.dv_xname);
   1088 			}
   1089 			wantinit = 1;
   1090 		}
   1091 
   1092 		/* Host interface errors. */
   1093 		if (isr & IE_HostError) {
   1094 			printf("%s: Host interface error\n",
   1095 			    sc->sc_dev.dv_xname);
   1096 			wantinit = 1;
   1097 		}
   1098 	}
   1099 
   1100 	if (wantinit)
   1101 		stge_init(ifp);
   1102 
   1103 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
   1104 	    sc->sc_IntEnable);
   1105 
   1106 	/* Try to get more packets going. */
   1107 	stge_start(ifp);
   1108 
   1109 	return (1);
   1110 }
   1111 
   1112 /*
   1113  * stge_txintr:
   1114  *
   1115  *	Helper; handle transmit interrupts.
   1116  */
   1117 void
   1118 stge_txintr(struct stge_softc *sc)
   1119 {
   1120 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1121 	struct stge_descsoft *ds;
   1122 	uint64_t control;
   1123 	int i;
   1124 
   1125 	ifp->if_flags &= ~IFF_OACTIVE;
   1126 
   1127 	/*
   1128 	 * Go through our Tx list and free mbufs for those
   1129 	 * frames which have been transmitted.
   1130 	 */
   1131 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
   1132 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
   1133 		ds = &sc->sc_txsoft[i];
   1134 
   1135 		STGE_CDTXSYNC(sc, i,
   1136 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1137 
   1138 		control = le64toh(sc->sc_txdescs[i].tfd_control);
   1139 		if ((control & TFD_TFDDone) == 0)
   1140 			break;
   1141 
   1142 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
   1143 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1144 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1145 		m_freem(ds->ds_mbuf);
   1146 		ds->ds_mbuf = NULL;
   1147 	}
   1148 
   1149 	/* Update the dirty transmit buffer pointer. */
   1150 	sc->sc_txdirty = i;
   1151 
   1152 	/*
   1153 	 * If there are no more pending transmissions, cancel the watchdog
   1154 	 * timer.
   1155 	 */
   1156 	if (sc->sc_txpending == 0)
   1157 		ifp->if_timer = 0;
   1158 }
   1159 
   1160 /*
   1161  * stge_rxintr:
   1162  *
   1163  *	Helper; handle receive interrupts.
   1164  */
   1165 void
   1166 stge_rxintr(struct stge_softc *sc)
   1167 {
   1168 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1169 	struct stge_descsoft *ds;
   1170 	struct mbuf *m, *tailm;
   1171 	uint64_t status;
   1172 	int i, len;
   1173 
   1174 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
   1175 		ds = &sc->sc_rxsoft[i];
   1176 
   1177 		STGE_CDRXSYNC(sc, i,
   1178 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1179 
   1180 		status = le64toh(sc->sc_rxdescs[i].rfd_status);
   1181 
   1182 		if ((status & RFD_RFDDone) == 0)
   1183 			break;
   1184 
   1185 		if (__predict_false(sc->sc_rxdiscard)) {
   1186 			STGE_INIT_RXDESC(sc, i);
   1187 			if (status & RFD_FrameEnd) {
   1188 				/* Reset our state. */
   1189 				sc->sc_rxdiscard = 0;
   1190 			}
   1191 			continue;
   1192 		}
   1193 
   1194 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1195 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1196 
   1197 		m = ds->ds_mbuf;
   1198 
   1199 		/*
   1200 		 * Add a new receive buffer to the ring.
   1201 		 */
   1202 		if (stge_add_rxbuf(sc, i) != 0) {
   1203 			/*
   1204 			 * Failed, throw away what we've done so
   1205 			 * far, and discard the rest of the packet.
   1206 			 */
   1207 			ifp->if_ierrors++;
   1208 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1209 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1210 			STGE_INIT_RXDESC(sc, i);
   1211 			if ((status & RFD_FrameEnd) == 0)
   1212 				sc->sc_rxdiscard = 1;
   1213 			if (sc->sc_rxhead != NULL)
   1214 				m_freem(sc->sc_rxhead);
   1215 			STGE_RXCHAIN_RESET(sc);
   1216 			continue;
   1217 		}
   1218 
   1219 #ifdef DIAGNOSTIC
   1220 		if (status & RFD_FrameStart) {
   1221 			KASSERT(sc->sc_rxhead == NULL);
   1222 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
   1223 		}
   1224 #endif
   1225 
   1226 		STGE_RXCHAIN_LINK(sc, m);
   1227 
   1228 		/*
   1229 		 * If this is not the end of the packet, keep
   1230 		 * looking.
   1231 		 */
   1232 		if ((status & RFD_FrameEnd) == 0) {
   1233 			sc->sc_rxlen += m->m_len;
   1234 			continue;
   1235 		}
   1236 
   1237 		/*
   1238 		 * Okay, we have the entire packet now...
   1239 		 */
   1240 		*sc->sc_rxtailp = NULL;
   1241 		m = sc->sc_rxhead;
   1242 		tailm = sc->sc_rxtail;
   1243 
   1244 		STGE_RXCHAIN_RESET(sc);
   1245 
   1246 		/*
   1247 		 * If the packet had an error, drop it.  Note we
   1248 		 * count the error later in the periodic stats update.
   1249 		 */
   1250 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
   1251 			      RFD_RxAlignmentError | RFD_RxFCSError |
   1252 			      RFD_RxLengthError)) {
   1253 			m_freem(m);
   1254 			continue;
   1255 		}
   1256 
   1257 		/*
   1258 		 * No errors.
   1259 		 *
   1260 		 * Note we have configured the chip to not include
   1261 		 * the CRC at the end of the packet.
   1262 		 */
   1263 		len = RFD_RxDMAFrameLen(status);
   1264 		tailm->m_len = len - sc->sc_rxlen;
   1265 
   1266 		/*
   1267 		 * If the packet is small enough to fit in a
   1268 		 * single header mbuf, allocate one and copy
   1269 		 * the data into it.  This greatly reduces
   1270 		 * memory consumption when we receive lots
   1271 		 * of small packets.
   1272 		 */
   1273 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
   1274 			struct mbuf *nm;
   1275 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1276 			if (nm == NULL) {
   1277 				ifp->if_ierrors++;
   1278 				m_freem(m);
   1279 				continue;
   1280 			}
   1281 			nm->m_data += 2;
   1282 			nm->m_pkthdr.len = nm->m_len = len;
   1283 			m_copydata(m, 0, len, mtod(nm, caddr_t));
   1284 			m_freem(m);
   1285 			m = nm;
   1286 		}
   1287 
   1288 		/*
   1289 		 * Set the incoming checksum information for the packet.
   1290 		 */
   1291 		if (status & RFD_IPDetected) {
   1292 			STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1293 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1294 			if (status & RFD_IPError)
   1295 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1296 			if (status & RFD_TCPDetected) {
   1297 				STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   1298 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1299 				if (status & RFD_TCPError)
   1300 					m->m_pkthdr.csum_flags |=
   1301 					    M_CSUM_TCP_UDP_BAD;
   1302 			} else if (status & RFD_UDPDetected) {
   1303 				STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   1304 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1305 				if (status & RFD_UDPError)
   1306 					m->m_pkthdr.csum_flags |=
   1307 					    M_CSUM_TCP_UDP_BAD;
   1308 			}
   1309 		}
   1310 
   1311 		m->m_pkthdr.rcvif = ifp;
   1312 		m->m_pkthdr.len = len;
   1313 
   1314 #if NBPFILTER > 0
   1315 		/*
   1316 		 * Pass this up to any BPF listeners, but only
   1317 		 * pass if up the stack if it's for us.
   1318 		 */
   1319 		if (ifp->if_bpf)
   1320 			bpf_mtap(ifp->if_bpf, m);
   1321 #endif /* NBPFILTER > 0 */
   1322 
   1323 		/* Pass it on. */
   1324 		(*ifp->if_input)(ifp, m);
   1325 	}
   1326 
   1327 	/* Update the receive pointer. */
   1328 	sc->sc_rxptr = i;
   1329 }
   1330 
   1331 /*
   1332  * stge_tick:
   1333  *
   1334  *	One second timer, used to tick the MII.
   1335  */
   1336 void
   1337 stge_tick(void *arg)
   1338 {
   1339 	struct stge_softc *sc = arg;
   1340 	int s;
   1341 
   1342 	s = splnet();
   1343 	mii_tick(&sc->sc_mii);
   1344 	stge_stats_update(sc);
   1345 	splx(s);
   1346 
   1347 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
   1348 }
   1349 
   1350 /*
   1351  * stge_stats_update:
   1352  *
   1353  *	Read the TC9021 statistics counters.
   1354  */
   1355 void
   1356 stge_stats_update(struct stge_softc *sc)
   1357 {
   1358 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1359 	bus_space_tag_t st = sc->sc_st;
   1360 	bus_space_handle_t sh = sc->sc_sh;
   1361 
   1362 	(void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
   1363 
   1364 	ifp->if_ipackets +=
   1365 	    bus_space_read_4(st, sh, STGE_FramesRcvdOk);
   1366 
   1367 	ifp->if_ierrors +=
   1368 	    (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
   1369 
   1370 	(void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
   1371 
   1372 	ifp->if_opackets +=
   1373 	    bus_space_read_4(st, sh, STGE_FramesXmtdOk);
   1374 
   1375 	ifp->if_collisions +=
   1376 	    bus_space_read_4(st, sh, STGE_LateCollisions) +
   1377 	    bus_space_read_4(st, sh, STGE_MultiColFrames) +
   1378 	    bus_space_read_4(st, sh, STGE_SingleColFrames);
   1379 
   1380 	ifp->if_oerrors +=
   1381 	    (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
   1382 	    (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
   1383 }
   1384 
   1385 /*
   1386  * stge_reset:
   1387  *
   1388  *	Perform a soft reset on the TC9021.
   1389  */
   1390 void
   1391 stge_reset(struct stge_softc *sc)
   1392 {
   1393 	uint32_t ac;
   1394 	int i;
   1395 
   1396 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
   1397 
   1398 	/*
   1399 	 * Only assert RstOut if we're fiber.  We need GMII clocks
   1400 	 * to be present in order for the reset to complete on fiber
   1401 	 * cards.
   1402 	 */
   1403 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
   1404 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
   1405 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
   1406 	    (sc->sc_usefiber ? AC_RstOut : 0));
   1407 
   1408 	delay(50000);
   1409 
   1410 	for (i = 0; i < STGE_TIMEOUT; i++) {
   1411 		delay(5000);
   1412 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
   1413 		     AC_ResetBusy) == 0)
   1414 			break;
   1415 	}
   1416 
   1417 	if (i == STGE_TIMEOUT)
   1418 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   1419 
   1420 	delay(1000);
   1421 }
   1422 
   1423 /*
   1424  * stge_init:		[ ifnet interface function ]
   1425  *
   1426  *	Initialize the interface.  Must be called at splnet().
   1427  */
   1428 int
   1429 stge_init(struct ifnet *ifp)
   1430 {
   1431 	struct stge_softc *sc = ifp->if_softc;
   1432 	bus_space_tag_t st = sc->sc_st;
   1433 	bus_space_handle_t sh = sc->sc_sh;
   1434 	struct stge_descsoft *ds;
   1435 	int i, error = 0;
   1436 
   1437 	/*
   1438 	 * Cancel any pending I/O.
   1439 	 */
   1440 	stge_stop(ifp, 0);
   1441 
   1442 	/*
   1443 	 * Reset the chip to a known state.
   1444 	 */
   1445 	stge_reset(sc);
   1446 
   1447 	/*
   1448 	 * Initialize the transmit descriptor ring.
   1449 	 */
   1450 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1451 	for (i = 0; i < STGE_NTXDESC; i++) {
   1452 		sc->sc_txdescs[i].tfd_next =
   1453 		    (uint64_t) STGE_CDTXADDR(sc, STGE_NEXTTX(i));
   1454 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
   1455 	}
   1456 	sc->sc_txpending = 0;
   1457 	sc->sc_txdirty = 0;
   1458 	sc->sc_txlast = STGE_NTXDESC - 1;
   1459 
   1460 	/*
   1461 	 * Initialize the receive descriptor and receive job
   1462 	 * descriptor rings.
   1463 	 */
   1464 	for (i = 0; i < STGE_NRXDESC; i++) {
   1465 		ds = &sc->sc_rxsoft[i];
   1466 		if (ds->ds_mbuf == NULL) {
   1467 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
   1468 				printf("%s: unable to allocate or map rx "
   1469 				    "buffer %d, error = %d\n",
   1470 				    sc->sc_dev.dv_xname, i, error);
   1471 				/*
   1472 				 * XXX Should attempt to run with fewer receive
   1473 				 * XXX buffers instead of just failing.
   1474 				 */
   1475 				stge_rxdrain(sc);
   1476 				goto out;
   1477 			}
   1478 		} else
   1479 			STGE_INIT_RXDESC(sc, i);
   1480 	}
   1481 	sc->sc_rxptr = 0;
   1482 	sc->sc_rxdiscard = 0;
   1483 	STGE_RXCHAIN_RESET(sc);
   1484 
   1485 	/* Set the station address. */
   1486 	bus_space_write_2(st, sh, STGE_StationAddress0,
   1487 	    LLADDR(ifp->if_sadl)[0] | (LLADDR(ifp->if_sadl)[1] << 8));
   1488 	bus_space_write_2(st, sh, STGE_StationAddress1,
   1489 	    LLADDR(ifp->if_sadl)[2] | (LLADDR(ifp->if_sadl)[3] << 8));
   1490 	bus_space_write_2(st, sh, STGE_StationAddress2,
   1491 	    LLADDR(ifp->if_sadl)[4] | (LLADDR(ifp->if_sadl)[5] << 8));
   1492 
   1493 	/*
   1494 	 * Set the statistics masks.  Disable all the RMON stats,
   1495 	 * and disable selected stats in the non-RMON stats registers.
   1496 	 */
   1497 	bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
   1498 	bus_space_write_4(st, sh, STGE_StatisticsMask,
   1499 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
   1500 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
   1501 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
   1502 	    (1U << 21));
   1503 
   1504 	/* Set up the receive filter. */
   1505 	stge_set_filter(sc);
   1506 
   1507 	/*
   1508 	 * Give the transmit and receive ring to the chip.
   1509 	 */
   1510 	bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
   1511 	bus_space_write_4(st, sh, STGE_TFDListPtrLo,
   1512 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
   1513 
   1514 	bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
   1515 	bus_space_write_4(st, sh, STGE_RFDListPtrLo,
   1516 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
   1517 
   1518 	/*
   1519 	 * Initialize the Tx auto-poll period.  It's OK to make this number
   1520 	 * large (255 is the max, but we use 127) -- we explicitly kick the
   1521 	 * transmit engine when there's actually a packet.
   1522 	 */
   1523 	bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
   1524 
   1525 	/* ..and the Rx auto-poll period. */
   1526 	bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
   1527 
   1528 	/* Initialize the Tx start threshold. */
   1529 	bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
   1530 
   1531 	/*
   1532 	 * Initialize the Rx DMA interrupt control register.  We
   1533 	 * request an interrupt after every incoming packet, but
   1534 	 * defer it for 32us (64 * 512 ns).
   1535 	 */
   1536 	bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
   1537 	    RDIC_RxFrameCount(1) | RDIC_RxDMAWaitTime(512));
   1538 
   1539 	/*
   1540 	 * Initialize the interrupt mask.
   1541 	 */
   1542 	sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
   1543 	    IE_TxDMAComplete | IE_RxDMAComplete | IE_RFDListEnd;
   1544 	bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
   1545 	bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
   1546 
   1547 	/*
   1548 	 * Configure the DMA engine.
   1549 	 * XXX Should auto-tune TxBurstLimit.
   1550 	 */
   1551 	bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
   1552 	    DMAC_TxBurstLimit(3));
   1553 
   1554 	/*
   1555 	 * XXX Configure flow control thresholds.
   1556 	 */
   1557 
   1558 	/*
   1559 	 * Set the maximum frame size.
   1560 	 */
   1561 	bus_space_write_2(st, sh, STGE_MaxFrameSize,
   1562 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
   1563 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
   1564 	     ETHER_VLAN_ENCAP_LEN : 0));
   1565 
   1566 	/*
   1567 	 * Initialize MacCtrl -- do it before setting the media,
   1568 	 * as setting the media will actually program the register.
   1569 	 *
   1570 	 * Note: We have to poke the IFS value before poking
   1571 	 * anything else.
   1572 	 */
   1573 	sc->sc_MACCtrl = MC_IFSSelect(0);
   1574 	bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
   1575 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
   1576 
   1577 	if (sc->sc_rev >= 6) {		/* >= B.2 */
   1578 		/* Multi-frag frame bug work-around. */
   1579 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1580 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
   1581 
   1582 		/* Tx Poll Now bug work-around. */
   1583 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1584 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
   1585 	}
   1586 
   1587 	/*
   1588 	 * Set the current media.
   1589 	 */
   1590 	mii_mediachg(&sc->sc_mii);
   1591 
   1592 	/*
   1593 	 * Start the one second MII clock.
   1594 	 */
   1595 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
   1596 
   1597 	/*
   1598 	 * ...all done!
   1599 	 */
   1600 	ifp->if_flags |= IFF_RUNNING;
   1601 	ifp->if_flags &= ~IFF_OACTIVE;
   1602 
   1603  out:
   1604 	if (error)
   1605 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1606 	return (error);
   1607 }
   1608 
   1609 /*
   1610  * stge_drain:
   1611  *
   1612  *	Drain the receive queue.
   1613  */
   1614 void
   1615 stge_rxdrain(struct stge_softc *sc)
   1616 {
   1617 	struct stge_descsoft *ds;
   1618 	int i;
   1619 
   1620 	for (i = 0; i < STGE_NRXDESC; i++) {
   1621 		ds = &sc->sc_rxsoft[i];
   1622 		if (ds->ds_mbuf != NULL) {
   1623 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1624 			ds->ds_mbuf->m_next = NULL;
   1625 			m_freem(ds->ds_mbuf);
   1626 			ds->ds_mbuf = NULL;
   1627 		}
   1628 	}
   1629 }
   1630 
   1631 /*
   1632  * stge_stop:		[ ifnet interface function ]
   1633  *
   1634  *	Stop transmission on the interface.
   1635  */
   1636 void
   1637 stge_stop(struct ifnet *ifp, int disable)
   1638 {
   1639 	struct stge_softc *sc = ifp->if_softc;
   1640 	struct stge_descsoft *ds;
   1641 	int i;
   1642 
   1643 	/*
   1644 	 * Stop the one second clock.
   1645 	 */
   1646 	callout_stop(&sc->sc_tick_ch);
   1647 
   1648 	/* Down the MII. */
   1649 	mii_down(&sc->sc_mii);
   1650 
   1651 	/*
   1652 	 * Disable interrupts.
   1653 	 */
   1654 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
   1655 
   1656 	/*
   1657 	 * Stop receiver, transmitter, and stats update.
   1658 	 */
   1659 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
   1660 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
   1661 
   1662 	/*
   1663 	 * Stop the transmit and receive DMA.
   1664 	 */
   1665 	stge_dma_wait(sc);
   1666 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
   1667 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
   1668 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
   1669 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
   1670 
   1671 	/*
   1672 	 * Release any queued transmit buffers.
   1673 	 */
   1674 	for (i = 0; i < STGE_NTXDESC; i++) {
   1675 		ds = &sc->sc_txsoft[i];
   1676 		if (ds->ds_mbuf != NULL) {
   1677 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1678 			m_freem(ds->ds_mbuf);
   1679 			ds->ds_mbuf = NULL;
   1680 		}
   1681 	}
   1682 
   1683 	if (disable)
   1684 		stge_rxdrain(sc);
   1685 
   1686 	/*
   1687 	 * Mark the interface down and cancel the watchdog timer.
   1688 	 */
   1689 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1690 	ifp->if_timer = 0;
   1691 }
   1692 
   1693 #if 0
   1694 static int
   1695 stge_eeprom_wait(struct stge_softc *sc)
   1696 {
   1697 	int i;
   1698 
   1699 	for (i = 0; i < STGE_TIMEOUT; i++) {
   1700 		delay(1000);
   1701 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
   1702 		     EC_EepromBusy) == 0)
   1703 			return (0);
   1704 	}
   1705 	return (1);
   1706 }
   1707 
   1708 /*
   1709  * stge_read_eeprom:
   1710  *
   1711  *	Read data from the serial EEPROM.
   1712  */
   1713 void
   1714 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
   1715 {
   1716 
   1717 	if (stge_eeprom_wait(sc))
   1718 		printf("%s: EEPROM failed to come ready\n",
   1719 		    sc->sc_dev.dv_xname);
   1720 
   1721 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
   1722 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
   1723 	if (stge_eeprom_wait(sc))
   1724 		printf("%s: EEPROM read timed out\n",
   1725 		    sc->sc_dev.dv_xname);
   1726 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
   1727 }
   1728 #endif /* 0 */
   1729 
   1730 /*
   1731  * stge_add_rxbuf:
   1732  *
   1733  *	Add a receive buffer to the indicated descriptor.
   1734  */
   1735 int
   1736 stge_add_rxbuf(struct stge_softc *sc, int idx)
   1737 {
   1738 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
   1739 	struct mbuf *m;
   1740 	int error;
   1741 
   1742 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1743 	if (m == NULL)
   1744 		return (ENOBUFS);
   1745 
   1746 	MCLGET(m, M_DONTWAIT);
   1747 	if ((m->m_flags & M_EXT) == 0) {
   1748 		m_freem(m);
   1749 		return (ENOBUFS);
   1750 	}
   1751 
   1752 	m->m_data = m->m_ext.ext_buf + 2;
   1753 	m->m_len = MCLBYTES - 2;
   1754 
   1755 	if (ds->ds_mbuf != NULL)
   1756 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1757 
   1758 	ds->ds_mbuf = m;
   1759 
   1760 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
   1761 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1762 	if (error) {
   1763 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1764 		    sc->sc_dev.dv_xname, idx, error);
   1765 		panic("stge_add_rxbuf");	/* XXX */
   1766 	}
   1767 
   1768 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1769 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1770 
   1771 	STGE_INIT_RXDESC(sc, idx);
   1772 
   1773 	return (0);
   1774 }
   1775 
   1776 /*
   1777  * stge_set_filter:
   1778  *
   1779  *	Set up the receive filter.
   1780  */
   1781 void
   1782 stge_set_filter(struct stge_softc *sc)
   1783 {
   1784 	struct ethercom *ec = &sc->sc_ethercom;
   1785 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1786 	struct ether_multi *enm;
   1787 	struct ether_multistep step;
   1788 	uint32_t crc;
   1789 	uint32_t mchash[2];
   1790 
   1791 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
   1792 	if (ifp->if_flags & IFF_BROADCAST)
   1793 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
   1794 
   1795 	if (ifp->if_flags & IFF_PROMISC) {
   1796 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
   1797 		goto allmulti;
   1798 	}
   1799 
   1800 	/*
   1801 	 * Set up the multicast address filter by passing all multicast
   1802 	 * addresses through a CRC generator, and then using the low-order
   1803 	 * 6 bits as an index into the 64 bit multicast hash table.  The
   1804 	 * high order bits select the register, while the rest of the bits
   1805 	 * select the bit within the register.
   1806 	 */
   1807 
   1808 	memset(mchash, 0, sizeof(mchash));
   1809 
   1810 	ETHER_FIRST_MULTI(step, ec, enm);
   1811 	if (enm == NULL)
   1812 		goto done;
   1813 
   1814 	while (enm != NULL) {
   1815 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1816 			/*
   1817 			 * We must listen to a range of multicast addresses.
   1818 			 * For now, just accept all multicasts, rather than
   1819 			 * trying to set only those filter bits needed to match
   1820 			 * the range.  (At this time, the only use of address
   1821 			 * ranges is for IP multicast routing, for which the
   1822 			 * range is big enough to require all bits set.)
   1823 			 */
   1824 			goto allmulti;
   1825 		}
   1826 
   1827 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1828 
   1829 		/* Just want the 6 least significant bits. */
   1830 		crc &= 0x3f;
   1831 
   1832 		/* Set the corresponding bit in the hash table. */
   1833 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
   1834 
   1835 		ETHER_NEXT_MULTI(step, enm);
   1836 	}
   1837 
   1838 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
   1839 
   1840 	ifp->if_flags &= ~IFF_ALLMULTI;
   1841 	goto done;
   1842 
   1843  allmulti:
   1844 	ifp->if_flags |= IFF_ALLMULTI;
   1845 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
   1846 
   1847  done:
   1848 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1849 		/*
   1850 		 * Program the multicast hash table.
   1851 		 */
   1852 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
   1853 		    mchash[0]);
   1854 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
   1855 		    mchash[1]);
   1856 	}
   1857 
   1858 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
   1859 	    sc->sc_ReceiveMode);
   1860 }
   1861 
   1862 /*
   1863  * stge_mii_readreg:	[mii interface function]
   1864  *
   1865  *	Read a PHY register on the MII of the TC9021.
   1866  */
   1867 int
   1868 stge_mii_readreg(struct device *self, int phy, int reg)
   1869 {
   1870 
   1871 	return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
   1872 }
   1873 
   1874 /*
   1875  * stge_mii_writereg:	[mii interface function]
   1876  *
   1877  *	Write a PHY register on the MII of the TC9021.
   1878  */
   1879 void
   1880 stge_mii_writereg(struct device *self, int phy, int reg, int val)
   1881 {
   1882 
   1883 	mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
   1884 }
   1885 
   1886 /*
   1887  * stge_mii_statchg:	[mii interface function]
   1888  *
   1889  *	Callback from MII layer when media changes.
   1890  */
   1891 void
   1892 stge_mii_statchg(struct device *self)
   1893 {
   1894 	struct stge_softc *sc = (struct stge_softc *) self;
   1895 
   1896 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   1897 		sc->sc_MACCtrl |= MC_DuplexSelect;
   1898 	else
   1899 		sc->sc_MACCtrl &= ~MC_DuplexSelect;
   1900 
   1901 	/* XXX 802.1x flow-control? */
   1902 
   1903 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
   1904 }
   1905 
   1906 /*
   1907  * sste_mii_bitbang_read: [mii bit-bang interface function]
   1908  *
   1909  *	Read the MII serial port for the MII bit-bang module.
   1910  */
   1911 uint32_t
   1912 stge_mii_bitbang_read(struct device *self)
   1913 {
   1914 	struct stge_softc *sc = (void *) self;
   1915 
   1916 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
   1917 }
   1918 
   1919 /*
   1920  * stge_mii_bitbang_write: [mii big-bang interface function]
   1921  *
   1922  *	Write the MII serial port for the MII bit-bang module.
   1923  */
   1924 void
   1925 stge_mii_bitbang_write(struct device *self, uint32_t val)
   1926 {
   1927 	struct stge_softc *sc = (void *) self;
   1928 
   1929 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
   1930 	    val | sc->sc_PhyCtrl);
   1931 }
   1932 
   1933 /*
   1934  * stge_mediastatus:	[ifmedia interface function]
   1935  *
   1936  *	Get the current interface media status.
   1937  */
   1938 void
   1939 stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   1940 {
   1941 	struct stge_softc *sc = ifp->if_softc;
   1942 
   1943 	mii_pollstat(&sc->sc_mii);
   1944 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   1945 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   1946 }
   1947 
   1948 /*
   1949  * stge_mediachange:	[ifmedia interface function]
   1950  *
   1951  *	Set hardware to newly-selected media.
   1952  */
   1953 int
   1954 stge_mediachange(struct ifnet *ifp)
   1955 {
   1956 	struct stge_softc *sc = ifp->if_softc;
   1957 
   1958 	if (ifp->if_flags & IFF_UP)
   1959 		mii_mediachg(&sc->sc_mii);
   1960 	return (0);
   1961 }
   1962