Home | History | Annotate | Line # | Download | only in pci
if_stge.c revision 1.12
      1 /*	$NetBSD: if_stge.c,v 1.12 2002/10/02 16:51:31 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Device driver for the Sundance Tech. TC9021 10/100/1000
     41  * Ethernet controller.
     42  */
     43 
     44 #include <sys/cdefs.h>
     45 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.12 2002/10/02 16:51:31 thorpej Exp $");
     46 
     47 #include "bpfilter.h"
     48 
     49 #include <sys/param.h>
     50 #include <sys/systm.h>
     51 #include <sys/callout.h>
     52 #include <sys/mbuf.h>
     53 #include <sys/malloc.h>
     54 #include <sys/kernel.h>
     55 #include <sys/socket.h>
     56 #include <sys/ioctl.h>
     57 #include <sys/errno.h>
     58 #include <sys/device.h>
     59 #include <sys/queue.h>
     60 
     61 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     62 
     63 #include <net/if.h>
     64 #include <net/if_dl.h>
     65 #include <net/if_media.h>
     66 #include <net/if_ether.h>
     67 
     68 #if NBPFILTER > 0
     69 #include <net/bpf.h>
     70 #endif
     71 
     72 #include <machine/bus.h>
     73 #include <machine/intr.h>
     74 
     75 #include <dev/mii/mii.h>
     76 #include <dev/mii/miivar.h>
     77 #include <dev/mii/mii_bitbang.h>
     78 
     79 #include <dev/pci/pcireg.h>
     80 #include <dev/pci/pcivar.h>
     81 #include <dev/pci/pcidevs.h>
     82 
     83 #include <dev/pci/if_stgereg.h>
     84 
     85 /*
     86  * Transmit descriptor list size.
     87  */
     88 #define	STGE_NTXDESC		256
     89 #define	STGE_NTXDESC_MASK	(STGE_NTXDESC - 1)
     90 #define	STGE_NEXTTX(x)		(((x) + 1) & STGE_NTXDESC_MASK)
     91 
     92 /*
     93  * Receive descriptor list size.
     94  */
     95 #define	STGE_NRXDESC		256
     96 #define	STGE_NRXDESC_MASK	(STGE_NRXDESC - 1)
     97 #define	STGE_NEXTRX(x)		(((x) + 1) & STGE_NRXDESC_MASK)
     98 
     99 /*
    100  * Only interrupt every N frames.  Must be a power-of-two.
    101  */
    102 #define	STGE_TXINTR_SPACING	16
    103 #define	STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
    104 
    105 /*
    106  * Control structures are DMA'd to the TC9021 chip.  We allocate them in
    107  * a single clump that maps to a single DMA segment to make several things
    108  * easier.
    109  */
    110 struct stge_control_data {
    111 	/*
    112 	 * The transmit descriptors.
    113 	 */
    114 	struct stge_tfd scd_txdescs[STGE_NTXDESC];
    115 
    116 	/*
    117 	 * The receive descriptors.
    118 	 */
    119 	struct stge_rfd scd_rxdescs[STGE_NRXDESC];
    120 };
    121 
    122 #define	STGE_CDOFF(x)	offsetof(struct stge_control_data, x)
    123 #define	STGE_CDTXOFF(x)	STGE_CDOFF(scd_txdescs[(x)])
    124 #define	STGE_CDRXOFF(x)	STGE_CDOFF(scd_rxdescs[(x)])
    125 
    126 /*
    127  * Software state for transmit and receive jobs.
    128  */
    129 struct stge_descsoft {
    130 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
    131 	bus_dmamap_t ds_dmamap;		/* our DMA map */
    132 };
    133 
    134 /*
    135  * Software state per device.
    136  */
    137 struct stge_softc {
    138 	struct device sc_dev;		/* generic device information */
    139 	bus_space_tag_t sc_st;		/* bus space tag */
    140 	bus_space_handle_t sc_sh;	/* bus space handle */
    141 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    142 	struct ethercom sc_ethercom;	/* ethernet common data */
    143 	void *sc_sdhook;		/* shutdown hook */
    144 	int sc_rev;			/* silicon revision */
    145 
    146 	void *sc_ih;			/* interrupt cookie */
    147 
    148 	struct mii_data sc_mii;		/* MII/media information */
    149 
    150 	struct callout sc_tick_ch;	/* tick callout */
    151 
    152 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    153 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    154 
    155 	/*
    156 	 * Software state for transmit and receive descriptors.
    157 	 */
    158 	struct stge_descsoft sc_txsoft[STGE_NTXDESC];
    159 	struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
    160 
    161 	/*
    162 	 * Control data structures.
    163 	 */
    164 	struct stge_control_data *sc_control_data;
    165 #define	sc_txdescs	sc_control_data->scd_txdescs
    166 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    167 
    168 #ifdef STGE_EVENT_COUNTERS
    169 	/*
    170 	 * Event counters.
    171 	 */
    172 	struct evcnt sc_ev_txstall;	/* Tx stalled */
    173 	struct evcnt sc_ev_txdmaintr;	/* Tx DMA interrupts */
    174 	struct evcnt sc_ev_txindintr;	/* Tx Indicate interrupts */
    175 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    176 
    177 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
    178 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
    179 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
    180 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
    181 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
    182 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
    183 	struct evcnt sc_ev_txcopy;	/* Tx packets that we had to copy */
    184 
    185 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    186 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    187 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
    188 
    189 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    190 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    191 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    192 #endif /* STGE_EVENT_COUNTERS */
    193 
    194 	int	sc_txpending;		/* number of Tx requests pending */
    195 	int	sc_txdirty;		/* first dirty Tx descriptor */
    196 	int	sc_txlast;		/* last used Tx descriptor */
    197 
    198 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    199 	int	sc_rxdiscard;
    200 	int	sc_rxlen;
    201 	struct mbuf *sc_rxhead;
    202 	struct mbuf *sc_rxtail;
    203 	struct mbuf **sc_rxtailp;
    204 
    205 	int	sc_txthresh;		/* Tx threshold */
    206 	int	sc_usefiber;		/* if we're fiber */
    207 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
    208 	uint32_t sc_MACCtrl;		/* prototype MacCtrl register */
    209 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
    210 	uint16_t sc_ReceiveMode;	/* prototype ReceiveMode register */
    211 	uint8_t sc_PhyCtrl;		/* prototype PhyCtrl register */
    212 };
    213 
    214 #define	STGE_RXCHAIN_RESET(sc)						\
    215 do {									\
    216 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    217 	*(sc)->sc_rxtailp = NULL;					\
    218 	(sc)->sc_rxlen = 0;						\
    219 } while (/*CONSTCOND*/0)
    220 
    221 #define	STGE_RXCHAIN_LINK(sc, m)					\
    222 do {									\
    223 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    224 	(sc)->sc_rxtailp = &(m)->m_next;				\
    225 } while (/*CONSTCOND*/0)
    226 
    227 #ifdef STGE_EVENT_COUNTERS
    228 #define	STGE_EVCNT_INCR(ev)	(ev)->ev_count++
    229 #else
    230 #define	STGE_EVCNT_INCR(ev)	/* nothing */
    231 #endif
    232 
    233 #define	STGE_CDTXADDR(sc, x)	((sc)->sc_cddma + STGE_CDTXOFF((x)))
    234 #define	STGE_CDRXADDR(sc, x)	((sc)->sc_cddma + STGE_CDRXOFF((x)))
    235 
    236 #define	STGE_CDTXSYNC(sc, x, ops)					\
    237 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    238 	    STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
    239 
    240 #define	STGE_CDRXSYNC(sc, x, ops)					\
    241 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    242 	    STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
    243 
    244 #define	STGE_INIT_RXDESC(sc, x)						\
    245 do {									\
    246 	struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
    247 	struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)];		\
    248 									\
    249 	/*								\
    250 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    251 	 * so that the payload after the Ethernet header is aligned	\
    252 	 * to a 4-byte boundary.					\
    253 	 */								\
    254 	__rfd->rfd_frag.frag_word0 =					\
    255 	    htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
    256 	    FRAG_LEN(MCLBYTES - 2));					\
    257 	__rfd->rfd_next =						\
    258 	    htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x))));	\
    259 	__rfd->rfd_status = 0;						\
    260 	STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    261 } while (/*CONSTCOND*/0)
    262 
    263 #define STGE_TIMEOUT 1000
    264 
    265 void	stge_start(struct ifnet *);
    266 void	stge_watchdog(struct ifnet *);
    267 int	stge_ioctl(struct ifnet *, u_long, caddr_t);
    268 int	stge_init(struct ifnet *);
    269 void	stge_stop(struct ifnet *, int);
    270 
    271 void	stge_shutdown(void *);
    272 
    273 void	stge_reset(struct stge_softc *);
    274 void	stge_rxdrain(struct stge_softc *);
    275 int	stge_add_rxbuf(struct stge_softc *, int);
    276 #if 0
    277 void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
    278 #endif
    279 void	stge_tick(void *);
    280 
    281 void	stge_stats_update(struct stge_softc *);
    282 
    283 void	stge_set_filter(struct stge_softc *);
    284 
    285 int	stge_intr(void *);
    286 void	stge_txintr(struct stge_softc *);
    287 void	stge_rxintr(struct stge_softc *);
    288 
    289 int	stge_mii_readreg(struct device *, int, int);
    290 void	stge_mii_writereg(struct device *, int, int, int);
    291 void	stge_mii_statchg(struct device *);
    292 
    293 int	stge_mediachange(struct ifnet *);
    294 void	stge_mediastatus(struct ifnet *, struct ifmediareq *);
    295 
    296 int	stge_match(struct device *, struct cfdata *, void *);
    297 void	stge_attach(struct device *, struct device *, void *);
    298 
    299 int	stge_copy_small = 0;
    300 
    301 CFATTACH_DECL(stge, sizeof(struct stge_softc),
    302     stge_match, stge_attach, NULL, NULL);
    303 
    304 uint32_t stge_mii_bitbang_read(struct device *);
    305 void	stge_mii_bitbang_write(struct device *, uint32_t);
    306 
    307 const struct mii_bitbang_ops stge_mii_bitbang_ops = {
    308 	stge_mii_bitbang_read,
    309 	stge_mii_bitbang_write,
    310 	{
    311 		PC_MgmtData,		/* MII_BIT_MDO */
    312 		PC_MgmtData,		/* MII_BIT_MDI */
    313 		PC_MgmtClk,		/* MII_BIT_MDC */
    314 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
    315 		0,			/* MII_BIT_DIR_PHY_HOST */
    316 	}
    317 };
    318 
    319 /*
    320  * Devices supported by this driver.
    321  */
    322 const struct stge_product {
    323 	pci_vendor_id_t		stge_vendor;
    324 	pci_product_id_t	stge_product;
    325 	const char		*stge_name;
    326 } stge_products[] = {
    327 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST2021,
    328 	  "Sundance ST-2021 Gigabit Ethernet" },
    329 
    330 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021,
    331 	  "Tamarack TC9021 Gigabit Ethernet" },
    332 
    333 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021_ALT,
    334 	  "Tamarack TC9021 Gigabit Ethernet" },
    335 
    336 	/*
    337 	 * The Sundance sample boards use the Sundance vendor ID,
    338 	 * but the Tamarack product ID.
    339 	 */
    340 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021,
    341 	  "Sundance TC9021 Gigabit Ethernet" },
    342 
    343 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021_ALT,
    344 	  "Sundance TC9021 Gigabit Ethernet" },
    345 
    346 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL4000,
    347 	  "D-Link DL-4000 Gigabit Ethernet" },
    348 
    349 	{ PCI_VENDOR_ANTARES,		PCI_PRODUCT_ANTARES_TC9021,
    350 	  "Antares Gigabit Ethernet" },
    351 
    352 	{ 0,				0,
    353 	  NULL },
    354 };
    355 
    356 static const struct stge_product *
    357 stge_lookup(const struct pci_attach_args *pa)
    358 {
    359 	const struct stge_product *sp;
    360 
    361 	for (sp = stge_products; sp->stge_name != NULL; sp++) {
    362 		if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
    363 		    PCI_PRODUCT(pa->pa_id) == sp->stge_product)
    364 			return (sp);
    365 	}
    366 	return (NULL);
    367 }
    368 
    369 int
    370 stge_match(struct device *parent, struct cfdata *cf, void *aux)
    371 {
    372 	struct pci_attach_args *pa = aux;
    373 
    374 	if (stge_lookup(pa) != NULL)
    375 		return (1);
    376 
    377 	return (0);
    378 }
    379 
    380 void
    381 stge_attach(struct device *parent, struct device *self, void *aux)
    382 {
    383 	struct stge_softc *sc = (struct stge_softc *) self;
    384 	struct pci_attach_args *pa = aux;
    385 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    386 	pci_chipset_tag_t pc = pa->pa_pc;
    387 	pci_intr_handle_t ih;
    388 	const char *intrstr = NULL;
    389 	bus_space_tag_t iot, memt;
    390 	bus_space_handle_t ioh, memh;
    391 	bus_dma_segment_t seg;
    392 	int ioh_valid, memh_valid;
    393 	int i, rseg, error;
    394 	const struct stge_product *sp;
    395 	pcireg_t pmode;
    396 	uint8_t enaddr[ETHER_ADDR_LEN];
    397 	int pmreg;
    398 
    399 	callout_init(&sc->sc_tick_ch);
    400 
    401 	sp = stge_lookup(pa);
    402 	if (sp == NULL) {
    403 		printf("\n");
    404 		panic("ste_attach: impossible");
    405 	}
    406 
    407 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    408 
    409 	printf(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
    410 
    411 	/*
    412 	 * Map the device.
    413 	 */
    414 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
    415 	    PCI_MAPREG_TYPE_IO, 0,
    416 	    &iot, &ioh, NULL, NULL) == 0);
    417 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
    418 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    419 	    &memt, &memh, NULL, NULL) == 0);
    420 
    421 	if (memh_valid) {
    422 		sc->sc_st = memt;
    423 		sc->sc_sh = memh;
    424 	} else if (ioh_valid) {
    425 		sc->sc_st = iot;
    426 		sc->sc_sh = ioh;
    427 	} else {
    428 		printf("%s: unable to map device registers\n",
    429 		    sc->sc_dev.dv_xname);
    430 		return;
    431 	}
    432 
    433 	sc->sc_dmat = pa->pa_dmat;
    434 
    435 	/* Enable bus mastering. */
    436 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    437 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    438 	    PCI_COMMAND_MASTER_ENABLE);
    439 
    440 	/* Get it out of power save mode if needed. */
    441 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    442 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
    443 		if (pmode == 3) {
    444 			/*
    445 			 * The card has lost all configuration data in
    446 			 * this state, so punt.
    447 			 */
    448 			printf("%s: unable to wake up from power state D3\n",
    449 			    sc->sc_dev.dv_xname);
    450 			return;
    451 		}
    452 		if (pmode != 0) {
    453 			printf("%s: waking up from power state D%d\n",
    454 			    sc->sc_dev.dv_xname, pmode);
    455 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
    456 		}
    457 	}
    458 
    459 	/*
    460 	 * Map and establish our interrupt.
    461 	 */
    462 	if (pci_intr_map(pa, &ih)) {
    463 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    464 		return;
    465 	}
    466 	intrstr = pci_intr_string(pc, ih);
    467 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
    468 	if (sc->sc_ih == NULL) {
    469 		printf("%s: unable to establish interrupt",
    470 		    sc->sc_dev.dv_xname);
    471 		if (intrstr != NULL)
    472 			printf(" at %s", intrstr);
    473 		printf("\n");
    474 		return;
    475 	}
    476 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    477 
    478 	/*
    479 	 * Allocate the control data structures, and create and load the
    480 	 * DMA map for it.
    481 	 */
    482 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    483 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    484 	    0)) != 0) {
    485 		printf("%s: unable to allocate control data, error = %d\n",
    486 		    sc->sc_dev.dv_xname, error);
    487 		goto fail_0;
    488 	}
    489 
    490 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    491 	    sizeof(struct stge_control_data), (caddr_t *)&sc->sc_control_data,
    492 	    BUS_DMA_COHERENT)) != 0) {
    493 		printf("%s: unable to map control data, error = %d\n",
    494 		    sc->sc_dev.dv_xname, error);
    495 		goto fail_1;
    496 	}
    497 
    498 	if ((error = bus_dmamap_create(sc->sc_dmat,
    499 	    sizeof(struct stge_control_data), 1,
    500 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    501 		printf("%s: unable to create control data DMA map, "
    502 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    503 		goto fail_2;
    504 	}
    505 
    506 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    507 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
    508 	    0)) != 0) {
    509 		printf("%s: unable to load control data DMA map, error = %d\n",
    510 		    sc->sc_dev.dv_xname, error);
    511 		goto fail_3;
    512 	}
    513 
    514 	/*
    515 	 * Create the transmit buffer DMA maps.  Note that rev B.3
    516 	 * and earlier seem to have a bug regarding multi-fragment
    517 	 * packets.  We need to limit the number of Tx segments on
    518 	 * such chips to 1.
    519 	 */
    520 	for (i = 0; i < STGE_NTXDESC; i++) {
    521 		if ((error = bus_dmamap_create(sc->sc_dmat,
    522 		    ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
    523 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
    524 			printf("%s: unable to create tx DMA map %d, "
    525 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    526 			goto fail_4;
    527 		}
    528 	}
    529 
    530 	/*
    531 	 * Create the receive buffer DMA maps.
    532 	 */
    533 	for (i = 0; i < STGE_NRXDESC; i++) {
    534 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    535 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
    536 			printf("%s: unable to create rx DMA map %d, "
    537 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    538 			goto fail_5;
    539 		}
    540 		sc->sc_rxsoft[i].ds_mbuf = NULL;
    541 	}
    542 
    543 	/*
    544 	 * Determine if we're copper or fiber.  It affects how we
    545 	 * reset the card.
    546 	 */
    547 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
    548 	    AC_PhyMedia)
    549 		sc->sc_usefiber = 1;
    550 	else
    551 		sc->sc_usefiber = 0;
    552 
    553 	/*
    554 	 * Reset the chip to a known state.
    555 	 */
    556 	stge_reset(sc);
    557 
    558 	/*
    559 	 * Reading the station address from the EEPROM doesn't seem
    560 	 * to work, at least on my sample boards.  Instread, since
    561 	 * the reset sequence does AutoInit, read it from the station
    562 	 * address registers.
    563 	 */
    564 	enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    565 	    STGE_StationAddress0) & 0xff;
    566 	enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    567 	    STGE_StationAddress0) >> 8;
    568 	enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    569 	    STGE_StationAddress1) & 0xff;
    570 	enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    571 	    STGE_StationAddress1) >> 8;
    572 	enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    573 	    STGE_StationAddress2) & 0xff;
    574 	enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    575 	    STGE_StationAddress2) >> 8;
    576 
    577 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    578 	    ether_sprintf(enaddr));
    579 
    580 	/*
    581 	 * Read some important bits from the PhyCtrl register.
    582 	 */
    583 	sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
    584 	    STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
    585 
    586 	/*
    587 	 * Initialize our media structures and probe the MII.
    588 	 */
    589 	sc->sc_mii.mii_ifp = ifp;
    590 	sc->sc_mii.mii_readreg = stge_mii_readreg;
    591 	sc->sc_mii.mii_writereg = stge_mii_writereg;
    592 	sc->sc_mii.mii_statchg = stge_mii_statchg;
    593 	ifmedia_init(&sc->sc_mii.mii_media, 0, stge_mediachange,
    594 	    stge_mediastatus);
    595 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    596 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
    597 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    598 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    599 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    600 	} else
    601 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    602 
    603 	ifp = &sc->sc_ethercom.ec_if;
    604 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    605 	ifp->if_softc = sc;
    606 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    607 	ifp->if_ioctl = stge_ioctl;
    608 	ifp->if_start = stge_start;
    609 	ifp->if_watchdog = stge_watchdog;
    610 	ifp->if_init = stge_init;
    611 	ifp->if_stop = stge_stop;
    612 	IFQ_SET_READY(&ifp->if_snd);
    613 
    614 	/*
    615 	 * The manual recommends disabling early transmit, so we
    616 	 * do.  It's disabled anyway, if using IP checksumming,
    617 	 * since the entire packet must be in the FIFO in order
    618 	 * for the chip to perform the checksum.
    619 	 */
    620 	sc->sc_txthresh = 0x0fff;
    621 
    622 	/*
    623 	 * Disable MWI if the PCI layer tells us to.
    624 	 */
    625 	sc->sc_DMACtrl = 0;
    626 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
    627 		sc->sc_DMACtrl |= DMAC_MWIDisable;
    628 
    629 	/*
    630 	 * We can support 802.1Q VLAN-sized frames and jumbo
    631 	 * Ethernet frames.
    632 	 *
    633 	 * XXX Figure out how to do hw-assisted VLAN tagging in
    634 	 * XXX a reasonable way on this chip.
    635 	 */
    636 	sc->sc_ethercom.ec_capabilities |=
    637 	    ETHERCAP_VLAN_MTU /* XXX | ETHERCAP_JUMBO_MTU */;
    638 
    639 	/*
    640 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
    641 	 */
    642 	sc->sc_ethercom.ec_if.if_capabilities |= IFCAP_CSUM_IPv4 |
    643 	    IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
    644 
    645 	/*
    646 	 * Attach the interface.
    647 	 */
    648 	if_attach(ifp);
    649 	ether_ifattach(ifp, enaddr);
    650 
    651 #ifdef STGE_EVENT_COUNTERS
    652 	/*
    653 	 * Attach event counters.
    654 	 */
    655 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
    656 	    NULL, sc->sc_dev.dv_xname, "txstall");
    657 	evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
    658 	    NULL, sc->sc_dev.dv_xname, "txdmaintr");
    659 	evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
    660 	    NULL, sc->sc_dev.dv_xname, "txindintr");
    661 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    662 	    NULL, sc->sc_dev.dv_xname, "rxintr");
    663 
    664 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
    665 	    NULL, sc->sc_dev.dv_xname, "txseg1");
    666 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
    667 	    NULL, sc->sc_dev.dv_xname, "txseg2");
    668 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
    669 	    NULL, sc->sc_dev.dv_xname, "txseg3");
    670 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
    671 	    NULL, sc->sc_dev.dv_xname, "txseg4");
    672 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
    673 	    NULL, sc->sc_dev.dv_xname, "txseg5");
    674 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
    675 	    NULL, sc->sc_dev.dv_xname, "txsegmore");
    676 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
    677 	    NULL, sc->sc_dev.dv_xname, "txcopy");
    678 
    679 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    680 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
    681 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
    682 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
    683 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
    684 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
    685 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    686 	    NULL, sc->sc_dev.dv_xname, "txipsum");
    687 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
    688 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
    689 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
    690 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
    691 #endif /* STGE_EVENT_COUNTERS */
    692 
    693 	/*
    694 	 * Make sure the interface is shutdown during reboot.
    695 	 */
    696 	sc->sc_sdhook = shutdownhook_establish(stge_shutdown, sc);
    697 	if (sc->sc_sdhook == NULL)
    698 		printf("%s: WARNING: unable to establish shutdown hook\n",
    699 		    sc->sc_dev.dv_xname);
    700 	return;
    701 
    702 	/*
    703 	 * Free any resources we've allocated during the failed attach
    704 	 * attempt.  Do this in reverse order and fall through.
    705 	 */
    706  fail_5:
    707 	for (i = 0; i < STGE_NRXDESC; i++) {
    708 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
    709 			bus_dmamap_destroy(sc->sc_dmat,
    710 			    sc->sc_rxsoft[i].ds_dmamap);
    711 	}
    712  fail_4:
    713 	for (i = 0; i < STGE_NTXDESC; i++) {
    714 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
    715 			bus_dmamap_destroy(sc->sc_dmat,
    716 			    sc->sc_txsoft[i].ds_dmamap);
    717 	}
    718 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    719  fail_3:
    720 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    721  fail_2:
    722 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    723 	    sizeof(struct stge_control_data));
    724  fail_1:
    725 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    726  fail_0:
    727 	return;
    728 }
    729 
    730 /*
    731  * stge_shutdown:
    732  *
    733  *	Make sure the interface is stopped at reboot time.
    734  */
    735 void
    736 stge_shutdown(void *arg)
    737 {
    738 	struct stge_softc *sc = arg;
    739 
    740 	stge_stop(&sc->sc_ethercom.ec_if, 1);
    741 }
    742 
    743 static void
    744 stge_dma_wait(struct stge_softc *sc)
    745 {
    746 	int i;
    747 
    748 	for (i = 0; i < STGE_TIMEOUT; i++) {
    749 		delay(2);
    750 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
    751 		     DMAC_TxDMAInProg) == 0)
    752 			break;
    753 	}
    754 
    755 	if (i == STGE_TIMEOUT)
    756 		printf("%s: DMA wait timed out\n", sc->sc_dev.dv_xname);
    757 }
    758 
    759 /*
    760  * stge_start:		[ifnet interface function]
    761  *
    762  *	Start packet transmission on the interface.
    763  */
    764 void
    765 stge_start(struct ifnet *ifp)
    766 {
    767 	struct stge_softc *sc = ifp->if_softc;
    768 	struct mbuf *m0;
    769 	struct stge_descsoft *ds;
    770 	struct stge_tfd *tfd;
    771 	bus_dmamap_t dmamap;
    772 	int error, firsttx, nexttx, opending, seg, totlen;
    773 	uint64_t csum_flags;
    774 
    775 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    776 		return;
    777 
    778 	/*
    779 	 * Remember the previous number of pending transmissions
    780 	 * and the first descriptor we will use.
    781 	 */
    782 	opending = sc->sc_txpending;
    783 	firsttx = STGE_NEXTTX(sc->sc_txlast);
    784 
    785 	/*
    786 	 * Loop through the send queue, setting up transmit descriptors
    787 	 * until we drain the queue, or use up all available transmit
    788 	 * descriptors.
    789 	 */
    790 	for (;;) {
    791 		/*
    792 		 * Grab a packet off the queue.
    793 		 */
    794 		IFQ_POLL(&ifp->if_snd, m0);
    795 		if (m0 == NULL)
    796 			break;
    797 
    798 		/*
    799 		 * Leave one unused descriptor at the end of the
    800 		 * list to prevent wrapping completely around.
    801 		 */
    802 		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
    803 			STGE_EVCNT_INCR(&sc->sc_ev_txstall);
    804 			break;
    805 		}
    806 
    807 		/*
    808 		 * Get the last and next available transmit descriptor.
    809 		 */
    810 		nexttx = STGE_NEXTTX(sc->sc_txlast);
    811 		tfd = &sc->sc_txdescs[nexttx];
    812 		ds = &sc->sc_txsoft[nexttx];
    813 
    814 		dmamap = ds->ds_dmamap;
    815 
    816 		/*
    817 		 * Load the DMA map.  If this fails, the packet either
    818 		 * didn't fit in the alloted number of segments, or we
    819 		 * were short on resources.  For the too-may-segments
    820 		 * case, we simply report an error and drop the packet,
    821 		 * since we can't sanely copy a jumbo packet to a single
    822 		 * buffer.
    823 		 */
    824 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    825 		    BUS_DMA_NOWAIT);
    826 		if (error) {
    827 			if (error == EFBIG) {
    828 				printf("%s: Tx packet consumes too many "
    829 				    "DMA segments, dropping...\n",
    830 				    sc->sc_dev.dv_xname);
    831 				IFQ_DEQUEUE(&ifp->if_snd, m0);
    832 				m_freem(m0);
    833 				continue;
    834 			}
    835 			/*
    836 			 * Short on resources, just stop for now.
    837 			 */
    838 			break;
    839 		}
    840 
    841 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    842 
    843 		/*
    844 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    845 		 */
    846 
    847 		/* Sync the DMA map. */
    848 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    849 		    BUS_DMASYNC_PREWRITE);
    850 
    851 		/* Initialize the fragment list. */
    852 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
    853 			tfd->tfd_frags[seg].frag_word0 =
    854 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
    855 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
    856 			totlen += dmamap->dm_segs[seg].ds_len;
    857 		}
    858 
    859 #ifdef STGE_EVENT_COUNTERS
    860 		switch (dmamap->dm_nsegs) {
    861 		case 1:
    862 			STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
    863 			break;
    864 		case 2:
    865 			STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
    866 			break;
    867 		case 3:
    868 			STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
    869 			break;
    870 		case 4:
    871 			STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
    872 			break;
    873 		case 5:
    874 			STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
    875 			break;
    876 		default:
    877 			STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
    878 			break;
    879 		}
    880 #endif /* STGE_EVENT_COUNTERS */
    881 
    882 		/*
    883 		 * Initialize checksumming flags in the descriptor.
    884 		 * Byte-swap constants so the compiler can optimize.
    885 		 */
    886 		csum_flags = 0;
    887 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
    888 			STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
    889 			csum_flags |= htole64(TFD_IPChecksumEnable);
    890 		}
    891 
    892 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
    893 			STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
    894 			csum_flags |= htole64(TFD_TCPChecksumEnable);
    895 		}
    896 		else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
    897 			STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
    898 			csum_flags |= htole64(TFD_UDPChecksumEnable);
    899 		}
    900 
    901 		/*
    902 		 * Initialize the descriptor and give it to the chip.
    903 		 */
    904 		tfd->tfd_control = htole64(TFD_FrameId(nexttx) |
    905 		    TFD_WordAlign(/*totlen & */3) |
    906 		    TFD_FragCount(seg) | csum_flags |
    907 		    (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
    908 		     TFD_TxDMAIndicate : 0));
    909 
    910 		/* Sync the descriptor. */
    911 		STGE_CDTXSYNC(sc, nexttx,
    912 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    913 
    914 		/*
    915 		 * Kick the transmit DMA logic.
    916 		 */
    917 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
    918 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
    919 
    920 		/*
    921 		 * Store a pointer to the packet so we can free it later.
    922 		 */
    923 		ds->ds_mbuf = m0;
    924 
    925 		/* Advance the tx pointer. */
    926 		sc->sc_txpending++;
    927 		sc->sc_txlast = nexttx;
    928 
    929 #if NBPFILTER > 0
    930 		/*
    931 		 * Pass the packet to any BPF listeners.
    932 		 */
    933 		if (ifp->if_bpf)
    934 			bpf_mtap(ifp->if_bpf, m0);
    935 #endif /* NBPFILTER > 0 */
    936 	}
    937 
    938 	if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
    939 		/* No more slots left; notify upper layer. */
    940 		ifp->if_flags |= IFF_OACTIVE;
    941 	}
    942 
    943 	if (sc->sc_txpending != opending) {
    944 		/*
    945 		 * We enqueued packets.  If the transmitter was idle,
    946 		 * reset the txdirty pointer.
    947 		 */
    948 		if (opending == 0)
    949 			sc->sc_txdirty = firsttx;
    950 
    951 		/* Set a watchdog timer in case the chip flakes out. */
    952 		ifp->if_timer = 5;
    953 	}
    954 }
    955 
    956 /*
    957  * stge_watchdog:	[ifnet interface function]
    958  *
    959  *	Watchdog timer handler.
    960  */
    961 void
    962 stge_watchdog(struct ifnet *ifp)
    963 {
    964 	struct stge_softc *sc = ifp->if_softc;
    965 
    966 	/*
    967 	 * Sweep up first, since we don't interrupt every frame.
    968 	 */
    969 	stge_txintr(sc);
    970 	if (sc->sc_txpending != 0) {
    971 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
    972 		ifp->if_oerrors++;
    973 
    974 		(void) stge_init(ifp);
    975 
    976 		/* Try to get more packets going. */
    977 		stge_start(ifp);
    978 	}
    979 }
    980 
    981 /*
    982  * stge_ioctl:		[ifnet interface function]
    983  *
    984  *	Handle control requests from the operator.
    985  */
    986 int
    987 stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
    988 {
    989 	struct stge_softc *sc = ifp->if_softc;
    990 	struct ifreq *ifr = (struct ifreq *)data;
    991 	int s, error;
    992 
    993 	s = splnet();
    994 
    995 	switch (cmd) {
    996 	case SIOCSIFMEDIA:
    997 	case SIOCGIFMEDIA:
    998 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
    999 		break;
   1000 
   1001 	default:
   1002 		error = ether_ioctl(ifp, cmd, data);
   1003 		if (error == ENETRESET) {
   1004 			/*
   1005 			 * Multicast list has changed; set the hardware filter
   1006 			 * accordingly.
   1007 			 */
   1008 			stge_set_filter(sc);
   1009 			error = 0;
   1010 		}
   1011 		break;
   1012 	}
   1013 
   1014 	/* Try to get more packets going. */
   1015 	stge_start(ifp);
   1016 
   1017 	splx(s);
   1018 	return (error);
   1019 }
   1020 
   1021 /*
   1022  * stge_intr:
   1023  *
   1024  *	Interrupt service routine.
   1025  */
   1026 int
   1027 stge_intr(void *arg)
   1028 {
   1029 	struct stge_softc *sc = arg;
   1030 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1031 	uint32_t txstat;
   1032 	int wantinit;
   1033 	uint16_t isr;
   1034 
   1035 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
   1036 	     IS_InterruptStatus) == 0)
   1037 		return (0);
   1038 
   1039 	for (wantinit = 0; wantinit == 0;) {
   1040 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
   1041 		if ((isr & sc->sc_IntEnable) == 0)
   1042 			break;
   1043 
   1044 		/* Receive interrupts. */
   1045 		if (isr & (IE_RxDMAComplete|IE_RFDListEnd)) {
   1046 			STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
   1047 			stge_rxintr(sc);
   1048 			if (isr & IE_RFDListEnd) {
   1049 				printf("%s: receive ring overflow\n",
   1050 				    sc->sc_dev.dv_xname);
   1051 				/*
   1052 				 * XXX Should try to recover from this
   1053 				 * XXX more gracefully.
   1054 				 */
   1055 				wantinit = 1;
   1056 			}
   1057 		}
   1058 
   1059 		/* Transmit interrupts. */
   1060 		if (isr & (IE_TxDMAComplete|IE_TxComplete)) {
   1061 #ifdef STGE_EVENT_COUNTERS
   1062 			if (isr & IE_TxDMAComplete)
   1063 				STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
   1064 #endif
   1065 			stge_txintr(sc);
   1066 		}
   1067 
   1068 		/* Statistics overflow. */
   1069 		if (isr & IE_UpdateStats)
   1070 			stge_stats_update(sc);
   1071 
   1072 		/* Transmission errors. */
   1073 		if (isr & IE_TxComplete) {
   1074 			STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
   1075 			for (;;) {
   1076 				txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
   1077 				    STGE_TxStatus);
   1078 				if ((txstat & TS_TxComplete) == 0)
   1079 					break;
   1080 				if (txstat & TS_TxUnderrun) {
   1081 					sc->sc_txthresh++;
   1082 					if (sc->sc_txthresh > 0x0fff)
   1083 						sc->sc_txthresh = 0x0fff;
   1084 					printf("%s: transmit underrun, new "
   1085 					    "threshold: %d bytes\n",
   1086 					    sc->sc_dev.dv_xname,
   1087 					    sc->sc_txthresh << 5);
   1088 				}
   1089 				if (txstat & TS_MaxCollisions)
   1090 					printf("%s: excessive collisions\n",
   1091 					    sc->sc_dev.dv_xname);
   1092 			}
   1093 			wantinit = 1;
   1094 		}
   1095 
   1096 		/* Host interface errors. */
   1097 		if (isr & IE_HostError) {
   1098 			printf("%s: Host interface error\n",
   1099 			    sc->sc_dev.dv_xname);
   1100 			wantinit = 1;
   1101 		}
   1102 	}
   1103 
   1104 	if (wantinit)
   1105 		stge_init(ifp);
   1106 
   1107 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
   1108 	    sc->sc_IntEnable);
   1109 
   1110 	/* Try to get more packets going. */
   1111 	stge_start(ifp);
   1112 
   1113 	return (1);
   1114 }
   1115 
   1116 /*
   1117  * stge_txintr:
   1118  *
   1119  *	Helper; handle transmit interrupts.
   1120  */
   1121 void
   1122 stge_txintr(struct stge_softc *sc)
   1123 {
   1124 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1125 	struct stge_descsoft *ds;
   1126 	uint64_t control;
   1127 	int i;
   1128 
   1129 	ifp->if_flags &= ~IFF_OACTIVE;
   1130 
   1131 	/*
   1132 	 * Go through our Tx list and free mbufs for those
   1133 	 * frames which have been transmitted.
   1134 	 */
   1135 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
   1136 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
   1137 		ds = &sc->sc_txsoft[i];
   1138 
   1139 		STGE_CDTXSYNC(sc, i,
   1140 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1141 
   1142 		control = le64toh(sc->sc_txdescs[i].tfd_control);
   1143 		if ((control & TFD_TFDDone) == 0)
   1144 			break;
   1145 
   1146 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
   1147 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1148 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1149 		m_freem(ds->ds_mbuf);
   1150 		ds->ds_mbuf = NULL;
   1151 	}
   1152 
   1153 	/* Update the dirty transmit buffer pointer. */
   1154 	sc->sc_txdirty = i;
   1155 
   1156 	/*
   1157 	 * If there are no more pending transmissions, cancel the watchdog
   1158 	 * timer.
   1159 	 */
   1160 	if (sc->sc_txpending == 0)
   1161 		ifp->if_timer = 0;
   1162 }
   1163 
   1164 /*
   1165  * stge_rxintr:
   1166  *
   1167  *	Helper; handle receive interrupts.
   1168  */
   1169 void
   1170 stge_rxintr(struct stge_softc *sc)
   1171 {
   1172 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1173 	struct stge_descsoft *ds;
   1174 	struct mbuf *m, *tailm;
   1175 	uint64_t status;
   1176 	int i, len;
   1177 
   1178 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
   1179 		ds = &sc->sc_rxsoft[i];
   1180 
   1181 		STGE_CDRXSYNC(sc, i,
   1182 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1183 
   1184 		status = le64toh(sc->sc_rxdescs[i].rfd_status);
   1185 
   1186 		if ((status & RFD_RFDDone) == 0)
   1187 			break;
   1188 
   1189 		if (__predict_false(sc->sc_rxdiscard)) {
   1190 			STGE_INIT_RXDESC(sc, i);
   1191 			if (status & RFD_FrameEnd) {
   1192 				/* Reset our state. */
   1193 				sc->sc_rxdiscard = 0;
   1194 			}
   1195 			continue;
   1196 		}
   1197 
   1198 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1199 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1200 
   1201 		m = ds->ds_mbuf;
   1202 
   1203 		/*
   1204 		 * Add a new receive buffer to the ring.
   1205 		 */
   1206 		if (stge_add_rxbuf(sc, i) != 0) {
   1207 			/*
   1208 			 * Failed, throw away what we've done so
   1209 			 * far, and discard the rest of the packet.
   1210 			 */
   1211 			ifp->if_ierrors++;
   1212 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1213 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1214 			STGE_INIT_RXDESC(sc, i);
   1215 			if ((status & RFD_FrameEnd) == 0)
   1216 				sc->sc_rxdiscard = 1;
   1217 			if (sc->sc_rxhead != NULL)
   1218 				m_freem(sc->sc_rxhead);
   1219 			STGE_RXCHAIN_RESET(sc);
   1220 			continue;
   1221 		}
   1222 
   1223 #ifdef DIAGNOSTIC
   1224 		if (status & RFD_FrameStart) {
   1225 			KASSERT(sc->sc_rxhead == NULL);
   1226 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
   1227 		}
   1228 #endif
   1229 
   1230 		STGE_RXCHAIN_LINK(sc, m);
   1231 
   1232 		/*
   1233 		 * If this is not the end of the packet, keep
   1234 		 * looking.
   1235 		 */
   1236 		if ((status & RFD_FrameEnd) == 0) {
   1237 			sc->sc_rxlen += m->m_len;
   1238 			continue;
   1239 		}
   1240 
   1241 		/*
   1242 		 * Okay, we have the entire packet now...
   1243 		 */
   1244 		*sc->sc_rxtailp = NULL;
   1245 		m = sc->sc_rxhead;
   1246 		tailm = sc->sc_rxtail;
   1247 
   1248 		STGE_RXCHAIN_RESET(sc);
   1249 
   1250 		/*
   1251 		 * If the packet had an error, drop it.  Note we
   1252 		 * count the error later in the periodic stats update.
   1253 		 */
   1254 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
   1255 			      RFD_RxAlignmentError | RFD_RxFCSError |
   1256 			      RFD_RxLengthError)) {
   1257 			m_freem(m);
   1258 			continue;
   1259 		}
   1260 
   1261 		/*
   1262 		 * No errors.
   1263 		 *
   1264 		 * Note we have configured the chip to not include
   1265 		 * the CRC at the end of the packet.
   1266 		 */
   1267 		len = RFD_RxDMAFrameLen(status);
   1268 		tailm->m_len = len - sc->sc_rxlen;
   1269 
   1270 		/*
   1271 		 * If the packet is small enough to fit in a
   1272 		 * single header mbuf, allocate one and copy
   1273 		 * the data into it.  This greatly reduces
   1274 		 * memory consumption when we receive lots
   1275 		 * of small packets.
   1276 		 */
   1277 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
   1278 			struct mbuf *nm;
   1279 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1280 			if (nm == NULL) {
   1281 				ifp->if_ierrors++;
   1282 				m_freem(m);
   1283 				continue;
   1284 			}
   1285 			nm->m_data += 2;
   1286 			nm->m_pkthdr.len = nm->m_len = len;
   1287 			m_copydata(m, 0, len, mtod(nm, caddr_t));
   1288 			m_freem(m);
   1289 			m = nm;
   1290 		}
   1291 
   1292 		/*
   1293 		 * Set the incoming checksum information for the packet.
   1294 		 */
   1295 		if (status & RFD_IPDetected) {
   1296 			STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1297 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1298 			if (status & RFD_IPError)
   1299 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1300 			if (status & RFD_TCPDetected) {
   1301 				STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   1302 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1303 				if (status & RFD_TCPError)
   1304 					m->m_pkthdr.csum_flags |=
   1305 					    M_CSUM_TCP_UDP_BAD;
   1306 			} else if (status & RFD_UDPDetected) {
   1307 				STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   1308 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1309 				if (status & RFD_UDPError)
   1310 					m->m_pkthdr.csum_flags |=
   1311 					    M_CSUM_TCP_UDP_BAD;
   1312 			}
   1313 		}
   1314 
   1315 		m->m_pkthdr.rcvif = ifp;
   1316 		m->m_pkthdr.len = len;
   1317 
   1318 #if NBPFILTER > 0
   1319 		/*
   1320 		 * Pass this up to any BPF listeners, but only
   1321 		 * pass if up the stack if it's for us.
   1322 		 */
   1323 		if (ifp->if_bpf)
   1324 			bpf_mtap(ifp->if_bpf, m);
   1325 #endif /* NBPFILTER > 0 */
   1326 
   1327 		/* Pass it on. */
   1328 		(*ifp->if_input)(ifp, m);
   1329 	}
   1330 
   1331 	/* Update the receive pointer. */
   1332 	sc->sc_rxptr = i;
   1333 }
   1334 
   1335 /*
   1336  * stge_tick:
   1337  *
   1338  *	One second timer, used to tick the MII.
   1339  */
   1340 void
   1341 stge_tick(void *arg)
   1342 {
   1343 	struct stge_softc *sc = arg;
   1344 	int s;
   1345 
   1346 	s = splnet();
   1347 	mii_tick(&sc->sc_mii);
   1348 	stge_stats_update(sc);
   1349 	splx(s);
   1350 
   1351 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
   1352 }
   1353 
   1354 /*
   1355  * stge_stats_update:
   1356  *
   1357  *	Read the TC9021 statistics counters.
   1358  */
   1359 void
   1360 stge_stats_update(struct stge_softc *sc)
   1361 {
   1362 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1363 	bus_space_tag_t st = sc->sc_st;
   1364 	bus_space_handle_t sh = sc->sc_sh;
   1365 
   1366 	(void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
   1367 
   1368 	ifp->if_ipackets +=
   1369 	    bus_space_read_4(st, sh, STGE_FramesRcvdOk);
   1370 
   1371 	ifp->if_ierrors +=
   1372 	    (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
   1373 
   1374 	(void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
   1375 
   1376 	ifp->if_opackets +=
   1377 	    bus_space_read_4(st, sh, STGE_FramesXmtdOk);
   1378 
   1379 	ifp->if_collisions +=
   1380 	    bus_space_read_4(st, sh, STGE_LateCollisions) +
   1381 	    bus_space_read_4(st, sh, STGE_MultiColFrames) +
   1382 	    bus_space_read_4(st, sh, STGE_SingleColFrames);
   1383 
   1384 	ifp->if_oerrors +=
   1385 	    (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
   1386 	    (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
   1387 }
   1388 
   1389 /*
   1390  * stge_reset:
   1391  *
   1392  *	Perform a soft reset on the TC9021.
   1393  */
   1394 void
   1395 stge_reset(struct stge_softc *sc)
   1396 {
   1397 	uint32_t ac;
   1398 	int i;
   1399 
   1400 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
   1401 
   1402 	/*
   1403 	 * Only assert RstOut if we're fiber.  We need GMII clocks
   1404 	 * to be present in order for the reset to complete on fiber
   1405 	 * cards.
   1406 	 */
   1407 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
   1408 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
   1409 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
   1410 	    (sc->sc_usefiber ? AC_RstOut : 0));
   1411 
   1412 	delay(50000);
   1413 
   1414 	for (i = 0; i < STGE_TIMEOUT; i++) {
   1415 		delay(5000);
   1416 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
   1417 		     AC_ResetBusy) == 0)
   1418 			break;
   1419 	}
   1420 
   1421 	if (i == STGE_TIMEOUT)
   1422 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   1423 
   1424 	delay(1000);
   1425 }
   1426 
   1427 /*
   1428  * stge_init:		[ ifnet interface function ]
   1429  *
   1430  *	Initialize the interface.  Must be called at splnet().
   1431  */
   1432 int
   1433 stge_init(struct ifnet *ifp)
   1434 {
   1435 	struct stge_softc *sc = ifp->if_softc;
   1436 	bus_space_tag_t st = sc->sc_st;
   1437 	bus_space_handle_t sh = sc->sc_sh;
   1438 	struct stge_descsoft *ds;
   1439 	int i, error = 0;
   1440 
   1441 	/*
   1442 	 * Cancel any pending I/O.
   1443 	 */
   1444 	stge_stop(ifp, 0);
   1445 
   1446 	/*
   1447 	 * Reset the chip to a known state.
   1448 	 */
   1449 	stge_reset(sc);
   1450 
   1451 	/*
   1452 	 * Initialize the transmit descriptor ring.
   1453 	 */
   1454 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1455 	for (i = 0; i < STGE_NTXDESC; i++) {
   1456 		sc->sc_txdescs[i].tfd_next =
   1457 		    (uint64_t) STGE_CDTXADDR(sc, STGE_NEXTTX(i));
   1458 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
   1459 	}
   1460 	sc->sc_txpending = 0;
   1461 	sc->sc_txdirty = 0;
   1462 	sc->sc_txlast = STGE_NTXDESC - 1;
   1463 
   1464 	/*
   1465 	 * Initialize the receive descriptor and receive job
   1466 	 * descriptor rings.
   1467 	 */
   1468 	for (i = 0; i < STGE_NRXDESC; i++) {
   1469 		ds = &sc->sc_rxsoft[i];
   1470 		if (ds->ds_mbuf == NULL) {
   1471 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
   1472 				printf("%s: unable to allocate or map rx "
   1473 				    "buffer %d, error = %d\n",
   1474 				    sc->sc_dev.dv_xname, i, error);
   1475 				/*
   1476 				 * XXX Should attempt to run with fewer receive
   1477 				 * XXX buffers instead of just failing.
   1478 				 */
   1479 				stge_rxdrain(sc);
   1480 				goto out;
   1481 			}
   1482 		} else
   1483 			STGE_INIT_RXDESC(sc, i);
   1484 	}
   1485 	sc->sc_rxptr = 0;
   1486 	sc->sc_rxdiscard = 0;
   1487 	STGE_RXCHAIN_RESET(sc);
   1488 
   1489 	/* Set the station address. */
   1490 	bus_space_write_2(st, sh, STGE_StationAddress0,
   1491 	    LLADDR(ifp->if_sadl)[0] | (LLADDR(ifp->if_sadl)[1] << 8));
   1492 	bus_space_write_2(st, sh, STGE_StationAddress1,
   1493 	    LLADDR(ifp->if_sadl)[2] | (LLADDR(ifp->if_sadl)[3] << 8));
   1494 	bus_space_write_2(st, sh, STGE_StationAddress2,
   1495 	    LLADDR(ifp->if_sadl)[4] | (LLADDR(ifp->if_sadl)[5] << 8));
   1496 
   1497 	/*
   1498 	 * Set the statistics masks.  Disable all the RMON stats,
   1499 	 * and disable selected stats in the non-RMON stats registers.
   1500 	 */
   1501 	bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
   1502 	bus_space_write_4(st, sh, STGE_StatisticsMask,
   1503 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
   1504 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
   1505 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
   1506 	    (1U << 21));
   1507 
   1508 	/* Set up the receive filter. */
   1509 	stge_set_filter(sc);
   1510 
   1511 	/*
   1512 	 * Give the transmit and receive ring to the chip.
   1513 	 */
   1514 	bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
   1515 	bus_space_write_4(st, sh, STGE_TFDListPtrLo,
   1516 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
   1517 
   1518 	bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
   1519 	bus_space_write_4(st, sh, STGE_RFDListPtrLo,
   1520 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
   1521 
   1522 	/*
   1523 	 * Initialize the Tx auto-poll period.  It's OK to make this number
   1524 	 * large (255 is the max, but we use 127) -- we explicitly kick the
   1525 	 * transmit engine when there's actually a packet.
   1526 	 */
   1527 	bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
   1528 
   1529 	/* ..and the Rx auto-poll period. */
   1530 	bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
   1531 
   1532 	/* Initialize the Tx start threshold. */
   1533 	bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
   1534 
   1535 	/*
   1536 	 * Initialize the Rx DMA interrupt control register.  We
   1537 	 * request an interrupt after every incoming packet, but
   1538 	 * defer it for 32us (64 * 512 ns).  When the number of
   1539 	 * interrupts pending reaches 8, we stop deferring the
   1540 	 * interrupt, and signal it immediately.
   1541 	 */
   1542 	bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
   1543 	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
   1544 
   1545 	/*
   1546 	 * Initialize the interrupt mask.
   1547 	 */
   1548 	sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
   1549 	    IE_TxDMAComplete | IE_RxDMAComplete | IE_RFDListEnd;
   1550 	bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
   1551 	bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
   1552 
   1553 	/*
   1554 	 * Configure the DMA engine.
   1555 	 * XXX Should auto-tune TxBurstLimit.
   1556 	 */
   1557 	bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
   1558 	    DMAC_TxBurstLimit(3));
   1559 
   1560 	/*
   1561 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
   1562 	 * FIFO, and send an un-PAUSE frame when the FIFO is totally
   1563 	 * empty again.
   1564 	 */
   1565 	bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
   1566 	bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
   1567 
   1568 	/*
   1569 	 * Set the maximum frame size.
   1570 	 */
   1571 	bus_space_write_2(st, sh, STGE_MaxFrameSize,
   1572 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
   1573 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
   1574 	     ETHER_VLAN_ENCAP_LEN : 0));
   1575 
   1576 	/*
   1577 	 * Initialize MacCtrl -- do it before setting the media,
   1578 	 * as setting the media will actually program the register.
   1579 	 *
   1580 	 * Note: We have to poke the IFS value before poking
   1581 	 * anything else.
   1582 	 */
   1583 	sc->sc_MACCtrl = MC_IFSSelect(0);
   1584 	bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
   1585 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
   1586 
   1587 	if (sc->sc_rev >= 6) {		/* >= B.2 */
   1588 		/* Multi-frag frame bug work-around. */
   1589 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1590 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
   1591 
   1592 		/* Tx Poll Now bug work-around. */
   1593 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1594 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
   1595 	}
   1596 
   1597 	/*
   1598 	 * Set the current media.
   1599 	 */
   1600 	mii_mediachg(&sc->sc_mii);
   1601 
   1602 	/*
   1603 	 * Start the one second MII clock.
   1604 	 */
   1605 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
   1606 
   1607 	/*
   1608 	 * ...all done!
   1609 	 */
   1610 	ifp->if_flags |= IFF_RUNNING;
   1611 	ifp->if_flags &= ~IFF_OACTIVE;
   1612 
   1613  out:
   1614 	if (error)
   1615 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1616 	return (error);
   1617 }
   1618 
   1619 /*
   1620  * stge_drain:
   1621  *
   1622  *	Drain the receive queue.
   1623  */
   1624 void
   1625 stge_rxdrain(struct stge_softc *sc)
   1626 {
   1627 	struct stge_descsoft *ds;
   1628 	int i;
   1629 
   1630 	for (i = 0; i < STGE_NRXDESC; i++) {
   1631 		ds = &sc->sc_rxsoft[i];
   1632 		if (ds->ds_mbuf != NULL) {
   1633 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1634 			ds->ds_mbuf->m_next = NULL;
   1635 			m_freem(ds->ds_mbuf);
   1636 			ds->ds_mbuf = NULL;
   1637 		}
   1638 	}
   1639 }
   1640 
   1641 /*
   1642  * stge_stop:		[ ifnet interface function ]
   1643  *
   1644  *	Stop transmission on the interface.
   1645  */
   1646 void
   1647 stge_stop(struct ifnet *ifp, int disable)
   1648 {
   1649 	struct stge_softc *sc = ifp->if_softc;
   1650 	struct stge_descsoft *ds;
   1651 	int i;
   1652 
   1653 	/*
   1654 	 * Stop the one second clock.
   1655 	 */
   1656 	callout_stop(&sc->sc_tick_ch);
   1657 
   1658 	/* Down the MII. */
   1659 	mii_down(&sc->sc_mii);
   1660 
   1661 	/*
   1662 	 * Disable interrupts.
   1663 	 */
   1664 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
   1665 
   1666 	/*
   1667 	 * Stop receiver, transmitter, and stats update.
   1668 	 */
   1669 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
   1670 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
   1671 
   1672 	/*
   1673 	 * Stop the transmit and receive DMA.
   1674 	 */
   1675 	stge_dma_wait(sc);
   1676 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
   1677 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
   1678 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
   1679 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
   1680 
   1681 	/*
   1682 	 * Release any queued transmit buffers.
   1683 	 */
   1684 	for (i = 0; i < STGE_NTXDESC; i++) {
   1685 		ds = &sc->sc_txsoft[i];
   1686 		if (ds->ds_mbuf != NULL) {
   1687 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1688 			m_freem(ds->ds_mbuf);
   1689 			ds->ds_mbuf = NULL;
   1690 		}
   1691 	}
   1692 
   1693 	if (disable)
   1694 		stge_rxdrain(sc);
   1695 
   1696 	/*
   1697 	 * Mark the interface down and cancel the watchdog timer.
   1698 	 */
   1699 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1700 	ifp->if_timer = 0;
   1701 }
   1702 
   1703 #if 0
   1704 static int
   1705 stge_eeprom_wait(struct stge_softc *sc)
   1706 {
   1707 	int i;
   1708 
   1709 	for (i = 0; i < STGE_TIMEOUT; i++) {
   1710 		delay(1000);
   1711 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
   1712 		     EC_EepromBusy) == 0)
   1713 			return (0);
   1714 	}
   1715 	return (1);
   1716 }
   1717 
   1718 /*
   1719  * stge_read_eeprom:
   1720  *
   1721  *	Read data from the serial EEPROM.
   1722  */
   1723 void
   1724 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
   1725 {
   1726 
   1727 	if (stge_eeprom_wait(sc))
   1728 		printf("%s: EEPROM failed to come ready\n",
   1729 		    sc->sc_dev.dv_xname);
   1730 
   1731 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
   1732 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
   1733 	if (stge_eeprom_wait(sc))
   1734 		printf("%s: EEPROM read timed out\n",
   1735 		    sc->sc_dev.dv_xname);
   1736 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
   1737 }
   1738 #endif /* 0 */
   1739 
   1740 /*
   1741  * stge_add_rxbuf:
   1742  *
   1743  *	Add a receive buffer to the indicated descriptor.
   1744  */
   1745 int
   1746 stge_add_rxbuf(struct stge_softc *sc, int idx)
   1747 {
   1748 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
   1749 	struct mbuf *m;
   1750 	int error;
   1751 
   1752 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1753 	if (m == NULL)
   1754 		return (ENOBUFS);
   1755 
   1756 	MCLGET(m, M_DONTWAIT);
   1757 	if ((m->m_flags & M_EXT) == 0) {
   1758 		m_freem(m);
   1759 		return (ENOBUFS);
   1760 	}
   1761 
   1762 	m->m_data = m->m_ext.ext_buf + 2;
   1763 	m->m_len = MCLBYTES - 2;
   1764 
   1765 	if (ds->ds_mbuf != NULL)
   1766 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1767 
   1768 	ds->ds_mbuf = m;
   1769 
   1770 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
   1771 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1772 	if (error) {
   1773 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1774 		    sc->sc_dev.dv_xname, idx, error);
   1775 		panic("stge_add_rxbuf");	/* XXX */
   1776 	}
   1777 
   1778 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1779 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1780 
   1781 	STGE_INIT_RXDESC(sc, idx);
   1782 
   1783 	return (0);
   1784 }
   1785 
   1786 /*
   1787  * stge_set_filter:
   1788  *
   1789  *	Set up the receive filter.
   1790  */
   1791 void
   1792 stge_set_filter(struct stge_softc *sc)
   1793 {
   1794 	struct ethercom *ec = &sc->sc_ethercom;
   1795 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1796 	struct ether_multi *enm;
   1797 	struct ether_multistep step;
   1798 	uint32_t crc;
   1799 	uint32_t mchash[2];
   1800 
   1801 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
   1802 	if (ifp->if_flags & IFF_BROADCAST)
   1803 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
   1804 
   1805 	if (ifp->if_flags & IFF_PROMISC) {
   1806 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
   1807 		goto allmulti;
   1808 	}
   1809 
   1810 	/*
   1811 	 * Set up the multicast address filter by passing all multicast
   1812 	 * addresses through a CRC generator, and then using the low-order
   1813 	 * 6 bits as an index into the 64 bit multicast hash table.  The
   1814 	 * high order bits select the register, while the rest of the bits
   1815 	 * select the bit within the register.
   1816 	 */
   1817 
   1818 	memset(mchash, 0, sizeof(mchash));
   1819 
   1820 	ETHER_FIRST_MULTI(step, ec, enm);
   1821 	if (enm == NULL)
   1822 		goto done;
   1823 
   1824 	while (enm != NULL) {
   1825 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1826 			/*
   1827 			 * We must listen to a range of multicast addresses.
   1828 			 * For now, just accept all multicasts, rather than
   1829 			 * trying to set only those filter bits needed to match
   1830 			 * the range.  (At this time, the only use of address
   1831 			 * ranges is for IP multicast routing, for which the
   1832 			 * range is big enough to require all bits set.)
   1833 			 */
   1834 			goto allmulti;
   1835 		}
   1836 
   1837 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1838 
   1839 		/* Just want the 6 least significant bits. */
   1840 		crc &= 0x3f;
   1841 
   1842 		/* Set the corresponding bit in the hash table. */
   1843 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
   1844 
   1845 		ETHER_NEXT_MULTI(step, enm);
   1846 	}
   1847 
   1848 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
   1849 
   1850 	ifp->if_flags &= ~IFF_ALLMULTI;
   1851 	goto done;
   1852 
   1853  allmulti:
   1854 	ifp->if_flags |= IFF_ALLMULTI;
   1855 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
   1856 
   1857  done:
   1858 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1859 		/*
   1860 		 * Program the multicast hash table.
   1861 		 */
   1862 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
   1863 		    mchash[0]);
   1864 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
   1865 		    mchash[1]);
   1866 	}
   1867 
   1868 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
   1869 	    sc->sc_ReceiveMode);
   1870 }
   1871 
   1872 /*
   1873  * stge_mii_readreg:	[mii interface function]
   1874  *
   1875  *	Read a PHY register on the MII of the TC9021.
   1876  */
   1877 int
   1878 stge_mii_readreg(struct device *self, int phy, int reg)
   1879 {
   1880 
   1881 	return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
   1882 }
   1883 
   1884 /*
   1885  * stge_mii_writereg:	[mii interface function]
   1886  *
   1887  *	Write a PHY register on the MII of the TC9021.
   1888  */
   1889 void
   1890 stge_mii_writereg(struct device *self, int phy, int reg, int val)
   1891 {
   1892 
   1893 	mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
   1894 }
   1895 
   1896 /*
   1897  * stge_mii_statchg:	[mii interface function]
   1898  *
   1899  *	Callback from MII layer when media changes.
   1900  */
   1901 void
   1902 stge_mii_statchg(struct device *self)
   1903 {
   1904 	struct stge_softc *sc = (struct stge_softc *) self;
   1905 
   1906 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   1907 		sc->sc_MACCtrl |= MC_DuplexSelect;
   1908 	else
   1909 		sc->sc_MACCtrl &= ~MC_DuplexSelect;
   1910 
   1911 	/* XXX 802.1x flow-control? */
   1912 
   1913 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
   1914 }
   1915 
   1916 /*
   1917  * sste_mii_bitbang_read: [mii bit-bang interface function]
   1918  *
   1919  *	Read the MII serial port for the MII bit-bang module.
   1920  */
   1921 uint32_t
   1922 stge_mii_bitbang_read(struct device *self)
   1923 {
   1924 	struct stge_softc *sc = (void *) self;
   1925 
   1926 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
   1927 }
   1928 
   1929 /*
   1930  * stge_mii_bitbang_write: [mii big-bang interface function]
   1931  *
   1932  *	Write the MII serial port for the MII bit-bang module.
   1933  */
   1934 void
   1935 stge_mii_bitbang_write(struct device *self, uint32_t val)
   1936 {
   1937 	struct stge_softc *sc = (void *) self;
   1938 
   1939 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
   1940 	    val | sc->sc_PhyCtrl);
   1941 }
   1942 
   1943 /*
   1944  * stge_mediastatus:	[ifmedia interface function]
   1945  *
   1946  *	Get the current interface media status.
   1947  */
   1948 void
   1949 stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   1950 {
   1951 	struct stge_softc *sc = ifp->if_softc;
   1952 
   1953 	mii_pollstat(&sc->sc_mii);
   1954 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   1955 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   1956 }
   1957 
   1958 /*
   1959  * stge_mediachange:	[ifmedia interface function]
   1960  *
   1961  *	Set hardware to newly-selected media.
   1962  */
   1963 int
   1964 stge_mediachange(struct ifnet *ifp)
   1965 {
   1966 	struct stge_softc *sc = ifp->if_softc;
   1967 
   1968 	if (ifp->if_flags & IFF_UP)
   1969 		mii_mediachg(&sc->sc_mii);
   1970 	return (0);
   1971 }
   1972