if_stge.c revision 1.14 1 /* $NetBSD: if_stge.c,v 1.14 2002/12/23 02:58:37 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the Sundance Tech. TC9021 10/100/1000
41 * Ethernet controller.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.14 2002/12/23 02:58:37 tsutsui Exp $");
46
47 #include "bpfilter.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/socket.h>
56 #include <sys/ioctl.h>
57 #include <sys/errno.h>
58 #include <sys/device.h>
59 #include <sys/queue.h>
60
61 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
62
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_ether.h>
67
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71
72 #include <machine/bus.h>
73 #include <machine/intr.h>
74
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 #include <dev/mii/mii_bitbang.h>
78
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 #include <dev/pci/pcidevs.h>
82
83 #include <dev/pci/if_stgereg.h>
84
85 /*
86 * Transmit descriptor list size.
87 */
88 #define STGE_NTXDESC 256
89 #define STGE_NTXDESC_MASK (STGE_NTXDESC - 1)
90 #define STGE_NEXTTX(x) (((x) + 1) & STGE_NTXDESC_MASK)
91
92 /*
93 * Receive descriptor list size.
94 */
95 #define STGE_NRXDESC 256
96 #define STGE_NRXDESC_MASK (STGE_NRXDESC - 1)
97 #define STGE_NEXTRX(x) (((x) + 1) & STGE_NRXDESC_MASK)
98
99 /*
100 * Only interrupt every N frames. Must be a power-of-two.
101 */
102 #define STGE_TXINTR_SPACING 16
103 #define STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
104
105 /*
106 * Control structures are DMA'd to the TC9021 chip. We allocate them in
107 * a single clump that maps to a single DMA segment to make several things
108 * easier.
109 */
110 struct stge_control_data {
111 /*
112 * The transmit descriptors.
113 */
114 struct stge_tfd scd_txdescs[STGE_NTXDESC];
115
116 /*
117 * The receive descriptors.
118 */
119 struct stge_rfd scd_rxdescs[STGE_NRXDESC];
120 };
121
122 #define STGE_CDOFF(x) offsetof(struct stge_control_data, x)
123 #define STGE_CDTXOFF(x) STGE_CDOFF(scd_txdescs[(x)])
124 #define STGE_CDRXOFF(x) STGE_CDOFF(scd_rxdescs[(x)])
125
126 /*
127 * Software state for transmit and receive jobs.
128 */
129 struct stge_descsoft {
130 struct mbuf *ds_mbuf; /* head of our mbuf chain */
131 bus_dmamap_t ds_dmamap; /* our DMA map */
132 };
133
134 /*
135 * Software state per device.
136 */
137 struct stge_softc {
138 struct device sc_dev; /* generic device information */
139 bus_space_tag_t sc_st; /* bus space tag */
140 bus_space_handle_t sc_sh; /* bus space handle */
141 bus_dma_tag_t sc_dmat; /* bus DMA tag */
142 struct ethercom sc_ethercom; /* ethernet common data */
143 void *sc_sdhook; /* shutdown hook */
144 int sc_rev; /* silicon revision */
145
146 void *sc_ih; /* interrupt cookie */
147
148 struct mii_data sc_mii; /* MII/media information */
149
150 struct callout sc_tick_ch; /* tick callout */
151
152 bus_dmamap_t sc_cddmamap; /* control data DMA map */
153 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
154
155 /*
156 * Software state for transmit and receive descriptors.
157 */
158 struct stge_descsoft sc_txsoft[STGE_NTXDESC];
159 struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
160
161 /*
162 * Control data structures.
163 */
164 struct stge_control_data *sc_control_data;
165 #define sc_txdescs sc_control_data->scd_txdescs
166 #define sc_rxdescs sc_control_data->scd_rxdescs
167
168 #ifdef STGE_EVENT_COUNTERS
169 /*
170 * Event counters.
171 */
172 struct evcnt sc_ev_txstall; /* Tx stalled */
173 struct evcnt sc_ev_txdmaintr; /* Tx DMA interrupts */
174 struct evcnt sc_ev_txindintr; /* Tx Indicate interrupts */
175 struct evcnt sc_ev_rxintr; /* Rx interrupts */
176
177 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
178 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
179 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
180 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
181 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
182 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
183 struct evcnt sc_ev_txcopy; /* Tx packets that we had to copy */
184
185 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
186 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
187 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-bound */
188
189 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
190 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
191 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
192 #endif /* STGE_EVENT_COUNTERS */
193
194 int sc_txpending; /* number of Tx requests pending */
195 int sc_txdirty; /* first dirty Tx descriptor */
196 int sc_txlast; /* last used Tx descriptor */
197
198 int sc_rxptr; /* next ready Rx descriptor/descsoft */
199 int sc_rxdiscard;
200 int sc_rxlen;
201 struct mbuf *sc_rxhead;
202 struct mbuf *sc_rxtail;
203 struct mbuf **sc_rxtailp;
204
205 int sc_txthresh; /* Tx threshold */
206 int sc_usefiber; /* if we're fiber */
207 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
208 uint32_t sc_MACCtrl; /* prototype MacCtrl register */
209 uint16_t sc_IntEnable; /* prototype IntEnable register */
210 uint16_t sc_ReceiveMode; /* prototype ReceiveMode register */
211 uint8_t sc_PhyCtrl; /* prototype PhyCtrl register */
212 };
213
214 #define STGE_RXCHAIN_RESET(sc) \
215 do { \
216 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
217 *(sc)->sc_rxtailp = NULL; \
218 (sc)->sc_rxlen = 0; \
219 } while (/*CONSTCOND*/0)
220
221 #define STGE_RXCHAIN_LINK(sc, m) \
222 do { \
223 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
224 (sc)->sc_rxtailp = &(m)->m_next; \
225 } while (/*CONSTCOND*/0)
226
227 #ifdef STGE_EVENT_COUNTERS
228 #define STGE_EVCNT_INCR(ev) (ev)->ev_count++
229 #else
230 #define STGE_EVCNT_INCR(ev) /* nothing */
231 #endif
232
233 #define STGE_CDTXADDR(sc, x) ((sc)->sc_cddma + STGE_CDTXOFF((x)))
234 #define STGE_CDRXADDR(sc, x) ((sc)->sc_cddma + STGE_CDRXOFF((x)))
235
236 #define STGE_CDTXSYNC(sc, x, ops) \
237 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
238 STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
239
240 #define STGE_CDRXSYNC(sc, x, ops) \
241 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
242 STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
243
244 #define STGE_INIT_RXDESC(sc, x) \
245 do { \
246 struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
247 struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
248 \
249 /* \
250 * Note: We scoot the packet forward 2 bytes in the buffer \
251 * so that the payload after the Ethernet header is aligned \
252 * to a 4-byte boundary. \
253 */ \
254 __rfd->rfd_frag.frag_word0 = \
255 htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
256 FRAG_LEN(MCLBYTES - 2)); \
257 __rfd->rfd_next = \
258 htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x)))); \
259 __rfd->rfd_status = 0; \
260 STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
261 } while (/*CONSTCOND*/0)
262
263 #define STGE_TIMEOUT 1000
264
265 void stge_start(struct ifnet *);
266 void stge_watchdog(struct ifnet *);
267 int stge_ioctl(struct ifnet *, u_long, caddr_t);
268 int stge_init(struct ifnet *);
269 void stge_stop(struct ifnet *, int);
270
271 void stge_shutdown(void *);
272
273 void stge_reset(struct stge_softc *);
274 void stge_rxdrain(struct stge_softc *);
275 int stge_add_rxbuf(struct stge_softc *, int);
276 #if 0
277 void stge_read_eeprom(struct stge_softc *, int, uint16_t *);
278 #endif
279 void stge_tick(void *);
280
281 void stge_stats_update(struct stge_softc *);
282
283 void stge_set_filter(struct stge_softc *);
284
285 int stge_intr(void *);
286 void stge_txintr(struct stge_softc *);
287 void stge_rxintr(struct stge_softc *);
288
289 int stge_mii_readreg(struct device *, int, int);
290 void stge_mii_writereg(struct device *, int, int, int);
291 void stge_mii_statchg(struct device *);
292
293 int stge_mediachange(struct ifnet *);
294 void stge_mediastatus(struct ifnet *, struct ifmediareq *);
295
296 int stge_match(struct device *, struct cfdata *, void *);
297 void stge_attach(struct device *, struct device *, void *);
298
299 int stge_copy_small = 0;
300
301 CFATTACH_DECL(stge, sizeof(struct stge_softc),
302 stge_match, stge_attach, NULL, NULL);
303
304 uint32_t stge_mii_bitbang_read(struct device *);
305 void stge_mii_bitbang_write(struct device *, uint32_t);
306
307 const struct mii_bitbang_ops stge_mii_bitbang_ops = {
308 stge_mii_bitbang_read,
309 stge_mii_bitbang_write,
310 {
311 PC_MgmtData, /* MII_BIT_MDO */
312 PC_MgmtData, /* MII_BIT_MDI */
313 PC_MgmtClk, /* MII_BIT_MDC */
314 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
315 0, /* MII_BIT_DIR_PHY_HOST */
316 }
317 };
318
319 /*
320 * Devices supported by this driver.
321 */
322 const struct stge_product {
323 pci_vendor_id_t stge_vendor;
324 pci_product_id_t stge_product;
325 const char *stge_name;
326 } stge_products[] = {
327 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST2021,
328 "Sundance ST-2021 Gigabit Ethernet" },
329
330 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021,
331 "Tamarack TC9021 Gigabit Ethernet" },
332
333 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021_ALT,
334 "Tamarack TC9021 Gigabit Ethernet" },
335
336 /*
337 * The Sundance sample boards use the Sundance vendor ID,
338 * but the Tamarack product ID.
339 */
340 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021,
341 "Sundance TC9021 Gigabit Ethernet" },
342
343 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021_ALT,
344 "Sundance TC9021 Gigabit Ethernet" },
345
346 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL4000,
347 "D-Link DL-4000 Gigabit Ethernet" },
348
349 { PCI_VENDOR_ANTARES, PCI_PRODUCT_ANTARES_TC9021,
350 "Antares Gigabit Ethernet" },
351
352 { 0, 0,
353 NULL },
354 };
355
356 static const struct stge_product *
357 stge_lookup(const struct pci_attach_args *pa)
358 {
359 const struct stge_product *sp;
360
361 for (sp = stge_products; sp->stge_name != NULL; sp++) {
362 if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
363 PCI_PRODUCT(pa->pa_id) == sp->stge_product)
364 return (sp);
365 }
366 return (NULL);
367 }
368
369 int
370 stge_match(struct device *parent, struct cfdata *cf, void *aux)
371 {
372 struct pci_attach_args *pa = aux;
373
374 if (stge_lookup(pa) != NULL)
375 return (1);
376
377 return (0);
378 }
379
380 void
381 stge_attach(struct device *parent, struct device *self, void *aux)
382 {
383 struct stge_softc *sc = (struct stge_softc *) self;
384 struct pci_attach_args *pa = aux;
385 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
386 pci_chipset_tag_t pc = pa->pa_pc;
387 pci_intr_handle_t ih;
388 const char *intrstr = NULL;
389 bus_space_tag_t iot, memt;
390 bus_space_handle_t ioh, memh;
391 bus_dma_segment_t seg;
392 int ioh_valid, memh_valid;
393 int i, rseg, error;
394 const struct stge_product *sp;
395 pcireg_t pmode;
396 uint8_t enaddr[ETHER_ADDR_LEN];
397 int pmreg;
398
399 callout_init(&sc->sc_tick_ch);
400
401 sp = stge_lookup(pa);
402 if (sp == NULL) {
403 printf("\n");
404 panic("ste_attach: impossible");
405 }
406
407 sc->sc_rev = PCI_REVISION(pa->pa_class);
408
409 printf(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
410
411 /*
412 * Map the device.
413 */
414 ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
415 PCI_MAPREG_TYPE_IO, 0,
416 &iot, &ioh, NULL, NULL) == 0);
417 memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
418 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
419 &memt, &memh, NULL, NULL) == 0);
420
421 if (memh_valid) {
422 sc->sc_st = memt;
423 sc->sc_sh = memh;
424 } else if (ioh_valid) {
425 sc->sc_st = iot;
426 sc->sc_sh = ioh;
427 } else {
428 printf("%s: unable to map device registers\n",
429 sc->sc_dev.dv_xname);
430 return;
431 }
432
433 sc->sc_dmat = pa->pa_dmat;
434
435 /* Enable bus mastering. */
436 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
437 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
438 PCI_COMMAND_MASTER_ENABLE);
439
440 /* Get it out of power save mode if needed. */
441 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
442 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
443 PCI_PMCSR_STATE_MASK;
444 if (pmode == PCI_PMCSR_STATE_D3) {
445 /*
446 * The card has lost all configuration data in
447 * this state, so punt.
448 */
449 printf("%s: unable to wake up from power state D3\n",
450 sc->sc_dev.dv_xname);
451 return;
452 }
453 if (pmode != 0) {
454 printf("%s: waking up from power state D%d\n",
455 sc->sc_dev.dv_xname, pmode);
456 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
457 PCI_PMCSR_STATE_D0);
458 }
459 }
460
461 /*
462 * Map and establish our interrupt.
463 */
464 if (pci_intr_map(pa, &ih)) {
465 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
466 return;
467 }
468 intrstr = pci_intr_string(pc, ih);
469 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
470 if (sc->sc_ih == NULL) {
471 printf("%s: unable to establish interrupt",
472 sc->sc_dev.dv_xname);
473 if (intrstr != NULL)
474 printf(" at %s", intrstr);
475 printf("\n");
476 return;
477 }
478 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
479
480 /*
481 * Allocate the control data structures, and create and load the
482 * DMA map for it.
483 */
484 if ((error = bus_dmamem_alloc(sc->sc_dmat,
485 sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
486 0)) != 0) {
487 printf("%s: unable to allocate control data, error = %d\n",
488 sc->sc_dev.dv_xname, error);
489 goto fail_0;
490 }
491
492 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
493 sizeof(struct stge_control_data), (caddr_t *)&sc->sc_control_data,
494 BUS_DMA_COHERENT)) != 0) {
495 printf("%s: unable to map control data, error = %d\n",
496 sc->sc_dev.dv_xname, error);
497 goto fail_1;
498 }
499
500 if ((error = bus_dmamap_create(sc->sc_dmat,
501 sizeof(struct stge_control_data), 1,
502 sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
503 printf("%s: unable to create control data DMA map, "
504 "error = %d\n", sc->sc_dev.dv_xname, error);
505 goto fail_2;
506 }
507
508 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
509 sc->sc_control_data, sizeof(struct stge_control_data), NULL,
510 0)) != 0) {
511 printf("%s: unable to load control data DMA map, error = %d\n",
512 sc->sc_dev.dv_xname, error);
513 goto fail_3;
514 }
515
516 /*
517 * Create the transmit buffer DMA maps. Note that rev B.3
518 * and earlier seem to have a bug regarding multi-fragment
519 * packets. We need to limit the number of Tx segments on
520 * such chips to 1.
521 */
522 for (i = 0; i < STGE_NTXDESC; i++) {
523 if ((error = bus_dmamap_create(sc->sc_dmat,
524 ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
525 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
526 printf("%s: unable to create tx DMA map %d, "
527 "error = %d\n", sc->sc_dev.dv_xname, i, error);
528 goto fail_4;
529 }
530 }
531
532 /*
533 * Create the receive buffer DMA maps.
534 */
535 for (i = 0; i < STGE_NRXDESC; i++) {
536 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
537 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
538 printf("%s: unable to create rx DMA map %d, "
539 "error = %d\n", sc->sc_dev.dv_xname, i, error);
540 goto fail_5;
541 }
542 sc->sc_rxsoft[i].ds_mbuf = NULL;
543 }
544
545 /*
546 * Determine if we're copper or fiber. It affects how we
547 * reset the card.
548 */
549 if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
550 AC_PhyMedia)
551 sc->sc_usefiber = 1;
552 else
553 sc->sc_usefiber = 0;
554
555 /*
556 * Reset the chip to a known state.
557 */
558 stge_reset(sc);
559
560 /*
561 * Reading the station address from the EEPROM doesn't seem
562 * to work, at least on my sample boards. Instread, since
563 * the reset sequence does AutoInit, read it from the station
564 * address registers.
565 */
566 enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
567 STGE_StationAddress0) & 0xff;
568 enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
569 STGE_StationAddress0) >> 8;
570 enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
571 STGE_StationAddress1) & 0xff;
572 enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
573 STGE_StationAddress1) >> 8;
574 enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
575 STGE_StationAddress2) & 0xff;
576 enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
577 STGE_StationAddress2) >> 8;
578
579 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
580 ether_sprintf(enaddr));
581
582 /*
583 * Read some important bits from the PhyCtrl register.
584 */
585 sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
586 STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
587
588 /*
589 * Initialize our media structures and probe the MII.
590 */
591 sc->sc_mii.mii_ifp = ifp;
592 sc->sc_mii.mii_readreg = stge_mii_readreg;
593 sc->sc_mii.mii_writereg = stge_mii_writereg;
594 sc->sc_mii.mii_statchg = stge_mii_statchg;
595 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, stge_mediachange,
596 stge_mediastatus);
597 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
598 MII_OFFSET_ANY, MIIF_DOPAUSE);
599 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
600 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
601 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
602 } else
603 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
604
605 ifp = &sc->sc_ethercom.ec_if;
606 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
607 ifp->if_softc = sc;
608 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
609 ifp->if_ioctl = stge_ioctl;
610 ifp->if_start = stge_start;
611 ifp->if_watchdog = stge_watchdog;
612 ifp->if_init = stge_init;
613 ifp->if_stop = stge_stop;
614 IFQ_SET_READY(&ifp->if_snd);
615
616 /*
617 * The manual recommends disabling early transmit, so we
618 * do. It's disabled anyway, if using IP checksumming,
619 * since the entire packet must be in the FIFO in order
620 * for the chip to perform the checksum.
621 */
622 sc->sc_txthresh = 0x0fff;
623
624 /*
625 * Disable MWI if the PCI layer tells us to.
626 */
627 sc->sc_DMACtrl = 0;
628 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
629 sc->sc_DMACtrl |= DMAC_MWIDisable;
630
631 /*
632 * We can support 802.1Q VLAN-sized frames and jumbo
633 * Ethernet frames.
634 *
635 * XXX Figure out how to do hw-assisted VLAN tagging in
636 * XXX a reasonable way on this chip.
637 */
638 sc->sc_ethercom.ec_capabilities |=
639 ETHERCAP_VLAN_MTU /* XXX | ETHERCAP_JUMBO_MTU */;
640
641 /*
642 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
643 */
644 sc->sc_ethercom.ec_if.if_capabilities |= IFCAP_CSUM_IPv4 |
645 IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
646
647 /*
648 * Attach the interface.
649 */
650 if_attach(ifp);
651 ether_ifattach(ifp, enaddr);
652
653 #ifdef STGE_EVENT_COUNTERS
654 /*
655 * Attach event counters.
656 */
657 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
658 NULL, sc->sc_dev.dv_xname, "txstall");
659 evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
660 NULL, sc->sc_dev.dv_xname, "txdmaintr");
661 evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
662 NULL, sc->sc_dev.dv_xname, "txindintr");
663 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
664 NULL, sc->sc_dev.dv_xname, "rxintr");
665
666 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
667 NULL, sc->sc_dev.dv_xname, "txseg1");
668 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
669 NULL, sc->sc_dev.dv_xname, "txseg2");
670 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
671 NULL, sc->sc_dev.dv_xname, "txseg3");
672 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
673 NULL, sc->sc_dev.dv_xname, "txseg4");
674 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
675 NULL, sc->sc_dev.dv_xname, "txseg5");
676 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
677 NULL, sc->sc_dev.dv_xname, "txsegmore");
678 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
679 NULL, sc->sc_dev.dv_xname, "txcopy");
680
681 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
682 NULL, sc->sc_dev.dv_xname, "rxipsum");
683 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
684 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
685 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
686 NULL, sc->sc_dev.dv_xname, "rxudpsum");
687 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
688 NULL, sc->sc_dev.dv_xname, "txipsum");
689 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
690 NULL, sc->sc_dev.dv_xname, "txtcpsum");
691 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
692 NULL, sc->sc_dev.dv_xname, "txudpsum");
693 #endif /* STGE_EVENT_COUNTERS */
694
695 /*
696 * Make sure the interface is shutdown during reboot.
697 */
698 sc->sc_sdhook = shutdownhook_establish(stge_shutdown, sc);
699 if (sc->sc_sdhook == NULL)
700 printf("%s: WARNING: unable to establish shutdown hook\n",
701 sc->sc_dev.dv_xname);
702 return;
703
704 /*
705 * Free any resources we've allocated during the failed attach
706 * attempt. Do this in reverse order and fall through.
707 */
708 fail_5:
709 for (i = 0; i < STGE_NRXDESC; i++) {
710 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
711 bus_dmamap_destroy(sc->sc_dmat,
712 sc->sc_rxsoft[i].ds_dmamap);
713 }
714 fail_4:
715 for (i = 0; i < STGE_NTXDESC; i++) {
716 if (sc->sc_txsoft[i].ds_dmamap != NULL)
717 bus_dmamap_destroy(sc->sc_dmat,
718 sc->sc_txsoft[i].ds_dmamap);
719 }
720 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
721 fail_3:
722 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
723 fail_2:
724 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
725 sizeof(struct stge_control_data));
726 fail_1:
727 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
728 fail_0:
729 return;
730 }
731
732 /*
733 * stge_shutdown:
734 *
735 * Make sure the interface is stopped at reboot time.
736 */
737 void
738 stge_shutdown(void *arg)
739 {
740 struct stge_softc *sc = arg;
741
742 stge_stop(&sc->sc_ethercom.ec_if, 1);
743 }
744
745 static void
746 stge_dma_wait(struct stge_softc *sc)
747 {
748 int i;
749
750 for (i = 0; i < STGE_TIMEOUT; i++) {
751 delay(2);
752 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
753 DMAC_TxDMAInProg) == 0)
754 break;
755 }
756
757 if (i == STGE_TIMEOUT)
758 printf("%s: DMA wait timed out\n", sc->sc_dev.dv_xname);
759 }
760
761 /*
762 * stge_start: [ifnet interface function]
763 *
764 * Start packet transmission on the interface.
765 */
766 void
767 stge_start(struct ifnet *ifp)
768 {
769 struct stge_softc *sc = ifp->if_softc;
770 struct mbuf *m0;
771 struct stge_descsoft *ds;
772 struct stge_tfd *tfd;
773 bus_dmamap_t dmamap;
774 int error, firsttx, nexttx, opending, seg, totlen;
775 uint64_t csum_flags;
776
777 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
778 return;
779
780 /*
781 * Remember the previous number of pending transmissions
782 * and the first descriptor we will use.
783 */
784 opending = sc->sc_txpending;
785 firsttx = STGE_NEXTTX(sc->sc_txlast);
786
787 /*
788 * Loop through the send queue, setting up transmit descriptors
789 * until we drain the queue, or use up all available transmit
790 * descriptors.
791 */
792 for (;;) {
793 /*
794 * Grab a packet off the queue.
795 */
796 IFQ_POLL(&ifp->if_snd, m0);
797 if (m0 == NULL)
798 break;
799
800 /*
801 * Leave one unused descriptor at the end of the
802 * list to prevent wrapping completely around.
803 */
804 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
805 STGE_EVCNT_INCR(&sc->sc_ev_txstall);
806 break;
807 }
808
809 /*
810 * Get the last and next available transmit descriptor.
811 */
812 nexttx = STGE_NEXTTX(sc->sc_txlast);
813 tfd = &sc->sc_txdescs[nexttx];
814 ds = &sc->sc_txsoft[nexttx];
815
816 dmamap = ds->ds_dmamap;
817
818 /*
819 * Load the DMA map. If this fails, the packet either
820 * didn't fit in the alloted number of segments, or we
821 * were short on resources. For the too-may-segments
822 * case, we simply report an error and drop the packet,
823 * since we can't sanely copy a jumbo packet to a single
824 * buffer.
825 */
826 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
827 BUS_DMA_NOWAIT);
828 if (error) {
829 if (error == EFBIG) {
830 printf("%s: Tx packet consumes too many "
831 "DMA segments, dropping...\n",
832 sc->sc_dev.dv_xname);
833 IFQ_DEQUEUE(&ifp->if_snd, m0);
834 m_freem(m0);
835 continue;
836 }
837 /*
838 * Short on resources, just stop for now.
839 */
840 break;
841 }
842
843 IFQ_DEQUEUE(&ifp->if_snd, m0);
844
845 /*
846 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
847 */
848
849 /* Sync the DMA map. */
850 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
851 BUS_DMASYNC_PREWRITE);
852
853 /* Initialize the fragment list. */
854 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
855 tfd->tfd_frags[seg].frag_word0 =
856 htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
857 FRAG_LEN(dmamap->dm_segs[seg].ds_len));
858 totlen += dmamap->dm_segs[seg].ds_len;
859 }
860
861 #ifdef STGE_EVENT_COUNTERS
862 switch (dmamap->dm_nsegs) {
863 case 1:
864 STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
865 break;
866 case 2:
867 STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
868 break;
869 case 3:
870 STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
871 break;
872 case 4:
873 STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
874 break;
875 case 5:
876 STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
877 break;
878 default:
879 STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
880 break;
881 }
882 #endif /* STGE_EVENT_COUNTERS */
883
884 /*
885 * Initialize checksumming flags in the descriptor.
886 * Byte-swap constants so the compiler can optimize.
887 */
888 csum_flags = 0;
889 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
890 STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
891 csum_flags |= htole64(TFD_IPChecksumEnable);
892 }
893
894 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
895 STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
896 csum_flags |= htole64(TFD_TCPChecksumEnable);
897 }
898 else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
899 STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
900 csum_flags |= htole64(TFD_UDPChecksumEnable);
901 }
902
903 /*
904 * Initialize the descriptor and give it to the chip.
905 */
906 tfd->tfd_control = htole64(TFD_FrameId(nexttx) |
907 TFD_WordAlign(/*totlen & */3) |
908 TFD_FragCount(seg) | csum_flags |
909 (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
910 TFD_TxDMAIndicate : 0));
911
912 /* Sync the descriptor. */
913 STGE_CDTXSYNC(sc, nexttx,
914 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
915
916 /*
917 * Kick the transmit DMA logic.
918 */
919 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
920 sc->sc_DMACtrl | DMAC_TxDMAPollNow);
921
922 /*
923 * Store a pointer to the packet so we can free it later.
924 */
925 ds->ds_mbuf = m0;
926
927 /* Advance the tx pointer. */
928 sc->sc_txpending++;
929 sc->sc_txlast = nexttx;
930
931 #if NBPFILTER > 0
932 /*
933 * Pass the packet to any BPF listeners.
934 */
935 if (ifp->if_bpf)
936 bpf_mtap(ifp->if_bpf, m0);
937 #endif /* NBPFILTER > 0 */
938 }
939
940 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
941 /* No more slots left; notify upper layer. */
942 ifp->if_flags |= IFF_OACTIVE;
943 }
944
945 if (sc->sc_txpending != opending) {
946 /*
947 * We enqueued packets. If the transmitter was idle,
948 * reset the txdirty pointer.
949 */
950 if (opending == 0)
951 sc->sc_txdirty = firsttx;
952
953 /* Set a watchdog timer in case the chip flakes out. */
954 ifp->if_timer = 5;
955 }
956 }
957
958 /*
959 * stge_watchdog: [ifnet interface function]
960 *
961 * Watchdog timer handler.
962 */
963 void
964 stge_watchdog(struct ifnet *ifp)
965 {
966 struct stge_softc *sc = ifp->if_softc;
967
968 /*
969 * Sweep up first, since we don't interrupt every frame.
970 */
971 stge_txintr(sc);
972 if (sc->sc_txpending != 0) {
973 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
974 ifp->if_oerrors++;
975
976 (void) stge_init(ifp);
977
978 /* Try to get more packets going. */
979 stge_start(ifp);
980 }
981 }
982
983 /*
984 * stge_ioctl: [ifnet interface function]
985 *
986 * Handle control requests from the operator.
987 */
988 int
989 stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
990 {
991 struct stge_softc *sc = ifp->if_softc;
992 struct ifreq *ifr = (struct ifreq *)data;
993 int s, error;
994
995 s = splnet();
996
997 switch (cmd) {
998 case SIOCSIFMEDIA:
999 case SIOCGIFMEDIA:
1000 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1001 break;
1002
1003 default:
1004 error = ether_ioctl(ifp, cmd, data);
1005 if (error == ENETRESET) {
1006 /*
1007 * Multicast list has changed; set the hardware filter
1008 * accordingly.
1009 */
1010 stge_set_filter(sc);
1011 error = 0;
1012 }
1013 break;
1014 }
1015
1016 /* Try to get more packets going. */
1017 stge_start(ifp);
1018
1019 splx(s);
1020 return (error);
1021 }
1022
1023 /*
1024 * stge_intr:
1025 *
1026 * Interrupt service routine.
1027 */
1028 int
1029 stge_intr(void *arg)
1030 {
1031 struct stge_softc *sc = arg;
1032 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1033 uint32_t txstat;
1034 int wantinit;
1035 uint16_t isr;
1036
1037 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1038 IS_InterruptStatus) == 0)
1039 return (0);
1040
1041 for (wantinit = 0; wantinit == 0;) {
1042 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1043 if ((isr & sc->sc_IntEnable) == 0)
1044 break;
1045
1046 /* Receive interrupts. */
1047 if (isr & (IE_RxDMAComplete|IE_RFDListEnd)) {
1048 STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1049 stge_rxintr(sc);
1050 if (isr & IE_RFDListEnd) {
1051 printf("%s: receive ring overflow\n",
1052 sc->sc_dev.dv_xname);
1053 /*
1054 * XXX Should try to recover from this
1055 * XXX more gracefully.
1056 */
1057 wantinit = 1;
1058 }
1059 }
1060
1061 /* Transmit interrupts. */
1062 if (isr & (IE_TxDMAComplete|IE_TxComplete)) {
1063 #ifdef STGE_EVENT_COUNTERS
1064 if (isr & IE_TxDMAComplete)
1065 STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1066 #endif
1067 stge_txintr(sc);
1068 }
1069
1070 /* Statistics overflow. */
1071 if (isr & IE_UpdateStats)
1072 stge_stats_update(sc);
1073
1074 /* Transmission errors. */
1075 if (isr & IE_TxComplete) {
1076 STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1077 for (;;) {
1078 txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1079 STGE_TxStatus);
1080 if ((txstat & TS_TxComplete) == 0)
1081 break;
1082 if (txstat & TS_TxUnderrun) {
1083 sc->sc_txthresh++;
1084 if (sc->sc_txthresh > 0x0fff)
1085 sc->sc_txthresh = 0x0fff;
1086 printf("%s: transmit underrun, new "
1087 "threshold: %d bytes\n",
1088 sc->sc_dev.dv_xname,
1089 sc->sc_txthresh << 5);
1090 }
1091 if (txstat & TS_MaxCollisions)
1092 printf("%s: excessive collisions\n",
1093 sc->sc_dev.dv_xname);
1094 }
1095 wantinit = 1;
1096 }
1097
1098 /* Host interface errors. */
1099 if (isr & IE_HostError) {
1100 printf("%s: Host interface error\n",
1101 sc->sc_dev.dv_xname);
1102 wantinit = 1;
1103 }
1104 }
1105
1106 if (wantinit)
1107 stge_init(ifp);
1108
1109 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1110 sc->sc_IntEnable);
1111
1112 /* Try to get more packets going. */
1113 stge_start(ifp);
1114
1115 return (1);
1116 }
1117
1118 /*
1119 * stge_txintr:
1120 *
1121 * Helper; handle transmit interrupts.
1122 */
1123 void
1124 stge_txintr(struct stge_softc *sc)
1125 {
1126 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1127 struct stge_descsoft *ds;
1128 uint64_t control;
1129 int i;
1130
1131 ifp->if_flags &= ~IFF_OACTIVE;
1132
1133 /*
1134 * Go through our Tx list and free mbufs for those
1135 * frames which have been transmitted.
1136 */
1137 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1138 i = STGE_NEXTTX(i), sc->sc_txpending--) {
1139 ds = &sc->sc_txsoft[i];
1140
1141 STGE_CDTXSYNC(sc, i,
1142 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1143
1144 control = le64toh(sc->sc_txdescs[i].tfd_control);
1145 if ((control & TFD_TFDDone) == 0)
1146 break;
1147
1148 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1149 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1150 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1151 m_freem(ds->ds_mbuf);
1152 ds->ds_mbuf = NULL;
1153 }
1154
1155 /* Update the dirty transmit buffer pointer. */
1156 sc->sc_txdirty = i;
1157
1158 /*
1159 * If there are no more pending transmissions, cancel the watchdog
1160 * timer.
1161 */
1162 if (sc->sc_txpending == 0)
1163 ifp->if_timer = 0;
1164 }
1165
1166 /*
1167 * stge_rxintr:
1168 *
1169 * Helper; handle receive interrupts.
1170 */
1171 void
1172 stge_rxintr(struct stge_softc *sc)
1173 {
1174 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1175 struct stge_descsoft *ds;
1176 struct mbuf *m, *tailm;
1177 uint64_t status;
1178 int i, len;
1179
1180 for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1181 ds = &sc->sc_rxsoft[i];
1182
1183 STGE_CDRXSYNC(sc, i,
1184 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1185
1186 status = le64toh(sc->sc_rxdescs[i].rfd_status);
1187
1188 if ((status & RFD_RFDDone) == 0)
1189 break;
1190
1191 if (__predict_false(sc->sc_rxdiscard)) {
1192 STGE_INIT_RXDESC(sc, i);
1193 if (status & RFD_FrameEnd) {
1194 /* Reset our state. */
1195 sc->sc_rxdiscard = 0;
1196 }
1197 continue;
1198 }
1199
1200 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1201 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1202
1203 m = ds->ds_mbuf;
1204
1205 /*
1206 * Add a new receive buffer to the ring.
1207 */
1208 if (stge_add_rxbuf(sc, i) != 0) {
1209 /*
1210 * Failed, throw away what we've done so
1211 * far, and discard the rest of the packet.
1212 */
1213 ifp->if_ierrors++;
1214 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1215 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1216 STGE_INIT_RXDESC(sc, i);
1217 if ((status & RFD_FrameEnd) == 0)
1218 sc->sc_rxdiscard = 1;
1219 if (sc->sc_rxhead != NULL)
1220 m_freem(sc->sc_rxhead);
1221 STGE_RXCHAIN_RESET(sc);
1222 continue;
1223 }
1224
1225 #ifdef DIAGNOSTIC
1226 if (status & RFD_FrameStart) {
1227 KASSERT(sc->sc_rxhead == NULL);
1228 KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1229 }
1230 #endif
1231
1232 STGE_RXCHAIN_LINK(sc, m);
1233
1234 /*
1235 * If this is not the end of the packet, keep
1236 * looking.
1237 */
1238 if ((status & RFD_FrameEnd) == 0) {
1239 sc->sc_rxlen += m->m_len;
1240 continue;
1241 }
1242
1243 /*
1244 * Okay, we have the entire packet now...
1245 */
1246 *sc->sc_rxtailp = NULL;
1247 m = sc->sc_rxhead;
1248 tailm = sc->sc_rxtail;
1249
1250 STGE_RXCHAIN_RESET(sc);
1251
1252 /*
1253 * If the packet had an error, drop it. Note we
1254 * count the error later in the periodic stats update.
1255 */
1256 if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1257 RFD_RxAlignmentError | RFD_RxFCSError |
1258 RFD_RxLengthError)) {
1259 m_freem(m);
1260 continue;
1261 }
1262
1263 /*
1264 * No errors.
1265 *
1266 * Note we have configured the chip to not include
1267 * the CRC at the end of the packet.
1268 */
1269 len = RFD_RxDMAFrameLen(status);
1270 tailm->m_len = len - sc->sc_rxlen;
1271
1272 /*
1273 * If the packet is small enough to fit in a
1274 * single header mbuf, allocate one and copy
1275 * the data into it. This greatly reduces
1276 * memory consumption when we receive lots
1277 * of small packets.
1278 */
1279 if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1280 struct mbuf *nm;
1281 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1282 if (nm == NULL) {
1283 ifp->if_ierrors++;
1284 m_freem(m);
1285 continue;
1286 }
1287 nm->m_data += 2;
1288 nm->m_pkthdr.len = nm->m_len = len;
1289 m_copydata(m, 0, len, mtod(nm, caddr_t));
1290 m_freem(m);
1291 m = nm;
1292 }
1293
1294 /*
1295 * Set the incoming checksum information for the packet.
1296 */
1297 if (status & RFD_IPDetected) {
1298 STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1299 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1300 if (status & RFD_IPError)
1301 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1302 if (status & RFD_TCPDetected) {
1303 STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1304 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1305 if (status & RFD_TCPError)
1306 m->m_pkthdr.csum_flags |=
1307 M_CSUM_TCP_UDP_BAD;
1308 } else if (status & RFD_UDPDetected) {
1309 STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1310 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1311 if (status & RFD_UDPError)
1312 m->m_pkthdr.csum_flags |=
1313 M_CSUM_TCP_UDP_BAD;
1314 }
1315 }
1316
1317 m->m_pkthdr.rcvif = ifp;
1318 m->m_pkthdr.len = len;
1319
1320 #if NBPFILTER > 0
1321 /*
1322 * Pass this up to any BPF listeners, but only
1323 * pass if up the stack if it's for us.
1324 */
1325 if (ifp->if_bpf)
1326 bpf_mtap(ifp->if_bpf, m);
1327 #endif /* NBPFILTER > 0 */
1328
1329 /* Pass it on. */
1330 (*ifp->if_input)(ifp, m);
1331 }
1332
1333 /* Update the receive pointer. */
1334 sc->sc_rxptr = i;
1335 }
1336
1337 /*
1338 * stge_tick:
1339 *
1340 * One second timer, used to tick the MII.
1341 */
1342 void
1343 stge_tick(void *arg)
1344 {
1345 struct stge_softc *sc = arg;
1346 int s;
1347
1348 s = splnet();
1349 mii_tick(&sc->sc_mii);
1350 stge_stats_update(sc);
1351 splx(s);
1352
1353 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1354 }
1355
1356 /*
1357 * stge_stats_update:
1358 *
1359 * Read the TC9021 statistics counters.
1360 */
1361 void
1362 stge_stats_update(struct stge_softc *sc)
1363 {
1364 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1365 bus_space_tag_t st = sc->sc_st;
1366 bus_space_handle_t sh = sc->sc_sh;
1367
1368 (void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1369
1370 ifp->if_ipackets +=
1371 bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1372
1373 ifp->if_ierrors +=
1374 (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1375
1376 (void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1377
1378 ifp->if_opackets +=
1379 bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1380
1381 ifp->if_collisions +=
1382 bus_space_read_4(st, sh, STGE_LateCollisions) +
1383 bus_space_read_4(st, sh, STGE_MultiColFrames) +
1384 bus_space_read_4(st, sh, STGE_SingleColFrames);
1385
1386 ifp->if_oerrors +=
1387 (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1388 (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1389 }
1390
1391 /*
1392 * stge_reset:
1393 *
1394 * Perform a soft reset on the TC9021.
1395 */
1396 void
1397 stge_reset(struct stge_softc *sc)
1398 {
1399 uint32_t ac;
1400 int i;
1401
1402 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1403
1404 /*
1405 * Only assert RstOut if we're fiber. We need GMII clocks
1406 * to be present in order for the reset to complete on fiber
1407 * cards.
1408 */
1409 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1410 ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1411 AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1412 (sc->sc_usefiber ? AC_RstOut : 0));
1413
1414 delay(50000);
1415
1416 for (i = 0; i < STGE_TIMEOUT; i++) {
1417 delay(5000);
1418 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1419 AC_ResetBusy) == 0)
1420 break;
1421 }
1422
1423 if (i == STGE_TIMEOUT)
1424 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1425
1426 delay(1000);
1427 }
1428
1429 /*
1430 * stge_init: [ ifnet interface function ]
1431 *
1432 * Initialize the interface. Must be called at splnet().
1433 */
1434 int
1435 stge_init(struct ifnet *ifp)
1436 {
1437 struct stge_softc *sc = ifp->if_softc;
1438 bus_space_tag_t st = sc->sc_st;
1439 bus_space_handle_t sh = sc->sc_sh;
1440 struct stge_descsoft *ds;
1441 int i, error = 0;
1442
1443 /*
1444 * Cancel any pending I/O.
1445 */
1446 stge_stop(ifp, 0);
1447
1448 /*
1449 * Reset the chip to a known state.
1450 */
1451 stge_reset(sc);
1452
1453 /*
1454 * Initialize the transmit descriptor ring.
1455 */
1456 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1457 for (i = 0; i < STGE_NTXDESC; i++) {
1458 sc->sc_txdescs[i].tfd_next =
1459 (uint64_t) STGE_CDTXADDR(sc, STGE_NEXTTX(i));
1460 sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1461 }
1462 sc->sc_txpending = 0;
1463 sc->sc_txdirty = 0;
1464 sc->sc_txlast = STGE_NTXDESC - 1;
1465
1466 /*
1467 * Initialize the receive descriptor and receive job
1468 * descriptor rings.
1469 */
1470 for (i = 0; i < STGE_NRXDESC; i++) {
1471 ds = &sc->sc_rxsoft[i];
1472 if (ds->ds_mbuf == NULL) {
1473 if ((error = stge_add_rxbuf(sc, i)) != 0) {
1474 printf("%s: unable to allocate or map rx "
1475 "buffer %d, error = %d\n",
1476 sc->sc_dev.dv_xname, i, error);
1477 /*
1478 * XXX Should attempt to run with fewer receive
1479 * XXX buffers instead of just failing.
1480 */
1481 stge_rxdrain(sc);
1482 goto out;
1483 }
1484 } else
1485 STGE_INIT_RXDESC(sc, i);
1486 }
1487 sc->sc_rxptr = 0;
1488 sc->sc_rxdiscard = 0;
1489 STGE_RXCHAIN_RESET(sc);
1490
1491 /* Set the station address. */
1492 bus_space_write_2(st, sh, STGE_StationAddress0,
1493 LLADDR(ifp->if_sadl)[0] | (LLADDR(ifp->if_sadl)[1] << 8));
1494 bus_space_write_2(st, sh, STGE_StationAddress1,
1495 LLADDR(ifp->if_sadl)[2] | (LLADDR(ifp->if_sadl)[3] << 8));
1496 bus_space_write_2(st, sh, STGE_StationAddress2,
1497 LLADDR(ifp->if_sadl)[4] | (LLADDR(ifp->if_sadl)[5] << 8));
1498
1499 /*
1500 * Set the statistics masks. Disable all the RMON stats,
1501 * and disable selected stats in the non-RMON stats registers.
1502 */
1503 bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1504 bus_space_write_4(st, sh, STGE_StatisticsMask,
1505 (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1506 (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1507 (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1508 (1U << 21));
1509
1510 /* Set up the receive filter. */
1511 stge_set_filter(sc);
1512
1513 /*
1514 * Give the transmit and receive ring to the chip.
1515 */
1516 bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1517 bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1518 STGE_CDTXADDR(sc, sc->sc_txdirty));
1519
1520 bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1521 bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1522 STGE_CDRXADDR(sc, sc->sc_rxptr));
1523
1524 /*
1525 * Initialize the Tx auto-poll period. It's OK to make this number
1526 * large (255 is the max, but we use 127) -- we explicitly kick the
1527 * transmit engine when there's actually a packet.
1528 */
1529 bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1530
1531 /* ..and the Rx auto-poll period. */
1532 bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1533
1534 /* Initialize the Tx start threshold. */
1535 bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1536
1537 /*
1538 * Initialize the Rx DMA interrupt control register. We
1539 * request an interrupt after every incoming packet, but
1540 * defer it for 32us (64 * 512 ns). When the number of
1541 * interrupts pending reaches 8, we stop deferring the
1542 * interrupt, and signal it immediately.
1543 */
1544 bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1545 RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1546
1547 /*
1548 * Initialize the interrupt mask.
1549 */
1550 sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1551 IE_TxDMAComplete | IE_RxDMAComplete | IE_RFDListEnd;
1552 bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1553 bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1554
1555 /*
1556 * Configure the DMA engine.
1557 * XXX Should auto-tune TxBurstLimit.
1558 */
1559 bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1560 DMAC_TxBurstLimit(3));
1561
1562 /*
1563 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1564 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1565 * empty again.
1566 */
1567 bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1568 bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1569
1570 /*
1571 * Set the maximum frame size.
1572 */
1573 bus_space_write_2(st, sh, STGE_MaxFrameSize,
1574 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1575 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1576 ETHER_VLAN_ENCAP_LEN : 0));
1577
1578 /*
1579 * Initialize MacCtrl -- do it before setting the media,
1580 * as setting the media will actually program the register.
1581 *
1582 * Note: We have to poke the IFS value before poking
1583 * anything else.
1584 */
1585 sc->sc_MACCtrl = MC_IFSSelect(0);
1586 bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1587 sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1588
1589 if (sc->sc_rev >= 6) { /* >= B.2 */
1590 /* Multi-frag frame bug work-around. */
1591 bus_space_write_2(st, sh, STGE_DebugCtrl,
1592 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1593
1594 /* Tx Poll Now bug work-around. */
1595 bus_space_write_2(st, sh, STGE_DebugCtrl,
1596 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1597 }
1598
1599 /*
1600 * Set the current media.
1601 */
1602 mii_mediachg(&sc->sc_mii);
1603
1604 /*
1605 * Start the one second MII clock.
1606 */
1607 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1608
1609 /*
1610 * ...all done!
1611 */
1612 ifp->if_flags |= IFF_RUNNING;
1613 ifp->if_flags &= ~IFF_OACTIVE;
1614
1615 out:
1616 if (error)
1617 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1618 return (error);
1619 }
1620
1621 /*
1622 * stge_drain:
1623 *
1624 * Drain the receive queue.
1625 */
1626 void
1627 stge_rxdrain(struct stge_softc *sc)
1628 {
1629 struct stge_descsoft *ds;
1630 int i;
1631
1632 for (i = 0; i < STGE_NRXDESC; i++) {
1633 ds = &sc->sc_rxsoft[i];
1634 if (ds->ds_mbuf != NULL) {
1635 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1636 ds->ds_mbuf->m_next = NULL;
1637 m_freem(ds->ds_mbuf);
1638 ds->ds_mbuf = NULL;
1639 }
1640 }
1641 }
1642
1643 /*
1644 * stge_stop: [ ifnet interface function ]
1645 *
1646 * Stop transmission on the interface.
1647 */
1648 void
1649 stge_stop(struct ifnet *ifp, int disable)
1650 {
1651 struct stge_softc *sc = ifp->if_softc;
1652 struct stge_descsoft *ds;
1653 int i;
1654
1655 /*
1656 * Stop the one second clock.
1657 */
1658 callout_stop(&sc->sc_tick_ch);
1659
1660 /* Down the MII. */
1661 mii_down(&sc->sc_mii);
1662
1663 /*
1664 * Disable interrupts.
1665 */
1666 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1667
1668 /*
1669 * Stop receiver, transmitter, and stats update.
1670 */
1671 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1672 MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1673
1674 /*
1675 * Stop the transmit and receive DMA.
1676 */
1677 stge_dma_wait(sc);
1678 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1679 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1680 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1681 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1682
1683 /*
1684 * Release any queued transmit buffers.
1685 */
1686 for (i = 0; i < STGE_NTXDESC; i++) {
1687 ds = &sc->sc_txsoft[i];
1688 if (ds->ds_mbuf != NULL) {
1689 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1690 m_freem(ds->ds_mbuf);
1691 ds->ds_mbuf = NULL;
1692 }
1693 }
1694
1695 if (disable)
1696 stge_rxdrain(sc);
1697
1698 /*
1699 * Mark the interface down and cancel the watchdog timer.
1700 */
1701 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1702 ifp->if_timer = 0;
1703 }
1704
1705 #if 0
1706 static int
1707 stge_eeprom_wait(struct stge_softc *sc)
1708 {
1709 int i;
1710
1711 for (i = 0; i < STGE_TIMEOUT; i++) {
1712 delay(1000);
1713 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1714 EC_EepromBusy) == 0)
1715 return (0);
1716 }
1717 return (1);
1718 }
1719
1720 /*
1721 * stge_read_eeprom:
1722 *
1723 * Read data from the serial EEPROM.
1724 */
1725 void
1726 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1727 {
1728
1729 if (stge_eeprom_wait(sc))
1730 printf("%s: EEPROM failed to come ready\n",
1731 sc->sc_dev.dv_xname);
1732
1733 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1734 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1735 if (stge_eeprom_wait(sc))
1736 printf("%s: EEPROM read timed out\n",
1737 sc->sc_dev.dv_xname);
1738 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1739 }
1740 #endif /* 0 */
1741
1742 /*
1743 * stge_add_rxbuf:
1744 *
1745 * Add a receive buffer to the indicated descriptor.
1746 */
1747 int
1748 stge_add_rxbuf(struct stge_softc *sc, int idx)
1749 {
1750 struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1751 struct mbuf *m;
1752 int error;
1753
1754 MGETHDR(m, M_DONTWAIT, MT_DATA);
1755 if (m == NULL)
1756 return (ENOBUFS);
1757
1758 MCLGET(m, M_DONTWAIT);
1759 if ((m->m_flags & M_EXT) == 0) {
1760 m_freem(m);
1761 return (ENOBUFS);
1762 }
1763
1764 m->m_data = m->m_ext.ext_buf + 2;
1765 m->m_len = MCLBYTES - 2;
1766
1767 if (ds->ds_mbuf != NULL)
1768 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1769
1770 ds->ds_mbuf = m;
1771
1772 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1773 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1774 if (error) {
1775 printf("%s: can't load rx DMA map %d, error = %d\n",
1776 sc->sc_dev.dv_xname, idx, error);
1777 panic("stge_add_rxbuf"); /* XXX */
1778 }
1779
1780 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1781 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1782
1783 STGE_INIT_RXDESC(sc, idx);
1784
1785 return (0);
1786 }
1787
1788 /*
1789 * stge_set_filter:
1790 *
1791 * Set up the receive filter.
1792 */
1793 void
1794 stge_set_filter(struct stge_softc *sc)
1795 {
1796 struct ethercom *ec = &sc->sc_ethercom;
1797 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1798 struct ether_multi *enm;
1799 struct ether_multistep step;
1800 uint32_t crc;
1801 uint32_t mchash[2];
1802
1803 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1804 if (ifp->if_flags & IFF_BROADCAST)
1805 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1806
1807 if (ifp->if_flags & IFF_PROMISC) {
1808 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1809 goto allmulti;
1810 }
1811
1812 /*
1813 * Set up the multicast address filter by passing all multicast
1814 * addresses through a CRC generator, and then using the low-order
1815 * 6 bits as an index into the 64 bit multicast hash table. The
1816 * high order bits select the register, while the rest of the bits
1817 * select the bit within the register.
1818 */
1819
1820 memset(mchash, 0, sizeof(mchash));
1821
1822 ETHER_FIRST_MULTI(step, ec, enm);
1823 if (enm == NULL)
1824 goto done;
1825
1826 while (enm != NULL) {
1827 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1828 /*
1829 * We must listen to a range of multicast addresses.
1830 * For now, just accept all multicasts, rather than
1831 * trying to set only those filter bits needed to match
1832 * the range. (At this time, the only use of address
1833 * ranges is for IP multicast routing, for which the
1834 * range is big enough to require all bits set.)
1835 */
1836 goto allmulti;
1837 }
1838
1839 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1840
1841 /* Just want the 6 least significant bits. */
1842 crc &= 0x3f;
1843
1844 /* Set the corresponding bit in the hash table. */
1845 mchash[crc >> 5] |= 1 << (crc & 0x1f);
1846
1847 ETHER_NEXT_MULTI(step, enm);
1848 }
1849
1850 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1851
1852 ifp->if_flags &= ~IFF_ALLMULTI;
1853 goto done;
1854
1855 allmulti:
1856 ifp->if_flags |= IFF_ALLMULTI;
1857 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1858
1859 done:
1860 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1861 /*
1862 * Program the multicast hash table.
1863 */
1864 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1865 mchash[0]);
1866 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1867 mchash[1]);
1868 }
1869
1870 bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1871 sc->sc_ReceiveMode);
1872 }
1873
1874 /*
1875 * stge_mii_readreg: [mii interface function]
1876 *
1877 * Read a PHY register on the MII of the TC9021.
1878 */
1879 int
1880 stge_mii_readreg(struct device *self, int phy, int reg)
1881 {
1882
1883 return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1884 }
1885
1886 /*
1887 * stge_mii_writereg: [mii interface function]
1888 *
1889 * Write a PHY register on the MII of the TC9021.
1890 */
1891 void
1892 stge_mii_writereg(struct device *self, int phy, int reg, int val)
1893 {
1894
1895 mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1896 }
1897
1898 /*
1899 * stge_mii_statchg: [mii interface function]
1900 *
1901 * Callback from MII layer when media changes.
1902 */
1903 void
1904 stge_mii_statchg(struct device *self)
1905 {
1906 struct stge_softc *sc = (struct stge_softc *) self;
1907
1908 if (sc->sc_mii.mii_media_active & IFM_FDX)
1909 sc->sc_MACCtrl |= MC_DuplexSelect;
1910 else
1911 sc->sc_MACCtrl &= ~MC_DuplexSelect;
1912
1913 /* XXX 802.1x flow-control? */
1914
1915 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1916 }
1917
1918 /*
1919 * sste_mii_bitbang_read: [mii bit-bang interface function]
1920 *
1921 * Read the MII serial port for the MII bit-bang module.
1922 */
1923 uint32_t
1924 stge_mii_bitbang_read(struct device *self)
1925 {
1926 struct stge_softc *sc = (void *) self;
1927
1928 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
1929 }
1930
1931 /*
1932 * stge_mii_bitbang_write: [mii big-bang interface function]
1933 *
1934 * Write the MII serial port for the MII bit-bang module.
1935 */
1936 void
1937 stge_mii_bitbang_write(struct device *self, uint32_t val)
1938 {
1939 struct stge_softc *sc = (void *) self;
1940
1941 bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
1942 val | sc->sc_PhyCtrl);
1943 }
1944
1945 /*
1946 * stge_mediastatus: [ifmedia interface function]
1947 *
1948 * Get the current interface media status.
1949 */
1950 void
1951 stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1952 {
1953 struct stge_softc *sc = ifp->if_softc;
1954
1955 mii_pollstat(&sc->sc_mii);
1956 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1957 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1958 }
1959
1960 /*
1961 * stge_mediachange: [ifmedia interface function]
1962 *
1963 * Set hardware to newly-selected media.
1964 */
1965 int
1966 stge_mediachange(struct ifnet *ifp)
1967 {
1968 struct stge_softc *sc = ifp->if_softc;
1969
1970 if (ifp->if_flags & IFF_UP)
1971 mii_mediachg(&sc->sc_mii);
1972 return (0);
1973 }
1974