if_stge.c revision 1.2 1 /* $NetBSD: if_stge.c,v 1.2 2001/07/25 00:12:33 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the Sundance Tech. TC9021 10/100/1000
41 * Ethernet controller.
42 */
43
44 #include "bpfilter.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/callout.h>
49 #include <sys/mbuf.h>
50 #include <sys/malloc.h>
51 #include <sys/kernel.h>
52 #include <sys/socket.h>
53 #include <sys/ioctl.h>
54 #include <sys/errno.h>
55 #include <sys/device.h>
56 #include <sys/queue.h>
57
58 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
59
60 #include <net/if.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 #include <net/if_ether.h>
64
65 #if NBPFILTER > 0
66 #include <net/bpf.h>
67 #endif
68
69 #include <machine/bus.h>
70 #include <machine/intr.h>
71
72 #include <dev/mii/mii.h>
73 #include <dev/mii/miivar.h>
74 #include <dev/mii/mii_bitbang.h>
75
76 #include <dev/pci/pcireg.h>
77 #include <dev/pci/pcivar.h>
78 #include <dev/pci/pcidevs.h>
79
80 #include <dev/pci/if_stgereg.h>
81
82 /*
83 * Transmit descriptor list size.
84 */
85 #define STGE_NTXDESC 256
86 #define STGE_NTXDESC_MASK (STGE_NTXDESC - 1)
87 #define STGE_NEXTTX(x) (((x) + 1) & STGE_NTXDESC_MASK)
88
89 /*
90 * Receive descriptor list size.
91 */
92 #define STGE_NRXDESC 256
93 #define STGE_NRXDESC_MASK (STGE_NRXDESC - 1)
94 #define STGE_NEXTRX(x) (((x) + 1) & STGE_NRXDESC_MASK)
95
96 /*
97 * Only interrupt every N frames. Must be a power-of-two.
98 */
99 #define STGE_TXINTR_SPACING 16
100 #define STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
101
102 /*
103 * Control structures are DMA'd to the TC9021 chip. We allocate them in
104 * a single clump that maps to a single DMA segment to make several things
105 * easier.
106 */
107 struct stge_control_data {
108 /*
109 * The transmit descriptors.
110 */
111 struct stge_tfd scd_txdescs[STGE_NTXDESC];
112
113 /*
114 * The receive descriptors.
115 */
116 struct stge_rfd scd_rxdescs[STGE_NRXDESC];
117 };
118
119 #define STGE_CDOFF(x) offsetof(struct stge_control_data, x)
120 #define STGE_CDTXOFF(x) STGE_CDOFF(scd_txdescs[(x)])
121 #define STGE_CDRXOFF(x) STGE_CDOFF(scd_rxdescs[(x)])
122
123 /*
124 * Software state for transmit and receive jobs.
125 */
126 struct stge_descsoft {
127 struct mbuf *ds_mbuf; /* head of our mbuf chain */
128 bus_dmamap_t ds_dmamap; /* our DMA map */
129 };
130
131 /*
132 * Software state per device.
133 */
134 struct stge_softc {
135 struct device sc_dev; /* generic device information */
136 bus_space_tag_t sc_st; /* bus space tag */
137 bus_space_handle_t sc_sh; /* bus space handle */
138 bus_dma_tag_t sc_dmat; /* bus DMA tag */
139 struct ethercom sc_ethercom; /* ethernet common data */
140 void *sc_sdhook; /* shutdown hook */
141 int sc_rev; /* silicon revision */
142
143 void *sc_ih; /* interrupt cookie */
144
145 struct mii_data sc_mii; /* MII/media information */
146
147 struct callout sc_tick_ch; /* tick callout */
148
149 bus_dmamap_t sc_cddmamap; /* control data DMA map */
150 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
151
152 /*
153 * Software state for transmit and receive descriptors.
154 */
155 struct stge_descsoft sc_txsoft[STGE_NTXDESC];
156 struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
157
158 /*
159 * Control data structures.
160 */
161 struct stge_control_data *sc_control_data;
162 #define sc_txdescs sc_control_data->scd_txdescs
163 #define sc_rxdescs sc_control_data->scd_rxdescs
164
165 #ifdef STGE_EVENT_COUNTERS
166 /*
167 * Event counters.
168 */
169 struct evcnt sc_ev_txstall; /* Tx stalled */
170 struct evcnt sc_ev_txdmaintr; /* Tx DMA interrupts */
171 struct evcnt sc_ev_txindintr; /* Tx Indicate interrupts */
172 struct evcnt sc_ev_rxintr; /* Rx interrupts */
173
174 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
175 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
176 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
177 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
178 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
179 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
180 struct evcnt sc_ev_txcopy; /* Tx packets that we had to copy */
181
182 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
183 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
184 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-bound */
185
186 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
187 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
188 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
189 #endif /* STGE_EVENT_COUNTERS */
190
191 int sc_txpending; /* number of Tx requests pending */
192 int sc_txdirty; /* first dirty Tx descriptor */
193 int sc_txlast; /* last used Tx descriptor */
194
195 int sc_rxptr; /* next ready Rx descriptor/descsoft */
196 int sc_rxdiscard;
197 int sc_rxlen;
198 struct mbuf *sc_rxhead;
199 struct mbuf *sc_rxtail;
200 struct mbuf **sc_rxtailp;
201
202 int sc_txthresh; /* Tx threshold */
203 int sc_usefiber; /* if we're fiber */
204 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
205 uint32_t sc_MACCtrl; /* prototype MacCtrl register */
206 uint16_t sc_IntEnable; /* prototype IntEnable register */
207 uint16_t sc_ReceiveMode; /* prototype ReceiveMode register */
208 uint8_t sc_PhyCtrl; /* prototype PhyCtrl register */
209 };
210
211 #define STGE_RXCHAIN_RESET(sc) \
212 do { \
213 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
214 *(sc)->sc_rxtailp = NULL; \
215 (sc)->sc_rxlen = 0; \
216 } while (/*CONSTCOND*/0)
217
218 #define STGE_RXCHAIN_LINK(sc, m) \
219 do { \
220 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
221 (sc)->sc_rxtailp = &(m)->m_next; \
222 } while (/*CONSTCOND*/0)
223
224 #ifdef STGE_EVENT_COUNTERS
225 #define STGE_EVCNT_INCR(ev) (ev)->ev_count++
226 #else
227 #define STGE_EVCNT_INCR(ev) /* nothing */
228 #endif
229
230 #define STGE_CDTXADDR(sc, x) ((sc)->sc_cddma + STGE_CDTXOFF((x)))
231 #define STGE_CDRXADDR(sc, x) ((sc)->sc_cddma + STGE_CDRXOFF((x)))
232
233 #define STGE_CDTXSYNC(sc, x, ops) \
234 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
235 STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
236
237 #define STGE_CDRXSYNC(sc, x, ops) \
238 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
239 STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
240
241 #define STGE_INIT_RXDESC(sc, x) \
242 do { \
243 struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
244 struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
245 \
246 /* \
247 * Note: We scoot the packet forward 2 bytes in the buffer \
248 * so that the payload after the Ethernet header is aligned \
249 * to a 4-byte boundary. \
250 */ \
251 __rfd->rfd_frag.frag_word0 = \
252 htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
253 FRAG_LEN(MCLBYTES - 2)); \
254 __rfd->rfd_next = \
255 htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x)))); \
256 __rfd->rfd_status = 0; \
257 STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
258 } while (/*CONSTCOND*/0)
259
260 #define STGE_TIMEOUT 1000
261
262 void stge_start(struct ifnet *);
263 void stge_watchdog(struct ifnet *);
264 int stge_ioctl(struct ifnet *, u_long, caddr_t);
265 int stge_init(struct ifnet *);
266 void stge_stop(struct ifnet *, int);
267
268 void stge_shutdown(void *);
269
270 void stge_reset(struct stge_softc *);
271 void stge_rxdrain(struct stge_softc *);
272 int stge_add_rxbuf(struct stge_softc *, int);
273 #if 0
274 void stge_read_eeprom(struct stge_softc *, int, uint16_t *);
275 #endif
276 void stge_tick(void *);
277
278 void stge_stats_update(struct stge_softc *);
279
280 void stge_set_filter(struct stge_softc *);
281
282 int stge_intr(void *);
283 void stge_txintr(struct stge_softc *);
284 void stge_rxintr(struct stge_softc *);
285
286 int stge_mii_readreg(struct device *, int, int);
287 void stge_mii_writereg(struct device *, int, int, int);
288 void stge_mii_statchg(struct device *);
289
290 int stge_mediachange(struct ifnet *);
291 void stge_mediastatus(struct ifnet *, struct ifmediareq *);
292
293 int stge_match(struct device *, struct cfdata *, void *);
294 void stge_attach(struct device *, struct device *, void *);
295
296 int stge_copy_small = 0;
297
298 struct cfattach stge_ca = {
299 sizeof(struct stge_softc), stge_match, stge_attach,
300 };
301
302 uint32_t stge_mii_bitbang_read(struct device *);
303 void stge_mii_bitbang_write(struct device *, uint32_t);
304
305 const struct mii_bitbang_ops stge_mii_bitbang_ops = {
306 stge_mii_bitbang_read,
307 stge_mii_bitbang_write,
308 {
309 PC_MgmtData, /* MII_BIT_MDO */
310 PC_MgmtData, /* MII_BIT_MDI */
311 PC_MgmtClk, /* MII_BIT_MDC */
312 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
313 0, /* MII_BIT_DIR_PHY_HOST */
314 }
315 };
316
317 /*
318 * Devices supported by this driver.
319 */
320 const struct stge_product {
321 pci_vendor_id_t stge_vendor;
322 pci_product_id_t stge_product;
323 const char *stge_name;
324 } stge_products[] = {
325 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST2021,
326 "Sundance ST-2021 Gigabit Ethernet" },
327
328 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021,
329 "Tamarack TC9021 Gigabit Ethernet" },
330
331 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021_ALT,
332 "Tamarack TC9021 Gigabit Ethernet" },
333
334 /*
335 * The Sundance sample boards use the Sundance vendor ID,
336 * but the Tamarack product ID.
337 */
338 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021,
339 "Sundance TC9021 Gigabit Ethernet" },
340
341 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021_ALT,
342 "Sundance TC9021 Gigabit Ethernet" },
343
344 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL4000,
345 "D-Link DL-4000 Gigabit Ethernet" },
346
347 { 0, 0,
348 NULL },
349 };
350
351 static const struct stge_product *
352 stge_lookup(const struct pci_attach_args *pa)
353 {
354 const struct stge_product *sp;
355
356 for (sp = stge_products; sp->stge_name != NULL; sp++) {
357 if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
358 PCI_PRODUCT(pa->pa_id) == sp->stge_product)
359 return (sp);
360 }
361 return (NULL);
362 }
363
364 int
365 stge_match(struct device *parent, struct cfdata *cf, void *aux)
366 {
367 struct pci_attach_args *pa = aux;
368
369 if (stge_lookup(pa) != NULL)
370 return (1);
371
372 return (0);
373 }
374
375 void
376 stge_attach(struct device *parent, struct device *self, void *aux)
377 {
378 struct stge_softc *sc = (struct stge_softc *) self;
379 struct pci_attach_args *pa = aux;
380 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
381 pci_chipset_tag_t pc = pa->pa_pc;
382 pci_intr_handle_t ih;
383 const char *intrstr = NULL;
384 bus_space_tag_t iot, memt;
385 bus_space_handle_t ioh, memh;
386 bus_dma_segment_t seg;
387 int ioh_valid, memh_valid;
388 int i, rseg, error;
389 const struct stge_product *sp;
390 pcireg_t pmode;
391 uint8_t enaddr[ETHER_ADDR_LEN];
392 int pmreg;
393
394 callout_init(&sc->sc_tick_ch);
395
396 sp = stge_lookup(pa);
397 if (sp == NULL) {
398 printf("\n");
399 panic("ste_attach: impossible");
400 }
401
402 sc->sc_rev = PCI_REVISION(pa->pa_class);
403
404 printf(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
405
406 /*
407 * Map the device.
408 */
409 ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
410 PCI_MAPREG_TYPE_IO, 0,
411 &iot, &ioh, NULL, NULL) == 0);
412 memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
413 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
414 &memt, &memh, NULL, NULL) == 0);
415
416 if (memh_valid) {
417 sc->sc_st = memt;
418 sc->sc_sh = memh;
419 } else if (ioh_valid) {
420 sc->sc_st = iot;
421 sc->sc_sh = ioh;
422 } else {
423 printf("%s: unable to map device registers\n",
424 sc->sc_dev.dv_xname);
425 return;
426 }
427
428 sc->sc_dmat = pa->pa_dmat;
429
430 /* Enable bus mastering. */
431 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
432 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
433 PCI_COMMAND_MASTER_ENABLE);
434
435 /* Get it out of power save mode if needed. */
436 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
437 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
438 if (pmode == 3) {
439 /*
440 * The card has lost all configuration data in
441 * this state, so punt.
442 */
443 printf("%s: unable to wake up from power state D3\n",
444 sc->sc_dev.dv_xname);
445 return;
446 }
447 if (pmode != 0) {
448 printf("%s: waking up from power state D%d\n",
449 sc->sc_dev.dv_xname, pmode);
450 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
451 }
452 }
453
454 /*
455 * Map and establish our interrupt.
456 */
457 if (pci_intr_map(pa, &ih)) {
458 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
459 return;
460 }
461 intrstr = pci_intr_string(pc, ih);
462 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
463 if (sc->sc_ih == NULL) {
464 printf("%s: unable to establish interrupt",
465 sc->sc_dev.dv_xname);
466 if (intrstr != NULL)
467 printf(" at %s", intrstr);
468 printf("\n");
469 return;
470 }
471 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
472
473 /*
474 * Allocate the control data structures, and create and load the
475 * DMA map for it.
476 */
477 if ((error = bus_dmamem_alloc(sc->sc_dmat,
478 sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
479 0)) != 0) {
480 printf("%s: unable to allocate control data, error = %d\n",
481 sc->sc_dev.dv_xname, error);
482 goto fail_0;
483 }
484
485 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
486 sizeof(struct stge_control_data), (caddr_t *)&sc->sc_control_data,
487 BUS_DMA_COHERENT)) != 0) {
488 printf("%s: unable to map control data, error = %d\n",
489 sc->sc_dev.dv_xname, error);
490 goto fail_1;
491 }
492
493 if ((error = bus_dmamap_create(sc->sc_dmat,
494 sizeof(struct stge_control_data), 1,
495 sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
496 printf("%s: unable to create control data DMA map, "
497 "error = %d\n", sc->sc_dev.dv_xname, error);
498 goto fail_2;
499 }
500
501 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
502 sc->sc_control_data, sizeof(struct stge_control_data), NULL,
503 0)) != 0) {
504 printf("%s: unable to load control data DMA map, error = %d\n",
505 sc->sc_dev.dv_xname, error);
506 goto fail_3;
507 }
508
509 /*
510 * Create the transmit buffer DMA maps. Note that rev B.3
511 * and earlier seem to have a bug regarding multi-fragment
512 * packets. We need to limit the number of Tx segments on
513 * such chips to 1.
514 */
515 for (i = 0; i < STGE_NTXDESC; i++) {
516 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
517 STGE_NTXFRAGS, MCLBYTES, 0, 0,
518 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
519 printf("%s: unable to create tx DMA map %d, "
520 "error = %d\n", sc->sc_dev.dv_xname, i, error);
521 goto fail_4;
522 }
523 }
524
525 /*
526 * Create the receive buffer DMA maps.
527 */
528 for (i = 0; i < STGE_NRXDESC; i++) {
529 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
530 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
531 printf("%s: unable to create rx DMA map %d, "
532 "error = %d\n", sc->sc_dev.dv_xname, i, error);
533 goto fail_5;
534 }
535 sc->sc_rxsoft[i].ds_mbuf = NULL;
536 }
537
538 /*
539 * Determine if we're copper or fiber. It affects how we
540 * reset the card.
541 */
542 if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
543 AC_PhyMedia)
544 sc->sc_usefiber = 1;
545 else
546 sc->sc_usefiber = 0;
547
548 /*
549 * Reset the chip to a known state.
550 */
551 stge_reset(sc);
552
553 /*
554 * Reading the station address from the EEPROM doesn't seem
555 * to work, at least on my sample boards. Instread, since
556 * the reset sequence does AutoInit, read it from the station
557 * address registers.
558 */
559 enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
560 STGE_StationAddress0) & 0xff;
561 enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
562 STGE_StationAddress0) >> 8;
563 enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
564 STGE_StationAddress1) & 0xff;
565 enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
566 STGE_StationAddress1) >> 8;
567 enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
568 STGE_StationAddress2) & 0xff;
569 enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
570 STGE_StationAddress2) >> 8;
571
572 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
573 ether_sprintf(enaddr));
574
575 /*
576 * Read some important bits from the PhyCtrl register.
577 */
578 sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
579 STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
580
581 /*
582 * Initialize our media structures and probe the MII.
583 */
584 sc->sc_mii.mii_ifp = ifp;
585 sc->sc_mii.mii_readreg = stge_mii_readreg;
586 sc->sc_mii.mii_writereg = stge_mii_writereg;
587 sc->sc_mii.mii_statchg = stge_mii_statchg;
588 ifmedia_init(&sc->sc_mii.mii_media, 0, stge_mediachange,
589 stge_mediastatus);
590 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
591 MII_OFFSET_ANY, 0);
592 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
593 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
594 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
595 } else
596 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
597
598 ifp = &sc->sc_ethercom.ec_if;
599 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
600 ifp->if_softc = sc;
601 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
602 ifp->if_ioctl = stge_ioctl;
603 ifp->if_start = stge_start;
604 ifp->if_watchdog = stge_watchdog;
605 ifp->if_init = stge_init;
606 ifp->if_stop = stge_stop;
607 IFQ_SET_READY(&ifp->if_snd);
608
609 /*
610 * The manual recommends disabling early transmit, so we
611 * do. It's disabled anyway, if using IP checksumming,
612 * since the entire packet must be in the FIFO in order
613 * for the chip to perform the checksum.
614 */
615 sc->sc_txthresh = 0x0fff;
616
617 /*
618 * Disable MWI if the PCI layer tells us to.
619 */
620 sc->sc_DMACtrl = 0;
621 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
622 sc->sc_DMACtrl |= DMAC_MWIDisable;
623
624 /*
625 * We can support 802.1Q VLAN-sized frames and jumbo
626 * Ethernet frames.
627 *
628 * XXX Figure out how to do hw-assisted VLAN tagging in
629 * XXX a reasonable way on this chip.
630 */
631 sc->sc_ethercom.ec_capabilities |=
632 ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
633
634 /*
635 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
636 */
637 sc->sc_ethercom.ec_if.if_capabilities |= IFCAP_CSUM_IPv4 |
638 IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
639
640 /*
641 * Attach the interface.
642 */
643 if_attach(ifp);
644 ether_ifattach(ifp, enaddr);
645
646 #ifdef STGE_EVENT_COUNTERS
647 /*
648 * Attach event counters.
649 */
650 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
651 NULL, sc->sc_dev.dv_xname, "txstall");
652 evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
653 NULL, sc->sc_dev.dv_xname, "txdmaintr");
654 evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
655 NULL, sc->sc_dev.dv_xname, "txindintr");
656 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
657 NULL, sc->sc_dev.dv_xname, "rxintr");
658
659 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
660 NULL, sc->sc_dev.dv_xname, "txseg1");
661 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
662 NULL, sc->sc_dev.dv_xname, "txseg2");
663 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
664 NULL, sc->sc_dev.dv_xname, "txseg3");
665 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
666 NULL, sc->sc_dev.dv_xname, "txseg4");
667 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
668 NULL, sc->sc_dev.dv_xname, "txseg5");
669 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
670 NULL, sc->sc_dev.dv_xname, "txsegmore");
671 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
672 NULL, sc->sc_dev.dv_xname, "txcopy");
673
674 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
675 NULL, sc->sc_dev.dv_xname, "rxipsum");
676 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
677 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
678 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
679 NULL, sc->sc_dev.dv_xname, "rxudpsum");
680 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
681 NULL, sc->sc_dev.dv_xname, "txipsum");
682 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
683 NULL, sc->sc_dev.dv_xname, "txtcpsum");
684 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
685 NULL, sc->sc_dev.dv_xname, "txudpsum");
686 #endif /* STGE_EVENT_COUNTERS */
687
688 /*
689 * Make sure the interface is shutdown during reboot.
690 */
691 sc->sc_sdhook = shutdownhook_establish(stge_shutdown, sc);
692 if (sc->sc_sdhook == NULL)
693 printf("%s: WARNING: unable to establish shutdown hook\n",
694 sc->sc_dev.dv_xname);
695 return;
696
697 /*
698 * Free any resources we've allocated during the failed attach
699 * attempt. Do this in reverse order and fall through.
700 */
701 fail_5:
702 for (i = 0; i < STGE_NRXDESC; i++) {
703 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
704 bus_dmamap_destroy(sc->sc_dmat,
705 sc->sc_rxsoft[i].ds_dmamap);
706 }
707 fail_4:
708 for (i = 0; i < STGE_NTXDESC; i++) {
709 if (sc->sc_txsoft[i].ds_dmamap != NULL)
710 bus_dmamap_destroy(sc->sc_dmat,
711 sc->sc_txsoft[i].ds_dmamap);
712 }
713 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
714 fail_3:
715 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
716 fail_2:
717 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
718 sizeof(struct stge_control_data));
719 fail_1:
720 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
721 fail_0:
722 return;
723 }
724
725 /*
726 * stge_shutdown:
727 *
728 * Make sure the interface is stopped at reboot time.
729 */
730 void
731 stge_shutdown(void *arg)
732 {
733 struct stge_softc *sc = arg;
734
735 stge_stop(&sc->sc_ethercom.ec_if, 1);
736 }
737
738 static void
739 stge_dma_wait(struct stge_softc *sc)
740 {
741 int i;
742
743 for (i = 0; i < STGE_TIMEOUT; i++) {
744 delay(2);
745 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
746 DMAC_TxDMAInProg) == 0)
747 break;
748 }
749
750 if (i == STGE_TIMEOUT)
751 printf("%s: DMA wait timed out\n", sc->sc_dev.dv_xname);
752 }
753
754 /*
755 * stge_start: [ifnet interface function]
756 *
757 * Start packet transmission on the interface.
758 */
759 void
760 stge_start(struct ifnet *ifp)
761 {
762 struct stge_softc *sc = ifp->if_softc;
763 struct mbuf *m0;
764 struct stge_descsoft *ds;
765 struct stge_tfd *tfd;
766 bus_dmamap_t dmamap;
767 int error, firsttx, nexttx, opending, seg, totlen;
768 uint64_t csum_flags;
769
770 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
771 return;
772
773 /*
774 * Remember the previous number of pending transmissions
775 * and the first descriptor we will use.
776 */
777 opending = sc->sc_txpending;
778 firsttx = STGE_NEXTTX(sc->sc_txlast);
779
780 /*
781 * Loop through the send queue, setting up transmit descriptors
782 * until we drain the queue, or use up all available transmit
783 * descriptors.
784 */
785 for (;;) {
786 /*
787 * Grab a packet off the queue.
788 */
789 IFQ_POLL(&ifp->if_snd, m0);
790 if (m0 == NULL)
791 break;
792
793 /*
794 * Leave one unused descriptor at the end of the
795 * list to prevent wrapping completely around.
796 */
797 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
798 STGE_EVCNT_INCR(&sc->sc_ev_txstall);
799 break;
800 }
801
802 /*
803 * Get the last and next available transmit descriptor.
804 */
805 nexttx = STGE_NEXTTX(sc->sc_txlast);
806 tfd = &sc->sc_txdescs[nexttx];
807 ds = &sc->sc_txsoft[nexttx];
808
809 dmamap = ds->ds_dmamap;
810
811 /*
812 * Load the DMA map. If this fails, the packet either
813 * didn't fit in the alloted number of segments, or we
814 * were short on resources. For the too-may-segments
815 * case, we simply report an error and drop the packet,
816 * since we can't sanely copy a jumbo packet to a single
817 * buffer.
818 */
819 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
820 BUS_DMA_NOWAIT);
821 if (error) {
822 if (error == EFBIG) {
823 printf("%s: Tx packet consumes too many "
824 "DMA segments, dropping...\n",
825 sc->sc_dev.dv_xname);
826 IFQ_DEQUEUE(&ifp->if_snd, m0);
827 m_freem(m0);
828 continue;
829 }
830 /*
831 * Short on resources, just stop for now.
832 */
833 break;
834 }
835
836 IFQ_DEQUEUE(&ifp->if_snd, m0);
837
838 /*
839 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
840 */
841
842 /* Sync the DMA map. */
843 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
844 BUS_DMASYNC_PREWRITE);
845
846 /* Initialize the fragment list. */
847 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
848 tfd->tfd_frags[seg].frag_word0 =
849 htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
850 FRAG_LEN(dmamap->dm_segs[seg].ds_len));
851 totlen += dmamap->dm_segs[seg].ds_len;
852 }
853
854 #ifdef STGE_EVENT_COUNTERS
855 switch (dmamap->dm_nsegs) {
856 case 1:
857 STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
858 break;
859 case 2:
860 STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
861 break;
862 case 3:
863 STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
864 break;
865 case 4:
866 STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
867 break;
868 case 5:
869 STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
870 break;
871 default:
872 STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
873 break;
874 }
875 #endif /* STGE_EVENT_COUNTERS */
876
877 /*
878 * Initialize checksumming flags in the descriptor.
879 * Byte-swap constants so the compiler can optimize.
880 */
881 csum_flags = 0;
882 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
883 STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
884 csum_flags |= htole64(TFD_IPChecksumEnable);
885 }
886
887 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
888 STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
889 csum_flags |= htole64(TFD_TCPChecksumEnable);
890 }
891 else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
892 STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
893 csum_flags |= htole64(TFD_UDPChecksumEnable);
894 }
895
896 /*
897 * Initialize the descriptor and give it to the chip.
898 */
899 tfd->tfd_control = htole64(TFD_FrameId(nexttx) |
900 TFD_WordAlign(/*totlen & */3) |
901 TFD_FragCount(seg) | csum_flags |
902 (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
903 TFD_TxDMAIndicate : 0));
904
905 /* Sync the descriptor. */
906 STGE_CDTXSYNC(sc, nexttx,
907 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
908
909 /*
910 * Kick the transmit DMA logic.
911 */
912 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
913 sc->sc_DMACtrl | DMAC_TxDMAPollNow);
914
915 /*
916 * Store a pointer to the packet so we can free it later.
917 */
918 ds->ds_mbuf = m0;
919
920 /* Advance the tx pointer. */
921 sc->sc_txpending++;
922 sc->sc_txlast = nexttx;
923
924 #if NBPFILTER > 0
925 /*
926 * Pass the packet to any BPF listeners.
927 */
928 if (ifp->if_bpf)
929 bpf_mtap(ifp->if_bpf, m0);
930 #endif /* NBPFILTER > 0 */
931 }
932
933 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
934 /* No more slots left; notify upper layer. */
935 ifp->if_flags |= IFF_OACTIVE;
936 }
937
938 if (sc->sc_txpending != opending) {
939 /*
940 * We enqueued packets. If the transmitter was idle,
941 * reset the txdirty pointer.
942 */
943 if (opending == 0)
944 sc->sc_txdirty = firsttx;
945
946 /* Set a watchdog timer in case the chip flakes out. */
947 ifp->if_timer = 5;
948 }
949 }
950
951 /*
952 * stge_watchdog: [ifnet interface function]
953 *
954 * Watchdog timer handler.
955 */
956 void
957 stge_watchdog(struct ifnet *ifp)
958 {
959 struct stge_softc *sc = ifp->if_softc;
960
961 /*
962 * Sweep up first, since we don't interrupt every frame.
963 */
964 stge_txintr(sc);
965 if (sc->sc_txpending != 0) {
966 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
967 ifp->if_oerrors++;
968
969 (void) stge_init(ifp);
970
971 /* Try to get more packets going. */
972 stge_start(ifp);
973 }
974 }
975
976 /*
977 * stge_ioctl: [ifnet interface function]
978 *
979 * Handle control requests from the operator.
980 */
981 int
982 stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
983 {
984 struct stge_softc *sc = ifp->if_softc;
985 struct ifreq *ifr = (struct ifreq *)data;
986 int s, error;
987
988 s = splnet();
989
990 switch (cmd) {
991 case SIOCSIFMEDIA:
992 case SIOCGIFMEDIA:
993 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
994 break;
995
996 default:
997 error = ether_ioctl(ifp, cmd, data);
998 if (error == ENETRESET) {
999 /*
1000 * Multicast list has changed; set the hardware filter
1001 * accordingly.
1002 */
1003 stge_set_filter(sc);
1004 error = 0;
1005 }
1006 break;
1007 }
1008
1009 /* Try to get more packets going. */
1010 stge_start(ifp);
1011
1012 splx(s);
1013 return (error);
1014 }
1015
1016 /*
1017 * stge_intr:
1018 *
1019 * Interrupt service routine.
1020 */
1021 int
1022 stge_intr(void *arg)
1023 {
1024 struct stge_softc *sc = arg;
1025 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1026 uint32_t txstat;
1027 int wantinit;
1028 uint16_t isr;
1029
1030 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1031 IS_InterruptStatus) == 0)
1032 return (0);
1033
1034 for (wantinit = 0; wantinit == 0;) {
1035 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1036 if ((isr & sc->sc_IntEnable) == 0)
1037 break;
1038
1039 /* Receive interrupts. */
1040 if (isr & (IE_RxDMAComplete|IE_RFDListEnd)) {
1041 STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1042 stge_rxintr(sc);
1043 if (isr & IE_RFDListEnd) {
1044 printf("%s: receive ring overflow\n",
1045 sc->sc_dev.dv_xname);
1046 /*
1047 * XXX Should try to recover from this
1048 * XXX more gracefully.
1049 */
1050 wantinit = 1;
1051 }
1052 }
1053
1054 /* Transmit interrupts. */
1055 if (isr & (IE_TxDMAComplete|IE_TxComplete)) {
1056 #ifdef STGE_EVENT_COUNTERS
1057 if (isr & IE_TxDMAComplete)
1058 STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1059 #endif
1060 stge_txintr(sc);
1061 }
1062
1063 /* Statistics overflow. */
1064 if (isr & IE_UpdateStats)
1065 stge_stats_update(sc);
1066
1067 /* Transmission errors. */
1068 if (isr & IE_TxComplete) {
1069 STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1070 for (;;) {
1071 txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1072 STGE_TxStatus);
1073 if ((txstat & TS_TxComplete) == 0)
1074 break;
1075 if (txstat & TS_TxUnderrun) {
1076 sc->sc_txthresh++;
1077 if (sc->sc_txthresh > 0x0fff)
1078 sc->sc_txthresh = 0x0fff;
1079 printf("%s: transmit underrun, new "
1080 "threshold: %d bytes\n",
1081 sc->sc_dev.dv_xname,
1082 sc->sc_txthresh << 5);
1083 }
1084 if (txstat & TS_MaxCollisions)
1085 printf("%s: excessive collisions\n",
1086 sc->sc_dev.dv_xname);
1087 }
1088 wantinit = 1;
1089 }
1090
1091 /* Host interface errors. */
1092 if (isr & IE_HostError) {
1093 printf("%s: Host interface error\n",
1094 sc->sc_dev.dv_xname);
1095 wantinit = 1;
1096 }
1097 }
1098
1099 if (wantinit)
1100 stge_init(ifp);
1101
1102 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1103 sc->sc_IntEnable);
1104
1105 /* Try to get more packets going. */
1106 stge_start(ifp);
1107
1108 return (1);
1109 }
1110
1111 /*
1112 * stge_txintr:
1113 *
1114 * Helper; handle transmit interrupts.
1115 */
1116 void
1117 stge_txintr(struct stge_softc *sc)
1118 {
1119 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1120 struct stge_descsoft *ds;
1121 uint64_t control;
1122 int i;
1123
1124 ifp->if_flags &= ~IFF_OACTIVE;
1125
1126 /*
1127 * Go through our Tx list and free mbufs for those
1128 * frames which have been transmitted.
1129 */
1130 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1131 i = STGE_NEXTTX(i), sc->sc_txpending--) {
1132 ds = &sc->sc_txsoft[i];
1133
1134 STGE_CDTXSYNC(sc, i,
1135 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1136
1137 control = le64toh(sc->sc_txdescs[i].tfd_control);
1138 if ((control & TFD_TFDDone) == 0)
1139 break;
1140
1141 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1142 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1143 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1144 m_freem(ds->ds_mbuf);
1145 ds->ds_mbuf = NULL;
1146 }
1147
1148 /* Update the dirty transmit buffer pointer. */
1149 sc->sc_txdirty = i;
1150
1151 /*
1152 * If there are no more pending transmissions, cancel the watchdog
1153 * timer.
1154 */
1155 if (sc->sc_txpending == 0)
1156 ifp->if_timer = 0;
1157 }
1158
1159 /*
1160 * stge_rxintr:
1161 *
1162 * Helper; handle receive interrupts.
1163 */
1164 void
1165 stge_rxintr(struct stge_softc *sc)
1166 {
1167 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1168 struct stge_descsoft *ds;
1169 struct mbuf *m, *tailm;
1170 uint64_t status;
1171 int i, len;
1172
1173 for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1174 ds = &sc->sc_rxsoft[i];
1175
1176 STGE_CDRXSYNC(sc, i,
1177 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1178
1179 status = le64toh(sc->sc_rxdescs[i].rfd_status);
1180
1181 if ((status & RFD_RFDDone) == 0)
1182 break;
1183
1184 if (__predict_false(sc->sc_rxdiscard)) {
1185 STGE_INIT_RXDESC(sc, i);
1186 if (status & RFD_FrameEnd) {
1187 /* Reset our state. */
1188 sc->sc_rxdiscard = 0;
1189 }
1190 continue;
1191 }
1192
1193 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1194 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1195
1196 m = ds->ds_mbuf;
1197
1198 /*
1199 * Add a new receive buffer to the ring.
1200 */
1201 if (stge_add_rxbuf(sc, i) != 0) {
1202 /*
1203 * Failed, throw away what we've done so
1204 * far, and discard the rest of the packet.
1205 */
1206 ifp->if_ierrors++;
1207 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1208 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1209 STGE_INIT_RXDESC(sc, i);
1210 if ((status & RFD_FrameEnd) == 0)
1211 sc->sc_rxdiscard = 1;
1212 if (sc->sc_rxhead != NULL)
1213 m_freem(sc->sc_rxhead);
1214 STGE_RXCHAIN_RESET(sc);
1215 continue;
1216 }
1217
1218 #ifdef DIAGNOSTIC
1219 if (status & RFD_FrameStart) {
1220 KASSERT(sc->sc_rxhead == NULL);
1221 KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1222 }
1223 #endif
1224
1225 STGE_RXCHAIN_LINK(sc, m);
1226
1227 /*
1228 * If this is not the end of the packet, keep
1229 * looking.
1230 */
1231 if ((status & RFD_FrameEnd) == 0) {
1232 sc->sc_rxlen += m->m_len;
1233 continue;
1234 }
1235
1236 /*
1237 * Okay, we have the entire packet now...
1238 */
1239 *sc->sc_rxtailp = NULL;
1240 m = sc->sc_rxhead;
1241 tailm = sc->sc_rxtail;
1242
1243 STGE_RXCHAIN_RESET(sc);
1244
1245 /*
1246 * If the packet had an error, drop it. Note we
1247 * count the error later in the periodic stats update.
1248 */
1249 if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1250 RFD_RxAlignmentError | RFD_RxFCSError |
1251 RFD_RxLengthError)) {
1252 m_freem(m);
1253 continue;
1254 }
1255
1256 /*
1257 * No errors.
1258 *
1259 * Note we have configured the chip to not include
1260 * the CRC at the end of the packet.
1261 */
1262 len = RFD_RxDMAFrameLen(status);
1263 tailm->m_len = len - sc->sc_rxlen;
1264
1265 /*
1266 * If the packet is small enough to fit in a
1267 * single header mbuf, allocate one and copy
1268 * the data into it. This greatly reduces
1269 * memory consumption when we receive lots
1270 * of small packets.
1271 */
1272 if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1273 struct mbuf *nm;
1274 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1275 if (nm == NULL) {
1276 ifp->if_ierrors++;
1277 m_freem(m);
1278 continue;
1279 }
1280 nm->m_data += 2;
1281 nm->m_pkthdr.len = nm->m_len = len;
1282 m_copydata(m, 0, len, mtod(nm, caddr_t));
1283 m_freem(m);
1284 m = nm;
1285 }
1286
1287 /*
1288 * Set the incoming checksum information for the packet.
1289 */
1290 if (status & RFD_IPDetected) {
1291 STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1292 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1293 if (status & RFD_IPError)
1294 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1295 if (status & RFD_TCPDetected) {
1296 STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1297 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1298 if (status & RFD_TCPError)
1299 m->m_pkthdr.csum_flags |=
1300 M_CSUM_TCP_UDP_BAD;
1301 } else if (status & RFD_UDPDetected) {
1302 STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1303 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1304 if (status & RFD_UDPError)
1305 m->m_pkthdr.csum_flags |=
1306 M_CSUM_TCP_UDP_BAD;
1307 }
1308 }
1309
1310 m->m_pkthdr.rcvif = ifp;
1311 m->m_pkthdr.len = len;
1312
1313 #if NBPFILTER > 0
1314 /*
1315 * Pass this up to any BPF listeners, but only
1316 * pass if up the stack if it's for us.
1317 */
1318 if (ifp->if_bpf)
1319 bpf_mtap(ifp->if_bpf, m);
1320 #endif /* NBPFILTER > 0 */
1321
1322 /* Pass it on. */
1323 (*ifp->if_input)(ifp, m);
1324 }
1325
1326 /* Update the receive pointer. */
1327 sc->sc_rxptr = i;
1328 }
1329
1330 /*
1331 * stge_tick:
1332 *
1333 * One second timer, used to tick the MII.
1334 */
1335 void
1336 stge_tick(void *arg)
1337 {
1338 struct stge_softc *sc = arg;
1339 int s;
1340
1341 s = splnet();
1342 mii_tick(&sc->sc_mii);
1343 stge_stats_update(sc);
1344 splx(s);
1345
1346 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1347 }
1348
1349 /*
1350 * stge_stats_update:
1351 *
1352 * Read the TC9021 statistics counters.
1353 */
1354 void
1355 stge_stats_update(struct stge_softc *sc)
1356 {
1357 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1358 bus_space_tag_t st = sc->sc_st;
1359 bus_space_handle_t sh = sc->sc_sh;
1360
1361 (void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1362
1363 ifp->if_ipackets +=
1364 bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1365
1366 ifp->if_ierrors +=
1367 (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1368
1369 (void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1370
1371 ifp->if_opackets +=
1372 bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1373
1374 ifp->if_collisions +=
1375 bus_space_read_4(st, sh, STGE_LateCollisions) +
1376 bus_space_read_4(st, sh, STGE_MultiColFrames) +
1377 bus_space_read_4(st, sh, STGE_SingleColFrames);
1378
1379 ifp->if_oerrors +=
1380 (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1381 (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1382 }
1383
1384 /*
1385 * stge_reset:
1386 *
1387 * Perform a soft reset on the TC9021.
1388 */
1389 void
1390 stge_reset(struct stge_softc *sc)
1391 {
1392 uint32_t ac;
1393 int i;
1394
1395 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1396
1397 /*
1398 * Only assert RstOut if we're fiber. We need GMII clocks
1399 * to be present in order for the reset to complete on fiber
1400 * cards.
1401 */
1402 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1403 ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1404 AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1405 (sc->sc_usefiber ? AC_RstOut : 0));
1406
1407 delay(50000);
1408
1409 for (i = 0; i < STGE_TIMEOUT; i++) {
1410 delay(5000);
1411 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1412 AC_ResetBusy) == 0)
1413 break;
1414 }
1415
1416 if (i == STGE_TIMEOUT)
1417 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1418
1419 delay(1000);
1420 }
1421
1422 /*
1423 * stge_init: [ ifnet interface function ]
1424 *
1425 * Initialize the interface. Must be called at splnet().
1426 */
1427 int
1428 stge_init(struct ifnet *ifp)
1429 {
1430 struct stge_softc *sc = ifp->if_softc;
1431 bus_space_tag_t st = sc->sc_st;
1432 bus_space_handle_t sh = sc->sc_sh;
1433 struct stge_descsoft *ds;
1434 int i, error = 0;
1435
1436 /*
1437 * Cancel any pending I/O.
1438 */
1439 stge_stop(ifp, 0);
1440
1441 /*
1442 * Reset the chip to a known state.
1443 */
1444 stge_reset(sc);
1445
1446 /*
1447 * Initialize the transmit descriptor ring.
1448 */
1449 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1450 for (i = 0; i < STGE_NTXDESC; i++) {
1451 sc->sc_txdescs[i].tfd_next =
1452 (uint64_t) STGE_CDTXADDR(sc, STGE_NEXTTX(i));
1453 sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1454 }
1455 sc->sc_txpending = 0;
1456 sc->sc_txdirty = 0;
1457 sc->sc_txlast = STGE_NTXDESC - 1;
1458
1459 /*
1460 * Initialize the receive descriptor and receive job
1461 * descriptor rings.
1462 */
1463 for (i = 0; i < STGE_NRXDESC; i++) {
1464 ds = &sc->sc_rxsoft[i];
1465 if (ds->ds_mbuf == NULL) {
1466 if ((error = stge_add_rxbuf(sc, i)) != 0) {
1467 printf("%s: unable to allocate or map rx "
1468 "buffer %d, error = %d\n",
1469 sc->sc_dev.dv_xname, i, error);
1470 /*
1471 * XXX Should attempt to run with fewer receive
1472 * XXX buffers instead of just failing.
1473 */
1474 stge_rxdrain(sc);
1475 goto out;
1476 }
1477 } else
1478 STGE_INIT_RXDESC(sc, i);
1479 }
1480 sc->sc_rxptr = 0;
1481 sc->sc_rxdiscard = 0;
1482 STGE_RXCHAIN_RESET(sc);
1483
1484 /* Set the station address. */
1485 bus_space_write_2(st, sh, STGE_StationAddress0,
1486 LLADDR(ifp->if_sadl)[0] | (LLADDR(ifp->if_sadl)[1] << 8));
1487 bus_space_write_2(st, sh, STGE_StationAddress1,
1488 LLADDR(ifp->if_sadl)[2] | (LLADDR(ifp->if_sadl)[3] << 8));
1489 bus_space_write_2(st, sh, STGE_StationAddress2,
1490 LLADDR(ifp->if_sadl)[4] | (LLADDR(ifp->if_sadl)[5] << 8));
1491
1492 /*
1493 * Set the statistics masks. Disable all the RMON stats,
1494 * and disable selected stats in the non-RMON stats registers.
1495 */
1496 bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1497 bus_space_write_4(st, sh, STGE_StatisticsMask,
1498 (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1499 (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1500 (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1501 (1U << 21));
1502
1503 /* Set up the receive filter. */
1504 stge_set_filter(sc);
1505
1506 /*
1507 * Give the transmit and receive ring to the chip.
1508 */
1509 bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1510 bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1511 STGE_CDTXADDR(sc, sc->sc_txdirty));
1512
1513 bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1514 bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1515 STGE_CDRXADDR(sc, sc->sc_rxptr));
1516
1517 /*
1518 * Initialize the Tx auto-poll period. It's OK to make this number
1519 * large (255 is the max, but we use 127) -- we explicitly kick the
1520 * transmit engine when there's actually a packet.
1521 */
1522 bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1523
1524 /* ..and the Rx auto-poll period. */
1525 bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1526
1527 /* Initialize the Tx start threshold. */
1528 bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1529
1530 /*
1531 * Initialize the Rx DMA interrupt control register. We
1532 * request an interrupt after every incoming packet, but
1533 * defer it for 32us (64 * 512 ns).
1534 */
1535 bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1536 RDIC_RxFrameCount(1) | RDIC_RxDMAWaitTime(512));
1537
1538 /*
1539 * Initialize the interrupt mask.
1540 */
1541 sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1542 IE_TxDMAComplete | IE_RxDMAComplete | IE_RFDListEnd;
1543 bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1544 bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1545
1546 /*
1547 * Configure the DMA engine.
1548 * XXX Should auto-tune TxBurstLimit.
1549 */
1550 bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1551 DMAC_TxBurstLimit(3));
1552
1553 /*
1554 * XXX Configure flow control thresholds.
1555 */
1556
1557 /*
1558 * Set the maximum frame size.
1559 */
1560 bus_space_write_2(st, sh, STGE_MaxFrameSize,
1561 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1562 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1563 ETHER_VLAN_ENCAP_LEN : 0));
1564
1565 /*
1566 * Initialize MacCtrl -- do it before setting the media,
1567 * as setting the media will actually program the register.
1568 *
1569 * Note: We have to poke the IFS value before poking
1570 * anything else.
1571 */
1572 sc->sc_MACCtrl = MC_IFSSelect(0);
1573 bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1574 sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1575
1576 if (sc->sc_rev >= 6) { /* >= B.2 */
1577 /* Multi-frag frame bug work-around. */
1578 bus_space_write_2(st, sh, STGE_DebugCtrl,
1579 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1580
1581 /* Tx Poll Now bug work-around. */
1582 bus_space_write_2(st, sh, STGE_DebugCtrl,
1583 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1584 }
1585
1586 /*
1587 * Set the current media.
1588 */
1589 mii_mediachg(&sc->sc_mii);
1590
1591 /*
1592 * Start the one second MII clock.
1593 */
1594 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1595
1596 /*
1597 * ...all done!
1598 */
1599 ifp->if_flags |= IFF_RUNNING;
1600 ifp->if_flags &= ~IFF_OACTIVE;
1601
1602 out:
1603 if (error)
1604 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1605 return (error);
1606 }
1607
1608 /*
1609 * stge_drain:
1610 *
1611 * Drain the receive queue.
1612 */
1613 void
1614 stge_rxdrain(struct stge_softc *sc)
1615 {
1616 struct stge_descsoft *ds;
1617 int i;
1618
1619 for (i = 0; i < STGE_NRXDESC; i++) {
1620 ds = &sc->sc_rxsoft[i];
1621 if (ds->ds_mbuf != NULL) {
1622 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1623 ds->ds_mbuf->m_next = NULL;
1624 m_freem(ds->ds_mbuf);
1625 ds->ds_mbuf = NULL;
1626 }
1627 }
1628 }
1629
1630 /*
1631 * stge_stop: [ ifnet interface function ]
1632 *
1633 * Stop transmission on the interface.
1634 */
1635 void
1636 stge_stop(struct ifnet *ifp, int disable)
1637 {
1638 struct stge_softc *sc = ifp->if_softc;
1639 struct stge_descsoft *ds;
1640 int i;
1641
1642 /*
1643 * Stop the one second clock.
1644 */
1645 callout_stop(&sc->sc_tick_ch);
1646
1647 /* Down the MII. */
1648 mii_down(&sc->sc_mii);
1649
1650 /*
1651 * Disable interrupts.
1652 */
1653 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1654
1655 /*
1656 * Stop receiver, transmitter, and stats update.
1657 */
1658 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1659 MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1660
1661 /*
1662 * Stop the transmit and receive DMA.
1663 */
1664 stge_dma_wait(sc);
1665 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1666 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1667 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1668 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1669
1670 /*
1671 * Release any queued transmit buffers.
1672 */
1673 for (i = 0; i < STGE_NTXDESC; i++) {
1674 ds = &sc->sc_txsoft[i];
1675 if (ds->ds_mbuf != NULL) {
1676 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1677 m_freem(ds->ds_mbuf);
1678 ds->ds_mbuf = NULL;
1679 }
1680 }
1681
1682 if (disable)
1683 stge_rxdrain(sc);
1684
1685 /*
1686 * Mark the interface down and cancel the watchdog timer.
1687 */
1688 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1689 ifp->if_timer = 0;
1690 }
1691
1692 #if 0
1693 static int
1694 stge_eeprom_wait(struct stge_softc *sc)
1695 {
1696 int i;
1697
1698 for (i = 0; i < STGE_TIMEOUT; i++) {
1699 delay(1000);
1700 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1701 EC_EepromBusy) == 0)
1702 return (0);
1703 }
1704 return (1);
1705 }
1706
1707 /*
1708 * stge_read_eeprom:
1709 *
1710 * Read data from the serial EEPROM.
1711 */
1712 void
1713 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1714 {
1715
1716 if (stge_eeprom_wait(sc))
1717 printf("%s: EEPROM failed to come ready\n",
1718 sc->sc_dev.dv_xname);
1719
1720 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1721 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1722 if (stge_eeprom_wait(sc))
1723 printf("%s: EEPROM read timed out\n",
1724 sc->sc_dev.dv_xname);
1725 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1726 }
1727 #endif /* 0 */
1728
1729 /*
1730 * stge_add_rxbuf:
1731 *
1732 * Add a receive buffer to the indicated descriptor.
1733 */
1734 int
1735 stge_add_rxbuf(struct stge_softc *sc, int idx)
1736 {
1737 struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1738 struct mbuf *m;
1739 int error;
1740
1741 MGETHDR(m, M_DONTWAIT, MT_DATA);
1742 if (m == NULL)
1743 return (ENOBUFS);
1744
1745 MCLGET(m, M_DONTWAIT);
1746 if ((m->m_flags & M_EXT) == 0) {
1747 m_freem(m);
1748 return (ENOBUFS);
1749 }
1750
1751 m->m_data = m->m_ext.ext_buf + 2;
1752 m->m_len = MCLBYTES - 2;
1753
1754 if (ds->ds_mbuf != NULL)
1755 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1756
1757 ds->ds_mbuf = m;
1758
1759 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1760 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1761 if (error) {
1762 printf("%s: can't load rx DMA map %d, error = %d\n",
1763 sc->sc_dev.dv_xname, idx, error);
1764 panic("stge_add_rxbuf"); /* XXX */
1765 }
1766
1767 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1768 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1769
1770 STGE_INIT_RXDESC(sc, idx);
1771
1772 return (0);
1773 }
1774
1775 /*
1776 * stge_set_filter:
1777 *
1778 * Set up the receive filter.
1779 */
1780 void
1781 stge_set_filter(struct stge_softc *sc)
1782 {
1783 struct ethercom *ec = &sc->sc_ethercom;
1784 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1785 struct ether_multi *enm;
1786 struct ether_multistep step;
1787 uint32_t crc;
1788 uint32_t mchash[2];
1789
1790 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1791 if (ifp->if_flags & IFF_BROADCAST)
1792 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1793
1794 if (ifp->if_flags & IFF_PROMISC) {
1795 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1796 goto allmulti;
1797 }
1798
1799 /*
1800 * Set up the multicast address filter by passing all multicast
1801 * addresses through a CRC generator, and then using the low-order
1802 * 6 bits as an index into the 64 bit multicast hash table. The
1803 * high order bits select the register, while the rest of the bits
1804 * select the bit within the register.
1805 */
1806
1807 memset(mchash, 0, sizeof(mchash));
1808
1809 ETHER_FIRST_MULTI(step, ec, enm);
1810 if (enm == NULL)
1811 goto done;
1812
1813 while (enm != NULL) {
1814 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1815 /*
1816 * We must listen to a range of multicast addresses.
1817 * For now, just accept all multicasts, rather than
1818 * trying to set only those filter bits needed to match
1819 * the range. (At this time, the only use of address
1820 * ranges is for IP multicast routing, for which the
1821 * range is big enough to require all bits set.)
1822 */
1823 goto allmulti;
1824 }
1825
1826 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1827
1828 /* Just want the 6 least significant bits. */
1829 crc &= 0x3f;
1830
1831 /* Set the corresponding bit in the hash table. */
1832 mchash[crc >> 5] |= 1 << (crc & 0x1f);
1833
1834 ETHER_NEXT_MULTI(step, enm);
1835 }
1836
1837 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1838
1839 ifp->if_flags &= ~IFF_ALLMULTI;
1840 goto done;
1841
1842 allmulti:
1843 ifp->if_flags |= IFF_ALLMULTI;
1844 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1845
1846 done:
1847 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1848 /*
1849 * Program the multicast hash table.
1850 */
1851 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1852 mchash[0]);
1853 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1854 mchash[1]);
1855 }
1856
1857 bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1858 sc->sc_ReceiveMode);
1859 }
1860
1861 /*
1862 * stge_mii_readreg: [mii interface function]
1863 *
1864 * Read a PHY register on the MII of the TC9021.
1865 */
1866 int
1867 stge_mii_readreg(struct device *self, int phy, int reg)
1868 {
1869
1870 return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1871 }
1872
1873 /*
1874 * stge_mii_writereg: [mii interface function]
1875 *
1876 * Write a PHY register on the MII of the TC9021.
1877 */
1878 void
1879 stge_mii_writereg(struct device *self, int phy, int reg, int val)
1880 {
1881
1882 mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1883 }
1884
1885 /*
1886 * stge_mii_statchg: [mii interface function]
1887 *
1888 * Callback from MII layer when media changes.
1889 */
1890 void
1891 stge_mii_statchg(struct device *self)
1892 {
1893 struct stge_softc *sc = (struct stge_softc *) self;
1894
1895 if (sc->sc_mii.mii_media_active & IFM_FDX)
1896 sc->sc_MACCtrl |= MC_DuplexSelect;
1897 else
1898 sc->sc_MACCtrl &= ~MC_DuplexSelect;
1899
1900 /* XXX 802.1x flow-control? */
1901
1902 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1903 }
1904
1905 /*
1906 * sste_mii_bitbang_read: [mii bit-bang interface function]
1907 *
1908 * Read the MII serial port for the MII bit-bang module.
1909 */
1910 uint32_t
1911 stge_mii_bitbang_read(struct device *self)
1912 {
1913 struct stge_softc *sc = (void *) self;
1914
1915 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
1916 }
1917
1918 /*
1919 * stge_mii_bitbang_write: [mii big-bang interface function]
1920 *
1921 * Write the MII serial port for the MII bit-bang module.
1922 */
1923 void
1924 stge_mii_bitbang_write(struct device *self, uint32_t val)
1925 {
1926 struct stge_softc *sc = (void *) self;
1927
1928 bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
1929 val | sc->sc_PhyCtrl);
1930 }
1931
1932 /*
1933 * stge_mediastatus: [ifmedia interface function]
1934 *
1935 * Get the current interface media status.
1936 */
1937 void
1938 stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1939 {
1940 struct stge_softc *sc = ifp->if_softc;
1941
1942 mii_pollstat(&sc->sc_mii);
1943 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1944 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1945 }
1946
1947 /*
1948 * stge_mediachange: [ifmedia interface function]
1949 *
1950 * Set hardware to newly-selected media.
1951 */
1952 int
1953 stge_mediachange(struct ifnet *ifp)
1954 {
1955 struct stge_softc *sc = ifp->if_softc;
1956
1957 if (ifp->if_flags & IFF_UP)
1958 mii_mediachg(&sc->sc_mii);
1959 return (0);
1960 }
1961