if_stge.c revision 1.23 1 /* $NetBSD: if_stge.c,v 1.23 2005/02/20 15:56:03 jdolecek Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the Sundance Tech. TC9021 10/100/1000
41 * Ethernet controller.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.23 2005/02/20 15:56:03 jdolecek Exp $");
46
47 #include "bpfilter.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/socket.h>
56 #include <sys/ioctl.h>
57 #include <sys/errno.h>
58 #include <sys/device.h>
59 #include <sys/queue.h>
60
61 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
62
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_ether.h>
67
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71
72 #include <machine/bus.h>
73 #include <machine/intr.h>
74
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 #include <dev/mii/mii_bitbang.h>
78
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 #include <dev/pci/pcidevs.h>
82
83 #include <dev/pci/if_stgereg.h>
84
85 /* #define STGE_CU_BUG 1 */
86 #define STGE_VLAN_UNTAG 1
87 /* #define STGE_VLAN_CFI 1 */
88
89 /*
90 * Transmit descriptor list size.
91 */
92 #define STGE_NTXDESC 256
93 #define STGE_NTXDESC_MASK (STGE_NTXDESC - 1)
94 #define STGE_NEXTTX(x) (((x) + 1) & STGE_NTXDESC_MASK)
95
96 /*
97 * Receive descriptor list size.
98 */
99 #define STGE_NRXDESC 256
100 #define STGE_NRXDESC_MASK (STGE_NRXDESC - 1)
101 #define STGE_NEXTRX(x) (((x) + 1) & STGE_NRXDESC_MASK)
102
103 /*
104 * Only interrupt every N frames. Must be a power-of-two.
105 */
106 #define STGE_TXINTR_SPACING 16
107 #define STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
108
109 /*
110 * Control structures are DMA'd to the TC9021 chip. We allocate them in
111 * a single clump that maps to a single DMA segment to make several things
112 * easier.
113 */
114 struct stge_control_data {
115 /*
116 * The transmit descriptors.
117 */
118 struct stge_tfd scd_txdescs[STGE_NTXDESC];
119
120 /*
121 * The receive descriptors.
122 */
123 struct stge_rfd scd_rxdescs[STGE_NRXDESC];
124 };
125
126 #define STGE_CDOFF(x) offsetof(struct stge_control_data, x)
127 #define STGE_CDTXOFF(x) STGE_CDOFF(scd_txdescs[(x)])
128 #define STGE_CDRXOFF(x) STGE_CDOFF(scd_rxdescs[(x)])
129
130 /*
131 * Software state for transmit and receive jobs.
132 */
133 struct stge_descsoft {
134 struct mbuf *ds_mbuf; /* head of our mbuf chain */
135 bus_dmamap_t ds_dmamap; /* our DMA map */
136 };
137
138 /*
139 * Software state per device.
140 */
141 struct stge_softc {
142 struct device sc_dev; /* generic device information */
143 bus_space_tag_t sc_st; /* bus space tag */
144 bus_space_handle_t sc_sh; /* bus space handle */
145 bus_dma_tag_t sc_dmat; /* bus DMA tag */
146 struct ethercom sc_ethercom; /* ethernet common data */
147 void *sc_sdhook; /* shutdown hook */
148 int sc_rev; /* silicon revision */
149
150 void *sc_ih; /* interrupt cookie */
151
152 struct mii_data sc_mii; /* MII/media information */
153
154 struct callout sc_tick_ch; /* tick callout */
155
156 bus_dmamap_t sc_cddmamap; /* control data DMA map */
157 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
158
159 /*
160 * Software state for transmit and receive descriptors.
161 */
162 struct stge_descsoft sc_txsoft[STGE_NTXDESC];
163 struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
164
165 /*
166 * Control data structures.
167 */
168 struct stge_control_data *sc_control_data;
169 #define sc_txdescs sc_control_data->scd_txdescs
170 #define sc_rxdescs sc_control_data->scd_rxdescs
171
172 #ifdef STGE_EVENT_COUNTERS
173 /*
174 * Event counters.
175 */
176 struct evcnt sc_ev_txstall; /* Tx stalled */
177 struct evcnt sc_ev_txdmaintr; /* Tx DMA interrupts */
178 struct evcnt sc_ev_txindintr; /* Tx Indicate interrupts */
179 struct evcnt sc_ev_rxintr; /* Rx interrupts */
180
181 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
182 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
183 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
184 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
185 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
186 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
187 struct evcnt sc_ev_txcopy; /* Tx packets that we had to copy */
188
189 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
190 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
191 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-bound */
192
193 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
194 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
195 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
196 #endif /* STGE_EVENT_COUNTERS */
197
198 int sc_txpending; /* number of Tx requests pending */
199 int sc_txdirty; /* first dirty Tx descriptor */
200 int sc_txlast; /* last used Tx descriptor */
201
202 int sc_rxptr; /* next ready Rx descriptor/descsoft */
203 int sc_rxdiscard;
204 int sc_rxlen;
205 struct mbuf *sc_rxhead;
206 struct mbuf *sc_rxtail;
207 struct mbuf **sc_rxtailp;
208
209 int sc_txthresh; /* Tx threshold */
210 int sc_usefiber; /* if we're fiber */
211 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
212 uint32_t sc_MACCtrl; /* prototype MacCtrl register */
213 uint16_t sc_IntEnable; /* prototype IntEnable register */
214 uint16_t sc_ReceiveMode; /* prototype ReceiveMode register */
215 uint8_t sc_PhyCtrl; /* prototype PhyCtrl register */
216 };
217
218 #define STGE_RXCHAIN_RESET(sc) \
219 do { \
220 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
221 *(sc)->sc_rxtailp = NULL; \
222 (sc)->sc_rxlen = 0; \
223 } while (/*CONSTCOND*/0)
224
225 #define STGE_RXCHAIN_LINK(sc, m) \
226 do { \
227 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
228 (sc)->sc_rxtailp = &(m)->m_next; \
229 } while (/*CONSTCOND*/0)
230
231 #ifdef STGE_EVENT_COUNTERS
232 #define STGE_EVCNT_INCR(ev) (ev)->ev_count++
233 #else
234 #define STGE_EVCNT_INCR(ev) /* nothing */
235 #endif
236
237 #define STGE_CDTXADDR(sc, x) ((sc)->sc_cddma + STGE_CDTXOFF((x)))
238 #define STGE_CDRXADDR(sc, x) ((sc)->sc_cddma + STGE_CDRXOFF((x)))
239
240 #define STGE_CDTXSYNC(sc, x, ops) \
241 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
242 STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
243
244 #define STGE_CDRXSYNC(sc, x, ops) \
245 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
246 STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
247
248 #define STGE_INIT_RXDESC(sc, x) \
249 do { \
250 struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
251 struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
252 \
253 /* \
254 * Note: We scoot the packet forward 2 bytes in the buffer \
255 * so that the payload after the Ethernet header is aligned \
256 * to a 4-byte boundary. \
257 */ \
258 __rfd->rfd_frag.frag_word0 = \
259 htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
260 FRAG_LEN(MCLBYTES - 2)); \
261 __rfd->rfd_next = \
262 htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x)))); \
263 __rfd->rfd_status = 0; \
264 STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
265 } while (/*CONSTCOND*/0)
266
267 #define STGE_TIMEOUT 1000
268
269 static void stge_start(struct ifnet *);
270 static void stge_watchdog(struct ifnet *);
271 static int stge_ioctl(struct ifnet *, u_long, caddr_t);
272 static int stge_init(struct ifnet *);
273 static void stge_stop(struct ifnet *, int);
274
275 static void stge_shutdown(void *);
276
277 static void stge_reset(struct stge_softc *);
278 static void stge_rxdrain(struct stge_softc *);
279 static int stge_add_rxbuf(struct stge_softc *, int);
280 #if 0
281 static void stge_read_eeprom(struct stge_softc *, int, uint16_t *);
282 #endif
283 static void stge_tick(void *);
284
285 static void stge_stats_update(struct stge_softc *);
286
287 static void stge_set_filter(struct stge_softc *);
288
289 static int stge_intr(void *);
290 static void stge_txintr(struct stge_softc *);
291 static void stge_rxintr(struct stge_softc *);
292
293 static int stge_mii_readreg(struct device *, int, int);
294 static void stge_mii_writereg(struct device *, int, int, int);
295 static void stge_mii_statchg(struct device *);
296
297 static int stge_mediachange(struct ifnet *);
298 static void stge_mediastatus(struct ifnet *, struct ifmediareq *);
299
300 static int stge_match(struct device *, struct cfdata *, void *);
301 static void stge_attach(struct device *, struct device *, void *);
302
303 int stge_copy_small = 0;
304
305 CFATTACH_DECL(stge, sizeof(struct stge_softc),
306 stge_match, stge_attach, NULL, NULL);
307
308 static uint32_t stge_mii_bitbang_read(struct device *);
309 static void stge_mii_bitbang_write(struct device *, uint32_t);
310
311 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
312 stge_mii_bitbang_read,
313 stge_mii_bitbang_write,
314 {
315 PC_MgmtData, /* MII_BIT_MDO */
316 PC_MgmtData, /* MII_BIT_MDI */
317 PC_MgmtClk, /* MII_BIT_MDC */
318 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
319 0, /* MII_BIT_DIR_PHY_HOST */
320 }
321 };
322
323 /*
324 * Devices supported by this driver.
325 */
326 static const struct stge_product {
327 pci_vendor_id_t stge_vendor;
328 pci_product_id_t stge_product;
329 const char *stge_name;
330 } stge_products[] = {
331 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST2021,
332 "Sundance ST-2021 Gigabit Ethernet" },
333
334 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021,
335 "Tamarack TC9021 Gigabit Ethernet" },
336
337 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021_ALT,
338 "Tamarack TC9021 Gigabit Ethernet" },
339
340 /*
341 * The Sundance sample boards use the Sundance vendor ID,
342 * but the Tamarack product ID.
343 */
344 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021,
345 "Sundance TC9021 Gigabit Ethernet" },
346
347 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021_ALT,
348 "Sundance TC9021 Gigabit Ethernet" },
349
350 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL4000,
351 "D-Link DL-4000 Gigabit Ethernet" },
352
353 { PCI_VENDOR_ANTARES, PCI_PRODUCT_ANTARES_TC9021,
354 "Antares Gigabit Ethernet" },
355
356 { 0, 0,
357 NULL },
358 };
359
360 static const struct stge_product *
361 stge_lookup(const struct pci_attach_args *pa)
362 {
363 const struct stge_product *sp;
364
365 for (sp = stge_products; sp->stge_name != NULL; sp++) {
366 if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
367 PCI_PRODUCT(pa->pa_id) == sp->stge_product)
368 return (sp);
369 }
370 return (NULL);
371 }
372
373 static int
374 stge_match(struct device *parent, struct cfdata *cf, void *aux)
375 {
376 struct pci_attach_args *pa = aux;
377
378 if (stge_lookup(pa) != NULL)
379 return (1);
380
381 return (0);
382 }
383
384 static void
385 stge_attach(struct device *parent, struct device *self, void *aux)
386 {
387 struct stge_softc *sc = (struct stge_softc *) self;
388 struct pci_attach_args *pa = aux;
389 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
390 pci_chipset_tag_t pc = pa->pa_pc;
391 pci_intr_handle_t ih;
392 const char *intrstr = NULL;
393 bus_space_tag_t iot, memt;
394 bus_space_handle_t ioh, memh;
395 bus_dma_segment_t seg;
396 int ioh_valid, memh_valid;
397 int i, rseg, error;
398 const struct stge_product *sp;
399 pcireg_t pmode;
400 uint8_t enaddr[ETHER_ADDR_LEN];
401 int pmreg;
402
403 callout_init(&sc->sc_tick_ch);
404
405 sp = stge_lookup(pa);
406 if (sp == NULL) {
407 printf("\n");
408 panic("ste_attach: impossible");
409 }
410
411 sc->sc_rev = PCI_REVISION(pa->pa_class);
412
413 printf(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
414
415 /*
416 * Map the device.
417 */
418 ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
419 PCI_MAPREG_TYPE_IO, 0,
420 &iot, &ioh, NULL, NULL) == 0);
421 memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
422 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
423 &memt, &memh, NULL, NULL) == 0);
424
425 if (memh_valid) {
426 sc->sc_st = memt;
427 sc->sc_sh = memh;
428 } else if (ioh_valid) {
429 sc->sc_st = iot;
430 sc->sc_sh = ioh;
431 } else {
432 printf("%s: unable to map device registers\n",
433 sc->sc_dev.dv_xname);
434 return;
435 }
436
437 sc->sc_dmat = pa->pa_dmat;
438
439 /* Enable bus mastering. */
440 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
441 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
442 PCI_COMMAND_MASTER_ENABLE);
443
444 /* Get it out of power save mode if needed. */
445 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
446 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
447 PCI_PMCSR_STATE_MASK;
448 if (pmode == PCI_PMCSR_STATE_D3) {
449 /*
450 * The card has lost all configuration data in
451 * this state, so punt.
452 */
453 printf("%s: unable to wake up from power state D3\n",
454 sc->sc_dev.dv_xname);
455 return;
456 }
457 if (pmode != 0) {
458 printf("%s: waking up from power state D%d\n",
459 sc->sc_dev.dv_xname, pmode);
460 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
461 PCI_PMCSR_STATE_D0);
462 }
463 }
464
465 /*
466 * Map and establish our interrupt.
467 */
468 if (pci_intr_map(pa, &ih)) {
469 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
470 return;
471 }
472 intrstr = pci_intr_string(pc, ih);
473 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
474 if (sc->sc_ih == NULL) {
475 printf("%s: unable to establish interrupt",
476 sc->sc_dev.dv_xname);
477 if (intrstr != NULL)
478 printf(" at %s", intrstr);
479 printf("\n");
480 return;
481 }
482 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
483
484 /*
485 * Allocate the control data structures, and create and load the
486 * DMA map for it.
487 */
488 if ((error = bus_dmamem_alloc(sc->sc_dmat,
489 sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
490 0)) != 0) {
491 printf("%s: unable to allocate control data, error = %d\n",
492 sc->sc_dev.dv_xname, error);
493 goto fail_0;
494 }
495
496 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
497 sizeof(struct stge_control_data), (caddr_t *)&sc->sc_control_data,
498 BUS_DMA_COHERENT)) != 0) {
499 printf("%s: unable to map control data, error = %d\n",
500 sc->sc_dev.dv_xname, error);
501 goto fail_1;
502 }
503
504 if ((error = bus_dmamap_create(sc->sc_dmat,
505 sizeof(struct stge_control_data), 1,
506 sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
507 printf("%s: unable to create control data DMA map, "
508 "error = %d\n", sc->sc_dev.dv_xname, error);
509 goto fail_2;
510 }
511
512 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
513 sc->sc_control_data, sizeof(struct stge_control_data), NULL,
514 0)) != 0) {
515 printf("%s: unable to load control data DMA map, error = %d\n",
516 sc->sc_dev.dv_xname, error);
517 goto fail_3;
518 }
519
520 /*
521 * Create the transmit buffer DMA maps. Note that rev B.3
522 * and earlier seem to have a bug regarding multi-fragment
523 * packets. We need to limit the number of Tx segments on
524 * such chips to 1.
525 */
526 for (i = 0; i < STGE_NTXDESC; i++) {
527 if ((error = bus_dmamap_create(sc->sc_dmat,
528 ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
529 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
530 printf("%s: unable to create tx DMA map %d, "
531 "error = %d\n", sc->sc_dev.dv_xname, i, error);
532 goto fail_4;
533 }
534 }
535
536 /*
537 * Create the receive buffer DMA maps.
538 */
539 for (i = 0; i < STGE_NRXDESC; i++) {
540 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
541 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
542 printf("%s: unable to create rx DMA map %d, "
543 "error = %d\n", sc->sc_dev.dv_xname, i, error);
544 goto fail_5;
545 }
546 sc->sc_rxsoft[i].ds_mbuf = NULL;
547 }
548
549 /*
550 * Determine if we're copper or fiber. It affects how we
551 * reset the card.
552 */
553 if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
554 AC_PhyMedia)
555 sc->sc_usefiber = 1;
556 else
557 sc->sc_usefiber = 0;
558
559 /*
560 * Reset the chip to a known state.
561 */
562 stge_reset(sc);
563
564 /*
565 * Reading the station address from the EEPROM doesn't seem
566 * to work, at least on my sample boards. Instread, since
567 * the reset sequence does AutoInit, read it from the station
568 * address registers.
569 */
570 enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
571 STGE_StationAddress0) & 0xff;
572 enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
573 STGE_StationAddress0) >> 8;
574 enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
575 STGE_StationAddress1) & 0xff;
576 enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
577 STGE_StationAddress1) >> 8;
578 enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
579 STGE_StationAddress2) & 0xff;
580 enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
581 STGE_StationAddress2) >> 8;
582
583 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
584 ether_sprintf(enaddr));
585
586 /*
587 * Read some important bits from the PhyCtrl register.
588 */
589 sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
590 STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
591
592 /*
593 * Initialize our media structures and probe the MII.
594 */
595 sc->sc_mii.mii_ifp = ifp;
596 sc->sc_mii.mii_readreg = stge_mii_readreg;
597 sc->sc_mii.mii_writereg = stge_mii_writereg;
598 sc->sc_mii.mii_statchg = stge_mii_statchg;
599 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, stge_mediachange,
600 stge_mediastatus);
601 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
602 MII_OFFSET_ANY, MIIF_DOPAUSE);
603 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
604 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
605 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
606 } else
607 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
608
609 ifp = &sc->sc_ethercom.ec_if;
610 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
611 ifp->if_softc = sc;
612 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
613 ifp->if_ioctl = stge_ioctl;
614 ifp->if_start = stge_start;
615 ifp->if_watchdog = stge_watchdog;
616 ifp->if_init = stge_init;
617 ifp->if_stop = stge_stop;
618 IFQ_SET_READY(&ifp->if_snd);
619
620 /*
621 * The manual recommends disabling early transmit, so we
622 * do. It's disabled anyway, if using IP checksumming,
623 * since the entire packet must be in the FIFO in order
624 * for the chip to perform the checksum.
625 */
626 sc->sc_txthresh = 0x0fff;
627
628 /*
629 * Disable MWI if the PCI layer tells us to.
630 */
631 sc->sc_DMACtrl = 0;
632 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
633 sc->sc_DMACtrl |= DMAC_MWIDisable;
634
635 /*
636 * We can support 802.1Q VLAN-sized frames and jumbo
637 * Ethernet frames.
638 *
639 * XXX Figure out how to do hw-assisted VLAN tagging in
640 * XXX a reasonable way on this chip.
641 */
642 sc->sc_ethercom.ec_capabilities |=
643 ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
644 ETHERCAP_VLAN_HWTAGGING;
645
646 /*
647 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
648 */
649 sc->sc_ethercom.ec_if.if_capabilities |= IFCAP_CSUM_IPv4 |
650 IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
651
652 /*
653 * Attach the interface.
654 */
655 if_attach(ifp);
656 ether_ifattach(ifp, enaddr);
657
658 #ifdef STGE_EVENT_COUNTERS
659 /*
660 * Attach event counters.
661 */
662 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
663 NULL, sc->sc_dev.dv_xname, "txstall");
664 evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
665 NULL, sc->sc_dev.dv_xname, "txdmaintr");
666 evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
667 NULL, sc->sc_dev.dv_xname, "txindintr");
668 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
669 NULL, sc->sc_dev.dv_xname, "rxintr");
670
671 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
672 NULL, sc->sc_dev.dv_xname, "txseg1");
673 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
674 NULL, sc->sc_dev.dv_xname, "txseg2");
675 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
676 NULL, sc->sc_dev.dv_xname, "txseg3");
677 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
678 NULL, sc->sc_dev.dv_xname, "txseg4");
679 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
680 NULL, sc->sc_dev.dv_xname, "txseg5");
681 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
682 NULL, sc->sc_dev.dv_xname, "txsegmore");
683 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
684 NULL, sc->sc_dev.dv_xname, "txcopy");
685
686 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
687 NULL, sc->sc_dev.dv_xname, "rxipsum");
688 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
689 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
690 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
691 NULL, sc->sc_dev.dv_xname, "rxudpsum");
692 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
693 NULL, sc->sc_dev.dv_xname, "txipsum");
694 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
695 NULL, sc->sc_dev.dv_xname, "txtcpsum");
696 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
697 NULL, sc->sc_dev.dv_xname, "txudpsum");
698 #endif /* STGE_EVENT_COUNTERS */
699
700 /*
701 * Make sure the interface is shutdown during reboot.
702 */
703 sc->sc_sdhook = shutdownhook_establish(stge_shutdown, sc);
704 if (sc->sc_sdhook == NULL)
705 printf("%s: WARNING: unable to establish shutdown hook\n",
706 sc->sc_dev.dv_xname);
707 return;
708
709 /*
710 * Free any resources we've allocated during the failed attach
711 * attempt. Do this in reverse order and fall through.
712 */
713 fail_5:
714 for (i = 0; i < STGE_NRXDESC; i++) {
715 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
716 bus_dmamap_destroy(sc->sc_dmat,
717 sc->sc_rxsoft[i].ds_dmamap);
718 }
719 fail_4:
720 for (i = 0; i < STGE_NTXDESC; i++) {
721 if (sc->sc_txsoft[i].ds_dmamap != NULL)
722 bus_dmamap_destroy(sc->sc_dmat,
723 sc->sc_txsoft[i].ds_dmamap);
724 }
725 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
726 fail_3:
727 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
728 fail_2:
729 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
730 sizeof(struct stge_control_data));
731 fail_1:
732 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
733 fail_0:
734 return;
735 }
736
737 /*
738 * stge_shutdown:
739 *
740 * Make sure the interface is stopped at reboot time.
741 */
742 static void
743 stge_shutdown(void *arg)
744 {
745 struct stge_softc *sc = arg;
746
747 stge_stop(&sc->sc_ethercom.ec_if, 1);
748 }
749
750 static void
751 stge_dma_wait(struct stge_softc *sc)
752 {
753 int i;
754
755 for (i = 0; i < STGE_TIMEOUT; i++) {
756 delay(2);
757 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
758 DMAC_TxDMAInProg) == 0)
759 break;
760 }
761
762 if (i == STGE_TIMEOUT)
763 printf("%s: DMA wait timed out\n", sc->sc_dev.dv_xname);
764 }
765
766 /*
767 * stge_start: [ifnet interface function]
768 *
769 * Start packet transmission on the interface.
770 */
771 static void
772 stge_start(struct ifnet *ifp)
773 {
774 struct stge_softc *sc = ifp->if_softc;
775 struct mbuf *m0;
776 struct stge_descsoft *ds;
777 struct stge_tfd *tfd;
778 bus_dmamap_t dmamap;
779 int error, firsttx, nexttx, opending, seg, totlen;
780 uint64_t csum_flags;
781
782 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
783 return;
784
785 /*
786 * Remember the previous number of pending transmissions
787 * and the first descriptor we will use.
788 */
789 opending = sc->sc_txpending;
790 firsttx = STGE_NEXTTX(sc->sc_txlast);
791
792 /*
793 * Loop through the send queue, setting up transmit descriptors
794 * until we drain the queue, or use up all available transmit
795 * descriptors.
796 */
797 for (;;) {
798 struct m_tag *mtag;
799 uint64_t tfc;
800
801 /*
802 * Grab a packet off the queue.
803 */
804 IFQ_POLL(&ifp->if_snd, m0);
805 if (m0 == NULL)
806 break;
807
808 /*
809 * Leave one unused descriptor at the end of the
810 * list to prevent wrapping completely around.
811 */
812 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
813 STGE_EVCNT_INCR(&sc->sc_ev_txstall);
814 break;
815 }
816
817 /*
818 * See if we have any VLAN stuff.
819 */
820 mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
821
822 /*
823 * Get the last and next available transmit descriptor.
824 */
825 nexttx = STGE_NEXTTX(sc->sc_txlast);
826 tfd = &sc->sc_txdescs[nexttx];
827 ds = &sc->sc_txsoft[nexttx];
828
829 dmamap = ds->ds_dmamap;
830
831 /*
832 * Load the DMA map. If this fails, the packet either
833 * didn't fit in the alloted number of segments, or we
834 * were short on resources. For the too-many-segments
835 * case, we simply report an error and drop the packet,
836 * since we can't sanely copy a jumbo packet to a single
837 * buffer.
838 */
839 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
840 BUS_DMA_NOWAIT);
841 if (error) {
842 if (error == EFBIG) {
843 printf("%s: Tx packet consumes too many "
844 "DMA segments, dropping...\n",
845 sc->sc_dev.dv_xname);
846 IFQ_DEQUEUE(&ifp->if_snd, m0);
847 m_freem(m0);
848 continue;
849 }
850 /*
851 * Short on resources, just stop for now.
852 */
853 break;
854 }
855
856 IFQ_DEQUEUE(&ifp->if_snd, m0);
857
858 /*
859 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
860 */
861
862 /* Sync the DMA map. */
863 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
864 BUS_DMASYNC_PREWRITE);
865
866 /* Initialize the fragment list. */
867 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
868 tfd->tfd_frags[seg].frag_word0 =
869 htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
870 FRAG_LEN(dmamap->dm_segs[seg].ds_len));
871 totlen += dmamap->dm_segs[seg].ds_len;
872 }
873
874 #ifdef STGE_EVENT_COUNTERS
875 switch (dmamap->dm_nsegs) {
876 case 1:
877 STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
878 break;
879 case 2:
880 STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
881 break;
882 case 3:
883 STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
884 break;
885 case 4:
886 STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
887 break;
888 case 5:
889 STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
890 break;
891 default:
892 STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
893 break;
894 }
895 #endif /* STGE_EVENT_COUNTERS */
896
897 /*
898 * Initialize checksumming flags in the descriptor.
899 * Byte-swap constants so the compiler can optimize.
900 */
901 csum_flags = 0;
902 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
903 STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
904 csum_flags |= htole64(TFD_IPChecksumEnable);
905 }
906
907 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
908 STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
909 csum_flags |= htole64(TFD_TCPChecksumEnable);
910 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
911 STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
912 csum_flags |= htole64(TFD_UDPChecksumEnable);
913 }
914
915 /*
916 * Initialize the descriptor and give it to the chip.
917 * Check to see if we have a VLAN tag to insert.
918 */
919
920 tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
921 TFD_FragCount(seg) | csum_flags |
922 (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
923 TFD_TxDMAIndicate : 0);
924 if (mtag) {
925 #if 0
926 struct ether_header *eh =
927 mtod(m0, struct ether_header *);
928 u_int16_t etype = ntohs(eh->ether_type);
929 printf("%s: xmit (tag %d) etype %x\n",
930 ifp->if_xname, *mtod(n, int *), etype);
931 #endif
932 tfc |= TFD_VLANTagInsert |
933 #ifdef STGE_VLAN_CFI
934 TFD_CFI |
935 #endif
936 TFD_VID(VLAN_TAG_VALUE(mtag));
937 }
938 tfd->tfd_control = htole64(tfc);
939
940 /* Sync the descriptor. */
941 STGE_CDTXSYNC(sc, nexttx,
942 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
943
944 /*
945 * Kick the transmit DMA logic.
946 */
947 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
948 sc->sc_DMACtrl | DMAC_TxDMAPollNow);
949
950 /*
951 * Store a pointer to the packet so we can free it later.
952 */
953 ds->ds_mbuf = m0;
954
955 /* Advance the tx pointer. */
956 sc->sc_txpending++;
957 sc->sc_txlast = nexttx;
958
959 #if NBPFILTER > 0
960 /*
961 * Pass the packet to any BPF listeners.
962 */
963 if (ifp->if_bpf)
964 bpf_mtap(ifp->if_bpf, m0);
965 #endif /* NBPFILTER > 0 */
966 }
967
968 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
969 /* No more slots left; notify upper layer. */
970 ifp->if_flags |= IFF_OACTIVE;
971 }
972
973 if (sc->sc_txpending != opending) {
974 /*
975 * We enqueued packets. If the transmitter was idle,
976 * reset the txdirty pointer.
977 */
978 if (opending == 0)
979 sc->sc_txdirty = firsttx;
980
981 /* Set a watchdog timer in case the chip flakes out. */
982 ifp->if_timer = 5;
983 }
984 }
985
986 /*
987 * stge_watchdog: [ifnet interface function]
988 *
989 * Watchdog timer handler.
990 */
991 static void
992 stge_watchdog(struct ifnet *ifp)
993 {
994 struct stge_softc *sc = ifp->if_softc;
995
996 /*
997 * Sweep up first, since we don't interrupt every frame.
998 */
999 stge_txintr(sc);
1000 if (sc->sc_txpending != 0) {
1001 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1002 ifp->if_oerrors++;
1003
1004 (void) stge_init(ifp);
1005
1006 /* Try to get more packets going. */
1007 stge_start(ifp);
1008 }
1009 }
1010
1011 /*
1012 * stge_ioctl: [ifnet interface function]
1013 *
1014 * Handle control requests from the operator.
1015 */
1016 static int
1017 stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1018 {
1019 struct stge_softc *sc = ifp->if_softc;
1020 struct ifreq *ifr = (struct ifreq *)data;
1021 int s, error;
1022
1023 s = splnet();
1024
1025 switch (cmd) {
1026 case SIOCSIFMEDIA:
1027 case SIOCGIFMEDIA:
1028 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1029 break;
1030
1031 default:
1032 error = ether_ioctl(ifp, cmd, data);
1033 if (error == ENETRESET) {
1034 /*
1035 * Multicast list has changed; set the hardware filter
1036 * accordingly.
1037 */
1038 if (ifp->if_flags & IFF_RUNNING)
1039 stge_set_filter(sc);
1040 error = 0;
1041 }
1042 break;
1043 }
1044
1045 /* Try to get more packets going. */
1046 stge_start(ifp);
1047
1048 splx(s);
1049 return (error);
1050 }
1051
1052 /*
1053 * stge_intr:
1054 *
1055 * Interrupt service routine.
1056 */
1057 static int
1058 stge_intr(void *arg)
1059 {
1060 struct stge_softc *sc = arg;
1061 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1062 uint32_t txstat;
1063 int wantinit;
1064 uint16_t isr;
1065
1066 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1067 IS_InterruptStatus) == 0)
1068 return (0);
1069
1070 for (wantinit = 0; wantinit == 0;) {
1071 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1072 if ((isr & sc->sc_IntEnable) == 0)
1073 break;
1074
1075 /* Host interface errors. */
1076 if (isr & IS_HostError) {
1077 printf("%s: Host interface error\n",
1078 sc->sc_dev.dv_xname);
1079 wantinit = 1;
1080 continue;
1081 }
1082
1083 /* Receive interrupts. */
1084 if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
1085 STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1086 stge_rxintr(sc);
1087 if (isr & IS_RFDListEnd) {
1088 printf("%s: receive ring overflow\n",
1089 sc->sc_dev.dv_xname);
1090 /*
1091 * XXX Should try to recover from this
1092 * XXX more gracefully.
1093 */
1094 wantinit = 1;
1095 }
1096 }
1097
1098 /* Transmit interrupts. */
1099 if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
1100 #ifdef STGE_EVENT_COUNTERS
1101 if (isr & IS_TxDMAComplete)
1102 STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1103 #endif
1104 stge_txintr(sc);
1105 }
1106
1107 /* Statistics overflow. */
1108 if (isr & IS_UpdateStats)
1109 stge_stats_update(sc);
1110
1111 /* Transmission errors. */
1112 if (isr & IS_TxComplete) {
1113 STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1114 for (;;) {
1115 txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1116 STGE_TxStatus);
1117 if ((txstat & TS_TxComplete) == 0)
1118 break;
1119 if (txstat & TS_TxUnderrun) {
1120 sc->sc_txthresh++;
1121 if (sc->sc_txthresh > 0x0fff)
1122 sc->sc_txthresh = 0x0fff;
1123 printf("%s: transmit underrun, new "
1124 "threshold: %d bytes\n",
1125 sc->sc_dev.dv_xname,
1126 sc->sc_txthresh << 5);
1127 }
1128 if (txstat & TS_MaxCollisions)
1129 printf("%s: excessive collisions\n",
1130 sc->sc_dev.dv_xname);
1131 }
1132 wantinit = 1;
1133 }
1134
1135 }
1136
1137 if (wantinit)
1138 stge_init(ifp);
1139
1140 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1141 sc->sc_IntEnable);
1142
1143 /* Try to get more packets going. */
1144 stge_start(ifp);
1145
1146 return (1);
1147 }
1148
1149 /*
1150 * stge_txintr:
1151 *
1152 * Helper; handle transmit interrupts.
1153 */
1154 static void
1155 stge_txintr(struct stge_softc *sc)
1156 {
1157 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1158 struct stge_descsoft *ds;
1159 uint64_t control;
1160 int i;
1161
1162 ifp->if_flags &= ~IFF_OACTIVE;
1163
1164 /*
1165 * Go through our Tx list and free mbufs for those
1166 * frames which have been transmitted.
1167 */
1168 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1169 i = STGE_NEXTTX(i), sc->sc_txpending--) {
1170 ds = &sc->sc_txsoft[i];
1171
1172 STGE_CDTXSYNC(sc, i,
1173 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1174
1175 control = le64toh(sc->sc_txdescs[i].tfd_control);
1176 if ((control & TFD_TFDDone) == 0)
1177 break;
1178
1179 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1180 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1181 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1182 m_freem(ds->ds_mbuf);
1183 ds->ds_mbuf = NULL;
1184 }
1185
1186 /* Update the dirty transmit buffer pointer. */
1187 sc->sc_txdirty = i;
1188
1189 /*
1190 * If there are no more pending transmissions, cancel the watchdog
1191 * timer.
1192 */
1193 if (sc->sc_txpending == 0)
1194 ifp->if_timer = 0;
1195 }
1196
1197 /*
1198 * stge_rxintr:
1199 *
1200 * Helper; handle receive interrupts.
1201 */
1202 static void
1203 stge_rxintr(struct stge_softc *sc)
1204 {
1205 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1206 struct stge_descsoft *ds;
1207 struct mbuf *m, *tailm;
1208 uint64_t status;
1209 int i, len;
1210
1211 for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1212 ds = &sc->sc_rxsoft[i];
1213
1214 STGE_CDRXSYNC(sc, i,
1215 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1216
1217 status = le64toh(sc->sc_rxdescs[i].rfd_status);
1218
1219 if ((status & RFD_RFDDone) == 0)
1220 break;
1221
1222 if (__predict_false(sc->sc_rxdiscard)) {
1223 STGE_INIT_RXDESC(sc, i);
1224 if (status & RFD_FrameEnd) {
1225 /* Reset our state. */
1226 sc->sc_rxdiscard = 0;
1227 }
1228 continue;
1229 }
1230
1231 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1232 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1233
1234 m = ds->ds_mbuf;
1235
1236 /*
1237 * Add a new receive buffer to the ring.
1238 */
1239 if (stge_add_rxbuf(sc, i) != 0) {
1240 /*
1241 * Failed, throw away what we've done so
1242 * far, and discard the rest of the packet.
1243 */
1244 ifp->if_ierrors++;
1245 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1246 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1247 STGE_INIT_RXDESC(sc, i);
1248 if ((status & RFD_FrameEnd) == 0)
1249 sc->sc_rxdiscard = 1;
1250 if (sc->sc_rxhead != NULL)
1251 m_freem(sc->sc_rxhead);
1252 STGE_RXCHAIN_RESET(sc);
1253 continue;
1254 }
1255
1256 #ifdef DIAGNOSTIC
1257 if (status & RFD_FrameStart) {
1258 KASSERT(sc->sc_rxhead == NULL);
1259 KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1260 }
1261 #endif
1262
1263 STGE_RXCHAIN_LINK(sc, m);
1264
1265 /*
1266 * If this is not the end of the packet, keep
1267 * looking.
1268 */
1269 if ((status & RFD_FrameEnd) == 0) {
1270 sc->sc_rxlen += m->m_len;
1271 continue;
1272 }
1273
1274 /*
1275 * Okay, we have the entire packet now...
1276 */
1277 *sc->sc_rxtailp = NULL;
1278 m = sc->sc_rxhead;
1279 tailm = sc->sc_rxtail;
1280
1281 STGE_RXCHAIN_RESET(sc);
1282
1283 /*
1284 * If the packet had an error, drop it. Note we
1285 * count the error later in the periodic stats update.
1286 */
1287 if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1288 RFD_RxAlignmentError | RFD_RxFCSError |
1289 RFD_RxLengthError)) {
1290 m_freem(m);
1291 continue;
1292 }
1293
1294 /*
1295 * No errors.
1296 *
1297 * Note we have configured the chip to not include
1298 * the CRC at the end of the packet.
1299 */
1300 len = RFD_RxDMAFrameLen(status);
1301 tailm->m_len = len - sc->sc_rxlen;
1302
1303 /*
1304 * If the packet is small enough to fit in a
1305 * single header mbuf, allocate one and copy
1306 * the data into it. This greatly reduces
1307 * memory consumption when we receive lots
1308 * of small packets.
1309 */
1310 if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1311 struct mbuf *nm;
1312 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1313 if (nm == NULL) {
1314 ifp->if_ierrors++;
1315 m_freem(m);
1316 continue;
1317 }
1318 nm->m_data += 2;
1319 nm->m_pkthdr.len = nm->m_len = len;
1320 m_copydata(m, 0, len, mtod(nm, caddr_t));
1321 m_freem(m);
1322 m = nm;
1323 }
1324
1325 /*
1326 * Set the incoming checksum information for the packet.
1327 */
1328 if (status & RFD_IPDetected) {
1329 STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1330 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1331 if (status & RFD_IPError)
1332 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1333 if (status & RFD_TCPDetected) {
1334 STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1335 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1336 if (status & RFD_TCPError)
1337 m->m_pkthdr.csum_flags |=
1338 M_CSUM_TCP_UDP_BAD;
1339 } else if (status & RFD_UDPDetected) {
1340 STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1341 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1342 if (status & RFD_UDPError)
1343 m->m_pkthdr.csum_flags |=
1344 M_CSUM_TCP_UDP_BAD;
1345 }
1346 }
1347
1348 m->m_pkthdr.rcvif = ifp;
1349 m->m_pkthdr.len = len;
1350
1351 #if NBPFILTER > 0
1352 /*
1353 * Pass this up to any BPF listeners, but only
1354 * pass if up the stack if it's for us.
1355 */
1356 if (ifp->if_bpf)
1357 bpf_mtap(ifp->if_bpf, m);
1358 #endif /* NBPFILTER > 0 */
1359 #ifdef STGE_VLAN_UNTAG
1360 /*
1361 * Check for VLAN tagged packets
1362 */
1363 if (status & RFD_VLANDetected)
1364 VLAN_INPUT_TAG(ifp, m, RFD_TCI(status), continue);
1365
1366 #endif
1367 #if 0
1368 if (status & RFD_VLANDetected) {
1369 struct ether_header *eh;
1370 u_int16_t etype;
1371
1372 eh = mtod(m, struct ether_header *);
1373 etype = ntohs(eh->ether_type);
1374 printf("%s: VLANtag detected (TCI %d) etype %x\n",
1375 ifp->if_xname, (u_int16_t) RFD_TCI(status),
1376 etype);
1377 }
1378 #endif
1379 /* Pass it on. */
1380 (*ifp->if_input)(ifp, m);
1381 }
1382
1383 /* Update the receive pointer. */
1384 sc->sc_rxptr = i;
1385 }
1386
1387 /*
1388 * stge_tick:
1389 *
1390 * One second timer, used to tick the MII.
1391 */
1392 static void
1393 stge_tick(void *arg)
1394 {
1395 struct stge_softc *sc = arg;
1396 int s;
1397
1398 s = splnet();
1399 mii_tick(&sc->sc_mii);
1400 stge_stats_update(sc);
1401 splx(s);
1402
1403 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1404 }
1405
1406 /*
1407 * stge_stats_update:
1408 *
1409 * Read the TC9021 statistics counters.
1410 */
1411 static void
1412 stge_stats_update(struct stge_softc *sc)
1413 {
1414 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1415 bus_space_tag_t st = sc->sc_st;
1416 bus_space_handle_t sh = sc->sc_sh;
1417
1418 (void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1419
1420 ifp->if_ipackets +=
1421 bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1422
1423 ifp->if_ierrors +=
1424 (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1425
1426 (void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1427
1428 ifp->if_opackets +=
1429 bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1430
1431 ifp->if_collisions +=
1432 bus_space_read_4(st, sh, STGE_LateCollisions) +
1433 bus_space_read_4(st, sh, STGE_MultiColFrames) +
1434 bus_space_read_4(st, sh, STGE_SingleColFrames);
1435
1436 ifp->if_oerrors +=
1437 (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1438 (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1439 }
1440
1441 /*
1442 * stge_reset:
1443 *
1444 * Perform a soft reset on the TC9021.
1445 */
1446 static void
1447 stge_reset(struct stge_softc *sc)
1448 {
1449 uint32_t ac;
1450 int i;
1451
1452 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1453
1454 /*
1455 * Only assert RstOut if we're fiber. We need GMII clocks
1456 * to be present in order for the reset to complete on fiber
1457 * cards.
1458 */
1459 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1460 ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1461 AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1462 (sc->sc_usefiber ? AC_RstOut : 0));
1463
1464 delay(50000);
1465
1466 for (i = 0; i < STGE_TIMEOUT; i++) {
1467 delay(5000);
1468 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1469 AC_ResetBusy) == 0)
1470 break;
1471 }
1472
1473 if (i == STGE_TIMEOUT)
1474 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1475
1476 delay(1000);
1477 }
1478
1479 /*
1480 * stge_init: [ ifnet interface function ]
1481 *
1482 * Initialize the interface. Must be called at splnet().
1483 */
1484 static int
1485 stge_init(struct ifnet *ifp)
1486 {
1487 struct stge_softc *sc = ifp->if_softc;
1488 bus_space_tag_t st = sc->sc_st;
1489 bus_space_handle_t sh = sc->sc_sh;
1490 struct stge_descsoft *ds;
1491 int i, error = 0;
1492
1493 /*
1494 * Cancel any pending I/O.
1495 */
1496 stge_stop(ifp, 0);
1497
1498 /*
1499 * Reset the chip to a known state.
1500 */
1501 stge_reset(sc);
1502
1503 /*
1504 * Initialize the transmit descriptor ring.
1505 */
1506 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1507 for (i = 0; i < STGE_NTXDESC; i++) {
1508 sc->sc_txdescs[i].tfd_next =
1509 (uint64_t) STGE_CDTXADDR(sc, STGE_NEXTTX(i));
1510 sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1511 }
1512 sc->sc_txpending = 0;
1513 sc->sc_txdirty = 0;
1514 sc->sc_txlast = STGE_NTXDESC - 1;
1515
1516 /*
1517 * Initialize the receive descriptor and receive job
1518 * descriptor rings.
1519 */
1520 for (i = 0; i < STGE_NRXDESC; i++) {
1521 ds = &sc->sc_rxsoft[i];
1522 if (ds->ds_mbuf == NULL) {
1523 if ((error = stge_add_rxbuf(sc, i)) != 0) {
1524 printf("%s: unable to allocate or map rx "
1525 "buffer %d, error = %d\n",
1526 sc->sc_dev.dv_xname, i, error);
1527 /*
1528 * XXX Should attempt to run with fewer receive
1529 * XXX buffers instead of just failing.
1530 */
1531 stge_rxdrain(sc);
1532 goto out;
1533 }
1534 } else
1535 STGE_INIT_RXDESC(sc, i);
1536 }
1537 sc->sc_rxptr = 0;
1538 sc->sc_rxdiscard = 0;
1539 STGE_RXCHAIN_RESET(sc);
1540
1541 /* Set the station address. */
1542 bus_space_write_2(st, sh, STGE_StationAddress0,
1543 LLADDR(ifp->if_sadl)[0] | (LLADDR(ifp->if_sadl)[1] << 8));
1544 bus_space_write_2(st, sh, STGE_StationAddress1,
1545 LLADDR(ifp->if_sadl)[2] | (LLADDR(ifp->if_sadl)[3] << 8));
1546 bus_space_write_2(st, sh, STGE_StationAddress2,
1547 LLADDR(ifp->if_sadl)[4] | (LLADDR(ifp->if_sadl)[5] << 8));
1548
1549 /*
1550 * Set the statistics masks. Disable all the RMON stats,
1551 * and disable selected stats in the non-RMON stats registers.
1552 */
1553 bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1554 bus_space_write_4(st, sh, STGE_StatisticsMask,
1555 (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1556 (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1557 (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1558 (1U << 21));
1559
1560 /* Set up the receive filter. */
1561 stge_set_filter(sc);
1562
1563 /*
1564 * Give the transmit and receive ring to the chip.
1565 */
1566 bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1567 bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1568 STGE_CDTXADDR(sc, sc->sc_txdirty));
1569
1570 bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1571 bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1572 STGE_CDRXADDR(sc, sc->sc_rxptr));
1573
1574 /*
1575 * Initialize the Tx auto-poll period. It's OK to make this number
1576 * large (255 is the max, but we use 127) -- we explicitly kick the
1577 * transmit engine when there's actually a packet.
1578 */
1579 bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1580
1581 /* ..and the Rx auto-poll period. */
1582 bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1583
1584 /* Initialize the Tx start threshold. */
1585 bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1586
1587 /*
1588 * Initialize the Rx DMA interrupt control register. We
1589 * request an interrupt after every incoming packet, but
1590 * defer it for 32us (64 * 512 ns). When the number of
1591 * interrupts pending reaches 8, we stop deferring the
1592 * interrupt, and signal it immediately.
1593 */
1594 bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1595 RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1596
1597 /*
1598 * Initialize the interrupt mask.
1599 */
1600 sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1601 IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1602 bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1603 bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1604
1605 /*
1606 * Configure the DMA engine.
1607 * XXX Should auto-tune TxBurstLimit.
1608 */
1609 bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1610 DMAC_TxBurstLimit(3));
1611
1612 /*
1613 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1614 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1615 * empty again.
1616 */
1617 bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1618 bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1619
1620 /*
1621 * Set the maximum frame size.
1622 */
1623 bus_space_write_2(st, sh, STGE_MaxFrameSize,
1624 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1625 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1626 ETHER_VLAN_ENCAP_LEN : 0));
1627
1628 /*
1629 * Initialize MacCtrl -- do it before setting the media,
1630 * as setting the media will actually program the register.
1631 *
1632 * Note: We have to poke the IFS value before poking
1633 * anything else.
1634 */
1635 sc->sc_MACCtrl = MC_IFSSelect(0);
1636 bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1637 sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1638 #ifdef STGE_VLAN_UNTAG
1639 sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1640 #endif
1641
1642 if (sc->sc_rev >= 6) { /* >= B.2 */
1643 /* Multi-frag frame bug work-around. */
1644 bus_space_write_2(st, sh, STGE_DebugCtrl,
1645 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1646
1647 /* Tx Poll Now bug work-around. */
1648 bus_space_write_2(st, sh, STGE_DebugCtrl,
1649 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1650 }
1651
1652 /*
1653 * Set the current media.
1654 */
1655 mii_mediachg(&sc->sc_mii);
1656
1657 /*
1658 * Start the one second MII clock.
1659 */
1660 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1661
1662 /*
1663 * ...all done!
1664 */
1665 ifp->if_flags |= IFF_RUNNING;
1666 ifp->if_flags &= ~IFF_OACTIVE;
1667
1668 out:
1669 if (error)
1670 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1671 return (error);
1672 }
1673
1674 /*
1675 * stge_drain:
1676 *
1677 * Drain the receive queue.
1678 */
1679 static void
1680 stge_rxdrain(struct stge_softc *sc)
1681 {
1682 struct stge_descsoft *ds;
1683 int i;
1684
1685 for (i = 0; i < STGE_NRXDESC; i++) {
1686 ds = &sc->sc_rxsoft[i];
1687 if (ds->ds_mbuf != NULL) {
1688 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1689 ds->ds_mbuf->m_next = NULL;
1690 m_freem(ds->ds_mbuf);
1691 ds->ds_mbuf = NULL;
1692 }
1693 }
1694 }
1695
1696 /*
1697 * stge_stop: [ ifnet interface function ]
1698 *
1699 * Stop transmission on the interface.
1700 */
1701 static void
1702 stge_stop(struct ifnet *ifp, int disable)
1703 {
1704 struct stge_softc *sc = ifp->if_softc;
1705 struct stge_descsoft *ds;
1706 int i;
1707
1708 /*
1709 * Stop the one second clock.
1710 */
1711 callout_stop(&sc->sc_tick_ch);
1712
1713 /* Down the MII. */
1714 mii_down(&sc->sc_mii);
1715
1716 /*
1717 * Disable interrupts.
1718 */
1719 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1720
1721 /*
1722 * Stop receiver, transmitter, and stats update.
1723 */
1724 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1725 MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1726
1727 /*
1728 * Stop the transmit and receive DMA.
1729 */
1730 stge_dma_wait(sc);
1731 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1732 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1733 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1734 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1735
1736 /*
1737 * Release any queued transmit buffers.
1738 */
1739 for (i = 0; i < STGE_NTXDESC; i++) {
1740 ds = &sc->sc_txsoft[i];
1741 if (ds->ds_mbuf != NULL) {
1742 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1743 m_freem(ds->ds_mbuf);
1744 ds->ds_mbuf = NULL;
1745 }
1746 }
1747
1748 if (disable)
1749 stge_rxdrain(sc);
1750
1751 /*
1752 * Mark the interface down and cancel the watchdog timer.
1753 */
1754 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1755 ifp->if_timer = 0;
1756 }
1757
1758 #if 0
1759 static int
1760 stge_eeprom_wait(struct stge_softc *sc)
1761 {
1762 int i;
1763
1764 for (i = 0; i < STGE_TIMEOUT; i++) {
1765 delay(1000);
1766 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1767 EC_EepromBusy) == 0)
1768 return (0);
1769 }
1770 return (1);
1771 }
1772
1773 /*
1774 * stge_read_eeprom:
1775 *
1776 * Read data from the serial EEPROM.
1777 */
1778 static void
1779 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1780 {
1781
1782 if (stge_eeprom_wait(sc))
1783 printf("%s: EEPROM failed to come ready\n",
1784 sc->sc_dev.dv_xname);
1785
1786 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1787 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1788 if (stge_eeprom_wait(sc))
1789 printf("%s: EEPROM read timed out\n",
1790 sc->sc_dev.dv_xname);
1791 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1792 }
1793 #endif /* 0 */
1794
1795 /*
1796 * stge_add_rxbuf:
1797 *
1798 * Add a receive buffer to the indicated descriptor.
1799 */
1800 static int
1801 stge_add_rxbuf(struct stge_softc *sc, int idx)
1802 {
1803 struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1804 struct mbuf *m;
1805 int error;
1806
1807 MGETHDR(m, M_DONTWAIT, MT_DATA);
1808 if (m == NULL)
1809 return (ENOBUFS);
1810
1811 MCLGET(m, M_DONTWAIT);
1812 if ((m->m_flags & M_EXT) == 0) {
1813 m_freem(m);
1814 return (ENOBUFS);
1815 }
1816
1817 m->m_data = m->m_ext.ext_buf + 2;
1818 m->m_len = MCLBYTES - 2;
1819
1820 if (ds->ds_mbuf != NULL)
1821 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1822
1823 ds->ds_mbuf = m;
1824
1825 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1826 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1827 if (error) {
1828 printf("%s: can't load rx DMA map %d, error = %d\n",
1829 sc->sc_dev.dv_xname, idx, error);
1830 panic("stge_add_rxbuf"); /* XXX */
1831 }
1832
1833 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1834 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1835
1836 STGE_INIT_RXDESC(sc, idx);
1837
1838 return (0);
1839 }
1840
1841 /*
1842 * stge_set_filter:
1843 *
1844 * Set up the receive filter.
1845 */
1846 static void
1847 stge_set_filter(struct stge_softc *sc)
1848 {
1849 struct ethercom *ec = &sc->sc_ethercom;
1850 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1851 struct ether_multi *enm;
1852 struct ether_multistep step;
1853 uint32_t crc;
1854 uint32_t mchash[2];
1855
1856 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1857 if (ifp->if_flags & IFF_BROADCAST)
1858 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1859
1860 #ifdef STGE_CU_BUG
1861 /*
1862 * Some cards (Sundance TI, copper) only seem to work
1863 * right now if we put them into promiscuous mode. It
1864 * probably is the Marvell PHY stuff that isn't quite
1865 * right.
1866 */
1867 ifp->if_flags |= IFF_PROMISC;
1868 #endif
1869
1870 if (ifp->if_flags & IFF_PROMISC) {
1871 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1872 goto allmulti;
1873 }
1874
1875 /*
1876 * Set up the multicast address filter by passing all multicast
1877 * addresses through a CRC generator, and then using the low-order
1878 * 6 bits as an index into the 64 bit multicast hash table. The
1879 * high order bits select the register, while the rest of the bits
1880 * select the bit within the register.
1881 */
1882
1883 memset(mchash, 0, sizeof(mchash));
1884
1885 ETHER_FIRST_MULTI(step, ec, enm);
1886 if (enm == NULL)
1887 goto done;
1888
1889 while (enm != NULL) {
1890 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1891 /*
1892 * We must listen to a range of multicast addresses.
1893 * For now, just accept all multicasts, rather than
1894 * trying to set only those filter bits needed to match
1895 * the range. (At this time, the only use of address
1896 * ranges is for IP multicast routing, for which the
1897 * range is big enough to require all bits set.)
1898 */
1899 goto allmulti;
1900 }
1901
1902 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1903
1904 /* Just want the 6 least significant bits. */
1905 crc &= 0x3f;
1906
1907 /* Set the corresponding bit in the hash table. */
1908 mchash[crc >> 5] |= 1 << (crc & 0x1f);
1909
1910 ETHER_NEXT_MULTI(step, enm);
1911 }
1912
1913 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1914
1915 ifp->if_flags &= ~IFF_ALLMULTI;
1916 goto done;
1917
1918 allmulti:
1919 ifp->if_flags |= IFF_ALLMULTI;
1920 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1921
1922 done:
1923 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1924 /*
1925 * Program the multicast hash table.
1926 */
1927 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1928 mchash[0]);
1929 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1930 mchash[1]);
1931 }
1932
1933 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1934 sc->sc_ReceiveMode);
1935 }
1936
1937 /*
1938 * stge_mii_readreg: [mii interface function]
1939 *
1940 * Read a PHY register on the MII of the TC9021.
1941 */
1942 static int
1943 stge_mii_readreg(struct device *self, int phy, int reg)
1944 {
1945
1946 return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1947 }
1948
1949 /*
1950 * stge_mii_writereg: [mii interface function]
1951 *
1952 * Write a PHY register on the MII of the TC9021.
1953 */
1954 static void
1955 stge_mii_writereg(struct device *self, int phy, int reg, int val)
1956 {
1957
1958 mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1959 }
1960
1961 /*
1962 * stge_mii_statchg: [mii interface function]
1963 *
1964 * Callback from MII layer when media changes.
1965 */
1966 static void
1967 stge_mii_statchg(struct device *self)
1968 {
1969 struct stge_softc *sc = (struct stge_softc *) self;
1970
1971 if (sc->sc_mii.mii_media_active & IFM_FDX)
1972 sc->sc_MACCtrl |= MC_DuplexSelect;
1973 else
1974 sc->sc_MACCtrl &= ~MC_DuplexSelect;
1975
1976 /* XXX 802.1x flow-control? */
1977
1978 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1979 }
1980
1981 /*
1982 * sste_mii_bitbang_read: [mii bit-bang interface function]
1983 *
1984 * Read the MII serial port for the MII bit-bang module.
1985 */
1986 static uint32_t
1987 stge_mii_bitbang_read(struct device *self)
1988 {
1989 struct stge_softc *sc = (void *) self;
1990
1991 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
1992 }
1993
1994 /*
1995 * stge_mii_bitbang_write: [mii big-bang interface function]
1996 *
1997 * Write the MII serial port for the MII bit-bang module.
1998 */
1999 static void
2000 stge_mii_bitbang_write(struct device *self, uint32_t val)
2001 {
2002 struct stge_softc *sc = (void *) self;
2003
2004 bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
2005 val | sc->sc_PhyCtrl);
2006 }
2007
2008 /*
2009 * stge_mediastatus: [ifmedia interface function]
2010 *
2011 * Get the current interface media status.
2012 */
2013 static void
2014 stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2015 {
2016 struct stge_softc *sc = ifp->if_softc;
2017
2018 mii_pollstat(&sc->sc_mii);
2019 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2020 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2021 }
2022
2023 /*
2024 * stge_mediachange: [ifmedia interface function]
2025 *
2026 * Set hardware to newly-selected media.
2027 */
2028 static int
2029 stge_mediachange(struct ifnet *ifp)
2030 {
2031 struct stge_softc *sc = ifp->if_softc;
2032
2033 if (ifp->if_flags & IFF_UP)
2034 mii_mediachg(&sc->sc_mii);
2035 return (0);
2036 }
2037