Home | History | Annotate | Line # | Download | only in pci
if_stge.c revision 1.23
      1 /*	$NetBSD: if_stge.c,v 1.23 2005/02/20 15:56:03 jdolecek Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Device driver for the Sundance Tech. TC9021 10/100/1000
     41  * Ethernet controller.
     42  */
     43 
     44 #include <sys/cdefs.h>
     45 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.23 2005/02/20 15:56:03 jdolecek Exp $");
     46 
     47 #include "bpfilter.h"
     48 
     49 #include <sys/param.h>
     50 #include <sys/systm.h>
     51 #include <sys/callout.h>
     52 #include <sys/mbuf.h>
     53 #include <sys/malloc.h>
     54 #include <sys/kernel.h>
     55 #include <sys/socket.h>
     56 #include <sys/ioctl.h>
     57 #include <sys/errno.h>
     58 #include <sys/device.h>
     59 #include <sys/queue.h>
     60 
     61 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     62 
     63 #include <net/if.h>
     64 #include <net/if_dl.h>
     65 #include <net/if_media.h>
     66 #include <net/if_ether.h>
     67 
     68 #if NBPFILTER > 0
     69 #include <net/bpf.h>
     70 #endif
     71 
     72 #include <machine/bus.h>
     73 #include <machine/intr.h>
     74 
     75 #include <dev/mii/mii.h>
     76 #include <dev/mii/miivar.h>
     77 #include <dev/mii/mii_bitbang.h>
     78 
     79 #include <dev/pci/pcireg.h>
     80 #include <dev/pci/pcivar.h>
     81 #include <dev/pci/pcidevs.h>
     82 
     83 #include <dev/pci/if_stgereg.h>
     84 
     85 /* #define	STGE_CU_BUG			1 */
     86 #define	STGE_VLAN_UNTAG			1
     87 /* #define	STGE_VLAN_CFI		1 */
     88 
     89 /*
     90  * Transmit descriptor list size.
     91  */
     92 #define	STGE_NTXDESC		256
     93 #define	STGE_NTXDESC_MASK	(STGE_NTXDESC - 1)
     94 #define	STGE_NEXTTX(x)		(((x) + 1) & STGE_NTXDESC_MASK)
     95 
     96 /*
     97  * Receive descriptor list size.
     98  */
     99 #define	STGE_NRXDESC		256
    100 #define	STGE_NRXDESC_MASK	(STGE_NRXDESC - 1)
    101 #define	STGE_NEXTRX(x)		(((x) + 1) & STGE_NRXDESC_MASK)
    102 
    103 /*
    104  * Only interrupt every N frames.  Must be a power-of-two.
    105  */
    106 #define	STGE_TXINTR_SPACING	16
    107 #define	STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
    108 
    109 /*
    110  * Control structures are DMA'd to the TC9021 chip.  We allocate them in
    111  * a single clump that maps to a single DMA segment to make several things
    112  * easier.
    113  */
    114 struct stge_control_data {
    115 	/*
    116 	 * The transmit descriptors.
    117 	 */
    118 	struct stge_tfd scd_txdescs[STGE_NTXDESC];
    119 
    120 	/*
    121 	 * The receive descriptors.
    122 	 */
    123 	struct stge_rfd scd_rxdescs[STGE_NRXDESC];
    124 };
    125 
    126 #define	STGE_CDOFF(x)	offsetof(struct stge_control_data, x)
    127 #define	STGE_CDTXOFF(x)	STGE_CDOFF(scd_txdescs[(x)])
    128 #define	STGE_CDRXOFF(x)	STGE_CDOFF(scd_rxdescs[(x)])
    129 
    130 /*
    131  * Software state for transmit and receive jobs.
    132  */
    133 struct stge_descsoft {
    134 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
    135 	bus_dmamap_t ds_dmamap;		/* our DMA map */
    136 };
    137 
    138 /*
    139  * Software state per device.
    140  */
    141 struct stge_softc {
    142 	struct device sc_dev;		/* generic device information */
    143 	bus_space_tag_t sc_st;		/* bus space tag */
    144 	bus_space_handle_t sc_sh;	/* bus space handle */
    145 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    146 	struct ethercom sc_ethercom;	/* ethernet common data */
    147 	void *sc_sdhook;		/* shutdown hook */
    148 	int sc_rev;			/* silicon revision */
    149 
    150 	void *sc_ih;			/* interrupt cookie */
    151 
    152 	struct mii_data sc_mii;		/* MII/media information */
    153 
    154 	struct callout sc_tick_ch;	/* tick callout */
    155 
    156 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    157 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    158 
    159 	/*
    160 	 * Software state for transmit and receive descriptors.
    161 	 */
    162 	struct stge_descsoft sc_txsoft[STGE_NTXDESC];
    163 	struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
    164 
    165 	/*
    166 	 * Control data structures.
    167 	 */
    168 	struct stge_control_data *sc_control_data;
    169 #define	sc_txdescs	sc_control_data->scd_txdescs
    170 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    171 
    172 #ifdef STGE_EVENT_COUNTERS
    173 	/*
    174 	 * Event counters.
    175 	 */
    176 	struct evcnt sc_ev_txstall;	/* Tx stalled */
    177 	struct evcnt sc_ev_txdmaintr;	/* Tx DMA interrupts */
    178 	struct evcnt sc_ev_txindintr;	/* Tx Indicate interrupts */
    179 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    180 
    181 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
    182 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
    183 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
    184 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
    185 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
    186 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
    187 	struct evcnt sc_ev_txcopy;	/* Tx packets that we had to copy */
    188 
    189 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    190 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    191 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
    192 
    193 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    194 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    195 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    196 #endif /* STGE_EVENT_COUNTERS */
    197 
    198 	int	sc_txpending;		/* number of Tx requests pending */
    199 	int	sc_txdirty;		/* first dirty Tx descriptor */
    200 	int	sc_txlast;		/* last used Tx descriptor */
    201 
    202 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    203 	int	sc_rxdiscard;
    204 	int	sc_rxlen;
    205 	struct mbuf *sc_rxhead;
    206 	struct mbuf *sc_rxtail;
    207 	struct mbuf **sc_rxtailp;
    208 
    209 	int	sc_txthresh;		/* Tx threshold */
    210 	int	sc_usefiber;		/* if we're fiber */
    211 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
    212 	uint32_t sc_MACCtrl;		/* prototype MacCtrl register */
    213 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
    214 	uint16_t sc_ReceiveMode;	/* prototype ReceiveMode register */
    215 	uint8_t sc_PhyCtrl;		/* prototype PhyCtrl register */
    216 };
    217 
    218 #define	STGE_RXCHAIN_RESET(sc)						\
    219 do {									\
    220 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    221 	*(sc)->sc_rxtailp = NULL;					\
    222 	(sc)->sc_rxlen = 0;						\
    223 } while (/*CONSTCOND*/0)
    224 
    225 #define	STGE_RXCHAIN_LINK(sc, m)					\
    226 do {									\
    227 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    228 	(sc)->sc_rxtailp = &(m)->m_next;				\
    229 } while (/*CONSTCOND*/0)
    230 
    231 #ifdef STGE_EVENT_COUNTERS
    232 #define	STGE_EVCNT_INCR(ev)	(ev)->ev_count++
    233 #else
    234 #define	STGE_EVCNT_INCR(ev)	/* nothing */
    235 #endif
    236 
    237 #define	STGE_CDTXADDR(sc, x)	((sc)->sc_cddma + STGE_CDTXOFF((x)))
    238 #define	STGE_CDRXADDR(sc, x)	((sc)->sc_cddma + STGE_CDRXOFF((x)))
    239 
    240 #define	STGE_CDTXSYNC(sc, x, ops)					\
    241 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    242 	    STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
    243 
    244 #define	STGE_CDRXSYNC(sc, x, ops)					\
    245 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    246 	    STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
    247 
    248 #define	STGE_INIT_RXDESC(sc, x)						\
    249 do {									\
    250 	struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
    251 	struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)];		\
    252 									\
    253 	/*								\
    254 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    255 	 * so that the payload after the Ethernet header is aligned	\
    256 	 * to a 4-byte boundary.					\
    257 	 */								\
    258 	__rfd->rfd_frag.frag_word0 =					\
    259 	    htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
    260 	    FRAG_LEN(MCLBYTES - 2));					\
    261 	__rfd->rfd_next =						\
    262 	    htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x))));	\
    263 	__rfd->rfd_status = 0;						\
    264 	STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    265 } while (/*CONSTCOND*/0)
    266 
    267 #define STGE_TIMEOUT 1000
    268 
    269 static void	stge_start(struct ifnet *);
    270 static void	stge_watchdog(struct ifnet *);
    271 static int	stge_ioctl(struct ifnet *, u_long, caddr_t);
    272 static int	stge_init(struct ifnet *);
    273 static void	stge_stop(struct ifnet *, int);
    274 
    275 static void	stge_shutdown(void *);
    276 
    277 static void	stge_reset(struct stge_softc *);
    278 static void	stge_rxdrain(struct stge_softc *);
    279 static int	stge_add_rxbuf(struct stge_softc *, int);
    280 #if 0
    281 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
    282 #endif
    283 static void	stge_tick(void *);
    284 
    285 static void	stge_stats_update(struct stge_softc *);
    286 
    287 static void	stge_set_filter(struct stge_softc *);
    288 
    289 static int	stge_intr(void *);
    290 static void	stge_txintr(struct stge_softc *);
    291 static void	stge_rxintr(struct stge_softc *);
    292 
    293 static int	stge_mii_readreg(struct device *, int, int);
    294 static void	stge_mii_writereg(struct device *, int, int, int);
    295 static void	stge_mii_statchg(struct device *);
    296 
    297 static int	stge_mediachange(struct ifnet *);
    298 static void	stge_mediastatus(struct ifnet *, struct ifmediareq *);
    299 
    300 static int	stge_match(struct device *, struct cfdata *, void *);
    301 static void	stge_attach(struct device *, struct device *, void *);
    302 
    303 int	stge_copy_small = 0;
    304 
    305 CFATTACH_DECL(stge, sizeof(struct stge_softc),
    306     stge_match, stge_attach, NULL, NULL);
    307 
    308 static uint32_t stge_mii_bitbang_read(struct device *);
    309 static void	stge_mii_bitbang_write(struct device *, uint32_t);
    310 
    311 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
    312 	stge_mii_bitbang_read,
    313 	stge_mii_bitbang_write,
    314 	{
    315 		PC_MgmtData,		/* MII_BIT_MDO */
    316 		PC_MgmtData,		/* MII_BIT_MDI */
    317 		PC_MgmtClk,		/* MII_BIT_MDC */
    318 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
    319 		0,			/* MII_BIT_DIR_PHY_HOST */
    320 	}
    321 };
    322 
    323 /*
    324  * Devices supported by this driver.
    325  */
    326 static const struct stge_product {
    327 	pci_vendor_id_t		stge_vendor;
    328 	pci_product_id_t	stge_product;
    329 	const char		*stge_name;
    330 } stge_products[] = {
    331 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST2021,
    332 	  "Sundance ST-2021 Gigabit Ethernet" },
    333 
    334 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021,
    335 	  "Tamarack TC9021 Gigabit Ethernet" },
    336 
    337 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021_ALT,
    338 	  "Tamarack TC9021 Gigabit Ethernet" },
    339 
    340 	/*
    341 	 * The Sundance sample boards use the Sundance vendor ID,
    342 	 * but the Tamarack product ID.
    343 	 */
    344 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021,
    345 	  "Sundance TC9021 Gigabit Ethernet" },
    346 
    347 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021_ALT,
    348 	  "Sundance TC9021 Gigabit Ethernet" },
    349 
    350 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL4000,
    351 	  "D-Link DL-4000 Gigabit Ethernet" },
    352 
    353 	{ PCI_VENDOR_ANTARES,		PCI_PRODUCT_ANTARES_TC9021,
    354 	  "Antares Gigabit Ethernet" },
    355 
    356 	{ 0,				0,
    357 	  NULL },
    358 };
    359 
    360 static const struct stge_product *
    361 stge_lookup(const struct pci_attach_args *pa)
    362 {
    363 	const struct stge_product *sp;
    364 
    365 	for (sp = stge_products; sp->stge_name != NULL; sp++) {
    366 		if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
    367 		    PCI_PRODUCT(pa->pa_id) == sp->stge_product)
    368 			return (sp);
    369 	}
    370 	return (NULL);
    371 }
    372 
    373 static int
    374 stge_match(struct device *parent, struct cfdata *cf, void *aux)
    375 {
    376 	struct pci_attach_args *pa = aux;
    377 
    378 	if (stge_lookup(pa) != NULL)
    379 		return (1);
    380 
    381 	return (0);
    382 }
    383 
    384 static void
    385 stge_attach(struct device *parent, struct device *self, void *aux)
    386 {
    387 	struct stge_softc *sc = (struct stge_softc *) self;
    388 	struct pci_attach_args *pa = aux;
    389 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    390 	pci_chipset_tag_t pc = pa->pa_pc;
    391 	pci_intr_handle_t ih;
    392 	const char *intrstr = NULL;
    393 	bus_space_tag_t iot, memt;
    394 	bus_space_handle_t ioh, memh;
    395 	bus_dma_segment_t seg;
    396 	int ioh_valid, memh_valid;
    397 	int i, rseg, error;
    398 	const struct stge_product *sp;
    399 	pcireg_t pmode;
    400 	uint8_t enaddr[ETHER_ADDR_LEN];
    401 	int pmreg;
    402 
    403 	callout_init(&sc->sc_tick_ch);
    404 
    405 	sp = stge_lookup(pa);
    406 	if (sp == NULL) {
    407 		printf("\n");
    408 		panic("ste_attach: impossible");
    409 	}
    410 
    411 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    412 
    413 	printf(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
    414 
    415 	/*
    416 	 * Map the device.
    417 	 */
    418 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
    419 	    PCI_MAPREG_TYPE_IO, 0,
    420 	    &iot, &ioh, NULL, NULL) == 0);
    421 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
    422 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    423 	    &memt, &memh, NULL, NULL) == 0);
    424 
    425 	if (memh_valid) {
    426 		sc->sc_st = memt;
    427 		sc->sc_sh = memh;
    428 	} else if (ioh_valid) {
    429 		sc->sc_st = iot;
    430 		sc->sc_sh = ioh;
    431 	} else {
    432 		printf("%s: unable to map device registers\n",
    433 		    sc->sc_dev.dv_xname);
    434 		return;
    435 	}
    436 
    437 	sc->sc_dmat = pa->pa_dmat;
    438 
    439 	/* Enable bus mastering. */
    440 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    441 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    442 	    PCI_COMMAND_MASTER_ENABLE);
    443 
    444 	/* Get it out of power save mode if needed. */
    445 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    446 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
    447 		    PCI_PMCSR_STATE_MASK;
    448 		if (pmode == PCI_PMCSR_STATE_D3) {
    449 			/*
    450 			 * The card has lost all configuration data in
    451 			 * this state, so punt.
    452 			 */
    453 			printf("%s: unable to wake up from power state D3\n",
    454 			    sc->sc_dev.dv_xname);
    455 			return;
    456 		}
    457 		if (pmode != 0) {
    458 			printf("%s: waking up from power state D%d\n",
    459 			    sc->sc_dev.dv_xname, pmode);
    460 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
    461 			    PCI_PMCSR_STATE_D0);
    462 		}
    463 	}
    464 
    465 	/*
    466 	 * Map and establish our interrupt.
    467 	 */
    468 	if (pci_intr_map(pa, &ih)) {
    469 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    470 		return;
    471 	}
    472 	intrstr = pci_intr_string(pc, ih);
    473 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
    474 	if (sc->sc_ih == NULL) {
    475 		printf("%s: unable to establish interrupt",
    476 		    sc->sc_dev.dv_xname);
    477 		if (intrstr != NULL)
    478 			printf(" at %s", intrstr);
    479 		printf("\n");
    480 		return;
    481 	}
    482 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    483 
    484 	/*
    485 	 * Allocate the control data structures, and create and load the
    486 	 * DMA map for it.
    487 	 */
    488 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    489 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    490 	    0)) != 0) {
    491 		printf("%s: unable to allocate control data, error = %d\n",
    492 		    sc->sc_dev.dv_xname, error);
    493 		goto fail_0;
    494 	}
    495 
    496 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    497 	    sizeof(struct stge_control_data), (caddr_t *)&sc->sc_control_data,
    498 	    BUS_DMA_COHERENT)) != 0) {
    499 		printf("%s: unable to map control data, error = %d\n",
    500 		    sc->sc_dev.dv_xname, error);
    501 		goto fail_1;
    502 	}
    503 
    504 	if ((error = bus_dmamap_create(sc->sc_dmat,
    505 	    sizeof(struct stge_control_data), 1,
    506 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    507 		printf("%s: unable to create control data DMA map, "
    508 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    509 		goto fail_2;
    510 	}
    511 
    512 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    513 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
    514 	    0)) != 0) {
    515 		printf("%s: unable to load control data DMA map, error = %d\n",
    516 		    sc->sc_dev.dv_xname, error);
    517 		goto fail_3;
    518 	}
    519 
    520 	/*
    521 	 * Create the transmit buffer DMA maps.  Note that rev B.3
    522 	 * and earlier seem to have a bug regarding multi-fragment
    523 	 * packets.  We need to limit the number of Tx segments on
    524 	 * such chips to 1.
    525 	 */
    526 	for (i = 0; i < STGE_NTXDESC; i++) {
    527 		if ((error = bus_dmamap_create(sc->sc_dmat,
    528 		    ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
    529 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
    530 			printf("%s: unable to create tx DMA map %d, "
    531 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    532 			goto fail_4;
    533 		}
    534 	}
    535 
    536 	/*
    537 	 * Create the receive buffer DMA maps.
    538 	 */
    539 	for (i = 0; i < STGE_NRXDESC; i++) {
    540 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    541 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
    542 			printf("%s: unable to create rx DMA map %d, "
    543 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    544 			goto fail_5;
    545 		}
    546 		sc->sc_rxsoft[i].ds_mbuf = NULL;
    547 	}
    548 
    549 	/*
    550 	 * Determine if we're copper or fiber.  It affects how we
    551 	 * reset the card.
    552 	 */
    553 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
    554 	    AC_PhyMedia)
    555 		sc->sc_usefiber = 1;
    556 	else
    557 		sc->sc_usefiber = 0;
    558 
    559 	/*
    560 	 * Reset the chip to a known state.
    561 	 */
    562 	stge_reset(sc);
    563 
    564 	/*
    565 	 * Reading the station address from the EEPROM doesn't seem
    566 	 * to work, at least on my sample boards.  Instread, since
    567 	 * the reset sequence does AutoInit, read it from the station
    568 	 * address registers.
    569 	 */
    570 	enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    571 	    STGE_StationAddress0) & 0xff;
    572 	enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    573 	    STGE_StationAddress0) >> 8;
    574 	enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    575 	    STGE_StationAddress1) & 0xff;
    576 	enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    577 	    STGE_StationAddress1) >> 8;
    578 	enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    579 	    STGE_StationAddress2) & 0xff;
    580 	enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    581 	    STGE_StationAddress2) >> 8;
    582 
    583 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    584 	    ether_sprintf(enaddr));
    585 
    586 	/*
    587 	 * Read some important bits from the PhyCtrl register.
    588 	 */
    589 	sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
    590 	    STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
    591 
    592 	/*
    593 	 * Initialize our media structures and probe the MII.
    594 	 */
    595 	sc->sc_mii.mii_ifp = ifp;
    596 	sc->sc_mii.mii_readreg = stge_mii_readreg;
    597 	sc->sc_mii.mii_writereg = stge_mii_writereg;
    598 	sc->sc_mii.mii_statchg = stge_mii_statchg;
    599 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, stge_mediachange,
    600 	    stge_mediastatus);
    601 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    602 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
    603 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    604 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    605 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    606 	} else
    607 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    608 
    609 	ifp = &sc->sc_ethercom.ec_if;
    610 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    611 	ifp->if_softc = sc;
    612 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    613 	ifp->if_ioctl = stge_ioctl;
    614 	ifp->if_start = stge_start;
    615 	ifp->if_watchdog = stge_watchdog;
    616 	ifp->if_init = stge_init;
    617 	ifp->if_stop = stge_stop;
    618 	IFQ_SET_READY(&ifp->if_snd);
    619 
    620 	/*
    621 	 * The manual recommends disabling early transmit, so we
    622 	 * do.  It's disabled anyway, if using IP checksumming,
    623 	 * since the entire packet must be in the FIFO in order
    624 	 * for the chip to perform the checksum.
    625 	 */
    626 	sc->sc_txthresh = 0x0fff;
    627 
    628 	/*
    629 	 * Disable MWI if the PCI layer tells us to.
    630 	 */
    631 	sc->sc_DMACtrl = 0;
    632 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
    633 		sc->sc_DMACtrl |= DMAC_MWIDisable;
    634 
    635 	/*
    636 	 * We can support 802.1Q VLAN-sized frames and jumbo
    637 	 * Ethernet frames.
    638 	 *
    639 	 * XXX Figure out how to do hw-assisted VLAN tagging in
    640 	 * XXX a reasonable way on this chip.
    641 	 */
    642 	sc->sc_ethercom.ec_capabilities |=
    643 	    ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
    644 	    ETHERCAP_VLAN_HWTAGGING;
    645 
    646 	/*
    647 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
    648 	 */
    649 	sc->sc_ethercom.ec_if.if_capabilities |= IFCAP_CSUM_IPv4 |
    650 	    IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
    651 
    652 	/*
    653 	 * Attach the interface.
    654 	 */
    655 	if_attach(ifp);
    656 	ether_ifattach(ifp, enaddr);
    657 
    658 #ifdef STGE_EVENT_COUNTERS
    659 	/*
    660 	 * Attach event counters.
    661 	 */
    662 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
    663 	    NULL, sc->sc_dev.dv_xname, "txstall");
    664 	evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
    665 	    NULL, sc->sc_dev.dv_xname, "txdmaintr");
    666 	evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
    667 	    NULL, sc->sc_dev.dv_xname, "txindintr");
    668 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    669 	    NULL, sc->sc_dev.dv_xname, "rxintr");
    670 
    671 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
    672 	    NULL, sc->sc_dev.dv_xname, "txseg1");
    673 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
    674 	    NULL, sc->sc_dev.dv_xname, "txseg2");
    675 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
    676 	    NULL, sc->sc_dev.dv_xname, "txseg3");
    677 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
    678 	    NULL, sc->sc_dev.dv_xname, "txseg4");
    679 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
    680 	    NULL, sc->sc_dev.dv_xname, "txseg5");
    681 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
    682 	    NULL, sc->sc_dev.dv_xname, "txsegmore");
    683 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
    684 	    NULL, sc->sc_dev.dv_xname, "txcopy");
    685 
    686 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    687 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
    688 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
    689 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
    690 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
    691 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
    692 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    693 	    NULL, sc->sc_dev.dv_xname, "txipsum");
    694 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
    695 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
    696 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
    697 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
    698 #endif /* STGE_EVENT_COUNTERS */
    699 
    700 	/*
    701 	 * Make sure the interface is shutdown during reboot.
    702 	 */
    703 	sc->sc_sdhook = shutdownhook_establish(stge_shutdown, sc);
    704 	if (sc->sc_sdhook == NULL)
    705 		printf("%s: WARNING: unable to establish shutdown hook\n",
    706 		    sc->sc_dev.dv_xname);
    707 	return;
    708 
    709 	/*
    710 	 * Free any resources we've allocated during the failed attach
    711 	 * attempt.  Do this in reverse order and fall through.
    712 	 */
    713  fail_5:
    714 	for (i = 0; i < STGE_NRXDESC; i++) {
    715 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
    716 			bus_dmamap_destroy(sc->sc_dmat,
    717 			    sc->sc_rxsoft[i].ds_dmamap);
    718 	}
    719  fail_4:
    720 	for (i = 0; i < STGE_NTXDESC; i++) {
    721 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
    722 			bus_dmamap_destroy(sc->sc_dmat,
    723 			    sc->sc_txsoft[i].ds_dmamap);
    724 	}
    725 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    726  fail_3:
    727 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    728  fail_2:
    729 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    730 	    sizeof(struct stge_control_data));
    731  fail_1:
    732 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    733  fail_0:
    734 	return;
    735 }
    736 
    737 /*
    738  * stge_shutdown:
    739  *
    740  *	Make sure the interface is stopped at reboot time.
    741  */
    742 static void
    743 stge_shutdown(void *arg)
    744 {
    745 	struct stge_softc *sc = arg;
    746 
    747 	stge_stop(&sc->sc_ethercom.ec_if, 1);
    748 }
    749 
    750 static void
    751 stge_dma_wait(struct stge_softc *sc)
    752 {
    753 	int i;
    754 
    755 	for (i = 0; i < STGE_TIMEOUT; i++) {
    756 		delay(2);
    757 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
    758 		     DMAC_TxDMAInProg) == 0)
    759 			break;
    760 	}
    761 
    762 	if (i == STGE_TIMEOUT)
    763 		printf("%s: DMA wait timed out\n", sc->sc_dev.dv_xname);
    764 }
    765 
    766 /*
    767  * stge_start:		[ifnet interface function]
    768  *
    769  *	Start packet transmission on the interface.
    770  */
    771 static void
    772 stge_start(struct ifnet *ifp)
    773 {
    774 	struct stge_softc *sc = ifp->if_softc;
    775 	struct mbuf *m0;
    776 	struct stge_descsoft *ds;
    777 	struct stge_tfd *tfd;
    778 	bus_dmamap_t dmamap;
    779 	int error, firsttx, nexttx, opending, seg, totlen;
    780 	uint64_t csum_flags;
    781 
    782 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    783 		return;
    784 
    785 	/*
    786 	 * Remember the previous number of pending transmissions
    787 	 * and the first descriptor we will use.
    788 	 */
    789 	opending = sc->sc_txpending;
    790 	firsttx = STGE_NEXTTX(sc->sc_txlast);
    791 
    792 	/*
    793 	 * Loop through the send queue, setting up transmit descriptors
    794 	 * until we drain the queue, or use up all available transmit
    795 	 * descriptors.
    796 	 */
    797 	for (;;) {
    798 		struct m_tag *mtag;
    799 		uint64_t tfc;
    800 
    801 		/*
    802 		 * Grab a packet off the queue.
    803 		 */
    804 		IFQ_POLL(&ifp->if_snd, m0);
    805 		if (m0 == NULL)
    806 			break;
    807 
    808 		/*
    809 		 * Leave one unused descriptor at the end of the
    810 		 * list to prevent wrapping completely around.
    811 		 */
    812 		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
    813 			STGE_EVCNT_INCR(&sc->sc_ev_txstall);
    814 			break;
    815 		}
    816 
    817 		/*
    818 		 * See if we have any VLAN stuff.
    819 		 */
    820 		mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
    821 
    822 		/*
    823 		 * Get the last and next available transmit descriptor.
    824 		 */
    825 		nexttx = STGE_NEXTTX(sc->sc_txlast);
    826 		tfd = &sc->sc_txdescs[nexttx];
    827 		ds = &sc->sc_txsoft[nexttx];
    828 
    829 		dmamap = ds->ds_dmamap;
    830 
    831 		/*
    832 		 * Load the DMA map.  If this fails, the packet either
    833 		 * didn't fit in the alloted number of segments, or we
    834 		 * were short on resources.  For the too-many-segments
    835 		 * case, we simply report an error and drop the packet,
    836 		 * since we can't sanely copy a jumbo packet to a single
    837 		 * buffer.
    838 		 */
    839 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    840 		    BUS_DMA_NOWAIT);
    841 		if (error) {
    842 			if (error == EFBIG) {
    843 				printf("%s: Tx packet consumes too many "
    844 				    "DMA segments, dropping...\n",
    845 				    sc->sc_dev.dv_xname);
    846 				IFQ_DEQUEUE(&ifp->if_snd, m0);
    847 				m_freem(m0);
    848 				continue;
    849 			}
    850 			/*
    851 			 * Short on resources, just stop for now.
    852 			 */
    853 			break;
    854 		}
    855 
    856 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    857 
    858 		/*
    859 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    860 		 */
    861 
    862 		/* Sync the DMA map. */
    863 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    864 		    BUS_DMASYNC_PREWRITE);
    865 
    866 		/* Initialize the fragment list. */
    867 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
    868 			tfd->tfd_frags[seg].frag_word0 =
    869 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
    870 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
    871 			totlen += dmamap->dm_segs[seg].ds_len;
    872 		}
    873 
    874 #ifdef STGE_EVENT_COUNTERS
    875 		switch (dmamap->dm_nsegs) {
    876 		case 1:
    877 			STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
    878 			break;
    879 		case 2:
    880 			STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
    881 			break;
    882 		case 3:
    883 			STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
    884 			break;
    885 		case 4:
    886 			STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
    887 			break;
    888 		case 5:
    889 			STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
    890 			break;
    891 		default:
    892 			STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
    893 			break;
    894 		}
    895 #endif /* STGE_EVENT_COUNTERS */
    896 
    897 		/*
    898 		 * Initialize checksumming flags in the descriptor.
    899 		 * Byte-swap constants so the compiler can optimize.
    900 		 */
    901 		csum_flags = 0;
    902 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
    903 			STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
    904 			csum_flags |= htole64(TFD_IPChecksumEnable);
    905 		}
    906 
    907 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
    908 			STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
    909 			csum_flags |= htole64(TFD_TCPChecksumEnable);
    910 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
    911 			STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
    912 			csum_flags |= htole64(TFD_UDPChecksumEnable);
    913 		}
    914 
    915 		/*
    916 		 * Initialize the descriptor and give it to the chip.
    917 		 * Check to see if we have a VLAN tag to insert.
    918 		 */
    919 
    920 		tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
    921 		    TFD_FragCount(seg) | csum_flags |
    922 		    (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
    923 			TFD_TxDMAIndicate : 0);
    924 		if (mtag) {
    925 #if	0
    926 			struct ether_header *eh =
    927 			    mtod(m0, struct ether_header *);
    928 			u_int16_t etype = ntohs(eh->ether_type);
    929 			printf("%s: xmit (tag %d) etype %x\n",
    930 			   ifp->if_xname, *mtod(n, int *), etype);
    931 #endif
    932 			tfc |= TFD_VLANTagInsert |
    933 #ifdef	STGE_VLAN_CFI
    934 			    TFD_CFI |
    935 #endif
    936 			    TFD_VID(VLAN_TAG_VALUE(mtag));
    937 		}
    938 		tfd->tfd_control = htole64(tfc);
    939 
    940 		/* Sync the descriptor. */
    941 		STGE_CDTXSYNC(sc, nexttx,
    942 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    943 
    944 		/*
    945 		 * Kick the transmit DMA logic.
    946 		 */
    947 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
    948 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
    949 
    950 		/*
    951 		 * Store a pointer to the packet so we can free it later.
    952 		 */
    953 		ds->ds_mbuf = m0;
    954 
    955 		/* Advance the tx pointer. */
    956 		sc->sc_txpending++;
    957 		sc->sc_txlast = nexttx;
    958 
    959 #if NBPFILTER > 0
    960 		/*
    961 		 * Pass the packet to any BPF listeners.
    962 		 */
    963 		if (ifp->if_bpf)
    964 			bpf_mtap(ifp->if_bpf, m0);
    965 #endif /* NBPFILTER > 0 */
    966 	}
    967 
    968 	if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
    969 		/* No more slots left; notify upper layer. */
    970 		ifp->if_flags |= IFF_OACTIVE;
    971 	}
    972 
    973 	if (sc->sc_txpending != opending) {
    974 		/*
    975 		 * We enqueued packets.  If the transmitter was idle,
    976 		 * reset the txdirty pointer.
    977 		 */
    978 		if (opending == 0)
    979 			sc->sc_txdirty = firsttx;
    980 
    981 		/* Set a watchdog timer in case the chip flakes out. */
    982 		ifp->if_timer = 5;
    983 	}
    984 }
    985 
    986 /*
    987  * stge_watchdog:	[ifnet interface function]
    988  *
    989  *	Watchdog timer handler.
    990  */
    991 static void
    992 stge_watchdog(struct ifnet *ifp)
    993 {
    994 	struct stge_softc *sc = ifp->if_softc;
    995 
    996 	/*
    997 	 * Sweep up first, since we don't interrupt every frame.
    998 	 */
    999 	stge_txintr(sc);
   1000 	if (sc->sc_txpending != 0) {
   1001 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1002 		ifp->if_oerrors++;
   1003 
   1004 		(void) stge_init(ifp);
   1005 
   1006 		/* Try to get more packets going. */
   1007 		stge_start(ifp);
   1008 	}
   1009 }
   1010 
   1011 /*
   1012  * stge_ioctl:		[ifnet interface function]
   1013  *
   1014  *	Handle control requests from the operator.
   1015  */
   1016 static int
   1017 stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   1018 {
   1019 	struct stge_softc *sc = ifp->if_softc;
   1020 	struct ifreq *ifr = (struct ifreq *)data;
   1021 	int s, error;
   1022 
   1023 	s = splnet();
   1024 
   1025 	switch (cmd) {
   1026 	case SIOCSIFMEDIA:
   1027 	case SIOCGIFMEDIA:
   1028 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1029 		break;
   1030 
   1031 	default:
   1032 		error = ether_ioctl(ifp, cmd, data);
   1033 		if (error == ENETRESET) {
   1034 			/*
   1035 			 * Multicast list has changed; set the hardware filter
   1036 			 * accordingly.
   1037 			 */
   1038 			if (ifp->if_flags & IFF_RUNNING)
   1039 				stge_set_filter(sc);
   1040 			error = 0;
   1041 		}
   1042 		break;
   1043 	}
   1044 
   1045 	/* Try to get more packets going. */
   1046 	stge_start(ifp);
   1047 
   1048 	splx(s);
   1049 	return (error);
   1050 }
   1051 
   1052 /*
   1053  * stge_intr:
   1054  *
   1055  *	Interrupt service routine.
   1056  */
   1057 static int
   1058 stge_intr(void *arg)
   1059 {
   1060 	struct stge_softc *sc = arg;
   1061 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1062 	uint32_t txstat;
   1063 	int wantinit;
   1064 	uint16_t isr;
   1065 
   1066 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
   1067 	     IS_InterruptStatus) == 0)
   1068 		return (0);
   1069 
   1070 	for (wantinit = 0; wantinit == 0;) {
   1071 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
   1072 		if ((isr & sc->sc_IntEnable) == 0)
   1073 			break;
   1074 
   1075 		/* Host interface errors. */
   1076 		if (isr & IS_HostError) {
   1077 			printf("%s: Host interface error\n",
   1078 			    sc->sc_dev.dv_xname);
   1079 			wantinit = 1;
   1080 			continue;
   1081 		}
   1082 
   1083 		/* Receive interrupts. */
   1084 		if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
   1085 			STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
   1086 			stge_rxintr(sc);
   1087 			if (isr & IS_RFDListEnd) {
   1088 				printf("%s: receive ring overflow\n",
   1089 				    sc->sc_dev.dv_xname);
   1090 				/*
   1091 				 * XXX Should try to recover from this
   1092 				 * XXX more gracefully.
   1093 				 */
   1094 				wantinit = 1;
   1095 			}
   1096 		}
   1097 
   1098 		/* Transmit interrupts. */
   1099 		if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
   1100 #ifdef STGE_EVENT_COUNTERS
   1101 			if (isr & IS_TxDMAComplete)
   1102 				STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
   1103 #endif
   1104 			stge_txintr(sc);
   1105 		}
   1106 
   1107 		/* Statistics overflow. */
   1108 		if (isr & IS_UpdateStats)
   1109 			stge_stats_update(sc);
   1110 
   1111 		/* Transmission errors. */
   1112 		if (isr & IS_TxComplete) {
   1113 			STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
   1114 			for (;;) {
   1115 				txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
   1116 				    STGE_TxStatus);
   1117 				if ((txstat & TS_TxComplete) == 0)
   1118 					break;
   1119 				if (txstat & TS_TxUnderrun) {
   1120 					sc->sc_txthresh++;
   1121 					if (sc->sc_txthresh > 0x0fff)
   1122 						sc->sc_txthresh = 0x0fff;
   1123 					printf("%s: transmit underrun, new "
   1124 					    "threshold: %d bytes\n",
   1125 					    sc->sc_dev.dv_xname,
   1126 					    sc->sc_txthresh << 5);
   1127 				}
   1128 				if (txstat & TS_MaxCollisions)
   1129 					printf("%s: excessive collisions\n",
   1130 					    sc->sc_dev.dv_xname);
   1131 			}
   1132 			wantinit = 1;
   1133 		}
   1134 
   1135 	}
   1136 
   1137 	if (wantinit)
   1138 		stge_init(ifp);
   1139 
   1140 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
   1141 	    sc->sc_IntEnable);
   1142 
   1143 	/* Try to get more packets going. */
   1144 	stge_start(ifp);
   1145 
   1146 	return (1);
   1147 }
   1148 
   1149 /*
   1150  * stge_txintr:
   1151  *
   1152  *	Helper; handle transmit interrupts.
   1153  */
   1154 static void
   1155 stge_txintr(struct stge_softc *sc)
   1156 {
   1157 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1158 	struct stge_descsoft *ds;
   1159 	uint64_t control;
   1160 	int i;
   1161 
   1162 	ifp->if_flags &= ~IFF_OACTIVE;
   1163 
   1164 	/*
   1165 	 * Go through our Tx list and free mbufs for those
   1166 	 * frames which have been transmitted.
   1167 	 */
   1168 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
   1169 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
   1170 		ds = &sc->sc_txsoft[i];
   1171 
   1172 		STGE_CDTXSYNC(sc, i,
   1173 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1174 
   1175 		control = le64toh(sc->sc_txdescs[i].tfd_control);
   1176 		if ((control & TFD_TFDDone) == 0)
   1177 			break;
   1178 
   1179 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
   1180 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1181 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1182 		m_freem(ds->ds_mbuf);
   1183 		ds->ds_mbuf = NULL;
   1184 	}
   1185 
   1186 	/* Update the dirty transmit buffer pointer. */
   1187 	sc->sc_txdirty = i;
   1188 
   1189 	/*
   1190 	 * If there are no more pending transmissions, cancel the watchdog
   1191 	 * timer.
   1192 	 */
   1193 	if (sc->sc_txpending == 0)
   1194 		ifp->if_timer = 0;
   1195 }
   1196 
   1197 /*
   1198  * stge_rxintr:
   1199  *
   1200  *	Helper; handle receive interrupts.
   1201  */
   1202 static void
   1203 stge_rxintr(struct stge_softc *sc)
   1204 {
   1205 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1206 	struct stge_descsoft *ds;
   1207 	struct mbuf *m, *tailm;
   1208 	uint64_t status;
   1209 	int i, len;
   1210 
   1211 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
   1212 		ds = &sc->sc_rxsoft[i];
   1213 
   1214 		STGE_CDRXSYNC(sc, i,
   1215 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1216 
   1217 		status = le64toh(sc->sc_rxdescs[i].rfd_status);
   1218 
   1219 		if ((status & RFD_RFDDone) == 0)
   1220 			break;
   1221 
   1222 		if (__predict_false(sc->sc_rxdiscard)) {
   1223 			STGE_INIT_RXDESC(sc, i);
   1224 			if (status & RFD_FrameEnd) {
   1225 				/* Reset our state. */
   1226 				sc->sc_rxdiscard = 0;
   1227 			}
   1228 			continue;
   1229 		}
   1230 
   1231 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1232 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1233 
   1234 		m = ds->ds_mbuf;
   1235 
   1236 		/*
   1237 		 * Add a new receive buffer to the ring.
   1238 		 */
   1239 		if (stge_add_rxbuf(sc, i) != 0) {
   1240 			/*
   1241 			 * Failed, throw away what we've done so
   1242 			 * far, and discard the rest of the packet.
   1243 			 */
   1244 			ifp->if_ierrors++;
   1245 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1246 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1247 			STGE_INIT_RXDESC(sc, i);
   1248 			if ((status & RFD_FrameEnd) == 0)
   1249 				sc->sc_rxdiscard = 1;
   1250 			if (sc->sc_rxhead != NULL)
   1251 				m_freem(sc->sc_rxhead);
   1252 			STGE_RXCHAIN_RESET(sc);
   1253 			continue;
   1254 		}
   1255 
   1256 #ifdef DIAGNOSTIC
   1257 		if (status & RFD_FrameStart) {
   1258 			KASSERT(sc->sc_rxhead == NULL);
   1259 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
   1260 		}
   1261 #endif
   1262 
   1263 		STGE_RXCHAIN_LINK(sc, m);
   1264 
   1265 		/*
   1266 		 * If this is not the end of the packet, keep
   1267 		 * looking.
   1268 		 */
   1269 		if ((status & RFD_FrameEnd) == 0) {
   1270 			sc->sc_rxlen += m->m_len;
   1271 			continue;
   1272 		}
   1273 
   1274 		/*
   1275 		 * Okay, we have the entire packet now...
   1276 		 */
   1277 		*sc->sc_rxtailp = NULL;
   1278 		m = sc->sc_rxhead;
   1279 		tailm = sc->sc_rxtail;
   1280 
   1281 		STGE_RXCHAIN_RESET(sc);
   1282 
   1283 		/*
   1284 		 * If the packet had an error, drop it.  Note we
   1285 		 * count the error later in the periodic stats update.
   1286 		 */
   1287 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
   1288 			      RFD_RxAlignmentError | RFD_RxFCSError |
   1289 			      RFD_RxLengthError)) {
   1290 			m_freem(m);
   1291 			continue;
   1292 		}
   1293 
   1294 		/*
   1295 		 * No errors.
   1296 		 *
   1297 		 * Note we have configured the chip to not include
   1298 		 * the CRC at the end of the packet.
   1299 		 */
   1300 		len = RFD_RxDMAFrameLen(status);
   1301 		tailm->m_len = len - sc->sc_rxlen;
   1302 
   1303 		/*
   1304 		 * If the packet is small enough to fit in a
   1305 		 * single header mbuf, allocate one and copy
   1306 		 * the data into it.  This greatly reduces
   1307 		 * memory consumption when we receive lots
   1308 		 * of small packets.
   1309 		 */
   1310 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
   1311 			struct mbuf *nm;
   1312 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1313 			if (nm == NULL) {
   1314 				ifp->if_ierrors++;
   1315 				m_freem(m);
   1316 				continue;
   1317 			}
   1318 			nm->m_data += 2;
   1319 			nm->m_pkthdr.len = nm->m_len = len;
   1320 			m_copydata(m, 0, len, mtod(nm, caddr_t));
   1321 			m_freem(m);
   1322 			m = nm;
   1323 		}
   1324 
   1325 		/*
   1326 		 * Set the incoming checksum information for the packet.
   1327 		 */
   1328 		if (status & RFD_IPDetected) {
   1329 			STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1330 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1331 			if (status & RFD_IPError)
   1332 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1333 			if (status & RFD_TCPDetected) {
   1334 				STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   1335 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1336 				if (status & RFD_TCPError)
   1337 					m->m_pkthdr.csum_flags |=
   1338 					    M_CSUM_TCP_UDP_BAD;
   1339 			} else if (status & RFD_UDPDetected) {
   1340 				STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   1341 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1342 				if (status & RFD_UDPError)
   1343 					m->m_pkthdr.csum_flags |=
   1344 					    M_CSUM_TCP_UDP_BAD;
   1345 			}
   1346 		}
   1347 
   1348 		m->m_pkthdr.rcvif = ifp;
   1349 		m->m_pkthdr.len = len;
   1350 
   1351 #if NBPFILTER > 0
   1352 		/*
   1353 		 * Pass this up to any BPF listeners, but only
   1354 		 * pass if up the stack if it's for us.
   1355 		 */
   1356 		if (ifp->if_bpf)
   1357 			bpf_mtap(ifp->if_bpf, m);
   1358 #endif /* NBPFILTER > 0 */
   1359 #ifdef	STGE_VLAN_UNTAG
   1360 		/*
   1361 		 * Check for VLAN tagged packets
   1362 		 */
   1363 		if (status & RFD_VLANDetected)
   1364 			VLAN_INPUT_TAG(ifp, m, RFD_TCI(status), continue);
   1365 
   1366 #endif
   1367 #if	0
   1368 		if (status & RFD_VLANDetected) {
   1369 			struct ether_header *eh;
   1370 			u_int16_t etype;
   1371 
   1372 			eh = mtod(m, struct ether_header *);
   1373 			etype = ntohs(eh->ether_type);
   1374 			printf("%s: VLANtag detected (TCI %d) etype %x\n",
   1375 			    ifp->if_xname, (u_int16_t) RFD_TCI(status),
   1376 			    etype);
   1377 		}
   1378 #endif
   1379 		/* Pass it on. */
   1380 		(*ifp->if_input)(ifp, m);
   1381 	}
   1382 
   1383 	/* Update the receive pointer. */
   1384 	sc->sc_rxptr = i;
   1385 }
   1386 
   1387 /*
   1388  * stge_tick:
   1389  *
   1390  *	One second timer, used to tick the MII.
   1391  */
   1392 static void
   1393 stge_tick(void *arg)
   1394 {
   1395 	struct stge_softc *sc = arg;
   1396 	int s;
   1397 
   1398 	s = splnet();
   1399 	mii_tick(&sc->sc_mii);
   1400 	stge_stats_update(sc);
   1401 	splx(s);
   1402 
   1403 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
   1404 }
   1405 
   1406 /*
   1407  * stge_stats_update:
   1408  *
   1409  *	Read the TC9021 statistics counters.
   1410  */
   1411 static void
   1412 stge_stats_update(struct stge_softc *sc)
   1413 {
   1414 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1415 	bus_space_tag_t st = sc->sc_st;
   1416 	bus_space_handle_t sh = sc->sc_sh;
   1417 
   1418 	(void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
   1419 
   1420 	ifp->if_ipackets +=
   1421 	    bus_space_read_4(st, sh, STGE_FramesRcvdOk);
   1422 
   1423 	ifp->if_ierrors +=
   1424 	    (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
   1425 
   1426 	(void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
   1427 
   1428 	ifp->if_opackets +=
   1429 	    bus_space_read_4(st, sh, STGE_FramesXmtdOk);
   1430 
   1431 	ifp->if_collisions +=
   1432 	    bus_space_read_4(st, sh, STGE_LateCollisions) +
   1433 	    bus_space_read_4(st, sh, STGE_MultiColFrames) +
   1434 	    bus_space_read_4(st, sh, STGE_SingleColFrames);
   1435 
   1436 	ifp->if_oerrors +=
   1437 	    (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
   1438 	    (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
   1439 }
   1440 
   1441 /*
   1442  * stge_reset:
   1443  *
   1444  *	Perform a soft reset on the TC9021.
   1445  */
   1446 static void
   1447 stge_reset(struct stge_softc *sc)
   1448 {
   1449 	uint32_t ac;
   1450 	int i;
   1451 
   1452 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
   1453 
   1454 	/*
   1455 	 * Only assert RstOut if we're fiber.  We need GMII clocks
   1456 	 * to be present in order for the reset to complete on fiber
   1457 	 * cards.
   1458 	 */
   1459 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
   1460 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
   1461 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
   1462 	    (sc->sc_usefiber ? AC_RstOut : 0));
   1463 
   1464 	delay(50000);
   1465 
   1466 	for (i = 0; i < STGE_TIMEOUT; i++) {
   1467 		delay(5000);
   1468 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
   1469 		     AC_ResetBusy) == 0)
   1470 			break;
   1471 	}
   1472 
   1473 	if (i == STGE_TIMEOUT)
   1474 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   1475 
   1476 	delay(1000);
   1477 }
   1478 
   1479 /*
   1480  * stge_init:		[ ifnet interface function ]
   1481  *
   1482  *	Initialize the interface.  Must be called at splnet().
   1483  */
   1484 static int
   1485 stge_init(struct ifnet *ifp)
   1486 {
   1487 	struct stge_softc *sc = ifp->if_softc;
   1488 	bus_space_tag_t st = sc->sc_st;
   1489 	bus_space_handle_t sh = sc->sc_sh;
   1490 	struct stge_descsoft *ds;
   1491 	int i, error = 0;
   1492 
   1493 	/*
   1494 	 * Cancel any pending I/O.
   1495 	 */
   1496 	stge_stop(ifp, 0);
   1497 
   1498 	/*
   1499 	 * Reset the chip to a known state.
   1500 	 */
   1501 	stge_reset(sc);
   1502 
   1503 	/*
   1504 	 * Initialize the transmit descriptor ring.
   1505 	 */
   1506 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1507 	for (i = 0; i < STGE_NTXDESC; i++) {
   1508 		sc->sc_txdescs[i].tfd_next =
   1509 		    (uint64_t) STGE_CDTXADDR(sc, STGE_NEXTTX(i));
   1510 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
   1511 	}
   1512 	sc->sc_txpending = 0;
   1513 	sc->sc_txdirty = 0;
   1514 	sc->sc_txlast = STGE_NTXDESC - 1;
   1515 
   1516 	/*
   1517 	 * Initialize the receive descriptor and receive job
   1518 	 * descriptor rings.
   1519 	 */
   1520 	for (i = 0; i < STGE_NRXDESC; i++) {
   1521 		ds = &sc->sc_rxsoft[i];
   1522 		if (ds->ds_mbuf == NULL) {
   1523 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
   1524 				printf("%s: unable to allocate or map rx "
   1525 				    "buffer %d, error = %d\n",
   1526 				    sc->sc_dev.dv_xname, i, error);
   1527 				/*
   1528 				 * XXX Should attempt to run with fewer receive
   1529 				 * XXX buffers instead of just failing.
   1530 				 */
   1531 				stge_rxdrain(sc);
   1532 				goto out;
   1533 			}
   1534 		} else
   1535 			STGE_INIT_RXDESC(sc, i);
   1536 	}
   1537 	sc->sc_rxptr = 0;
   1538 	sc->sc_rxdiscard = 0;
   1539 	STGE_RXCHAIN_RESET(sc);
   1540 
   1541 	/* Set the station address. */
   1542 	bus_space_write_2(st, sh, STGE_StationAddress0,
   1543 	    LLADDR(ifp->if_sadl)[0] | (LLADDR(ifp->if_sadl)[1] << 8));
   1544 	bus_space_write_2(st, sh, STGE_StationAddress1,
   1545 	    LLADDR(ifp->if_sadl)[2] | (LLADDR(ifp->if_sadl)[3] << 8));
   1546 	bus_space_write_2(st, sh, STGE_StationAddress2,
   1547 	    LLADDR(ifp->if_sadl)[4] | (LLADDR(ifp->if_sadl)[5] << 8));
   1548 
   1549 	/*
   1550 	 * Set the statistics masks.  Disable all the RMON stats,
   1551 	 * and disable selected stats in the non-RMON stats registers.
   1552 	 */
   1553 	bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
   1554 	bus_space_write_4(st, sh, STGE_StatisticsMask,
   1555 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
   1556 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
   1557 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
   1558 	    (1U << 21));
   1559 
   1560 	/* Set up the receive filter. */
   1561 	stge_set_filter(sc);
   1562 
   1563 	/*
   1564 	 * Give the transmit and receive ring to the chip.
   1565 	 */
   1566 	bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
   1567 	bus_space_write_4(st, sh, STGE_TFDListPtrLo,
   1568 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
   1569 
   1570 	bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
   1571 	bus_space_write_4(st, sh, STGE_RFDListPtrLo,
   1572 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
   1573 
   1574 	/*
   1575 	 * Initialize the Tx auto-poll period.  It's OK to make this number
   1576 	 * large (255 is the max, but we use 127) -- we explicitly kick the
   1577 	 * transmit engine when there's actually a packet.
   1578 	 */
   1579 	bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
   1580 
   1581 	/* ..and the Rx auto-poll period. */
   1582 	bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
   1583 
   1584 	/* Initialize the Tx start threshold. */
   1585 	bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
   1586 
   1587 	/*
   1588 	 * Initialize the Rx DMA interrupt control register.  We
   1589 	 * request an interrupt after every incoming packet, but
   1590 	 * defer it for 32us (64 * 512 ns).  When the number of
   1591 	 * interrupts pending reaches 8, we stop deferring the
   1592 	 * interrupt, and signal it immediately.
   1593 	 */
   1594 	bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
   1595 	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
   1596 
   1597 	/*
   1598 	 * Initialize the interrupt mask.
   1599 	 */
   1600 	sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
   1601 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
   1602 	bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
   1603 	bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
   1604 
   1605 	/*
   1606 	 * Configure the DMA engine.
   1607 	 * XXX Should auto-tune TxBurstLimit.
   1608 	 */
   1609 	bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
   1610 	    DMAC_TxBurstLimit(3));
   1611 
   1612 	/*
   1613 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
   1614 	 * FIFO, and send an un-PAUSE frame when the FIFO is totally
   1615 	 * empty again.
   1616 	 */
   1617 	bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
   1618 	bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
   1619 
   1620 	/*
   1621 	 * Set the maximum frame size.
   1622 	 */
   1623 	bus_space_write_2(st, sh, STGE_MaxFrameSize,
   1624 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
   1625 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
   1626 	     ETHER_VLAN_ENCAP_LEN : 0));
   1627 
   1628 	/*
   1629 	 * Initialize MacCtrl -- do it before setting the media,
   1630 	 * as setting the media will actually program the register.
   1631 	 *
   1632 	 * Note: We have to poke the IFS value before poking
   1633 	 * anything else.
   1634 	 */
   1635 	sc->sc_MACCtrl = MC_IFSSelect(0);
   1636 	bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
   1637 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
   1638 #ifdef	STGE_VLAN_UNTAG
   1639 	sc->sc_MACCtrl |= MC_AutoVLANuntagging;
   1640 #endif
   1641 
   1642 	if (sc->sc_rev >= 6) {		/* >= B.2 */
   1643 		/* Multi-frag frame bug work-around. */
   1644 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1645 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
   1646 
   1647 		/* Tx Poll Now bug work-around. */
   1648 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1649 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
   1650 	}
   1651 
   1652 	/*
   1653 	 * Set the current media.
   1654 	 */
   1655 	mii_mediachg(&sc->sc_mii);
   1656 
   1657 	/*
   1658 	 * Start the one second MII clock.
   1659 	 */
   1660 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
   1661 
   1662 	/*
   1663 	 * ...all done!
   1664 	 */
   1665 	ifp->if_flags |= IFF_RUNNING;
   1666 	ifp->if_flags &= ~IFF_OACTIVE;
   1667 
   1668  out:
   1669 	if (error)
   1670 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1671 	return (error);
   1672 }
   1673 
   1674 /*
   1675  * stge_drain:
   1676  *
   1677  *	Drain the receive queue.
   1678  */
   1679 static void
   1680 stge_rxdrain(struct stge_softc *sc)
   1681 {
   1682 	struct stge_descsoft *ds;
   1683 	int i;
   1684 
   1685 	for (i = 0; i < STGE_NRXDESC; i++) {
   1686 		ds = &sc->sc_rxsoft[i];
   1687 		if (ds->ds_mbuf != NULL) {
   1688 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1689 			ds->ds_mbuf->m_next = NULL;
   1690 			m_freem(ds->ds_mbuf);
   1691 			ds->ds_mbuf = NULL;
   1692 		}
   1693 	}
   1694 }
   1695 
   1696 /*
   1697  * stge_stop:		[ ifnet interface function ]
   1698  *
   1699  *	Stop transmission on the interface.
   1700  */
   1701 static void
   1702 stge_stop(struct ifnet *ifp, int disable)
   1703 {
   1704 	struct stge_softc *sc = ifp->if_softc;
   1705 	struct stge_descsoft *ds;
   1706 	int i;
   1707 
   1708 	/*
   1709 	 * Stop the one second clock.
   1710 	 */
   1711 	callout_stop(&sc->sc_tick_ch);
   1712 
   1713 	/* Down the MII. */
   1714 	mii_down(&sc->sc_mii);
   1715 
   1716 	/*
   1717 	 * Disable interrupts.
   1718 	 */
   1719 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
   1720 
   1721 	/*
   1722 	 * Stop receiver, transmitter, and stats update.
   1723 	 */
   1724 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
   1725 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
   1726 
   1727 	/*
   1728 	 * Stop the transmit and receive DMA.
   1729 	 */
   1730 	stge_dma_wait(sc);
   1731 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
   1732 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
   1733 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
   1734 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
   1735 
   1736 	/*
   1737 	 * Release any queued transmit buffers.
   1738 	 */
   1739 	for (i = 0; i < STGE_NTXDESC; i++) {
   1740 		ds = &sc->sc_txsoft[i];
   1741 		if (ds->ds_mbuf != NULL) {
   1742 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1743 			m_freem(ds->ds_mbuf);
   1744 			ds->ds_mbuf = NULL;
   1745 		}
   1746 	}
   1747 
   1748 	if (disable)
   1749 		stge_rxdrain(sc);
   1750 
   1751 	/*
   1752 	 * Mark the interface down and cancel the watchdog timer.
   1753 	 */
   1754 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1755 	ifp->if_timer = 0;
   1756 }
   1757 
   1758 #if 0
   1759 static int
   1760 stge_eeprom_wait(struct stge_softc *sc)
   1761 {
   1762 	int i;
   1763 
   1764 	for (i = 0; i < STGE_TIMEOUT; i++) {
   1765 		delay(1000);
   1766 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
   1767 		     EC_EepromBusy) == 0)
   1768 			return (0);
   1769 	}
   1770 	return (1);
   1771 }
   1772 
   1773 /*
   1774  * stge_read_eeprom:
   1775  *
   1776  *	Read data from the serial EEPROM.
   1777  */
   1778 static void
   1779 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
   1780 {
   1781 
   1782 	if (stge_eeprom_wait(sc))
   1783 		printf("%s: EEPROM failed to come ready\n",
   1784 		    sc->sc_dev.dv_xname);
   1785 
   1786 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
   1787 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
   1788 	if (stge_eeprom_wait(sc))
   1789 		printf("%s: EEPROM read timed out\n",
   1790 		    sc->sc_dev.dv_xname);
   1791 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
   1792 }
   1793 #endif /* 0 */
   1794 
   1795 /*
   1796  * stge_add_rxbuf:
   1797  *
   1798  *	Add a receive buffer to the indicated descriptor.
   1799  */
   1800 static int
   1801 stge_add_rxbuf(struct stge_softc *sc, int idx)
   1802 {
   1803 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
   1804 	struct mbuf *m;
   1805 	int error;
   1806 
   1807 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1808 	if (m == NULL)
   1809 		return (ENOBUFS);
   1810 
   1811 	MCLGET(m, M_DONTWAIT);
   1812 	if ((m->m_flags & M_EXT) == 0) {
   1813 		m_freem(m);
   1814 		return (ENOBUFS);
   1815 	}
   1816 
   1817 	m->m_data = m->m_ext.ext_buf + 2;
   1818 	m->m_len = MCLBYTES - 2;
   1819 
   1820 	if (ds->ds_mbuf != NULL)
   1821 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1822 
   1823 	ds->ds_mbuf = m;
   1824 
   1825 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
   1826 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1827 	if (error) {
   1828 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1829 		    sc->sc_dev.dv_xname, idx, error);
   1830 		panic("stge_add_rxbuf");	/* XXX */
   1831 	}
   1832 
   1833 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1834 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1835 
   1836 	STGE_INIT_RXDESC(sc, idx);
   1837 
   1838 	return (0);
   1839 }
   1840 
   1841 /*
   1842  * stge_set_filter:
   1843  *
   1844  *	Set up the receive filter.
   1845  */
   1846 static void
   1847 stge_set_filter(struct stge_softc *sc)
   1848 {
   1849 	struct ethercom *ec = &sc->sc_ethercom;
   1850 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1851 	struct ether_multi *enm;
   1852 	struct ether_multistep step;
   1853 	uint32_t crc;
   1854 	uint32_t mchash[2];
   1855 
   1856 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
   1857 	if (ifp->if_flags & IFF_BROADCAST)
   1858 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
   1859 
   1860 #ifdef	STGE_CU_BUG
   1861 	/*
   1862 	 * Some cards (Sundance TI, copper) only seem to work
   1863 	 * right now if we put them into promiscuous mode. It
   1864 	 * probably is the Marvell PHY stuff that isn't quite
   1865 	 * right.
   1866 	 */
   1867 	ifp->if_flags |= IFF_PROMISC;
   1868 #endif
   1869 
   1870 	if (ifp->if_flags & IFF_PROMISC) {
   1871 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
   1872 		goto allmulti;
   1873 	}
   1874 
   1875 	/*
   1876 	 * Set up the multicast address filter by passing all multicast
   1877 	 * addresses through a CRC generator, and then using the low-order
   1878 	 * 6 bits as an index into the 64 bit multicast hash table.  The
   1879 	 * high order bits select the register, while the rest of the bits
   1880 	 * select the bit within the register.
   1881 	 */
   1882 
   1883 	memset(mchash, 0, sizeof(mchash));
   1884 
   1885 	ETHER_FIRST_MULTI(step, ec, enm);
   1886 	if (enm == NULL)
   1887 		goto done;
   1888 
   1889 	while (enm != NULL) {
   1890 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1891 			/*
   1892 			 * We must listen to a range of multicast addresses.
   1893 			 * For now, just accept all multicasts, rather than
   1894 			 * trying to set only those filter bits needed to match
   1895 			 * the range.  (At this time, the only use of address
   1896 			 * ranges is for IP multicast routing, for which the
   1897 			 * range is big enough to require all bits set.)
   1898 			 */
   1899 			goto allmulti;
   1900 		}
   1901 
   1902 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1903 
   1904 		/* Just want the 6 least significant bits. */
   1905 		crc &= 0x3f;
   1906 
   1907 		/* Set the corresponding bit in the hash table. */
   1908 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
   1909 
   1910 		ETHER_NEXT_MULTI(step, enm);
   1911 	}
   1912 
   1913 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
   1914 
   1915 	ifp->if_flags &= ~IFF_ALLMULTI;
   1916 	goto done;
   1917 
   1918  allmulti:
   1919 	ifp->if_flags |= IFF_ALLMULTI;
   1920 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
   1921 
   1922  done:
   1923 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1924 		/*
   1925 		 * Program the multicast hash table.
   1926 		 */
   1927 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
   1928 		    mchash[0]);
   1929 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
   1930 		    mchash[1]);
   1931 	}
   1932 
   1933 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
   1934 	    sc->sc_ReceiveMode);
   1935 }
   1936 
   1937 /*
   1938  * stge_mii_readreg:	[mii interface function]
   1939  *
   1940  *	Read a PHY register on the MII of the TC9021.
   1941  */
   1942 static int
   1943 stge_mii_readreg(struct device *self, int phy, int reg)
   1944 {
   1945 
   1946 	return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
   1947 }
   1948 
   1949 /*
   1950  * stge_mii_writereg:	[mii interface function]
   1951  *
   1952  *	Write a PHY register on the MII of the TC9021.
   1953  */
   1954 static void
   1955 stge_mii_writereg(struct device *self, int phy, int reg, int val)
   1956 {
   1957 
   1958 	mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
   1959 }
   1960 
   1961 /*
   1962  * stge_mii_statchg:	[mii interface function]
   1963  *
   1964  *	Callback from MII layer when media changes.
   1965  */
   1966 static void
   1967 stge_mii_statchg(struct device *self)
   1968 {
   1969 	struct stge_softc *sc = (struct stge_softc *) self;
   1970 
   1971 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   1972 		sc->sc_MACCtrl |= MC_DuplexSelect;
   1973 	else
   1974 		sc->sc_MACCtrl &= ~MC_DuplexSelect;
   1975 
   1976 	/* XXX 802.1x flow-control? */
   1977 
   1978 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
   1979 }
   1980 
   1981 /*
   1982  * sste_mii_bitbang_read: [mii bit-bang interface function]
   1983  *
   1984  *	Read the MII serial port for the MII bit-bang module.
   1985  */
   1986 static uint32_t
   1987 stge_mii_bitbang_read(struct device *self)
   1988 {
   1989 	struct stge_softc *sc = (void *) self;
   1990 
   1991 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
   1992 }
   1993 
   1994 /*
   1995  * stge_mii_bitbang_write: [mii big-bang interface function]
   1996  *
   1997  *	Write the MII serial port for the MII bit-bang module.
   1998  */
   1999 static void
   2000 stge_mii_bitbang_write(struct device *self, uint32_t val)
   2001 {
   2002 	struct stge_softc *sc = (void *) self;
   2003 
   2004 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
   2005 	    val | sc->sc_PhyCtrl);
   2006 }
   2007 
   2008 /*
   2009  * stge_mediastatus:	[ifmedia interface function]
   2010  *
   2011  *	Get the current interface media status.
   2012  */
   2013 static void
   2014 stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2015 {
   2016 	struct stge_softc *sc = ifp->if_softc;
   2017 
   2018 	mii_pollstat(&sc->sc_mii);
   2019 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   2020 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   2021 }
   2022 
   2023 /*
   2024  * stge_mediachange:	[ifmedia interface function]
   2025  *
   2026  *	Set hardware to newly-selected media.
   2027  */
   2028 static int
   2029 stge_mediachange(struct ifnet *ifp)
   2030 {
   2031 	struct stge_softc *sc = ifp->if_softc;
   2032 
   2033 	if (ifp->if_flags & IFF_UP)
   2034 		mii_mediachg(&sc->sc_mii);
   2035 	return (0);
   2036 }
   2037