if_stge.c revision 1.29 1 /* $NetBSD: if_stge.c,v 1.29 2005/07/25 00:41:12 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the Sundance Tech. TC9021 10/100/1000
41 * Ethernet controller.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.29 2005/07/25 00:41:12 christos Exp $");
46
47 #include "bpfilter.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/socket.h>
56 #include <sys/ioctl.h>
57 #include <sys/errno.h>
58 #include <sys/device.h>
59 #include <sys/queue.h>
60
61 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
62
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_ether.h>
67
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71
72 #include <machine/bus.h>
73 #include <machine/intr.h>
74
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 #include <dev/mii/mii_bitbang.h>
78
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 #include <dev/pci/pcidevs.h>
82
83 #include <dev/pci/if_stgereg.h>
84
85 /* #define STGE_CU_BUG 1 */
86 #define STGE_VLAN_UNTAG 1
87 /* #define STGE_VLAN_CFI 1 */
88
89 /*
90 * Transmit descriptor list size.
91 */
92 #define STGE_NTXDESC 256
93 #define STGE_NTXDESC_MASK (STGE_NTXDESC - 1)
94 #define STGE_NEXTTX(x) (((x) + 1) & STGE_NTXDESC_MASK)
95
96 /*
97 * Receive descriptor list size.
98 */
99 #define STGE_NRXDESC 256
100 #define STGE_NRXDESC_MASK (STGE_NRXDESC - 1)
101 #define STGE_NEXTRX(x) (((x) + 1) & STGE_NRXDESC_MASK)
102
103 /*
104 * Only interrupt every N frames. Must be a power-of-two.
105 */
106 #define STGE_TXINTR_SPACING 16
107 #define STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
108
109 /*
110 * Control structures are DMA'd to the TC9021 chip. We allocate them in
111 * a single clump that maps to a single DMA segment to make several things
112 * easier.
113 */
114 struct stge_control_data {
115 /*
116 * The transmit descriptors.
117 */
118 struct stge_tfd scd_txdescs[STGE_NTXDESC];
119
120 /*
121 * The receive descriptors.
122 */
123 struct stge_rfd scd_rxdescs[STGE_NRXDESC];
124 };
125
126 #define STGE_CDOFF(x) offsetof(struct stge_control_data, x)
127 #define STGE_CDTXOFF(x) STGE_CDOFF(scd_txdescs[(x)])
128 #define STGE_CDRXOFF(x) STGE_CDOFF(scd_rxdescs[(x)])
129
130 /*
131 * Software state for transmit and receive jobs.
132 */
133 struct stge_descsoft {
134 struct mbuf *ds_mbuf; /* head of our mbuf chain */
135 bus_dmamap_t ds_dmamap; /* our DMA map */
136 };
137
138 /*
139 * Software state per device.
140 */
141 struct stge_softc {
142 struct device sc_dev; /* generic device information */
143 bus_space_tag_t sc_st; /* bus space tag */
144 bus_space_handle_t sc_sh; /* bus space handle */
145 bus_dma_tag_t sc_dmat; /* bus DMA tag */
146 struct ethercom sc_ethercom; /* ethernet common data */
147 void *sc_sdhook; /* shutdown hook */
148 int sc_rev; /* silicon revision */
149
150 void *sc_ih; /* interrupt cookie */
151
152 struct mii_data sc_mii; /* MII/media information */
153
154 struct callout sc_tick_ch; /* tick callout */
155
156 bus_dmamap_t sc_cddmamap; /* control data DMA map */
157 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
158
159 /*
160 * Software state for transmit and receive descriptors.
161 */
162 struct stge_descsoft sc_txsoft[STGE_NTXDESC];
163 struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
164
165 /*
166 * Control data structures.
167 */
168 struct stge_control_data *sc_control_data;
169 #define sc_txdescs sc_control_data->scd_txdescs
170 #define sc_rxdescs sc_control_data->scd_rxdescs
171
172 #ifdef STGE_EVENT_COUNTERS
173 /*
174 * Event counters.
175 */
176 struct evcnt sc_ev_txstall; /* Tx stalled */
177 struct evcnt sc_ev_txdmaintr; /* Tx DMA interrupts */
178 struct evcnt sc_ev_txindintr; /* Tx Indicate interrupts */
179 struct evcnt sc_ev_rxintr; /* Rx interrupts */
180
181 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
182 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
183 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
184 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
185 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
186 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
187 struct evcnt sc_ev_txcopy; /* Tx packets that we had to copy */
188
189 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
190 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
191 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-bound */
192
193 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
194 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
195 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
196 #endif /* STGE_EVENT_COUNTERS */
197
198 int sc_txpending; /* number of Tx requests pending */
199 int sc_txdirty; /* first dirty Tx descriptor */
200 int sc_txlast; /* last used Tx descriptor */
201
202 int sc_rxptr; /* next ready Rx descriptor/descsoft */
203 int sc_rxdiscard;
204 int sc_rxlen;
205 struct mbuf *sc_rxhead;
206 struct mbuf *sc_rxtail;
207 struct mbuf **sc_rxtailp;
208
209 int sc_txthresh; /* Tx threshold */
210 int sc_usefiber; /* if we're fiber */
211 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
212 uint32_t sc_MACCtrl; /* prototype MacCtrl register */
213 uint16_t sc_IntEnable; /* prototype IntEnable register */
214 uint16_t sc_ReceiveMode; /* prototype ReceiveMode register */
215 uint8_t sc_PhyCtrl; /* prototype PhyCtrl register */
216 };
217
218 #define STGE_RXCHAIN_RESET(sc) \
219 do { \
220 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
221 *(sc)->sc_rxtailp = NULL; \
222 (sc)->sc_rxlen = 0; \
223 } while (/*CONSTCOND*/0)
224
225 #define STGE_RXCHAIN_LINK(sc, m) \
226 do { \
227 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
228 (sc)->sc_rxtailp = &(m)->m_next; \
229 } while (/*CONSTCOND*/0)
230
231 #ifdef STGE_EVENT_COUNTERS
232 #define STGE_EVCNT_INCR(ev) (ev)->ev_count++
233 #else
234 #define STGE_EVCNT_INCR(ev) /* nothing */
235 #endif
236
237 #define STGE_CDTXADDR(sc, x) ((sc)->sc_cddma + STGE_CDTXOFF((x)))
238 #define STGE_CDRXADDR(sc, x) ((sc)->sc_cddma + STGE_CDRXOFF((x)))
239
240 #define STGE_CDTXSYNC(sc, x, ops) \
241 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
242 STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
243
244 #define STGE_CDRXSYNC(sc, x, ops) \
245 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
246 STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
247
248 #define STGE_INIT_RXDESC(sc, x) \
249 do { \
250 struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
251 struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
252 \
253 /* \
254 * Note: We scoot the packet forward 2 bytes in the buffer \
255 * so that the payload after the Ethernet header is aligned \
256 * to a 4-byte boundary. \
257 */ \
258 __rfd->rfd_frag.frag_word0 = \
259 htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
260 FRAG_LEN(MCLBYTES - 2)); \
261 __rfd->rfd_next = \
262 htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x)))); \
263 __rfd->rfd_status = 0; \
264 STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
265 } while (/*CONSTCOND*/0)
266
267 #define STGE_TIMEOUT 1000
268
269 static void stge_start(struct ifnet *);
270 static void stge_watchdog(struct ifnet *);
271 static int stge_ioctl(struct ifnet *, u_long, caddr_t);
272 static int stge_init(struct ifnet *);
273 static void stge_stop(struct ifnet *, int);
274
275 static void stge_shutdown(void *);
276
277 static void stge_reset(struct stge_softc *);
278 static void stge_rxdrain(struct stge_softc *);
279 static int stge_add_rxbuf(struct stge_softc *, int);
280 static void stge_read_eeprom(struct stge_softc *, int, uint16_t *);
281 static void stge_tick(void *);
282
283 static void stge_stats_update(struct stge_softc *);
284
285 static void stge_set_filter(struct stge_softc *);
286
287 static int stge_intr(void *);
288 static void stge_txintr(struct stge_softc *);
289 static void stge_rxintr(struct stge_softc *);
290
291 static int stge_mii_readreg(struct device *, int, int);
292 static void stge_mii_writereg(struct device *, int, int, int);
293 static void stge_mii_statchg(struct device *);
294
295 static int stge_mediachange(struct ifnet *);
296 static void stge_mediastatus(struct ifnet *, struct ifmediareq *);
297
298 static int stge_match(struct device *, struct cfdata *, void *);
299 static void stge_attach(struct device *, struct device *, void *);
300
301 int stge_copy_small = 0;
302 int stge_1023_bug = 0; /* XXX: ST1023 works only in promisc mode */
303
304 CFATTACH_DECL(stge, sizeof(struct stge_softc),
305 stge_match, stge_attach, NULL, NULL);
306
307 static uint32_t stge_mii_bitbang_read(struct device *);
308 static void stge_mii_bitbang_write(struct device *, uint32_t);
309
310 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
311 stge_mii_bitbang_read,
312 stge_mii_bitbang_write,
313 {
314 PC_MgmtData, /* MII_BIT_MDO */
315 PC_MgmtData, /* MII_BIT_MDI */
316 PC_MgmtClk, /* MII_BIT_MDC */
317 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
318 0, /* MII_BIT_DIR_PHY_HOST */
319 }
320 };
321
322 /*
323 * Devices supported by this driver.
324 */
325 static const struct stge_product {
326 pci_vendor_id_t stge_vendor;
327 pci_product_id_t stge_product;
328 const char *stge_name;
329 } stge_products[] = {
330 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST1023,
331 "Sundance ST-1023 Gigabit Ethernet" },
332
333 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST2021,
334 "Sundance ST-2021 Gigabit Ethernet" },
335
336 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021,
337 "Tamarack TC9021 Gigabit Ethernet" },
338
339 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021_ALT,
340 "Tamarack TC9021 Gigabit Ethernet" },
341
342 /*
343 * The Sundance sample boards use the Sundance vendor ID,
344 * but the Tamarack product ID.
345 */
346 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021,
347 "Sundance TC9021 Gigabit Ethernet" },
348
349 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021_ALT,
350 "Sundance TC9021 Gigabit Ethernet" },
351
352 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL4000,
353 "D-Link DL-4000 Gigabit Ethernet" },
354
355 { PCI_VENDOR_ANTARES, PCI_PRODUCT_ANTARES_TC9021,
356 "Antares Gigabit Ethernet" },
357
358 { 0, 0,
359 NULL },
360 };
361
362 static const struct stge_product *
363 stge_lookup(const struct pci_attach_args *pa)
364 {
365 const struct stge_product *sp;
366
367 for (sp = stge_products; sp->stge_name != NULL; sp++) {
368 if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
369 PCI_PRODUCT(pa->pa_id) == sp->stge_product)
370 return (sp);
371 }
372 return (NULL);
373 }
374
375 static int
376 stge_match(struct device *parent, struct cfdata *cf, void *aux)
377 {
378 struct pci_attach_args *pa = aux;
379
380 if (stge_lookup(pa) != NULL)
381 return (1);
382
383 return (0);
384 }
385
386 static void
387 stge_attach(struct device *parent, struct device *self, void *aux)
388 {
389 struct stge_softc *sc = (struct stge_softc *) self;
390 struct pci_attach_args *pa = aux;
391 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
392 pci_chipset_tag_t pc = pa->pa_pc;
393 pci_intr_handle_t ih;
394 const char *intrstr = NULL;
395 bus_space_tag_t iot, memt;
396 bus_space_handle_t ioh, memh;
397 bus_dma_segment_t seg;
398 int ioh_valid, memh_valid;
399 int i, rseg, error;
400 const struct stge_product *sp;
401 pcireg_t pmode;
402 uint8_t enaddr[ETHER_ADDR_LEN];
403 int pmreg;
404
405 callout_init(&sc->sc_tick_ch);
406
407 sp = stge_lookup(pa);
408 if (sp == NULL) {
409 printf("\n");
410 panic("ste_attach: impossible");
411 }
412
413 sc->sc_rev = PCI_REVISION(pa->pa_class);
414
415 printf(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
416
417 /*
418 * Map the device.
419 */
420 ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
421 PCI_MAPREG_TYPE_IO, 0,
422 &iot, &ioh, NULL, NULL) == 0);
423 memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
424 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
425 &memt, &memh, NULL, NULL) == 0);
426
427 if (memh_valid) {
428 sc->sc_st = memt;
429 sc->sc_sh = memh;
430 } else if (ioh_valid) {
431 sc->sc_st = iot;
432 sc->sc_sh = ioh;
433 } else {
434 printf("%s: unable to map device registers\n",
435 sc->sc_dev.dv_xname);
436 return;
437 }
438
439 sc->sc_dmat = pa->pa_dmat;
440
441 /* Enable bus mastering. */
442 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
443 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
444 PCI_COMMAND_MASTER_ENABLE);
445
446 /* Get it out of power save mode if needed. */
447 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
448 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
449 PCI_PMCSR_STATE_MASK;
450 if (pmode == PCI_PMCSR_STATE_D3) {
451 /*
452 * The card has lost all configuration data in
453 * this state, so punt.
454 */
455 printf("%s: unable to wake up from power state D3\n",
456 sc->sc_dev.dv_xname);
457 return;
458 }
459 if (pmode != 0) {
460 printf("%s: waking up from power state D%d\n",
461 sc->sc_dev.dv_xname, pmode);
462 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
463 PCI_PMCSR_STATE_D0);
464 }
465 }
466
467 /*
468 * Map and establish our interrupt.
469 */
470 if (pci_intr_map(pa, &ih)) {
471 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
472 return;
473 }
474 intrstr = pci_intr_string(pc, ih);
475 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
476 if (sc->sc_ih == NULL) {
477 printf("%s: unable to establish interrupt",
478 sc->sc_dev.dv_xname);
479 if (intrstr != NULL)
480 printf(" at %s", intrstr);
481 printf("\n");
482 return;
483 }
484 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
485
486 /*
487 * Allocate the control data structures, and create and load the
488 * DMA map for it.
489 */
490 if ((error = bus_dmamem_alloc(sc->sc_dmat,
491 sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
492 0)) != 0) {
493 printf("%s: unable to allocate control data, error = %d\n",
494 sc->sc_dev.dv_xname, error);
495 goto fail_0;
496 }
497
498 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
499 sizeof(struct stge_control_data), (caddr_t *)&sc->sc_control_data,
500 BUS_DMA_COHERENT)) != 0) {
501 printf("%s: unable to map control data, error = %d\n",
502 sc->sc_dev.dv_xname, error);
503 goto fail_1;
504 }
505
506 if ((error = bus_dmamap_create(sc->sc_dmat,
507 sizeof(struct stge_control_data), 1,
508 sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
509 printf("%s: unable to create control data DMA map, "
510 "error = %d\n", sc->sc_dev.dv_xname, error);
511 goto fail_2;
512 }
513
514 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
515 sc->sc_control_data, sizeof(struct stge_control_data), NULL,
516 0)) != 0) {
517 printf("%s: unable to load control data DMA map, error = %d\n",
518 sc->sc_dev.dv_xname, error);
519 goto fail_3;
520 }
521
522 /*
523 * Create the transmit buffer DMA maps. Note that rev B.3
524 * and earlier seem to have a bug regarding multi-fragment
525 * packets. We need to limit the number of Tx segments on
526 * such chips to 1.
527 */
528 for (i = 0; i < STGE_NTXDESC; i++) {
529 if ((error = bus_dmamap_create(sc->sc_dmat,
530 ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
531 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
532 printf("%s: unable to create tx DMA map %d, "
533 "error = %d\n", sc->sc_dev.dv_xname, i, error);
534 goto fail_4;
535 }
536 }
537
538 /*
539 * Create the receive buffer DMA maps.
540 */
541 for (i = 0; i < STGE_NRXDESC; i++) {
542 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
543 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
544 printf("%s: unable to create rx DMA map %d, "
545 "error = %d\n", sc->sc_dev.dv_xname, i, error);
546 goto fail_5;
547 }
548 sc->sc_rxsoft[i].ds_mbuf = NULL;
549 }
550
551 /*
552 * Determine if we're copper or fiber. It affects how we
553 * reset the card.
554 */
555 if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
556 AC_PhyMedia)
557 sc->sc_usefiber = 1;
558 else
559 sc->sc_usefiber = 0;
560
561 /*
562 * Reset the chip to a known state.
563 */
564 stge_reset(sc);
565
566 /*
567 * Reading the station address from the EEPROM doesn't seem
568 * to work, at least on my sample boards. Instead, since
569 * the reset sequence does AutoInit, read it from the station
570 * address registers. For Sundance 1023 you can only read it
571 * from EEPROM.
572 */
573 if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
574 enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
575 STGE_StationAddress0) & 0xff;
576 enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
577 STGE_StationAddress0) >> 8;
578 enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
579 STGE_StationAddress1) & 0xff;
580 enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
581 STGE_StationAddress1) >> 8;
582 enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
583 STGE_StationAddress2) & 0xff;
584 enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
585 STGE_StationAddress2) >> 8;
586 else {
587 uint16_t myaddr[ETHER_ADDR_LEN / 2];
588 for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
589 stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
590 &myaddr[i]);
591 myaddr[i] = le16toh(myaddr[i]);
592 }
593 (void)memcpy(enaddr, myaddr, sizeof(enaddr));
594 stge_1023_bug = 1;
595 }
596
597 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
598 ether_sprintf(enaddr));
599
600 /*
601 * Read some important bits from the PhyCtrl register.
602 */
603 sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
604 STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
605
606 /*
607 * Initialize our media structures and probe the MII.
608 */
609 sc->sc_mii.mii_ifp = ifp;
610 sc->sc_mii.mii_readreg = stge_mii_readreg;
611 sc->sc_mii.mii_writereg = stge_mii_writereg;
612 sc->sc_mii.mii_statchg = stge_mii_statchg;
613 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, stge_mediachange,
614 stge_mediastatus);
615 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
616 MII_OFFSET_ANY, MIIF_DOPAUSE);
617 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
618 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
619 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
620 } else
621 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
622
623 ifp = &sc->sc_ethercom.ec_if;
624 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
625 ifp->if_softc = sc;
626 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
627 ifp->if_ioctl = stge_ioctl;
628 ifp->if_start = stge_start;
629 ifp->if_watchdog = stge_watchdog;
630 ifp->if_init = stge_init;
631 ifp->if_stop = stge_stop;
632 IFQ_SET_READY(&ifp->if_snd);
633
634 /*
635 * The manual recommends disabling early transmit, so we
636 * do. It's disabled anyway, if using IP checksumming,
637 * since the entire packet must be in the FIFO in order
638 * for the chip to perform the checksum.
639 */
640 sc->sc_txthresh = 0x0fff;
641
642 /*
643 * Disable MWI if the PCI layer tells us to.
644 */
645 sc->sc_DMACtrl = 0;
646 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
647 sc->sc_DMACtrl |= DMAC_MWIDisable;
648
649 /*
650 * We can support 802.1Q VLAN-sized frames and jumbo
651 * Ethernet frames.
652 *
653 * XXX Figure out how to do hw-assisted VLAN tagging in
654 * XXX a reasonable way on this chip.
655 */
656 sc->sc_ethercom.ec_capabilities |=
657 ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
658 ETHERCAP_VLAN_HWTAGGING;
659
660 /*
661 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
662 */
663 sc->sc_ethercom.ec_if.if_capabilities |=
664 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
665 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
666 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
667
668 /*
669 * Attach the interface.
670 */
671 if_attach(ifp);
672 ether_ifattach(ifp, enaddr);
673
674 #ifdef STGE_EVENT_COUNTERS
675 /*
676 * Attach event counters.
677 */
678 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
679 NULL, sc->sc_dev.dv_xname, "txstall");
680 evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
681 NULL, sc->sc_dev.dv_xname, "txdmaintr");
682 evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
683 NULL, sc->sc_dev.dv_xname, "txindintr");
684 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
685 NULL, sc->sc_dev.dv_xname, "rxintr");
686
687 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
688 NULL, sc->sc_dev.dv_xname, "txseg1");
689 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
690 NULL, sc->sc_dev.dv_xname, "txseg2");
691 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
692 NULL, sc->sc_dev.dv_xname, "txseg3");
693 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
694 NULL, sc->sc_dev.dv_xname, "txseg4");
695 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
696 NULL, sc->sc_dev.dv_xname, "txseg5");
697 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
698 NULL, sc->sc_dev.dv_xname, "txsegmore");
699 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
700 NULL, sc->sc_dev.dv_xname, "txcopy");
701
702 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
703 NULL, sc->sc_dev.dv_xname, "rxipsum");
704 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
705 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
706 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
707 NULL, sc->sc_dev.dv_xname, "rxudpsum");
708 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
709 NULL, sc->sc_dev.dv_xname, "txipsum");
710 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
711 NULL, sc->sc_dev.dv_xname, "txtcpsum");
712 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
713 NULL, sc->sc_dev.dv_xname, "txudpsum");
714 #endif /* STGE_EVENT_COUNTERS */
715
716 /*
717 * Make sure the interface is shutdown during reboot.
718 */
719 sc->sc_sdhook = shutdownhook_establish(stge_shutdown, sc);
720 if (sc->sc_sdhook == NULL)
721 printf("%s: WARNING: unable to establish shutdown hook\n",
722 sc->sc_dev.dv_xname);
723 return;
724
725 /*
726 * Free any resources we've allocated during the failed attach
727 * attempt. Do this in reverse order and fall through.
728 */
729 fail_5:
730 for (i = 0; i < STGE_NRXDESC; i++) {
731 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
732 bus_dmamap_destroy(sc->sc_dmat,
733 sc->sc_rxsoft[i].ds_dmamap);
734 }
735 fail_4:
736 for (i = 0; i < STGE_NTXDESC; i++) {
737 if (sc->sc_txsoft[i].ds_dmamap != NULL)
738 bus_dmamap_destroy(sc->sc_dmat,
739 sc->sc_txsoft[i].ds_dmamap);
740 }
741 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
742 fail_3:
743 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
744 fail_2:
745 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
746 sizeof(struct stge_control_data));
747 fail_1:
748 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
749 fail_0:
750 return;
751 }
752
753 /*
754 * stge_shutdown:
755 *
756 * Make sure the interface is stopped at reboot time.
757 */
758 static void
759 stge_shutdown(void *arg)
760 {
761 struct stge_softc *sc = arg;
762
763 stge_stop(&sc->sc_ethercom.ec_if, 1);
764 }
765
766 static void
767 stge_dma_wait(struct stge_softc *sc)
768 {
769 int i;
770
771 for (i = 0; i < STGE_TIMEOUT; i++) {
772 delay(2);
773 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
774 DMAC_TxDMAInProg) == 0)
775 break;
776 }
777
778 if (i == STGE_TIMEOUT)
779 printf("%s: DMA wait timed out\n", sc->sc_dev.dv_xname);
780 }
781
782 /*
783 * stge_start: [ifnet interface function]
784 *
785 * Start packet transmission on the interface.
786 */
787 static void
788 stge_start(struct ifnet *ifp)
789 {
790 struct stge_softc *sc = ifp->if_softc;
791 struct mbuf *m0;
792 struct stge_descsoft *ds;
793 struct stge_tfd *tfd;
794 bus_dmamap_t dmamap;
795 int error, firsttx, nexttx, opending, seg, totlen;
796 uint64_t csum_flags;
797
798 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
799 return;
800
801 /*
802 * Remember the previous number of pending transmissions
803 * and the first descriptor we will use.
804 */
805 opending = sc->sc_txpending;
806 firsttx = STGE_NEXTTX(sc->sc_txlast);
807
808 /*
809 * Loop through the send queue, setting up transmit descriptors
810 * until we drain the queue, or use up all available transmit
811 * descriptors.
812 */
813 for (;;) {
814 struct m_tag *mtag;
815 uint64_t tfc;
816
817 /*
818 * Grab a packet off the queue.
819 */
820 IFQ_POLL(&ifp->if_snd, m0);
821 if (m0 == NULL)
822 break;
823
824 /*
825 * Leave one unused descriptor at the end of the
826 * list to prevent wrapping completely around.
827 */
828 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
829 STGE_EVCNT_INCR(&sc->sc_ev_txstall);
830 break;
831 }
832
833 /*
834 * See if we have any VLAN stuff.
835 */
836 mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
837
838 /*
839 * Get the last and next available transmit descriptor.
840 */
841 nexttx = STGE_NEXTTX(sc->sc_txlast);
842 tfd = &sc->sc_txdescs[nexttx];
843 ds = &sc->sc_txsoft[nexttx];
844
845 dmamap = ds->ds_dmamap;
846
847 /*
848 * Load the DMA map. If this fails, the packet either
849 * didn't fit in the alloted number of segments, or we
850 * were short on resources. For the too-many-segments
851 * case, we simply report an error and drop the packet,
852 * since we can't sanely copy a jumbo packet to a single
853 * buffer.
854 */
855 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
856 BUS_DMA_NOWAIT);
857 if (error) {
858 if (error == EFBIG) {
859 printf("%s: Tx packet consumes too many "
860 "DMA segments, dropping...\n",
861 sc->sc_dev.dv_xname);
862 IFQ_DEQUEUE(&ifp->if_snd, m0);
863 m_freem(m0);
864 continue;
865 }
866 /*
867 * Short on resources, just stop for now.
868 */
869 break;
870 }
871
872 IFQ_DEQUEUE(&ifp->if_snd, m0);
873
874 /*
875 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
876 */
877
878 /* Sync the DMA map. */
879 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
880 BUS_DMASYNC_PREWRITE);
881
882 /* Initialize the fragment list. */
883 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
884 tfd->tfd_frags[seg].frag_word0 =
885 htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
886 FRAG_LEN(dmamap->dm_segs[seg].ds_len));
887 totlen += dmamap->dm_segs[seg].ds_len;
888 }
889
890 #ifdef STGE_EVENT_COUNTERS
891 switch (dmamap->dm_nsegs) {
892 case 1:
893 STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
894 break;
895 case 2:
896 STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
897 break;
898 case 3:
899 STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
900 break;
901 case 4:
902 STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
903 break;
904 case 5:
905 STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
906 break;
907 default:
908 STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
909 break;
910 }
911 #endif /* STGE_EVENT_COUNTERS */
912
913 /*
914 * Initialize checksumming flags in the descriptor.
915 * Byte-swap constants so the compiler can optimize.
916 */
917 csum_flags = 0;
918 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
919 STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
920 csum_flags |= TFD_IPChecksumEnable;
921 }
922
923 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
924 STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
925 csum_flags |= TFD_TCPChecksumEnable;
926 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
927 STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
928 csum_flags |= TFD_UDPChecksumEnable;
929 }
930
931 /*
932 * Initialize the descriptor and give it to the chip.
933 * Check to see if we have a VLAN tag to insert.
934 */
935
936 tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
937 TFD_FragCount(seg) | csum_flags |
938 (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
939 TFD_TxDMAIndicate : 0);
940 if (mtag) {
941 #if 0
942 struct ether_header *eh =
943 mtod(m0, struct ether_header *);
944 u_int16_t etype = ntohs(eh->ether_type);
945 printf("%s: xmit (tag %d) etype %x\n",
946 ifp->if_xname, *mtod(n, int *), etype);
947 #endif
948 tfc |= TFD_VLANTagInsert |
949 #ifdef STGE_VLAN_CFI
950 TFD_CFI |
951 #endif
952 TFD_VID(VLAN_TAG_VALUE(mtag));
953 }
954 tfd->tfd_control = htole64(tfc);
955
956 /* Sync the descriptor. */
957 STGE_CDTXSYNC(sc, nexttx,
958 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
959
960 /*
961 * Kick the transmit DMA logic.
962 */
963 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
964 sc->sc_DMACtrl | DMAC_TxDMAPollNow);
965
966 /*
967 * Store a pointer to the packet so we can free it later.
968 */
969 ds->ds_mbuf = m0;
970
971 /* Advance the tx pointer. */
972 sc->sc_txpending++;
973 sc->sc_txlast = nexttx;
974
975 #if NBPFILTER > 0
976 /*
977 * Pass the packet to any BPF listeners.
978 */
979 if (ifp->if_bpf)
980 bpf_mtap(ifp->if_bpf, m0);
981 #endif /* NBPFILTER > 0 */
982 }
983
984 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
985 /* No more slots left; notify upper layer. */
986 ifp->if_flags |= IFF_OACTIVE;
987 }
988
989 if (sc->sc_txpending != opending) {
990 /*
991 * We enqueued packets. If the transmitter was idle,
992 * reset the txdirty pointer.
993 */
994 if (opending == 0)
995 sc->sc_txdirty = firsttx;
996
997 /* Set a watchdog timer in case the chip flakes out. */
998 ifp->if_timer = 5;
999 }
1000 }
1001
1002 /*
1003 * stge_watchdog: [ifnet interface function]
1004 *
1005 * Watchdog timer handler.
1006 */
1007 static void
1008 stge_watchdog(struct ifnet *ifp)
1009 {
1010 struct stge_softc *sc = ifp->if_softc;
1011
1012 /*
1013 * Sweep up first, since we don't interrupt every frame.
1014 */
1015 stge_txintr(sc);
1016 if (sc->sc_txpending != 0) {
1017 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1018 ifp->if_oerrors++;
1019
1020 (void) stge_init(ifp);
1021
1022 /* Try to get more packets going. */
1023 stge_start(ifp);
1024 }
1025 }
1026
1027 /*
1028 * stge_ioctl: [ifnet interface function]
1029 *
1030 * Handle control requests from the operator.
1031 */
1032 static int
1033 stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1034 {
1035 struct stge_softc *sc = ifp->if_softc;
1036 struct ifreq *ifr = (struct ifreq *)data;
1037 int s, error;
1038
1039 s = splnet();
1040
1041 switch (cmd) {
1042 case SIOCSIFMEDIA:
1043 case SIOCGIFMEDIA:
1044 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1045 break;
1046
1047 default:
1048 error = ether_ioctl(ifp, cmd, data);
1049 if (error == ENETRESET) {
1050 /*
1051 * Multicast list has changed; set the hardware filter
1052 * accordingly.
1053 */
1054 if (ifp->if_flags & IFF_RUNNING)
1055 stge_set_filter(sc);
1056 error = 0;
1057 }
1058 break;
1059 }
1060
1061 /* Try to get more packets going. */
1062 stge_start(ifp);
1063
1064 splx(s);
1065 return (error);
1066 }
1067
1068 /*
1069 * stge_intr:
1070 *
1071 * Interrupt service routine.
1072 */
1073 static int
1074 stge_intr(void *arg)
1075 {
1076 struct stge_softc *sc = arg;
1077 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1078 uint32_t txstat;
1079 int wantinit;
1080 uint16_t isr;
1081
1082 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1083 IS_InterruptStatus) == 0)
1084 return (0);
1085
1086 for (wantinit = 0; wantinit == 0;) {
1087 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1088 if ((isr & sc->sc_IntEnable) == 0)
1089 break;
1090
1091 /* Host interface errors. */
1092 if (isr & IS_HostError) {
1093 printf("%s: Host interface error\n",
1094 sc->sc_dev.dv_xname);
1095 wantinit = 1;
1096 continue;
1097 }
1098
1099 /* Receive interrupts. */
1100 if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
1101 STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1102 stge_rxintr(sc);
1103 if (isr & IS_RFDListEnd) {
1104 printf("%s: receive ring overflow\n",
1105 sc->sc_dev.dv_xname);
1106 /*
1107 * XXX Should try to recover from this
1108 * XXX more gracefully.
1109 */
1110 wantinit = 1;
1111 }
1112 }
1113
1114 /* Transmit interrupts. */
1115 if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
1116 #ifdef STGE_EVENT_COUNTERS
1117 if (isr & IS_TxDMAComplete)
1118 STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1119 #endif
1120 stge_txintr(sc);
1121 }
1122
1123 /* Statistics overflow. */
1124 if (isr & IS_UpdateStats)
1125 stge_stats_update(sc);
1126
1127 /* Transmission errors. */
1128 if (isr & IS_TxComplete) {
1129 STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1130 for (;;) {
1131 txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1132 STGE_TxStatus);
1133 if ((txstat & TS_TxComplete) == 0)
1134 break;
1135 if (txstat & TS_TxUnderrun) {
1136 sc->sc_txthresh++;
1137 if (sc->sc_txthresh > 0x0fff)
1138 sc->sc_txthresh = 0x0fff;
1139 printf("%s: transmit underrun, new "
1140 "threshold: %d bytes\n",
1141 sc->sc_dev.dv_xname,
1142 sc->sc_txthresh << 5);
1143 }
1144 if (txstat & TS_MaxCollisions)
1145 printf("%s: excessive collisions\n",
1146 sc->sc_dev.dv_xname);
1147 }
1148 wantinit = 1;
1149 }
1150
1151 }
1152
1153 if (wantinit)
1154 stge_init(ifp);
1155
1156 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1157 sc->sc_IntEnable);
1158
1159 /* Try to get more packets going. */
1160 stge_start(ifp);
1161
1162 return (1);
1163 }
1164
1165 /*
1166 * stge_txintr:
1167 *
1168 * Helper; handle transmit interrupts.
1169 */
1170 static void
1171 stge_txintr(struct stge_softc *sc)
1172 {
1173 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1174 struct stge_descsoft *ds;
1175 uint64_t control;
1176 int i;
1177
1178 ifp->if_flags &= ~IFF_OACTIVE;
1179
1180 /*
1181 * Go through our Tx list and free mbufs for those
1182 * frames which have been transmitted.
1183 */
1184 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1185 i = STGE_NEXTTX(i), sc->sc_txpending--) {
1186 ds = &sc->sc_txsoft[i];
1187
1188 STGE_CDTXSYNC(sc, i,
1189 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1190
1191 control = le64toh(sc->sc_txdescs[i].tfd_control);
1192 if ((control & TFD_TFDDone) == 0)
1193 break;
1194
1195 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1196 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1197 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1198 m_freem(ds->ds_mbuf);
1199 ds->ds_mbuf = NULL;
1200 }
1201
1202 /* Update the dirty transmit buffer pointer. */
1203 sc->sc_txdirty = i;
1204
1205 /*
1206 * If there are no more pending transmissions, cancel the watchdog
1207 * timer.
1208 */
1209 if (sc->sc_txpending == 0)
1210 ifp->if_timer = 0;
1211 }
1212
1213 /*
1214 * stge_rxintr:
1215 *
1216 * Helper; handle receive interrupts.
1217 */
1218 static void
1219 stge_rxintr(struct stge_softc *sc)
1220 {
1221 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1222 struct stge_descsoft *ds;
1223 struct mbuf *m, *tailm;
1224 uint64_t status;
1225 int i, len;
1226
1227 for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1228 ds = &sc->sc_rxsoft[i];
1229
1230 STGE_CDRXSYNC(sc, i,
1231 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1232
1233 status = le64toh(sc->sc_rxdescs[i].rfd_status);
1234
1235 if ((status & RFD_RFDDone) == 0)
1236 break;
1237
1238 if (__predict_false(sc->sc_rxdiscard)) {
1239 STGE_INIT_RXDESC(sc, i);
1240 if (status & RFD_FrameEnd) {
1241 /* Reset our state. */
1242 sc->sc_rxdiscard = 0;
1243 }
1244 continue;
1245 }
1246
1247 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1248 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1249
1250 m = ds->ds_mbuf;
1251
1252 /*
1253 * Add a new receive buffer to the ring.
1254 */
1255 if (stge_add_rxbuf(sc, i) != 0) {
1256 /*
1257 * Failed, throw away what we've done so
1258 * far, and discard the rest of the packet.
1259 */
1260 ifp->if_ierrors++;
1261 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1262 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1263 STGE_INIT_RXDESC(sc, i);
1264 if ((status & RFD_FrameEnd) == 0)
1265 sc->sc_rxdiscard = 1;
1266 if (sc->sc_rxhead != NULL)
1267 m_freem(sc->sc_rxhead);
1268 STGE_RXCHAIN_RESET(sc);
1269 continue;
1270 }
1271
1272 #ifdef DIAGNOSTIC
1273 if (status & RFD_FrameStart) {
1274 KASSERT(sc->sc_rxhead == NULL);
1275 KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1276 }
1277 #endif
1278
1279 STGE_RXCHAIN_LINK(sc, m);
1280
1281 /*
1282 * If this is not the end of the packet, keep
1283 * looking.
1284 */
1285 if ((status & RFD_FrameEnd) == 0) {
1286 sc->sc_rxlen += m->m_len;
1287 continue;
1288 }
1289
1290 /*
1291 * Okay, we have the entire packet now...
1292 */
1293 *sc->sc_rxtailp = NULL;
1294 m = sc->sc_rxhead;
1295 tailm = sc->sc_rxtail;
1296
1297 STGE_RXCHAIN_RESET(sc);
1298
1299 /*
1300 * If the packet had an error, drop it. Note we
1301 * count the error later in the periodic stats update.
1302 */
1303 if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1304 RFD_RxAlignmentError | RFD_RxFCSError |
1305 RFD_RxLengthError)) {
1306 m_freem(m);
1307 continue;
1308 }
1309
1310 /*
1311 * No errors.
1312 *
1313 * Note we have configured the chip to not include
1314 * the CRC at the end of the packet.
1315 */
1316 len = RFD_RxDMAFrameLen(status);
1317 tailm->m_len = len - sc->sc_rxlen;
1318
1319 /*
1320 * If the packet is small enough to fit in a
1321 * single header mbuf, allocate one and copy
1322 * the data into it. This greatly reduces
1323 * memory consumption when we receive lots
1324 * of small packets.
1325 */
1326 if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1327 struct mbuf *nm;
1328 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1329 if (nm == NULL) {
1330 ifp->if_ierrors++;
1331 m_freem(m);
1332 continue;
1333 }
1334 nm->m_data += 2;
1335 nm->m_pkthdr.len = nm->m_len = len;
1336 m_copydata(m, 0, len, mtod(nm, caddr_t));
1337 m_freem(m);
1338 m = nm;
1339 }
1340
1341 /*
1342 * Set the incoming checksum information for the packet.
1343 */
1344 if (status & RFD_IPDetected) {
1345 STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1346 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1347 if (status & RFD_IPError)
1348 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1349 if (status & RFD_TCPDetected) {
1350 STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1351 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1352 if (status & RFD_TCPError)
1353 m->m_pkthdr.csum_flags |=
1354 M_CSUM_TCP_UDP_BAD;
1355 } else if (status & RFD_UDPDetected) {
1356 STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1357 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1358 if (status & RFD_UDPError)
1359 m->m_pkthdr.csum_flags |=
1360 M_CSUM_TCP_UDP_BAD;
1361 }
1362 }
1363
1364 m->m_pkthdr.rcvif = ifp;
1365 m->m_pkthdr.len = len;
1366
1367 #if NBPFILTER > 0
1368 /*
1369 * Pass this up to any BPF listeners, but only
1370 * pass if up the stack if it's for us.
1371 */
1372 if (ifp->if_bpf)
1373 bpf_mtap(ifp->if_bpf, m);
1374 #endif /* NBPFILTER > 0 */
1375 #ifdef STGE_VLAN_UNTAG
1376 /*
1377 * Check for VLAN tagged packets
1378 */
1379 if (status & RFD_VLANDetected)
1380 VLAN_INPUT_TAG(ifp, m, RFD_TCI(status), continue);
1381
1382 #endif
1383 #if 0
1384 if (status & RFD_VLANDetected) {
1385 struct ether_header *eh;
1386 u_int16_t etype;
1387
1388 eh = mtod(m, struct ether_header *);
1389 etype = ntohs(eh->ether_type);
1390 printf("%s: VLANtag detected (TCI %d) etype %x\n",
1391 ifp->if_xname, (u_int16_t) RFD_TCI(status),
1392 etype);
1393 }
1394 #endif
1395 /* Pass it on. */
1396 (*ifp->if_input)(ifp, m);
1397 }
1398
1399 /* Update the receive pointer. */
1400 sc->sc_rxptr = i;
1401 }
1402
1403 /*
1404 * stge_tick:
1405 *
1406 * One second timer, used to tick the MII.
1407 */
1408 static void
1409 stge_tick(void *arg)
1410 {
1411 struct stge_softc *sc = arg;
1412 int s;
1413
1414 s = splnet();
1415 mii_tick(&sc->sc_mii);
1416 stge_stats_update(sc);
1417 splx(s);
1418
1419 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1420 }
1421
1422 /*
1423 * stge_stats_update:
1424 *
1425 * Read the TC9021 statistics counters.
1426 */
1427 static void
1428 stge_stats_update(struct stge_softc *sc)
1429 {
1430 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1431 bus_space_tag_t st = sc->sc_st;
1432 bus_space_handle_t sh = sc->sc_sh;
1433
1434 (void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1435
1436 ifp->if_ipackets +=
1437 bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1438
1439 ifp->if_ierrors +=
1440 (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1441
1442 (void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1443
1444 ifp->if_opackets +=
1445 bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1446
1447 ifp->if_collisions +=
1448 bus_space_read_4(st, sh, STGE_LateCollisions) +
1449 bus_space_read_4(st, sh, STGE_MultiColFrames) +
1450 bus_space_read_4(st, sh, STGE_SingleColFrames);
1451
1452 ifp->if_oerrors +=
1453 (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1454 (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1455 }
1456
1457 /*
1458 * stge_reset:
1459 *
1460 * Perform a soft reset on the TC9021.
1461 */
1462 static void
1463 stge_reset(struct stge_softc *sc)
1464 {
1465 uint32_t ac;
1466 int i;
1467
1468 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1469
1470 /*
1471 * Only assert RstOut if we're fiber. We need GMII clocks
1472 * to be present in order for the reset to complete on fiber
1473 * cards.
1474 */
1475 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1476 ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1477 AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1478 (sc->sc_usefiber ? AC_RstOut : 0));
1479
1480 delay(50000);
1481
1482 for (i = 0; i < STGE_TIMEOUT; i++) {
1483 delay(5000);
1484 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1485 AC_ResetBusy) == 0)
1486 break;
1487 }
1488
1489 if (i == STGE_TIMEOUT)
1490 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1491
1492 delay(1000);
1493 }
1494
1495 /*
1496 * stge_init: [ ifnet interface function ]
1497 *
1498 * Initialize the interface. Must be called at splnet().
1499 */
1500 static int
1501 stge_init(struct ifnet *ifp)
1502 {
1503 struct stge_softc *sc = ifp->if_softc;
1504 bus_space_tag_t st = sc->sc_st;
1505 bus_space_handle_t sh = sc->sc_sh;
1506 struct stge_descsoft *ds;
1507 int i, error = 0;
1508
1509 /*
1510 * Cancel any pending I/O.
1511 */
1512 stge_stop(ifp, 0);
1513
1514 /*
1515 * Reset the chip to a known state.
1516 */
1517 stge_reset(sc);
1518
1519 /*
1520 * Initialize the transmit descriptor ring.
1521 */
1522 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1523 for (i = 0; i < STGE_NTXDESC; i++) {
1524 sc->sc_txdescs[i].tfd_next = htole64(
1525 STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1526 sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1527 }
1528 sc->sc_txpending = 0;
1529 sc->sc_txdirty = 0;
1530 sc->sc_txlast = STGE_NTXDESC - 1;
1531
1532 /*
1533 * Initialize the receive descriptor and receive job
1534 * descriptor rings.
1535 */
1536 for (i = 0; i < STGE_NRXDESC; i++) {
1537 ds = &sc->sc_rxsoft[i];
1538 if (ds->ds_mbuf == NULL) {
1539 if ((error = stge_add_rxbuf(sc, i)) != 0) {
1540 printf("%s: unable to allocate or map rx "
1541 "buffer %d, error = %d\n",
1542 sc->sc_dev.dv_xname, i, error);
1543 /*
1544 * XXX Should attempt to run with fewer receive
1545 * XXX buffers instead of just failing.
1546 */
1547 stge_rxdrain(sc);
1548 goto out;
1549 }
1550 } else
1551 STGE_INIT_RXDESC(sc, i);
1552 }
1553 sc->sc_rxptr = 0;
1554 sc->sc_rxdiscard = 0;
1555 STGE_RXCHAIN_RESET(sc);
1556
1557 /* Set the station address. */
1558 for (i = 0; i < 6; i++)
1559 bus_space_write_1(st, sh, STGE_StationAddress0 + i,
1560 LLADDR(ifp->if_sadl)[i]);
1561
1562 /*
1563 * Set the statistics masks. Disable all the RMON stats,
1564 * and disable selected stats in the non-RMON stats registers.
1565 */
1566 bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1567 bus_space_write_4(st, sh, STGE_StatisticsMask,
1568 (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1569 (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1570 (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1571 (1U << 21));
1572
1573 /* Set up the receive filter. */
1574 stge_set_filter(sc);
1575
1576 /*
1577 * Give the transmit and receive ring to the chip.
1578 */
1579 bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1580 bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1581 STGE_CDTXADDR(sc, sc->sc_txdirty));
1582
1583 bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1584 bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1585 STGE_CDRXADDR(sc, sc->sc_rxptr));
1586
1587 /*
1588 * Initialize the Tx auto-poll period. It's OK to make this number
1589 * large (255 is the max, but we use 127) -- we explicitly kick the
1590 * transmit engine when there's actually a packet.
1591 */
1592 bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1593
1594 /* ..and the Rx auto-poll period. */
1595 bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1596
1597 /* Initialize the Tx start threshold. */
1598 bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1599
1600 /* RX DMA thresholds, from linux */
1601 bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
1602 bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
1603
1604 /*
1605 * Initialize the Rx DMA interrupt control register. We
1606 * request an interrupt after every incoming packet, but
1607 * defer it for 32us (64 * 512 ns). When the number of
1608 * interrupts pending reaches 8, we stop deferring the
1609 * interrupt, and signal it immediately.
1610 */
1611 bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1612 RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1613
1614 /*
1615 * Initialize the interrupt mask.
1616 */
1617 sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1618 IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1619 bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1620 bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1621
1622 /*
1623 * Configure the DMA engine.
1624 * XXX Should auto-tune TxBurstLimit.
1625 */
1626 bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1627 DMAC_TxBurstLimit(3));
1628
1629 /*
1630 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1631 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1632 * empty again.
1633 */
1634 bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1635 bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1636
1637 /*
1638 * Set the maximum frame size.
1639 */
1640 bus_space_write_2(st, sh, STGE_MaxFrameSize,
1641 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1642 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1643 ETHER_VLAN_ENCAP_LEN : 0));
1644
1645 /*
1646 * Initialize MacCtrl -- do it before setting the media,
1647 * as setting the media will actually program the register.
1648 *
1649 * Note: We have to poke the IFS value before poking
1650 * anything else.
1651 */
1652 sc->sc_MACCtrl = MC_IFSSelect(0);
1653 bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1654 sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1655 #ifdef STGE_VLAN_UNTAG
1656 sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1657 #endif
1658
1659 if (sc->sc_rev >= 6) { /* >= B.2 */
1660 /* Multi-frag frame bug work-around. */
1661 bus_space_write_2(st, sh, STGE_DebugCtrl,
1662 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1663
1664 /* Tx Poll Now bug work-around. */
1665 bus_space_write_2(st, sh, STGE_DebugCtrl,
1666 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1667 /* XXX ? from linux */
1668 bus_space_write_2(st, sh, STGE_DebugCtrl,
1669 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
1670 }
1671
1672 /*
1673 * Set the current media.
1674 */
1675 mii_mediachg(&sc->sc_mii);
1676
1677 /*
1678 * Start the one second MII clock.
1679 */
1680 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1681
1682 /*
1683 * ...all done!
1684 */
1685 ifp->if_flags |= IFF_RUNNING;
1686 ifp->if_flags &= ~IFF_OACTIVE;
1687
1688 out:
1689 if (error)
1690 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1691 return (error);
1692 }
1693
1694 /*
1695 * stge_drain:
1696 *
1697 * Drain the receive queue.
1698 */
1699 static void
1700 stge_rxdrain(struct stge_softc *sc)
1701 {
1702 struct stge_descsoft *ds;
1703 int i;
1704
1705 for (i = 0; i < STGE_NRXDESC; i++) {
1706 ds = &sc->sc_rxsoft[i];
1707 if (ds->ds_mbuf != NULL) {
1708 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1709 ds->ds_mbuf->m_next = NULL;
1710 m_freem(ds->ds_mbuf);
1711 ds->ds_mbuf = NULL;
1712 }
1713 }
1714 }
1715
1716 /*
1717 * stge_stop: [ ifnet interface function ]
1718 *
1719 * Stop transmission on the interface.
1720 */
1721 static void
1722 stge_stop(struct ifnet *ifp, int disable)
1723 {
1724 struct stge_softc *sc = ifp->if_softc;
1725 struct stge_descsoft *ds;
1726 int i;
1727
1728 /*
1729 * Stop the one second clock.
1730 */
1731 callout_stop(&sc->sc_tick_ch);
1732
1733 /* Down the MII. */
1734 mii_down(&sc->sc_mii);
1735
1736 /*
1737 * Disable interrupts.
1738 */
1739 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1740
1741 /*
1742 * Stop receiver, transmitter, and stats update.
1743 */
1744 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1745 MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1746
1747 /*
1748 * Stop the transmit and receive DMA.
1749 */
1750 stge_dma_wait(sc);
1751 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1752 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1753 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1754 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1755
1756 /*
1757 * Release any queued transmit buffers.
1758 */
1759 for (i = 0; i < STGE_NTXDESC; i++) {
1760 ds = &sc->sc_txsoft[i];
1761 if (ds->ds_mbuf != NULL) {
1762 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1763 m_freem(ds->ds_mbuf);
1764 ds->ds_mbuf = NULL;
1765 }
1766 }
1767
1768 if (disable)
1769 stge_rxdrain(sc);
1770
1771 /*
1772 * Mark the interface down and cancel the watchdog timer.
1773 */
1774 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1775 ifp->if_timer = 0;
1776 }
1777
1778 static int
1779 stge_eeprom_wait(struct stge_softc *sc)
1780 {
1781 int i;
1782
1783 for (i = 0; i < STGE_TIMEOUT; i++) {
1784 delay(1000);
1785 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1786 EC_EepromBusy) == 0)
1787 return (0);
1788 }
1789 return (1);
1790 }
1791
1792 /*
1793 * stge_read_eeprom:
1794 *
1795 * Read data from the serial EEPROM.
1796 */
1797 static void
1798 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1799 {
1800
1801 if (stge_eeprom_wait(sc))
1802 printf("%s: EEPROM failed to come ready\n",
1803 sc->sc_dev.dv_xname);
1804
1805 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1806 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1807 if (stge_eeprom_wait(sc))
1808 printf("%s: EEPROM read timed out\n",
1809 sc->sc_dev.dv_xname);
1810 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1811 }
1812
1813 /*
1814 * stge_add_rxbuf:
1815 *
1816 * Add a receive buffer to the indicated descriptor.
1817 */
1818 static int
1819 stge_add_rxbuf(struct stge_softc *sc, int idx)
1820 {
1821 struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1822 struct mbuf *m;
1823 int error;
1824
1825 MGETHDR(m, M_DONTWAIT, MT_DATA);
1826 if (m == NULL)
1827 return (ENOBUFS);
1828
1829 MCLGET(m, M_DONTWAIT);
1830 if ((m->m_flags & M_EXT) == 0) {
1831 m_freem(m);
1832 return (ENOBUFS);
1833 }
1834
1835 m->m_data = m->m_ext.ext_buf + 2;
1836 m->m_len = MCLBYTES - 2;
1837
1838 if (ds->ds_mbuf != NULL)
1839 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1840
1841 ds->ds_mbuf = m;
1842
1843 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1844 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1845 if (error) {
1846 printf("%s: can't load rx DMA map %d, error = %d\n",
1847 sc->sc_dev.dv_xname, idx, error);
1848 panic("stge_add_rxbuf"); /* XXX */
1849 }
1850
1851 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1852 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1853
1854 STGE_INIT_RXDESC(sc, idx);
1855
1856 return (0);
1857 }
1858
1859 /*
1860 * stge_set_filter:
1861 *
1862 * Set up the receive filter.
1863 */
1864 static void
1865 stge_set_filter(struct stge_softc *sc)
1866 {
1867 struct ethercom *ec = &sc->sc_ethercom;
1868 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1869 struct ether_multi *enm;
1870 struct ether_multistep step;
1871 uint32_t crc;
1872 uint32_t mchash[2];
1873
1874 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1875 if (ifp->if_flags & IFF_BROADCAST)
1876 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1877
1878 /* XXX: ST1023 only works in promiscuous mode */
1879 if (stge_1023_bug)
1880 ifp->if_flags |= IFF_PROMISC;
1881
1882 if (ifp->if_flags & IFF_PROMISC) {
1883 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1884 goto allmulti;
1885 }
1886
1887 /*
1888 * Set up the multicast address filter by passing all multicast
1889 * addresses through a CRC generator, and then using the low-order
1890 * 6 bits as an index into the 64 bit multicast hash table. The
1891 * high order bits select the register, while the rest of the bits
1892 * select the bit within the register.
1893 */
1894
1895 memset(mchash, 0, sizeof(mchash));
1896
1897 ETHER_FIRST_MULTI(step, ec, enm);
1898 if (enm == NULL)
1899 goto done;
1900
1901 while (enm != NULL) {
1902 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1903 /*
1904 * We must listen to a range of multicast addresses.
1905 * For now, just accept all multicasts, rather than
1906 * trying to set only those filter bits needed to match
1907 * the range. (At this time, the only use of address
1908 * ranges is for IP multicast routing, for which the
1909 * range is big enough to require all bits set.)
1910 */
1911 goto allmulti;
1912 }
1913
1914 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1915
1916 /* Just want the 6 least significant bits. */
1917 crc &= 0x3f;
1918
1919 /* Set the corresponding bit in the hash table. */
1920 mchash[crc >> 5] |= 1 << (crc & 0x1f);
1921
1922 ETHER_NEXT_MULTI(step, enm);
1923 }
1924
1925 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1926
1927 ifp->if_flags &= ~IFF_ALLMULTI;
1928 goto done;
1929
1930 allmulti:
1931 ifp->if_flags |= IFF_ALLMULTI;
1932 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1933
1934 done:
1935 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1936 /*
1937 * Program the multicast hash table.
1938 */
1939 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1940 mchash[0]);
1941 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1942 mchash[1]);
1943 }
1944
1945 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1946 sc->sc_ReceiveMode);
1947 }
1948
1949 /*
1950 * stge_mii_readreg: [mii interface function]
1951 *
1952 * Read a PHY register on the MII of the TC9021.
1953 */
1954 static int
1955 stge_mii_readreg(struct device *self, int phy, int reg)
1956 {
1957
1958 return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1959 }
1960
1961 /*
1962 * stge_mii_writereg: [mii interface function]
1963 *
1964 * Write a PHY register on the MII of the TC9021.
1965 */
1966 static void
1967 stge_mii_writereg(struct device *self, int phy, int reg, int val)
1968 {
1969
1970 mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1971 }
1972
1973 /*
1974 * stge_mii_statchg: [mii interface function]
1975 *
1976 * Callback from MII layer when media changes.
1977 */
1978 static void
1979 stge_mii_statchg(struct device *self)
1980 {
1981 struct stge_softc *sc = (struct stge_softc *) self;
1982
1983 if (sc->sc_mii.mii_media_active & IFM_FDX)
1984 sc->sc_MACCtrl |= MC_DuplexSelect;
1985 else
1986 sc->sc_MACCtrl &= ~MC_DuplexSelect;
1987
1988 /* XXX 802.1x flow-control? */
1989
1990 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1991 }
1992
1993 /*
1994 * sste_mii_bitbang_read: [mii bit-bang interface function]
1995 *
1996 * Read the MII serial port for the MII bit-bang module.
1997 */
1998 static uint32_t
1999 stge_mii_bitbang_read(struct device *self)
2000 {
2001 struct stge_softc *sc = (void *) self;
2002
2003 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
2004 }
2005
2006 /*
2007 * stge_mii_bitbang_write: [mii big-bang interface function]
2008 *
2009 * Write the MII serial port for the MII bit-bang module.
2010 */
2011 static void
2012 stge_mii_bitbang_write(struct device *self, uint32_t val)
2013 {
2014 struct stge_softc *sc = (void *) self;
2015
2016 bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
2017 val | sc->sc_PhyCtrl);
2018 }
2019
2020 /*
2021 * stge_mediastatus: [ifmedia interface function]
2022 *
2023 * Get the current interface media status.
2024 */
2025 static void
2026 stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2027 {
2028 struct stge_softc *sc = ifp->if_softc;
2029
2030 mii_pollstat(&sc->sc_mii);
2031 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2032 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2033 }
2034
2035 /*
2036 * stge_mediachange: [ifmedia interface function]
2037 *
2038 * Set hardware to newly-selected media.
2039 */
2040 static int
2041 stge_mediachange(struct ifnet *ifp)
2042 {
2043 struct stge_softc *sc = ifp->if_softc;
2044
2045 if (ifp->if_flags & IFF_UP)
2046 mii_mediachg(&sc->sc_mii);
2047 return (0);
2048 }
2049