Home | History | Annotate | Line # | Download | only in pci
if_stge.c revision 1.31
      1 /*	$NetBSD: if_stge.c,v 1.31 2005/07/28 16:04:24 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Device driver for the Sundance Tech. TC9021 10/100/1000
     41  * Ethernet controller.
     42  */
     43 
     44 #include <sys/cdefs.h>
     45 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.31 2005/07/28 16:04:24 christos Exp $");
     46 
     47 #include "bpfilter.h"
     48 
     49 #include <sys/param.h>
     50 #include <sys/systm.h>
     51 #include <sys/callout.h>
     52 #include <sys/mbuf.h>
     53 #include <sys/malloc.h>
     54 #include <sys/kernel.h>
     55 #include <sys/socket.h>
     56 #include <sys/ioctl.h>
     57 #include <sys/errno.h>
     58 #include <sys/device.h>
     59 #include <sys/queue.h>
     60 
     61 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     62 
     63 #include <net/if.h>
     64 #include <net/if_dl.h>
     65 #include <net/if_media.h>
     66 #include <net/if_ether.h>
     67 
     68 #if NBPFILTER > 0
     69 #include <net/bpf.h>
     70 #endif
     71 
     72 #include <machine/bus.h>
     73 #include <machine/intr.h>
     74 
     75 #include <dev/mii/mii.h>
     76 #include <dev/mii/miivar.h>
     77 #include <dev/mii/mii_bitbang.h>
     78 
     79 #include <dev/pci/pcireg.h>
     80 #include <dev/pci/pcivar.h>
     81 #include <dev/pci/pcidevs.h>
     82 
     83 #include <dev/pci/if_stgereg.h>
     84 
     85 /* #define	STGE_CU_BUG			1 */
     86 #define	STGE_VLAN_UNTAG			1
     87 /* #define	STGE_VLAN_CFI		1 */
     88 
     89 /*
     90  * Transmit descriptor list size.
     91  */
     92 #define	STGE_NTXDESC		256
     93 #define	STGE_NTXDESC_MASK	(STGE_NTXDESC - 1)
     94 #define	STGE_NEXTTX(x)		(((x) + 1) & STGE_NTXDESC_MASK)
     95 
     96 /*
     97  * Receive descriptor list size.
     98  */
     99 #define	STGE_NRXDESC		256
    100 #define	STGE_NRXDESC_MASK	(STGE_NRXDESC - 1)
    101 #define	STGE_NEXTRX(x)		(((x) + 1) & STGE_NRXDESC_MASK)
    102 
    103 /*
    104  * Only interrupt every N frames.  Must be a power-of-two.
    105  */
    106 #define	STGE_TXINTR_SPACING	16
    107 #define	STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
    108 
    109 /*
    110  * Control structures are DMA'd to the TC9021 chip.  We allocate them in
    111  * a single clump that maps to a single DMA segment to make several things
    112  * easier.
    113  */
    114 struct stge_control_data {
    115 	/*
    116 	 * The transmit descriptors.
    117 	 */
    118 	struct stge_tfd scd_txdescs[STGE_NTXDESC];
    119 
    120 	/*
    121 	 * The receive descriptors.
    122 	 */
    123 	struct stge_rfd scd_rxdescs[STGE_NRXDESC];
    124 };
    125 
    126 #define	STGE_CDOFF(x)	offsetof(struct stge_control_data, x)
    127 #define	STGE_CDTXOFF(x)	STGE_CDOFF(scd_txdescs[(x)])
    128 #define	STGE_CDRXOFF(x)	STGE_CDOFF(scd_rxdescs[(x)])
    129 
    130 /*
    131  * Software state for transmit and receive jobs.
    132  */
    133 struct stge_descsoft {
    134 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
    135 	bus_dmamap_t ds_dmamap;		/* our DMA map */
    136 };
    137 
    138 /*
    139  * Software state per device.
    140  */
    141 struct stge_softc {
    142 	struct device sc_dev;		/* generic device information */
    143 	bus_space_tag_t sc_st;		/* bus space tag */
    144 	bus_space_handle_t sc_sh;	/* bus space handle */
    145 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    146 	struct ethercom sc_ethercom;	/* ethernet common data */
    147 	void *sc_sdhook;		/* shutdown hook */
    148 	int sc_rev;			/* silicon revision */
    149 
    150 	void *sc_ih;			/* interrupt cookie */
    151 
    152 	struct mii_data sc_mii;		/* MII/media information */
    153 
    154 	struct callout sc_tick_ch;	/* tick callout */
    155 
    156 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    157 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    158 
    159 	/*
    160 	 * Software state for transmit and receive descriptors.
    161 	 */
    162 	struct stge_descsoft sc_txsoft[STGE_NTXDESC];
    163 	struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
    164 
    165 	/*
    166 	 * Control data structures.
    167 	 */
    168 	struct stge_control_data *sc_control_data;
    169 #define	sc_txdescs	sc_control_data->scd_txdescs
    170 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    171 
    172 #ifdef STGE_EVENT_COUNTERS
    173 	/*
    174 	 * Event counters.
    175 	 */
    176 	struct evcnt sc_ev_txstall;	/* Tx stalled */
    177 	struct evcnt sc_ev_txdmaintr;	/* Tx DMA interrupts */
    178 	struct evcnt sc_ev_txindintr;	/* Tx Indicate interrupts */
    179 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    180 
    181 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
    182 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
    183 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
    184 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
    185 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
    186 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
    187 	struct evcnt sc_ev_txcopy;	/* Tx packets that we had to copy */
    188 
    189 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    190 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    191 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
    192 
    193 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    194 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    195 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    196 #endif /* STGE_EVENT_COUNTERS */
    197 
    198 	int	sc_txpending;		/* number of Tx requests pending */
    199 	int	sc_txdirty;		/* first dirty Tx descriptor */
    200 	int	sc_txlast;		/* last used Tx descriptor */
    201 
    202 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    203 	int	sc_rxdiscard;
    204 	int	sc_rxlen;
    205 	struct mbuf *sc_rxhead;
    206 	struct mbuf *sc_rxtail;
    207 	struct mbuf **sc_rxtailp;
    208 
    209 	int	sc_txthresh;		/* Tx threshold */
    210 	uint32_t sc_usefiber:1;		/* if we're fiber */
    211 	uint32_t sc_stge1023:1;		/* are we a 1023 */
    212 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
    213 	uint32_t sc_MACCtrl;		/* prototype MacCtrl register */
    214 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
    215 	uint16_t sc_ReceiveMode;	/* prototype ReceiveMode register */
    216 	uint8_t sc_PhyCtrl;		/* prototype PhyCtrl register */
    217 };
    218 
    219 #define	STGE_RXCHAIN_RESET(sc)						\
    220 do {									\
    221 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    222 	*(sc)->sc_rxtailp = NULL;					\
    223 	(sc)->sc_rxlen = 0;						\
    224 } while (/*CONSTCOND*/0)
    225 
    226 #define	STGE_RXCHAIN_LINK(sc, m)					\
    227 do {									\
    228 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    229 	(sc)->sc_rxtailp = &(m)->m_next;				\
    230 } while (/*CONSTCOND*/0)
    231 
    232 #ifdef STGE_EVENT_COUNTERS
    233 #define	STGE_EVCNT_INCR(ev)	(ev)->ev_count++
    234 #else
    235 #define	STGE_EVCNT_INCR(ev)	/* nothing */
    236 #endif
    237 
    238 #define	STGE_CDTXADDR(sc, x)	((sc)->sc_cddma + STGE_CDTXOFF((x)))
    239 #define	STGE_CDRXADDR(sc, x)	((sc)->sc_cddma + STGE_CDRXOFF((x)))
    240 
    241 #define	STGE_CDTXSYNC(sc, x, ops)					\
    242 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    243 	    STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
    244 
    245 #define	STGE_CDRXSYNC(sc, x, ops)					\
    246 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    247 	    STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
    248 
    249 #define	STGE_INIT_RXDESC(sc, x)						\
    250 do {									\
    251 	struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
    252 	struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)];		\
    253 									\
    254 	/*								\
    255 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    256 	 * so that the payload after the Ethernet header is aligned	\
    257 	 * to a 4-byte boundary.					\
    258 	 */								\
    259 	__rfd->rfd_frag.frag_word0 =					\
    260 	    htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
    261 	    FRAG_LEN(MCLBYTES - 2));					\
    262 	__rfd->rfd_next =						\
    263 	    htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x))));	\
    264 	__rfd->rfd_status = 0;						\
    265 	STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    266 } while (/*CONSTCOND*/0)
    267 
    268 #define STGE_TIMEOUT 1000
    269 
    270 static void	stge_start(struct ifnet *);
    271 static void	stge_watchdog(struct ifnet *);
    272 static int	stge_ioctl(struct ifnet *, u_long, caddr_t);
    273 static int	stge_init(struct ifnet *);
    274 static void	stge_stop(struct ifnet *, int);
    275 
    276 static void	stge_shutdown(void *);
    277 
    278 static void	stge_reset(struct stge_softc *);
    279 static void	stge_rxdrain(struct stge_softc *);
    280 static int	stge_add_rxbuf(struct stge_softc *, int);
    281 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
    282 static void	stge_tick(void *);
    283 
    284 static void	stge_stats_update(struct stge_softc *);
    285 
    286 static void	stge_set_filter(struct stge_softc *);
    287 
    288 static int	stge_intr(void *);
    289 static void	stge_txintr(struct stge_softc *);
    290 static void	stge_rxintr(struct stge_softc *);
    291 
    292 static int	stge_mii_readreg(struct device *, int, int);
    293 static void	stge_mii_writereg(struct device *, int, int, int);
    294 static void	stge_mii_statchg(struct device *);
    295 
    296 static int	stge_mediachange(struct ifnet *);
    297 static void	stge_mediastatus(struct ifnet *, struct ifmediareq *);
    298 
    299 static int	stge_match(struct device *, struct cfdata *, void *);
    300 static void	stge_attach(struct device *, struct device *, void *);
    301 
    302 int	stge_copy_small = 0;
    303 
    304 CFATTACH_DECL(stge, sizeof(struct stge_softc),
    305     stge_match, stge_attach, NULL, NULL);
    306 
    307 static uint32_t stge_mii_bitbang_read(struct device *);
    308 static void	stge_mii_bitbang_write(struct device *, uint32_t);
    309 
    310 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
    311 	stge_mii_bitbang_read,
    312 	stge_mii_bitbang_write,
    313 	{
    314 		PC_MgmtData,		/* MII_BIT_MDO */
    315 		PC_MgmtData,		/* MII_BIT_MDI */
    316 		PC_MgmtClk,		/* MII_BIT_MDC */
    317 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
    318 		0,			/* MII_BIT_DIR_PHY_HOST */
    319 	}
    320 };
    321 
    322 /*
    323  * Devices supported by this driver.
    324  */
    325 static const struct stge_product {
    326 	pci_vendor_id_t		stge_vendor;
    327 	pci_product_id_t	stge_product;
    328 	const char		*stge_name;
    329 } stge_products[] = {
    330 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST1023,
    331 	  "Sundance ST-1023 Gigabit Ethernet" },
    332 
    333 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST2021,
    334 	  "Sundance ST-2021 Gigabit Ethernet" },
    335 
    336 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021,
    337 	  "Tamarack TC9021 Gigabit Ethernet" },
    338 
    339 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021_ALT,
    340 	  "Tamarack TC9021 Gigabit Ethernet" },
    341 
    342 	/*
    343 	 * The Sundance sample boards use the Sundance vendor ID,
    344 	 * but the Tamarack product ID.
    345 	 */
    346 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021,
    347 	  "Sundance TC9021 Gigabit Ethernet" },
    348 
    349 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021_ALT,
    350 	  "Sundance TC9021 Gigabit Ethernet" },
    351 
    352 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL4000,
    353 	  "D-Link DL-4000 Gigabit Ethernet" },
    354 
    355 	{ PCI_VENDOR_ANTARES,		PCI_PRODUCT_ANTARES_TC9021,
    356 	  "Antares Gigabit Ethernet" },
    357 
    358 	{ 0,				0,
    359 	  NULL },
    360 };
    361 
    362 static const struct stge_product *
    363 stge_lookup(const struct pci_attach_args *pa)
    364 {
    365 	const struct stge_product *sp;
    366 
    367 	for (sp = stge_products; sp->stge_name != NULL; sp++) {
    368 		if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
    369 		    PCI_PRODUCT(pa->pa_id) == sp->stge_product)
    370 			return (sp);
    371 	}
    372 	return (NULL);
    373 }
    374 
    375 static int
    376 stge_match(struct device *parent, struct cfdata *cf, void *aux)
    377 {
    378 	struct pci_attach_args *pa = aux;
    379 
    380 	if (stge_lookup(pa) != NULL)
    381 		return (1);
    382 
    383 	return (0);
    384 }
    385 
    386 static void
    387 stge_attach(struct device *parent, struct device *self, void *aux)
    388 {
    389 	struct stge_softc *sc = (struct stge_softc *) self;
    390 	struct pci_attach_args *pa = aux;
    391 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    392 	pci_chipset_tag_t pc = pa->pa_pc;
    393 	pci_intr_handle_t ih;
    394 	const char *intrstr = NULL;
    395 	bus_space_tag_t iot, memt;
    396 	bus_space_handle_t ioh, memh;
    397 	bus_dma_segment_t seg;
    398 	int ioh_valid, memh_valid;
    399 	int i, rseg, error;
    400 	const struct stge_product *sp;
    401 	pcireg_t pmode;
    402 	uint8_t enaddr[ETHER_ADDR_LEN];
    403 	int pmreg;
    404 
    405 	callout_init(&sc->sc_tick_ch);
    406 
    407 	sp = stge_lookup(pa);
    408 	if (sp == NULL) {
    409 		printf("\n");
    410 		panic("ste_attach: impossible");
    411 	}
    412 
    413 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    414 
    415 	printf(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
    416 
    417 	/*
    418 	 * Map the device.
    419 	 */
    420 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
    421 	    PCI_MAPREG_TYPE_IO, 0,
    422 	    &iot, &ioh, NULL, NULL) == 0);
    423 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
    424 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    425 	    &memt, &memh, NULL, NULL) == 0);
    426 
    427 	if (memh_valid) {
    428 		sc->sc_st = memt;
    429 		sc->sc_sh = memh;
    430 	} else if (ioh_valid) {
    431 		sc->sc_st = iot;
    432 		sc->sc_sh = ioh;
    433 	} else {
    434 		printf("%s: unable to map device registers\n",
    435 		    sc->sc_dev.dv_xname);
    436 		return;
    437 	}
    438 
    439 	sc->sc_dmat = pa->pa_dmat;
    440 
    441 	/* Enable bus mastering. */
    442 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    443 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    444 	    PCI_COMMAND_MASTER_ENABLE);
    445 
    446 	/* Get it out of power save mode if needed. */
    447 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    448 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
    449 		    PCI_PMCSR_STATE_MASK;
    450 		if (pmode == PCI_PMCSR_STATE_D3) {
    451 			/*
    452 			 * The card has lost all configuration data in
    453 			 * this state, so punt.
    454 			 */
    455 			printf("%s: unable to wake up from power state D3\n",
    456 			    sc->sc_dev.dv_xname);
    457 			return;
    458 		}
    459 		if (pmode != 0) {
    460 			printf("%s: waking up from power state D%d\n",
    461 			    sc->sc_dev.dv_xname, pmode);
    462 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
    463 			    PCI_PMCSR_STATE_D0);
    464 		}
    465 	}
    466 
    467 	/*
    468 	 * Map and establish our interrupt.
    469 	 */
    470 	if (pci_intr_map(pa, &ih)) {
    471 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    472 		return;
    473 	}
    474 	intrstr = pci_intr_string(pc, ih);
    475 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
    476 	if (sc->sc_ih == NULL) {
    477 		printf("%s: unable to establish interrupt",
    478 		    sc->sc_dev.dv_xname);
    479 		if (intrstr != NULL)
    480 			printf(" at %s", intrstr);
    481 		printf("\n");
    482 		return;
    483 	}
    484 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    485 
    486 	/*
    487 	 * Allocate the control data structures, and create and load the
    488 	 * DMA map for it.
    489 	 */
    490 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    491 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    492 	    0)) != 0) {
    493 		printf("%s: unable to allocate control data, error = %d\n",
    494 		    sc->sc_dev.dv_xname, error);
    495 		goto fail_0;
    496 	}
    497 
    498 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    499 	    sizeof(struct stge_control_data), (caddr_t *)&sc->sc_control_data,
    500 	    BUS_DMA_COHERENT)) != 0) {
    501 		printf("%s: unable to map control data, error = %d\n",
    502 		    sc->sc_dev.dv_xname, error);
    503 		goto fail_1;
    504 	}
    505 
    506 	if ((error = bus_dmamap_create(sc->sc_dmat,
    507 	    sizeof(struct stge_control_data), 1,
    508 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    509 		printf("%s: unable to create control data DMA map, "
    510 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    511 		goto fail_2;
    512 	}
    513 
    514 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    515 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
    516 	    0)) != 0) {
    517 		printf("%s: unable to load control data DMA map, error = %d\n",
    518 		    sc->sc_dev.dv_xname, error);
    519 		goto fail_3;
    520 	}
    521 
    522 	/*
    523 	 * Create the transmit buffer DMA maps.  Note that rev B.3
    524 	 * and earlier seem to have a bug regarding multi-fragment
    525 	 * packets.  We need to limit the number of Tx segments on
    526 	 * such chips to 1.
    527 	 */
    528 	for (i = 0; i < STGE_NTXDESC; i++) {
    529 		if ((error = bus_dmamap_create(sc->sc_dmat,
    530 		    ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
    531 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
    532 			printf("%s: unable to create tx DMA map %d, "
    533 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    534 			goto fail_4;
    535 		}
    536 	}
    537 
    538 	/*
    539 	 * Create the receive buffer DMA maps.
    540 	 */
    541 	for (i = 0; i < STGE_NRXDESC; i++) {
    542 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    543 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
    544 			printf("%s: unable to create rx DMA map %d, "
    545 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    546 			goto fail_5;
    547 		}
    548 		sc->sc_rxsoft[i].ds_mbuf = NULL;
    549 	}
    550 
    551 	/*
    552 	 * Determine if we're copper or fiber.  It affects how we
    553 	 * reset the card.
    554 	 */
    555 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
    556 	    AC_PhyMedia)
    557 		sc->sc_usefiber = 1;
    558 	else
    559 		sc->sc_usefiber = 0;
    560 
    561 	/*
    562 	 * Reset the chip to a known state.
    563 	 */
    564 	stge_reset(sc);
    565 
    566 	/*
    567 	 * Reading the station address from the EEPROM doesn't seem
    568 	 * to work, at least on my sample boards.  Instead, since
    569 	 * the reset sequence does AutoInit, read it from the station
    570 	 * address registers. For Sundance 1023 you can only read it
    571 	 * from EEPROM.
    572 	 */
    573 	if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
    574 		enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    575 		    STGE_StationAddress0) & 0xff;
    576 		enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    577 		    STGE_StationAddress0) >> 8;
    578 		enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    579 		    STGE_StationAddress1) & 0xff;
    580 		enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    581 		    STGE_StationAddress1) >> 8;
    582 		enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    583 		    STGE_StationAddress2) & 0xff;
    584 		enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    585 		    STGE_StationAddress2) >> 8;
    586 		sc->sc_stge1023 = 0;
    587 	} else {
    588 		uint16_t myaddr[ETHER_ADDR_LEN / 2];
    589 		for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
    590 			stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
    591 			    &myaddr[i]);
    592 			myaddr[i] = le16toh(myaddr[i]);
    593 		}
    594 		(void)memcpy(enaddr, myaddr, sizeof(enaddr));
    595 		sc->sc_stge1023 = 1;
    596 	}
    597 
    598 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    599 	    ether_sprintf(enaddr));
    600 
    601 	/*
    602 	 * Read some important bits from the PhyCtrl register.
    603 	 */
    604 	sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
    605 	    STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
    606 
    607 	/*
    608 	 * Initialize our media structures and probe the MII.
    609 	 */
    610 	sc->sc_mii.mii_ifp = ifp;
    611 	sc->sc_mii.mii_readreg = stge_mii_readreg;
    612 	sc->sc_mii.mii_writereg = stge_mii_writereg;
    613 	sc->sc_mii.mii_statchg = stge_mii_statchg;
    614 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, stge_mediachange,
    615 	    stge_mediastatus);
    616 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    617 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
    618 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    619 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    620 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    621 	} else
    622 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    623 
    624 	ifp = &sc->sc_ethercom.ec_if;
    625 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    626 	ifp->if_softc = sc;
    627 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    628 	ifp->if_ioctl = stge_ioctl;
    629 	ifp->if_start = stge_start;
    630 	ifp->if_watchdog = stge_watchdog;
    631 	ifp->if_init = stge_init;
    632 	ifp->if_stop = stge_stop;
    633 	IFQ_SET_READY(&ifp->if_snd);
    634 
    635 	/*
    636 	 * The manual recommends disabling early transmit, so we
    637 	 * do.  It's disabled anyway, if using IP checksumming,
    638 	 * since the entire packet must be in the FIFO in order
    639 	 * for the chip to perform the checksum.
    640 	 */
    641 	sc->sc_txthresh = 0x0fff;
    642 
    643 	/*
    644 	 * Disable MWI if the PCI layer tells us to.
    645 	 */
    646 	sc->sc_DMACtrl = 0;
    647 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
    648 		sc->sc_DMACtrl |= DMAC_MWIDisable;
    649 
    650 	/*
    651 	 * We can support 802.1Q VLAN-sized frames and jumbo
    652 	 * Ethernet frames.
    653 	 *
    654 	 * XXX Figure out how to do hw-assisted VLAN tagging in
    655 	 * XXX a reasonable way on this chip.
    656 	 */
    657 	sc->sc_ethercom.ec_capabilities |=
    658 	    ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
    659 	    ETHERCAP_VLAN_HWTAGGING;
    660 
    661 	/*
    662 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
    663 	 */
    664 	sc->sc_ethercom.ec_if.if_capabilities |=
    665 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    666 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    667 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    668 
    669 	/*
    670 	 * Attach the interface.
    671 	 */
    672 	if_attach(ifp);
    673 	ether_ifattach(ifp, enaddr);
    674 
    675 #ifdef STGE_EVENT_COUNTERS
    676 	/*
    677 	 * Attach event counters.
    678 	 */
    679 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
    680 	    NULL, sc->sc_dev.dv_xname, "txstall");
    681 	evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
    682 	    NULL, sc->sc_dev.dv_xname, "txdmaintr");
    683 	evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
    684 	    NULL, sc->sc_dev.dv_xname, "txindintr");
    685 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    686 	    NULL, sc->sc_dev.dv_xname, "rxintr");
    687 
    688 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
    689 	    NULL, sc->sc_dev.dv_xname, "txseg1");
    690 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
    691 	    NULL, sc->sc_dev.dv_xname, "txseg2");
    692 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
    693 	    NULL, sc->sc_dev.dv_xname, "txseg3");
    694 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
    695 	    NULL, sc->sc_dev.dv_xname, "txseg4");
    696 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
    697 	    NULL, sc->sc_dev.dv_xname, "txseg5");
    698 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
    699 	    NULL, sc->sc_dev.dv_xname, "txsegmore");
    700 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
    701 	    NULL, sc->sc_dev.dv_xname, "txcopy");
    702 
    703 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    704 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
    705 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
    706 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
    707 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
    708 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
    709 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    710 	    NULL, sc->sc_dev.dv_xname, "txipsum");
    711 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
    712 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
    713 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
    714 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
    715 #endif /* STGE_EVENT_COUNTERS */
    716 
    717 	/*
    718 	 * Make sure the interface is shutdown during reboot.
    719 	 */
    720 	sc->sc_sdhook = shutdownhook_establish(stge_shutdown, sc);
    721 	if (sc->sc_sdhook == NULL)
    722 		printf("%s: WARNING: unable to establish shutdown hook\n",
    723 		    sc->sc_dev.dv_xname);
    724 	return;
    725 
    726 	/*
    727 	 * Free any resources we've allocated during the failed attach
    728 	 * attempt.  Do this in reverse order and fall through.
    729 	 */
    730  fail_5:
    731 	for (i = 0; i < STGE_NRXDESC; i++) {
    732 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
    733 			bus_dmamap_destroy(sc->sc_dmat,
    734 			    sc->sc_rxsoft[i].ds_dmamap);
    735 	}
    736  fail_4:
    737 	for (i = 0; i < STGE_NTXDESC; i++) {
    738 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
    739 			bus_dmamap_destroy(sc->sc_dmat,
    740 			    sc->sc_txsoft[i].ds_dmamap);
    741 	}
    742 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    743  fail_3:
    744 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    745  fail_2:
    746 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    747 	    sizeof(struct stge_control_data));
    748  fail_1:
    749 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    750  fail_0:
    751 	return;
    752 }
    753 
    754 /*
    755  * stge_shutdown:
    756  *
    757  *	Make sure the interface is stopped at reboot time.
    758  */
    759 static void
    760 stge_shutdown(void *arg)
    761 {
    762 	struct stge_softc *sc = arg;
    763 
    764 	stge_stop(&sc->sc_ethercom.ec_if, 1);
    765 }
    766 
    767 static void
    768 stge_dma_wait(struct stge_softc *sc)
    769 {
    770 	int i;
    771 
    772 	for (i = 0; i < STGE_TIMEOUT; i++) {
    773 		delay(2);
    774 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
    775 		     DMAC_TxDMAInProg) == 0)
    776 			break;
    777 	}
    778 
    779 	if (i == STGE_TIMEOUT)
    780 		printf("%s: DMA wait timed out\n", sc->sc_dev.dv_xname);
    781 }
    782 
    783 /*
    784  * stge_start:		[ifnet interface function]
    785  *
    786  *	Start packet transmission on the interface.
    787  */
    788 static void
    789 stge_start(struct ifnet *ifp)
    790 {
    791 	struct stge_softc *sc = ifp->if_softc;
    792 	struct mbuf *m0;
    793 	struct stge_descsoft *ds;
    794 	struct stge_tfd *tfd;
    795 	bus_dmamap_t dmamap;
    796 	int error, firsttx, nexttx, opending, seg, totlen;
    797 	uint64_t csum_flags;
    798 
    799 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    800 		return;
    801 
    802 	/*
    803 	 * Remember the previous number of pending transmissions
    804 	 * and the first descriptor we will use.
    805 	 */
    806 	opending = sc->sc_txpending;
    807 	firsttx = STGE_NEXTTX(sc->sc_txlast);
    808 
    809 	/*
    810 	 * Loop through the send queue, setting up transmit descriptors
    811 	 * until we drain the queue, or use up all available transmit
    812 	 * descriptors.
    813 	 */
    814 	for (;;) {
    815 		struct m_tag *mtag;
    816 		uint64_t tfc;
    817 
    818 		/*
    819 		 * Grab a packet off the queue.
    820 		 */
    821 		IFQ_POLL(&ifp->if_snd, m0);
    822 		if (m0 == NULL)
    823 			break;
    824 
    825 		/*
    826 		 * Leave one unused descriptor at the end of the
    827 		 * list to prevent wrapping completely around.
    828 		 */
    829 		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
    830 			STGE_EVCNT_INCR(&sc->sc_ev_txstall);
    831 			break;
    832 		}
    833 
    834 		/*
    835 		 * See if we have any VLAN stuff.
    836 		 */
    837 		mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
    838 
    839 		/*
    840 		 * Get the last and next available transmit descriptor.
    841 		 */
    842 		nexttx = STGE_NEXTTX(sc->sc_txlast);
    843 		tfd = &sc->sc_txdescs[nexttx];
    844 		ds = &sc->sc_txsoft[nexttx];
    845 
    846 		dmamap = ds->ds_dmamap;
    847 
    848 		/*
    849 		 * Load the DMA map.  If this fails, the packet either
    850 		 * didn't fit in the alloted number of segments, or we
    851 		 * were short on resources.  For the too-many-segments
    852 		 * case, we simply report an error and drop the packet,
    853 		 * since we can't sanely copy a jumbo packet to a single
    854 		 * buffer.
    855 		 */
    856 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    857 		    BUS_DMA_NOWAIT);
    858 		if (error) {
    859 			if (error == EFBIG) {
    860 				printf("%s: Tx packet consumes too many "
    861 				    "DMA segments, dropping...\n",
    862 				    sc->sc_dev.dv_xname);
    863 				IFQ_DEQUEUE(&ifp->if_snd, m0);
    864 				m_freem(m0);
    865 				continue;
    866 			}
    867 			/*
    868 			 * Short on resources, just stop for now.
    869 			 */
    870 			break;
    871 		}
    872 
    873 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    874 
    875 		/*
    876 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    877 		 */
    878 
    879 		/* Sync the DMA map. */
    880 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    881 		    BUS_DMASYNC_PREWRITE);
    882 
    883 		/* Initialize the fragment list. */
    884 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
    885 			tfd->tfd_frags[seg].frag_word0 =
    886 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
    887 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
    888 			totlen += dmamap->dm_segs[seg].ds_len;
    889 		}
    890 
    891 #ifdef STGE_EVENT_COUNTERS
    892 		switch (dmamap->dm_nsegs) {
    893 		case 1:
    894 			STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
    895 			break;
    896 		case 2:
    897 			STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
    898 			break;
    899 		case 3:
    900 			STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
    901 			break;
    902 		case 4:
    903 			STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
    904 			break;
    905 		case 5:
    906 			STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
    907 			break;
    908 		default:
    909 			STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
    910 			break;
    911 		}
    912 #endif /* STGE_EVENT_COUNTERS */
    913 
    914 		/*
    915 		 * Initialize checksumming flags in the descriptor.
    916 		 * Byte-swap constants so the compiler can optimize.
    917 		 */
    918 		csum_flags = 0;
    919 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
    920 			STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
    921 			csum_flags |= TFD_IPChecksumEnable;
    922 		}
    923 
    924 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
    925 			STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
    926 			csum_flags |= TFD_TCPChecksumEnable;
    927 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
    928 			STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
    929 			csum_flags |= TFD_UDPChecksumEnable;
    930 		}
    931 
    932 		/*
    933 		 * Initialize the descriptor and give it to the chip.
    934 		 * Check to see if we have a VLAN tag to insert.
    935 		 */
    936 
    937 		tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
    938 		    TFD_FragCount(seg) | csum_flags |
    939 		    (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
    940 			TFD_TxDMAIndicate : 0);
    941 		if (mtag) {
    942 #if	0
    943 			struct ether_header *eh =
    944 			    mtod(m0, struct ether_header *);
    945 			u_int16_t etype = ntohs(eh->ether_type);
    946 			printf("%s: xmit (tag %d) etype %x\n",
    947 			   ifp->if_xname, *mtod(n, int *), etype);
    948 #endif
    949 			tfc |= TFD_VLANTagInsert |
    950 #ifdef	STGE_VLAN_CFI
    951 			    TFD_CFI |
    952 #endif
    953 			    TFD_VID(VLAN_TAG_VALUE(mtag));
    954 		}
    955 		tfd->tfd_control = htole64(tfc);
    956 
    957 		/* Sync the descriptor. */
    958 		STGE_CDTXSYNC(sc, nexttx,
    959 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    960 
    961 		/*
    962 		 * Kick the transmit DMA logic.
    963 		 */
    964 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
    965 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
    966 
    967 		/*
    968 		 * Store a pointer to the packet so we can free it later.
    969 		 */
    970 		ds->ds_mbuf = m0;
    971 
    972 		/* Advance the tx pointer. */
    973 		sc->sc_txpending++;
    974 		sc->sc_txlast = nexttx;
    975 
    976 #if NBPFILTER > 0
    977 		/*
    978 		 * Pass the packet to any BPF listeners.
    979 		 */
    980 		if (ifp->if_bpf)
    981 			bpf_mtap(ifp->if_bpf, m0);
    982 #endif /* NBPFILTER > 0 */
    983 	}
    984 
    985 	if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
    986 		/* No more slots left; notify upper layer. */
    987 		ifp->if_flags |= IFF_OACTIVE;
    988 	}
    989 
    990 	if (sc->sc_txpending != opending) {
    991 		/*
    992 		 * We enqueued packets.  If the transmitter was idle,
    993 		 * reset the txdirty pointer.
    994 		 */
    995 		if (opending == 0)
    996 			sc->sc_txdirty = firsttx;
    997 
    998 		/* Set a watchdog timer in case the chip flakes out. */
    999 		ifp->if_timer = 5;
   1000 	}
   1001 }
   1002 
   1003 /*
   1004  * stge_watchdog:	[ifnet interface function]
   1005  *
   1006  *	Watchdog timer handler.
   1007  */
   1008 static void
   1009 stge_watchdog(struct ifnet *ifp)
   1010 {
   1011 	struct stge_softc *sc = ifp->if_softc;
   1012 
   1013 	/*
   1014 	 * Sweep up first, since we don't interrupt every frame.
   1015 	 */
   1016 	stge_txintr(sc);
   1017 	if (sc->sc_txpending != 0) {
   1018 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1019 		ifp->if_oerrors++;
   1020 
   1021 		(void) stge_init(ifp);
   1022 
   1023 		/* Try to get more packets going. */
   1024 		stge_start(ifp);
   1025 	}
   1026 }
   1027 
   1028 /*
   1029  * stge_ioctl:		[ifnet interface function]
   1030  *
   1031  *	Handle control requests from the operator.
   1032  */
   1033 static int
   1034 stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   1035 {
   1036 	struct stge_softc *sc = ifp->if_softc;
   1037 	struct ifreq *ifr = (struct ifreq *)data;
   1038 	int s, error;
   1039 
   1040 	s = splnet();
   1041 
   1042 	switch (cmd) {
   1043 	case SIOCSIFMEDIA:
   1044 	case SIOCGIFMEDIA:
   1045 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1046 		break;
   1047 
   1048 	default:
   1049 		error = ether_ioctl(ifp, cmd, data);
   1050 		if (error == ENETRESET) {
   1051 			/*
   1052 			 * Multicast list has changed; set the hardware filter
   1053 			 * accordingly.
   1054 			 */
   1055 			if (ifp->if_flags & IFF_RUNNING)
   1056 				stge_set_filter(sc);
   1057 			error = 0;
   1058 		}
   1059 		break;
   1060 	}
   1061 
   1062 	/* Try to get more packets going. */
   1063 	stge_start(ifp);
   1064 
   1065 	splx(s);
   1066 	return (error);
   1067 }
   1068 
   1069 /*
   1070  * stge_intr:
   1071  *
   1072  *	Interrupt service routine.
   1073  */
   1074 static int
   1075 stge_intr(void *arg)
   1076 {
   1077 	struct stge_softc *sc = arg;
   1078 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1079 	uint32_t txstat;
   1080 	int wantinit;
   1081 	uint16_t isr;
   1082 
   1083 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
   1084 	     IS_InterruptStatus) == 0)
   1085 		return (0);
   1086 
   1087 	for (wantinit = 0; wantinit == 0;) {
   1088 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
   1089 		if ((isr & sc->sc_IntEnable) == 0)
   1090 			break;
   1091 
   1092 		/* Host interface errors. */
   1093 		if (isr & IS_HostError) {
   1094 			printf("%s: Host interface error\n",
   1095 			    sc->sc_dev.dv_xname);
   1096 			wantinit = 1;
   1097 			continue;
   1098 		}
   1099 
   1100 		/* Receive interrupts. */
   1101 		if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
   1102 			STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
   1103 			stge_rxintr(sc);
   1104 			if (isr & IS_RFDListEnd) {
   1105 				printf("%s: receive ring overflow\n",
   1106 				    sc->sc_dev.dv_xname);
   1107 				/*
   1108 				 * XXX Should try to recover from this
   1109 				 * XXX more gracefully.
   1110 				 */
   1111 				wantinit = 1;
   1112 			}
   1113 		}
   1114 
   1115 		/* Transmit interrupts. */
   1116 		if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
   1117 #ifdef STGE_EVENT_COUNTERS
   1118 			if (isr & IS_TxDMAComplete)
   1119 				STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
   1120 #endif
   1121 			stge_txintr(sc);
   1122 		}
   1123 
   1124 		/* Statistics overflow. */
   1125 		if (isr & IS_UpdateStats)
   1126 			stge_stats_update(sc);
   1127 
   1128 		/* Transmission errors. */
   1129 		if (isr & IS_TxComplete) {
   1130 			STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
   1131 			for (;;) {
   1132 				txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
   1133 				    STGE_TxStatus);
   1134 				if ((txstat & TS_TxComplete) == 0)
   1135 					break;
   1136 				if (txstat & TS_TxUnderrun) {
   1137 					sc->sc_txthresh++;
   1138 					if (sc->sc_txthresh > 0x0fff)
   1139 						sc->sc_txthresh = 0x0fff;
   1140 					printf("%s: transmit underrun, new "
   1141 					    "threshold: %d bytes\n",
   1142 					    sc->sc_dev.dv_xname,
   1143 					    sc->sc_txthresh << 5);
   1144 				}
   1145 				if (txstat & TS_MaxCollisions)
   1146 					printf("%s: excessive collisions\n",
   1147 					    sc->sc_dev.dv_xname);
   1148 			}
   1149 			wantinit = 1;
   1150 		}
   1151 
   1152 	}
   1153 
   1154 	if (wantinit)
   1155 		stge_init(ifp);
   1156 
   1157 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
   1158 	    sc->sc_IntEnable);
   1159 
   1160 	/* Try to get more packets going. */
   1161 	stge_start(ifp);
   1162 
   1163 	return (1);
   1164 }
   1165 
   1166 /*
   1167  * stge_txintr:
   1168  *
   1169  *	Helper; handle transmit interrupts.
   1170  */
   1171 static void
   1172 stge_txintr(struct stge_softc *sc)
   1173 {
   1174 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1175 	struct stge_descsoft *ds;
   1176 	uint64_t control;
   1177 	int i;
   1178 
   1179 	ifp->if_flags &= ~IFF_OACTIVE;
   1180 
   1181 	/*
   1182 	 * Go through our Tx list and free mbufs for those
   1183 	 * frames which have been transmitted.
   1184 	 */
   1185 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
   1186 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
   1187 		ds = &sc->sc_txsoft[i];
   1188 
   1189 		STGE_CDTXSYNC(sc, i,
   1190 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1191 
   1192 		control = le64toh(sc->sc_txdescs[i].tfd_control);
   1193 		if ((control & TFD_TFDDone) == 0)
   1194 			break;
   1195 
   1196 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
   1197 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1198 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1199 		m_freem(ds->ds_mbuf);
   1200 		ds->ds_mbuf = NULL;
   1201 	}
   1202 
   1203 	/* Update the dirty transmit buffer pointer. */
   1204 	sc->sc_txdirty = i;
   1205 
   1206 	/*
   1207 	 * If there are no more pending transmissions, cancel the watchdog
   1208 	 * timer.
   1209 	 */
   1210 	if (sc->sc_txpending == 0)
   1211 		ifp->if_timer = 0;
   1212 }
   1213 
   1214 /*
   1215  * stge_rxintr:
   1216  *
   1217  *	Helper; handle receive interrupts.
   1218  */
   1219 static void
   1220 stge_rxintr(struct stge_softc *sc)
   1221 {
   1222 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1223 	struct stge_descsoft *ds;
   1224 	struct mbuf *m, *tailm;
   1225 	uint64_t status;
   1226 	int i, len;
   1227 
   1228 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
   1229 		ds = &sc->sc_rxsoft[i];
   1230 
   1231 		STGE_CDRXSYNC(sc, i,
   1232 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1233 
   1234 		status = le64toh(sc->sc_rxdescs[i].rfd_status);
   1235 
   1236 		if ((status & RFD_RFDDone) == 0)
   1237 			break;
   1238 
   1239 		if (__predict_false(sc->sc_rxdiscard)) {
   1240 			STGE_INIT_RXDESC(sc, i);
   1241 			if (status & RFD_FrameEnd) {
   1242 				/* Reset our state. */
   1243 				sc->sc_rxdiscard = 0;
   1244 			}
   1245 			continue;
   1246 		}
   1247 
   1248 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1249 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1250 
   1251 		m = ds->ds_mbuf;
   1252 
   1253 		/*
   1254 		 * Add a new receive buffer to the ring.
   1255 		 */
   1256 		if (stge_add_rxbuf(sc, i) != 0) {
   1257 			/*
   1258 			 * Failed, throw away what we've done so
   1259 			 * far, and discard the rest of the packet.
   1260 			 */
   1261 			ifp->if_ierrors++;
   1262 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1263 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1264 			STGE_INIT_RXDESC(sc, i);
   1265 			if ((status & RFD_FrameEnd) == 0)
   1266 				sc->sc_rxdiscard = 1;
   1267 			if (sc->sc_rxhead != NULL)
   1268 				m_freem(sc->sc_rxhead);
   1269 			STGE_RXCHAIN_RESET(sc);
   1270 			continue;
   1271 		}
   1272 
   1273 #ifdef DIAGNOSTIC
   1274 		if (status & RFD_FrameStart) {
   1275 			KASSERT(sc->sc_rxhead == NULL);
   1276 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
   1277 		}
   1278 #endif
   1279 
   1280 		STGE_RXCHAIN_LINK(sc, m);
   1281 
   1282 		/*
   1283 		 * If this is not the end of the packet, keep
   1284 		 * looking.
   1285 		 */
   1286 		if ((status & RFD_FrameEnd) == 0) {
   1287 			sc->sc_rxlen += m->m_len;
   1288 			continue;
   1289 		}
   1290 
   1291 		/*
   1292 		 * Okay, we have the entire packet now...
   1293 		 */
   1294 		*sc->sc_rxtailp = NULL;
   1295 		m = sc->sc_rxhead;
   1296 		tailm = sc->sc_rxtail;
   1297 
   1298 		STGE_RXCHAIN_RESET(sc);
   1299 
   1300 		/*
   1301 		 * If the packet had an error, drop it.  Note we
   1302 		 * count the error later in the periodic stats update.
   1303 		 */
   1304 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
   1305 			      RFD_RxAlignmentError | RFD_RxFCSError |
   1306 			      RFD_RxLengthError)) {
   1307 			m_freem(m);
   1308 			continue;
   1309 		}
   1310 
   1311 		/*
   1312 		 * No errors.
   1313 		 *
   1314 		 * Note we have configured the chip to not include
   1315 		 * the CRC at the end of the packet.
   1316 		 */
   1317 		len = RFD_RxDMAFrameLen(status);
   1318 		tailm->m_len = len - sc->sc_rxlen;
   1319 
   1320 		/*
   1321 		 * If the packet is small enough to fit in a
   1322 		 * single header mbuf, allocate one and copy
   1323 		 * the data into it.  This greatly reduces
   1324 		 * memory consumption when we receive lots
   1325 		 * of small packets.
   1326 		 */
   1327 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
   1328 			struct mbuf *nm;
   1329 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1330 			if (nm == NULL) {
   1331 				ifp->if_ierrors++;
   1332 				m_freem(m);
   1333 				continue;
   1334 			}
   1335 			nm->m_data += 2;
   1336 			nm->m_pkthdr.len = nm->m_len = len;
   1337 			m_copydata(m, 0, len, mtod(nm, caddr_t));
   1338 			m_freem(m);
   1339 			m = nm;
   1340 		}
   1341 
   1342 		/*
   1343 		 * Set the incoming checksum information for the packet.
   1344 		 */
   1345 		if (status & RFD_IPDetected) {
   1346 			STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1347 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1348 			if (status & RFD_IPError)
   1349 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1350 			if (status & RFD_TCPDetected) {
   1351 				STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   1352 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1353 				if (status & RFD_TCPError)
   1354 					m->m_pkthdr.csum_flags |=
   1355 					    M_CSUM_TCP_UDP_BAD;
   1356 			} else if (status & RFD_UDPDetected) {
   1357 				STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   1358 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1359 				if (status & RFD_UDPError)
   1360 					m->m_pkthdr.csum_flags |=
   1361 					    M_CSUM_TCP_UDP_BAD;
   1362 			}
   1363 		}
   1364 
   1365 		m->m_pkthdr.rcvif = ifp;
   1366 		m->m_pkthdr.len = len;
   1367 
   1368 #if NBPFILTER > 0
   1369 		/*
   1370 		 * Pass this up to any BPF listeners, but only
   1371 		 * pass if up the stack if it's for us.
   1372 		 */
   1373 		if (ifp->if_bpf)
   1374 			bpf_mtap(ifp->if_bpf, m);
   1375 #endif /* NBPFILTER > 0 */
   1376 #ifdef	STGE_VLAN_UNTAG
   1377 		/*
   1378 		 * Check for VLAN tagged packets
   1379 		 */
   1380 		if (status & RFD_VLANDetected)
   1381 			VLAN_INPUT_TAG(ifp, m, RFD_TCI(status), continue);
   1382 
   1383 #endif
   1384 #if	0
   1385 		if (status & RFD_VLANDetected) {
   1386 			struct ether_header *eh;
   1387 			u_int16_t etype;
   1388 
   1389 			eh = mtod(m, struct ether_header *);
   1390 			etype = ntohs(eh->ether_type);
   1391 			printf("%s: VLANtag detected (TCI %d) etype %x\n",
   1392 			    ifp->if_xname, (u_int16_t) RFD_TCI(status),
   1393 			    etype);
   1394 		}
   1395 #endif
   1396 		/* Pass it on. */
   1397 		(*ifp->if_input)(ifp, m);
   1398 	}
   1399 
   1400 	/* Update the receive pointer. */
   1401 	sc->sc_rxptr = i;
   1402 }
   1403 
   1404 /*
   1405  * stge_tick:
   1406  *
   1407  *	One second timer, used to tick the MII.
   1408  */
   1409 static void
   1410 stge_tick(void *arg)
   1411 {
   1412 	struct stge_softc *sc = arg;
   1413 	int s;
   1414 
   1415 	s = splnet();
   1416 	mii_tick(&sc->sc_mii);
   1417 	stge_stats_update(sc);
   1418 	splx(s);
   1419 
   1420 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
   1421 }
   1422 
   1423 /*
   1424  * stge_stats_update:
   1425  *
   1426  *	Read the TC9021 statistics counters.
   1427  */
   1428 static void
   1429 stge_stats_update(struct stge_softc *sc)
   1430 {
   1431 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1432 	bus_space_tag_t st = sc->sc_st;
   1433 	bus_space_handle_t sh = sc->sc_sh;
   1434 
   1435 	(void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
   1436 
   1437 	ifp->if_ipackets +=
   1438 	    bus_space_read_4(st, sh, STGE_FramesRcvdOk);
   1439 
   1440 	ifp->if_ierrors +=
   1441 	    (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
   1442 
   1443 	(void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
   1444 
   1445 	ifp->if_opackets +=
   1446 	    bus_space_read_4(st, sh, STGE_FramesXmtdOk);
   1447 
   1448 	ifp->if_collisions +=
   1449 	    bus_space_read_4(st, sh, STGE_LateCollisions) +
   1450 	    bus_space_read_4(st, sh, STGE_MultiColFrames) +
   1451 	    bus_space_read_4(st, sh, STGE_SingleColFrames);
   1452 
   1453 	ifp->if_oerrors +=
   1454 	    (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
   1455 	    (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
   1456 }
   1457 
   1458 /*
   1459  * stge_reset:
   1460  *
   1461  *	Perform a soft reset on the TC9021.
   1462  */
   1463 static void
   1464 stge_reset(struct stge_softc *sc)
   1465 {
   1466 	uint32_t ac;
   1467 	int i;
   1468 
   1469 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
   1470 
   1471 	/*
   1472 	 * Only assert RstOut if we're fiber.  We need GMII clocks
   1473 	 * to be present in order for the reset to complete on fiber
   1474 	 * cards.
   1475 	 */
   1476 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
   1477 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
   1478 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
   1479 	    (sc->sc_usefiber ? AC_RstOut : 0));
   1480 
   1481 	delay(50000);
   1482 
   1483 	for (i = 0; i < STGE_TIMEOUT; i++) {
   1484 		delay(5000);
   1485 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
   1486 		     AC_ResetBusy) == 0)
   1487 			break;
   1488 	}
   1489 
   1490 	if (i == STGE_TIMEOUT)
   1491 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   1492 
   1493 	delay(1000);
   1494 }
   1495 
   1496 /*
   1497  * stge_init:		[ ifnet interface function ]
   1498  *
   1499  *	Initialize the interface.  Must be called at splnet().
   1500  */
   1501 static int
   1502 stge_init(struct ifnet *ifp)
   1503 {
   1504 	struct stge_softc *sc = ifp->if_softc;
   1505 	bus_space_tag_t st = sc->sc_st;
   1506 	bus_space_handle_t sh = sc->sc_sh;
   1507 	struct stge_descsoft *ds;
   1508 	int i, error = 0;
   1509 
   1510 	/*
   1511 	 * Cancel any pending I/O.
   1512 	 */
   1513 	stge_stop(ifp, 0);
   1514 
   1515 	/*
   1516 	 * Reset the chip to a known state.
   1517 	 */
   1518 	stge_reset(sc);
   1519 
   1520 	/*
   1521 	 * Initialize the transmit descriptor ring.
   1522 	 */
   1523 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1524 	for (i = 0; i < STGE_NTXDESC; i++) {
   1525 		sc->sc_txdescs[i].tfd_next = htole64(
   1526 		    STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
   1527 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
   1528 	}
   1529 	sc->sc_txpending = 0;
   1530 	sc->sc_txdirty = 0;
   1531 	sc->sc_txlast = STGE_NTXDESC - 1;
   1532 
   1533 	/*
   1534 	 * Initialize the receive descriptor and receive job
   1535 	 * descriptor rings.
   1536 	 */
   1537 	for (i = 0; i < STGE_NRXDESC; i++) {
   1538 		ds = &sc->sc_rxsoft[i];
   1539 		if (ds->ds_mbuf == NULL) {
   1540 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
   1541 				printf("%s: unable to allocate or map rx "
   1542 				    "buffer %d, error = %d\n",
   1543 				    sc->sc_dev.dv_xname, i, error);
   1544 				/*
   1545 				 * XXX Should attempt to run with fewer receive
   1546 				 * XXX buffers instead of just failing.
   1547 				 */
   1548 				stge_rxdrain(sc);
   1549 				goto out;
   1550 			}
   1551 		} else
   1552 			STGE_INIT_RXDESC(sc, i);
   1553 	}
   1554 	sc->sc_rxptr = 0;
   1555 	sc->sc_rxdiscard = 0;
   1556 	STGE_RXCHAIN_RESET(sc);
   1557 
   1558 	/* Set the station address. */
   1559 	for (i = 0; i < 6; i++)
   1560 		bus_space_write_1(st, sh, STGE_StationAddress0 + i,
   1561 		    LLADDR(ifp->if_sadl)[i]);
   1562 
   1563 	/*
   1564 	 * Set the statistics masks.  Disable all the RMON stats,
   1565 	 * and disable selected stats in the non-RMON stats registers.
   1566 	 */
   1567 	bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
   1568 	bus_space_write_4(st, sh, STGE_StatisticsMask,
   1569 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
   1570 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
   1571 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
   1572 	    (1U << 21));
   1573 
   1574 	/* Set up the receive filter. */
   1575 	stge_set_filter(sc);
   1576 
   1577 	/*
   1578 	 * Give the transmit and receive ring to the chip.
   1579 	 */
   1580 	bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
   1581 	bus_space_write_4(st, sh, STGE_TFDListPtrLo,
   1582 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
   1583 
   1584 	bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
   1585 	bus_space_write_4(st, sh, STGE_RFDListPtrLo,
   1586 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
   1587 
   1588 	/*
   1589 	 * Initialize the Tx auto-poll period.  It's OK to make this number
   1590 	 * large (255 is the max, but we use 127) -- we explicitly kick the
   1591 	 * transmit engine when there's actually a packet.
   1592 	 */
   1593 	bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
   1594 
   1595 	/* ..and the Rx auto-poll period. */
   1596 	bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
   1597 
   1598 	/* Initialize the Tx start threshold. */
   1599 	bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
   1600 
   1601 	/* RX DMA thresholds, from linux */
   1602 	bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
   1603 	bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
   1604 
   1605 	/*
   1606 	 * Initialize the Rx DMA interrupt control register.  We
   1607 	 * request an interrupt after every incoming packet, but
   1608 	 * defer it for 32us (64 * 512 ns).  When the number of
   1609 	 * interrupts pending reaches 8, we stop deferring the
   1610 	 * interrupt, and signal it immediately.
   1611 	 */
   1612 	bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
   1613 	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
   1614 
   1615 	/*
   1616 	 * Initialize the interrupt mask.
   1617 	 */
   1618 	sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
   1619 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
   1620 	bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
   1621 	bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
   1622 
   1623 	/*
   1624 	 * Configure the DMA engine.
   1625 	 * XXX Should auto-tune TxBurstLimit.
   1626 	 */
   1627 	bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
   1628 	    DMAC_TxBurstLimit(3));
   1629 
   1630 	/*
   1631 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
   1632 	 * FIFO, and send an un-PAUSE frame when the FIFO is totally
   1633 	 * empty again.
   1634 	 */
   1635 	bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
   1636 	bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
   1637 
   1638 	/*
   1639 	 * Set the maximum frame size.
   1640 	 */
   1641 	bus_space_write_2(st, sh, STGE_MaxFrameSize,
   1642 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
   1643 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
   1644 	     ETHER_VLAN_ENCAP_LEN : 0));
   1645 
   1646 	/*
   1647 	 * Initialize MacCtrl -- do it before setting the media,
   1648 	 * as setting the media will actually program the register.
   1649 	 *
   1650 	 * Note: We have to poke the IFS value before poking
   1651 	 * anything else.
   1652 	 */
   1653 	sc->sc_MACCtrl = MC_IFSSelect(0);
   1654 	bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
   1655 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
   1656 #ifdef	STGE_VLAN_UNTAG
   1657 	sc->sc_MACCtrl |= MC_AutoVLANuntagging;
   1658 #endif
   1659 
   1660 	if (sc->sc_rev >= 6) {		/* >= B.2 */
   1661 		/* Multi-frag frame bug work-around. */
   1662 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1663 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
   1664 
   1665 		/* Tx Poll Now bug work-around. */
   1666 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1667 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
   1668 		/* XXX ? from linux */
   1669 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1670 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
   1671 	}
   1672 
   1673 	/*
   1674 	 * Set the current media.
   1675 	 */
   1676 	mii_mediachg(&sc->sc_mii);
   1677 
   1678 	/*
   1679 	 * Start the one second MII clock.
   1680 	 */
   1681 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
   1682 
   1683 	/*
   1684 	 * ...all done!
   1685 	 */
   1686 	ifp->if_flags |= IFF_RUNNING;
   1687 	ifp->if_flags &= ~IFF_OACTIVE;
   1688 
   1689  out:
   1690 	if (error)
   1691 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1692 	return (error);
   1693 }
   1694 
   1695 /*
   1696  * stge_drain:
   1697  *
   1698  *	Drain the receive queue.
   1699  */
   1700 static void
   1701 stge_rxdrain(struct stge_softc *sc)
   1702 {
   1703 	struct stge_descsoft *ds;
   1704 	int i;
   1705 
   1706 	for (i = 0; i < STGE_NRXDESC; i++) {
   1707 		ds = &sc->sc_rxsoft[i];
   1708 		if (ds->ds_mbuf != NULL) {
   1709 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1710 			ds->ds_mbuf->m_next = NULL;
   1711 			m_freem(ds->ds_mbuf);
   1712 			ds->ds_mbuf = NULL;
   1713 		}
   1714 	}
   1715 }
   1716 
   1717 /*
   1718  * stge_stop:		[ ifnet interface function ]
   1719  *
   1720  *	Stop transmission on the interface.
   1721  */
   1722 static void
   1723 stge_stop(struct ifnet *ifp, int disable)
   1724 {
   1725 	struct stge_softc *sc = ifp->if_softc;
   1726 	struct stge_descsoft *ds;
   1727 	int i;
   1728 
   1729 	/*
   1730 	 * Stop the one second clock.
   1731 	 */
   1732 	callout_stop(&sc->sc_tick_ch);
   1733 
   1734 	/* Down the MII. */
   1735 	mii_down(&sc->sc_mii);
   1736 
   1737 	/*
   1738 	 * Disable interrupts.
   1739 	 */
   1740 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
   1741 
   1742 	/*
   1743 	 * Stop receiver, transmitter, and stats update.
   1744 	 */
   1745 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
   1746 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
   1747 
   1748 	/*
   1749 	 * Stop the transmit and receive DMA.
   1750 	 */
   1751 	stge_dma_wait(sc);
   1752 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
   1753 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
   1754 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
   1755 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
   1756 
   1757 	/*
   1758 	 * Release any queued transmit buffers.
   1759 	 */
   1760 	for (i = 0; i < STGE_NTXDESC; i++) {
   1761 		ds = &sc->sc_txsoft[i];
   1762 		if (ds->ds_mbuf != NULL) {
   1763 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1764 			m_freem(ds->ds_mbuf);
   1765 			ds->ds_mbuf = NULL;
   1766 		}
   1767 	}
   1768 
   1769 	if (disable)
   1770 		stge_rxdrain(sc);
   1771 
   1772 	/*
   1773 	 * Mark the interface down and cancel the watchdog timer.
   1774 	 */
   1775 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1776 	ifp->if_timer = 0;
   1777 }
   1778 
   1779 static int
   1780 stge_eeprom_wait(struct stge_softc *sc)
   1781 {
   1782 	int i;
   1783 
   1784 	for (i = 0; i < STGE_TIMEOUT; i++) {
   1785 		delay(1000);
   1786 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
   1787 		     EC_EepromBusy) == 0)
   1788 			return (0);
   1789 	}
   1790 	return (1);
   1791 }
   1792 
   1793 /*
   1794  * stge_read_eeprom:
   1795  *
   1796  *	Read data from the serial EEPROM.
   1797  */
   1798 static void
   1799 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
   1800 {
   1801 
   1802 	if (stge_eeprom_wait(sc))
   1803 		printf("%s: EEPROM failed to come ready\n",
   1804 		    sc->sc_dev.dv_xname);
   1805 
   1806 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
   1807 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
   1808 	if (stge_eeprom_wait(sc))
   1809 		printf("%s: EEPROM read timed out\n",
   1810 		    sc->sc_dev.dv_xname);
   1811 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
   1812 }
   1813 
   1814 /*
   1815  * stge_add_rxbuf:
   1816  *
   1817  *	Add a receive buffer to the indicated descriptor.
   1818  */
   1819 static int
   1820 stge_add_rxbuf(struct stge_softc *sc, int idx)
   1821 {
   1822 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
   1823 	struct mbuf *m;
   1824 	int error;
   1825 
   1826 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1827 	if (m == NULL)
   1828 		return (ENOBUFS);
   1829 
   1830 	MCLGET(m, M_DONTWAIT);
   1831 	if ((m->m_flags & M_EXT) == 0) {
   1832 		m_freem(m);
   1833 		return (ENOBUFS);
   1834 	}
   1835 
   1836 	m->m_data = m->m_ext.ext_buf + 2;
   1837 	m->m_len = MCLBYTES - 2;
   1838 
   1839 	if (ds->ds_mbuf != NULL)
   1840 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1841 
   1842 	ds->ds_mbuf = m;
   1843 
   1844 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
   1845 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1846 	if (error) {
   1847 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1848 		    sc->sc_dev.dv_xname, idx, error);
   1849 		panic("stge_add_rxbuf");	/* XXX */
   1850 	}
   1851 
   1852 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1853 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1854 
   1855 	STGE_INIT_RXDESC(sc, idx);
   1856 
   1857 	return (0);
   1858 }
   1859 
   1860 /*
   1861  * stge_set_filter:
   1862  *
   1863  *	Set up the receive filter.
   1864  */
   1865 static void
   1866 stge_set_filter(struct stge_softc *sc)
   1867 {
   1868 	struct ethercom *ec = &sc->sc_ethercom;
   1869 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1870 	struct ether_multi *enm;
   1871 	struct ether_multistep step;
   1872 	uint32_t crc;
   1873 	uint32_t mchash[2];
   1874 
   1875 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
   1876 	if (ifp->if_flags & IFF_BROADCAST)
   1877 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
   1878 
   1879 	/* XXX: ST1023 only works in promiscuous mode */
   1880 	if (sc->sc_stge1023)
   1881 		ifp->if_flags |= IFF_PROMISC;
   1882 
   1883 	if (ifp->if_flags & IFF_PROMISC) {
   1884 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
   1885 		goto allmulti;
   1886 	}
   1887 
   1888 	/*
   1889 	 * Set up the multicast address filter by passing all multicast
   1890 	 * addresses through a CRC generator, and then using the low-order
   1891 	 * 6 bits as an index into the 64 bit multicast hash table.  The
   1892 	 * high order bits select the register, while the rest of the bits
   1893 	 * select the bit within the register.
   1894 	 */
   1895 
   1896 	memset(mchash, 0, sizeof(mchash));
   1897 
   1898 	ETHER_FIRST_MULTI(step, ec, enm);
   1899 	if (enm == NULL)
   1900 		goto done;
   1901 
   1902 	while (enm != NULL) {
   1903 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1904 			/*
   1905 			 * We must listen to a range of multicast addresses.
   1906 			 * For now, just accept all multicasts, rather than
   1907 			 * trying to set only those filter bits needed to match
   1908 			 * the range.  (At this time, the only use of address
   1909 			 * ranges is for IP multicast routing, for which the
   1910 			 * range is big enough to require all bits set.)
   1911 			 */
   1912 			goto allmulti;
   1913 		}
   1914 
   1915 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1916 
   1917 		/* Just want the 6 least significant bits. */
   1918 		crc &= 0x3f;
   1919 
   1920 		/* Set the corresponding bit in the hash table. */
   1921 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
   1922 
   1923 		ETHER_NEXT_MULTI(step, enm);
   1924 	}
   1925 
   1926 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
   1927 
   1928 	ifp->if_flags &= ~IFF_ALLMULTI;
   1929 	goto done;
   1930 
   1931  allmulti:
   1932 	ifp->if_flags |= IFF_ALLMULTI;
   1933 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
   1934 
   1935  done:
   1936 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1937 		/*
   1938 		 * Program the multicast hash table.
   1939 		 */
   1940 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
   1941 		    mchash[0]);
   1942 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
   1943 		    mchash[1]);
   1944 	}
   1945 
   1946 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
   1947 	    sc->sc_ReceiveMode);
   1948 }
   1949 
   1950 /*
   1951  * stge_mii_readreg:	[mii interface function]
   1952  *
   1953  *	Read a PHY register on the MII of the TC9021.
   1954  */
   1955 static int
   1956 stge_mii_readreg(struct device *self, int phy, int reg)
   1957 {
   1958 
   1959 	return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
   1960 }
   1961 
   1962 /*
   1963  * stge_mii_writereg:	[mii interface function]
   1964  *
   1965  *	Write a PHY register on the MII of the TC9021.
   1966  */
   1967 static void
   1968 stge_mii_writereg(struct device *self, int phy, int reg, int val)
   1969 {
   1970 
   1971 	mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
   1972 }
   1973 
   1974 /*
   1975  * stge_mii_statchg:	[mii interface function]
   1976  *
   1977  *	Callback from MII layer when media changes.
   1978  */
   1979 static void
   1980 stge_mii_statchg(struct device *self)
   1981 {
   1982 	struct stge_softc *sc = (struct stge_softc *) self;
   1983 
   1984 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   1985 		sc->sc_MACCtrl |= MC_DuplexSelect;
   1986 	else
   1987 		sc->sc_MACCtrl &= ~MC_DuplexSelect;
   1988 
   1989 	/* XXX 802.1x flow-control? */
   1990 
   1991 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
   1992 }
   1993 
   1994 /*
   1995  * sste_mii_bitbang_read: [mii bit-bang interface function]
   1996  *
   1997  *	Read the MII serial port for the MII bit-bang module.
   1998  */
   1999 static uint32_t
   2000 stge_mii_bitbang_read(struct device *self)
   2001 {
   2002 	struct stge_softc *sc = (void *) self;
   2003 
   2004 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
   2005 }
   2006 
   2007 /*
   2008  * stge_mii_bitbang_write: [mii big-bang interface function]
   2009  *
   2010  *	Write the MII serial port for the MII bit-bang module.
   2011  */
   2012 static void
   2013 stge_mii_bitbang_write(struct device *self, uint32_t val)
   2014 {
   2015 	struct stge_softc *sc = (void *) self;
   2016 
   2017 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
   2018 	    val | sc->sc_PhyCtrl);
   2019 }
   2020 
   2021 /*
   2022  * stge_mediastatus:	[ifmedia interface function]
   2023  *
   2024  *	Get the current interface media status.
   2025  */
   2026 static void
   2027 stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2028 {
   2029 	struct stge_softc *sc = ifp->if_softc;
   2030 
   2031 	mii_pollstat(&sc->sc_mii);
   2032 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   2033 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   2034 }
   2035 
   2036 /*
   2037  * stge_mediachange:	[ifmedia interface function]
   2038  *
   2039  *	Set hardware to newly-selected media.
   2040  */
   2041 static int
   2042 stge_mediachange(struct ifnet *ifp)
   2043 {
   2044 	struct stge_softc *sc = ifp->if_softc;
   2045 
   2046 	if (ifp->if_flags & IFF_UP)
   2047 		mii_mediachg(&sc->sc_mii);
   2048 	return (0);
   2049 }
   2050