if_stge.c revision 1.31 1 /* $NetBSD: if_stge.c,v 1.31 2005/07/28 16:04:24 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the Sundance Tech. TC9021 10/100/1000
41 * Ethernet controller.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.31 2005/07/28 16:04:24 christos Exp $");
46
47 #include "bpfilter.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/socket.h>
56 #include <sys/ioctl.h>
57 #include <sys/errno.h>
58 #include <sys/device.h>
59 #include <sys/queue.h>
60
61 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
62
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_ether.h>
67
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71
72 #include <machine/bus.h>
73 #include <machine/intr.h>
74
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 #include <dev/mii/mii_bitbang.h>
78
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 #include <dev/pci/pcidevs.h>
82
83 #include <dev/pci/if_stgereg.h>
84
85 /* #define STGE_CU_BUG 1 */
86 #define STGE_VLAN_UNTAG 1
87 /* #define STGE_VLAN_CFI 1 */
88
89 /*
90 * Transmit descriptor list size.
91 */
92 #define STGE_NTXDESC 256
93 #define STGE_NTXDESC_MASK (STGE_NTXDESC - 1)
94 #define STGE_NEXTTX(x) (((x) + 1) & STGE_NTXDESC_MASK)
95
96 /*
97 * Receive descriptor list size.
98 */
99 #define STGE_NRXDESC 256
100 #define STGE_NRXDESC_MASK (STGE_NRXDESC - 1)
101 #define STGE_NEXTRX(x) (((x) + 1) & STGE_NRXDESC_MASK)
102
103 /*
104 * Only interrupt every N frames. Must be a power-of-two.
105 */
106 #define STGE_TXINTR_SPACING 16
107 #define STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
108
109 /*
110 * Control structures are DMA'd to the TC9021 chip. We allocate them in
111 * a single clump that maps to a single DMA segment to make several things
112 * easier.
113 */
114 struct stge_control_data {
115 /*
116 * The transmit descriptors.
117 */
118 struct stge_tfd scd_txdescs[STGE_NTXDESC];
119
120 /*
121 * The receive descriptors.
122 */
123 struct stge_rfd scd_rxdescs[STGE_NRXDESC];
124 };
125
126 #define STGE_CDOFF(x) offsetof(struct stge_control_data, x)
127 #define STGE_CDTXOFF(x) STGE_CDOFF(scd_txdescs[(x)])
128 #define STGE_CDRXOFF(x) STGE_CDOFF(scd_rxdescs[(x)])
129
130 /*
131 * Software state for transmit and receive jobs.
132 */
133 struct stge_descsoft {
134 struct mbuf *ds_mbuf; /* head of our mbuf chain */
135 bus_dmamap_t ds_dmamap; /* our DMA map */
136 };
137
138 /*
139 * Software state per device.
140 */
141 struct stge_softc {
142 struct device sc_dev; /* generic device information */
143 bus_space_tag_t sc_st; /* bus space tag */
144 bus_space_handle_t sc_sh; /* bus space handle */
145 bus_dma_tag_t sc_dmat; /* bus DMA tag */
146 struct ethercom sc_ethercom; /* ethernet common data */
147 void *sc_sdhook; /* shutdown hook */
148 int sc_rev; /* silicon revision */
149
150 void *sc_ih; /* interrupt cookie */
151
152 struct mii_data sc_mii; /* MII/media information */
153
154 struct callout sc_tick_ch; /* tick callout */
155
156 bus_dmamap_t sc_cddmamap; /* control data DMA map */
157 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
158
159 /*
160 * Software state for transmit and receive descriptors.
161 */
162 struct stge_descsoft sc_txsoft[STGE_NTXDESC];
163 struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
164
165 /*
166 * Control data structures.
167 */
168 struct stge_control_data *sc_control_data;
169 #define sc_txdescs sc_control_data->scd_txdescs
170 #define sc_rxdescs sc_control_data->scd_rxdescs
171
172 #ifdef STGE_EVENT_COUNTERS
173 /*
174 * Event counters.
175 */
176 struct evcnt sc_ev_txstall; /* Tx stalled */
177 struct evcnt sc_ev_txdmaintr; /* Tx DMA interrupts */
178 struct evcnt sc_ev_txindintr; /* Tx Indicate interrupts */
179 struct evcnt sc_ev_rxintr; /* Rx interrupts */
180
181 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
182 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
183 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
184 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
185 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
186 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
187 struct evcnt sc_ev_txcopy; /* Tx packets that we had to copy */
188
189 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
190 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
191 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-bound */
192
193 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
194 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
195 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
196 #endif /* STGE_EVENT_COUNTERS */
197
198 int sc_txpending; /* number of Tx requests pending */
199 int sc_txdirty; /* first dirty Tx descriptor */
200 int sc_txlast; /* last used Tx descriptor */
201
202 int sc_rxptr; /* next ready Rx descriptor/descsoft */
203 int sc_rxdiscard;
204 int sc_rxlen;
205 struct mbuf *sc_rxhead;
206 struct mbuf *sc_rxtail;
207 struct mbuf **sc_rxtailp;
208
209 int sc_txthresh; /* Tx threshold */
210 uint32_t sc_usefiber:1; /* if we're fiber */
211 uint32_t sc_stge1023:1; /* are we a 1023 */
212 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
213 uint32_t sc_MACCtrl; /* prototype MacCtrl register */
214 uint16_t sc_IntEnable; /* prototype IntEnable register */
215 uint16_t sc_ReceiveMode; /* prototype ReceiveMode register */
216 uint8_t sc_PhyCtrl; /* prototype PhyCtrl register */
217 };
218
219 #define STGE_RXCHAIN_RESET(sc) \
220 do { \
221 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
222 *(sc)->sc_rxtailp = NULL; \
223 (sc)->sc_rxlen = 0; \
224 } while (/*CONSTCOND*/0)
225
226 #define STGE_RXCHAIN_LINK(sc, m) \
227 do { \
228 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
229 (sc)->sc_rxtailp = &(m)->m_next; \
230 } while (/*CONSTCOND*/0)
231
232 #ifdef STGE_EVENT_COUNTERS
233 #define STGE_EVCNT_INCR(ev) (ev)->ev_count++
234 #else
235 #define STGE_EVCNT_INCR(ev) /* nothing */
236 #endif
237
238 #define STGE_CDTXADDR(sc, x) ((sc)->sc_cddma + STGE_CDTXOFF((x)))
239 #define STGE_CDRXADDR(sc, x) ((sc)->sc_cddma + STGE_CDRXOFF((x)))
240
241 #define STGE_CDTXSYNC(sc, x, ops) \
242 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
243 STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
244
245 #define STGE_CDRXSYNC(sc, x, ops) \
246 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
247 STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
248
249 #define STGE_INIT_RXDESC(sc, x) \
250 do { \
251 struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
252 struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
253 \
254 /* \
255 * Note: We scoot the packet forward 2 bytes in the buffer \
256 * so that the payload after the Ethernet header is aligned \
257 * to a 4-byte boundary. \
258 */ \
259 __rfd->rfd_frag.frag_word0 = \
260 htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
261 FRAG_LEN(MCLBYTES - 2)); \
262 __rfd->rfd_next = \
263 htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x)))); \
264 __rfd->rfd_status = 0; \
265 STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
266 } while (/*CONSTCOND*/0)
267
268 #define STGE_TIMEOUT 1000
269
270 static void stge_start(struct ifnet *);
271 static void stge_watchdog(struct ifnet *);
272 static int stge_ioctl(struct ifnet *, u_long, caddr_t);
273 static int stge_init(struct ifnet *);
274 static void stge_stop(struct ifnet *, int);
275
276 static void stge_shutdown(void *);
277
278 static void stge_reset(struct stge_softc *);
279 static void stge_rxdrain(struct stge_softc *);
280 static int stge_add_rxbuf(struct stge_softc *, int);
281 static void stge_read_eeprom(struct stge_softc *, int, uint16_t *);
282 static void stge_tick(void *);
283
284 static void stge_stats_update(struct stge_softc *);
285
286 static void stge_set_filter(struct stge_softc *);
287
288 static int stge_intr(void *);
289 static void stge_txintr(struct stge_softc *);
290 static void stge_rxintr(struct stge_softc *);
291
292 static int stge_mii_readreg(struct device *, int, int);
293 static void stge_mii_writereg(struct device *, int, int, int);
294 static void stge_mii_statchg(struct device *);
295
296 static int stge_mediachange(struct ifnet *);
297 static void stge_mediastatus(struct ifnet *, struct ifmediareq *);
298
299 static int stge_match(struct device *, struct cfdata *, void *);
300 static void stge_attach(struct device *, struct device *, void *);
301
302 int stge_copy_small = 0;
303
304 CFATTACH_DECL(stge, sizeof(struct stge_softc),
305 stge_match, stge_attach, NULL, NULL);
306
307 static uint32_t stge_mii_bitbang_read(struct device *);
308 static void stge_mii_bitbang_write(struct device *, uint32_t);
309
310 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
311 stge_mii_bitbang_read,
312 stge_mii_bitbang_write,
313 {
314 PC_MgmtData, /* MII_BIT_MDO */
315 PC_MgmtData, /* MII_BIT_MDI */
316 PC_MgmtClk, /* MII_BIT_MDC */
317 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
318 0, /* MII_BIT_DIR_PHY_HOST */
319 }
320 };
321
322 /*
323 * Devices supported by this driver.
324 */
325 static const struct stge_product {
326 pci_vendor_id_t stge_vendor;
327 pci_product_id_t stge_product;
328 const char *stge_name;
329 } stge_products[] = {
330 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST1023,
331 "Sundance ST-1023 Gigabit Ethernet" },
332
333 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST2021,
334 "Sundance ST-2021 Gigabit Ethernet" },
335
336 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021,
337 "Tamarack TC9021 Gigabit Ethernet" },
338
339 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021_ALT,
340 "Tamarack TC9021 Gigabit Ethernet" },
341
342 /*
343 * The Sundance sample boards use the Sundance vendor ID,
344 * but the Tamarack product ID.
345 */
346 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021,
347 "Sundance TC9021 Gigabit Ethernet" },
348
349 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021_ALT,
350 "Sundance TC9021 Gigabit Ethernet" },
351
352 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL4000,
353 "D-Link DL-4000 Gigabit Ethernet" },
354
355 { PCI_VENDOR_ANTARES, PCI_PRODUCT_ANTARES_TC9021,
356 "Antares Gigabit Ethernet" },
357
358 { 0, 0,
359 NULL },
360 };
361
362 static const struct stge_product *
363 stge_lookup(const struct pci_attach_args *pa)
364 {
365 const struct stge_product *sp;
366
367 for (sp = stge_products; sp->stge_name != NULL; sp++) {
368 if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
369 PCI_PRODUCT(pa->pa_id) == sp->stge_product)
370 return (sp);
371 }
372 return (NULL);
373 }
374
375 static int
376 stge_match(struct device *parent, struct cfdata *cf, void *aux)
377 {
378 struct pci_attach_args *pa = aux;
379
380 if (stge_lookup(pa) != NULL)
381 return (1);
382
383 return (0);
384 }
385
386 static void
387 stge_attach(struct device *parent, struct device *self, void *aux)
388 {
389 struct stge_softc *sc = (struct stge_softc *) self;
390 struct pci_attach_args *pa = aux;
391 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
392 pci_chipset_tag_t pc = pa->pa_pc;
393 pci_intr_handle_t ih;
394 const char *intrstr = NULL;
395 bus_space_tag_t iot, memt;
396 bus_space_handle_t ioh, memh;
397 bus_dma_segment_t seg;
398 int ioh_valid, memh_valid;
399 int i, rseg, error;
400 const struct stge_product *sp;
401 pcireg_t pmode;
402 uint8_t enaddr[ETHER_ADDR_LEN];
403 int pmreg;
404
405 callout_init(&sc->sc_tick_ch);
406
407 sp = stge_lookup(pa);
408 if (sp == NULL) {
409 printf("\n");
410 panic("ste_attach: impossible");
411 }
412
413 sc->sc_rev = PCI_REVISION(pa->pa_class);
414
415 printf(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
416
417 /*
418 * Map the device.
419 */
420 ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
421 PCI_MAPREG_TYPE_IO, 0,
422 &iot, &ioh, NULL, NULL) == 0);
423 memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
424 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
425 &memt, &memh, NULL, NULL) == 0);
426
427 if (memh_valid) {
428 sc->sc_st = memt;
429 sc->sc_sh = memh;
430 } else if (ioh_valid) {
431 sc->sc_st = iot;
432 sc->sc_sh = ioh;
433 } else {
434 printf("%s: unable to map device registers\n",
435 sc->sc_dev.dv_xname);
436 return;
437 }
438
439 sc->sc_dmat = pa->pa_dmat;
440
441 /* Enable bus mastering. */
442 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
443 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
444 PCI_COMMAND_MASTER_ENABLE);
445
446 /* Get it out of power save mode if needed. */
447 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
448 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
449 PCI_PMCSR_STATE_MASK;
450 if (pmode == PCI_PMCSR_STATE_D3) {
451 /*
452 * The card has lost all configuration data in
453 * this state, so punt.
454 */
455 printf("%s: unable to wake up from power state D3\n",
456 sc->sc_dev.dv_xname);
457 return;
458 }
459 if (pmode != 0) {
460 printf("%s: waking up from power state D%d\n",
461 sc->sc_dev.dv_xname, pmode);
462 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
463 PCI_PMCSR_STATE_D0);
464 }
465 }
466
467 /*
468 * Map and establish our interrupt.
469 */
470 if (pci_intr_map(pa, &ih)) {
471 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
472 return;
473 }
474 intrstr = pci_intr_string(pc, ih);
475 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
476 if (sc->sc_ih == NULL) {
477 printf("%s: unable to establish interrupt",
478 sc->sc_dev.dv_xname);
479 if (intrstr != NULL)
480 printf(" at %s", intrstr);
481 printf("\n");
482 return;
483 }
484 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
485
486 /*
487 * Allocate the control data structures, and create and load the
488 * DMA map for it.
489 */
490 if ((error = bus_dmamem_alloc(sc->sc_dmat,
491 sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
492 0)) != 0) {
493 printf("%s: unable to allocate control data, error = %d\n",
494 sc->sc_dev.dv_xname, error);
495 goto fail_0;
496 }
497
498 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
499 sizeof(struct stge_control_data), (caddr_t *)&sc->sc_control_data,
500 BUS_DMA_COHERENT)) != 0) {
501 printf("%s: unable to map control data, error = %d\n",
502 sc->sc_dev.dv_xname, error);
503 goto fail_1;
504 }
505
506 if ((error = bus_dmamap_create(sc->sc_dmat,
507 sizeof(struct stge_control_data), 1,
508 sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
509 printf("%s: unable to create control data DMA map, "
510 "error = %d\n", sc->sc_dev.dv_xname, error);
511 goto fail_2;
512 }
513
514 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
515 sc->sc_control_data, sizeof(struct stge_control_data), NULL,
516 0)) != 0) {
517 printf("%s: unable to load control data DMA map, error = %d\n",
518 sc->sc_dev.dv_xname, error);
519 goto fail_3;
520 }
521
522 /*
523 * Create the transmit buffer DMA maps. Note that rev B.3
524 * and earlier seem to have a bug regarding multi-fragment
525 * packets. We need to limit the number of Tx segments on
526 * such chips to 1.
527 */
528 for (i = 0; i < STGE_NTXDESC; i++) {
529 if ((error = bus_dmamap_create(sc->sc_dmat,
530 ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
531 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
532 printf("%s: unable to create tx DMA map %d, "
533 "error = %d\n", sc->sc_dev.dv_xname, i, error);
534 goto fail_4;
535 }
536 }
537
538 /*
539 * Create the receive buffer DMA maps.
540 */
541 for (i = 0; i < STGE_NRXDESC; i++) {
542 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
543 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
544 printf("%s: unable to create rx DMA map %d, "
545 "error = %d\n", sc->sc_dev.dv_xname, i, error);
546 goto fail_5;
547 }
548 sc->sc_rxsoft[i].ds_mbuf = NULL;
549 }
550
551 /*
552 * Determine if we're copper or fiber. It affects how we
553 * reset the card.
554 */
555 if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
556 AC_PhyMedia)
557 sc->sc_usefiber = 1;
558 else
559 sc->sc_usefiber = 0;
560
561 /*
562 * Reset the chip to a known state.
563 */
564 stge_reset(sc);
565
566 /*
567 * Reading the station address from the EEPROM doesn't seem
568 * to work, at least on my sample boards. Instead, since
569 * the reset sequence does AutoInit, read it from the station
570 * address registers. For Sundance 1023 you can only read it
571 * from EEPROM.
572 */
573 if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
574 enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
575 STGE_StationAddress0) & 0xff;
576 enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
577 STGE_StationAddress0) >> 8;
578 enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
579 STGE_StationAddress1) & 0xff;
580 enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
581 STGE_StationAddress1) >> 8;
582 enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
583 STGE_StationAddress2) & 0xff;
584 enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
585 STGE_StationAddress2) >> 8;
586 sc->sc_stge1023 = 0;
587 } else {
588 uint16_t myaddr[ETHER_ADDR_LEN / 2];
589 for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
590 stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
591 &myaddr[i]);
592 myaddr[i] = le16toh(myaddr[i]);
593 }
594 (void)memcpy(enaddr, myaddr, sizeof(enaddr));
595 sc->sc_stge1023 = 1;
596 }
597
598 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
599 ether_sprintf(enaddr));
600
601 /*
602 * Read some important bits from the PhyCtrl register.
603 */
604 sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
605 STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
606
607 /*
608 * Initialize our media structures and probe the MII.
609 */
610 sc->sc_mii.mii_ifp = ifp;
611 sc->sc_mii.mii_readreg = stge_mii_readreg;
612 sc->sc_mii.mii_writereg = stge_mii_writereg;
613 sc->sc_mii.mii_statchg = stge_mii_statchg;
614 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, stge_mediachange,
615 stge_mediastatus);
616 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
617 MII_OFFSET_ANY, MIIF_DOPAUSE);
618 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
619 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
620 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
621 } else
622 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
623
624 ifp = &sc->sc_ethercom.ec_if;
625 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
626 ifp->if_softc = sc;
627 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
628 ifp->if_ioctl = stge_ioctl;
629 ifp->if_start = stge_start;
630 ifp->if_watchdog = stge_watchdog;
631 ifp->if_init = stge_init;
632 ifp->if_stop = stge_stop;
633 IFQ_SET_READY(&ifp->if_snd);
634
635 /*
636 * The manual recommends disabling early transmit, so we
637 * do. It's disabled anyway, if using IP checksumming,
638 * since the entire packet must be in the FIFO in order
639 * for the chip to perform the checksum.
640 */
641 sc->sc_txthresh = 0x0fff;
642
643 /*
644 * Disable MWI if the PCI layer tells us to.
645 */
646 sc->sc_DMACtrl = 0;
647 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
648 sc->sc_DMACtrl |= DMAC_MWIDisable;
649
650 /*
651 * We can support 802.1Q VLAN-sized frames and jumbo
652 * Ethernet frames.
653 *
654 * XXX Figure out how to do hw-assisted VLAN tagging in
655 * XXX a reasonable way on this chip.
656 */
657 sc->sc_ethercom.ec_capabilities |=
658 ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
659 ETHERCAP_VLAN_HWTAGGING;
660
661 /*
662 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
663 */
664 sc->sc_ethercom.ec_if.if_capabilities |=
665 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
666 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
667 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
668
669 /*
670 * Attach the interface.
671 */
672 if_attach(ifp);
673 ether_ifattach(ifp, enaddr);
674
675 #ifdef STGE_EVENT_COUNTERS
676 /*
677 * Attach event counters.
678 */
679 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
680 NULL, sc->sc_dev.dv_xname, "txstall");
681 evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
682 NULL, sc->sc_dev.dv_xname, "txdmaintr");
683 evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
684 NULL, sc->sc_dev.dv_xname, "txindintr");
685 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
686 NULL, sc->sc_dev.dv_xname, "rxintr");
687
688 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
689 NULL, sc->sc_dev.dv_xname, "txseg1");
690 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
691 NULL, sc->sc_dev.dv_xname, "txseg2");
692 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
693 NULL, sc->sc_dev.dv_xname, "txseg3");
694 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
695 NULL, sc->sc_dev.dv_xname, "txseg4");
696 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
697 NULL, sc->sc_dev.dv_xname, "txseg5");
698 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
699 NULL, sc->sc_dev.dv_xname, "txsegmore");
700 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
701 NULL, sc->sc_dev.dv_xname, "txcopy");
702
703 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
704 NULL, sc->sc_dev.dv_xname, "rxipsum");
705 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
706 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
707 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
708 NULL, sc->sc_dev.dv_xname, "rxudpsum");
709 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
710 NULL, sc->sc_dev.dv_xname, "txipsum");
711 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
712 NULL, sc->sc_dev.dv_xname, "txtcpsum");
713 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
714 NULL, sc->sc_dev.dv_xname, "txudpsum");
715 #endif /* STGE_EVENT_COUNTERS */
716
717 /*
718 * Make sure the interface is shutdown during reboot.
719 */
720 sc->sc_sdhook = shutdownhook_establish(stge_shutdown, sc);
721 if (sc->sc_sdhook == NULL)
722 printf("%s: WARNING: unable to establish shutdown hook\n",
723 sc->sc_dev.dv_xname);
724 return;
725
726 /*
727 * Free any resources we've allocated during the failed attach
728 * attempt. Do this in reverse order and fall through.
729 */
730 fail_5:
731 for (i = 0; i < STGE_NRXDESC; i++) {
732 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
733 bus_dmamap_destroy(sc->sc_dmat,
734 sc->sc_rxsoft[i].ds_dmamap);
735 }
736 fail_4:
737 for (i = 0; i < STGE_NTXDESC; i++) {
738 if (sc->sc_txsoft[i].ds_dmamap != NULL)
739 bus_dmamap_destroy(sc->sc_dmat,
740 sc->sc_txsoft[i].ds_dmamap);
741 }
742 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
743 fail_3:
744 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
745 fail_2:
746 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
747 sizeof(struct stge_control_data));
748 fail_1:
749 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
750 fail_0:
751 return;
752 }
753
754 /*
755 * stge_shutdown:
756 *
757 * Make sure the interface is stopped at reboot time.
758 */
759 static void
760 stge_shutdown(void *arg)
761 {
762 struct stge_softc *sc = arg;
763
764 stge_stop(&sc->sc_ethercom.ec_if, 1);
765 }
766
767 static void
768 stge_dma_wait(struct stge_softc *sc)
769 {
770 int i;
771
772 for (i = 0; i < STGE_TIMEOUT; i++) {
773 delay(2);
774 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
775 DMAC_TxDMAInProg) == 0)
776 break;
777 }
778
779 if (i == STGE_TIMEOUT)
780 printf("%s: DMA wait timed out\n", sc->sc_dev.dv_xname);
781 }
782
783 /*
784 * stge_start: [ifnet interface function]
785 *
786 * Start packet transmission on the interface.
787 */
788 static void
789 stge_start(struct ifnet *ifp)
790 {
791 struct stge_softc *sc = ifp->if_softc;
792 struct mbuf *m0;
793 struct stge_descsoft *ds;
794 struct stge_tfd *tfd;
795 bus_dmamap_t dmamap;
796 int error, firsttx, nexttx, opending, seg, totlen;
797 uint64_t csum_flags;
798
799 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
800 return;
801
802 /*
803 * Remember the previous number of pending transmissions
804 * and the first descriptor we will use.
805 */
806 opending = sc->sc_txpending;
807 firsttx = STGE_NEXTTX(sc->sc_txlast);
808
809 /*
810 * Loop through the send queue, setting up transmit descriptors
811 * until we drain the queue, or use up all available transmit
812 * descriptors.
813 */
814 for (;;) {
815 struct m_tag *mtag;
816 uint64_t tfc;
817
818 /*
819 * Grab a packet off the queue.
820 */
821 IFQ_POLL(&ifp->if_snd, m0);
822 if (m0 == NULL)
823 break;
824
825 /*
826 * Leave one unused descriptor at the end of the
827 * list to prevent wrapping completely around.
828 */
829 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
830 STGE_EVCNT_INCR(&sc->sc_ev_txstall);
831 break;
832 }
833
834 /*
835 * See if we have any VLAN stuff.
836 */
837 mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
838
839 /*
840 * Get the last and next available transmit descriptor.
841 */
842 nexttx = STGE_NEXTTX(sc->sc_txlast);
843 tfd = &sc->sc_txdescs[nexttx];
844 ds = &sc->sc_txsoft[nexttx];
845
846 dmamap = ds->ds_dmamap;
847
848 /*
849 * Load the DMA map. If this fails, the packet either
850 * didn't fit in the alloted number of segments, or we
851 * were short on resources. For the too-many-segments
852 * case, we simply report an error and drop the packet,
853 * since we can't sanely copy a jumbo packet to a single
854 * buffer.
855 */
856 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
857 BUS_DMA_NOWAIT);
858 if (error) {
859 if (error == EFBIG) {
860 printf("%s: Tx packet consumes too many "
861 "DMA segments, dropping...\n",
862 sc->sc_dev.dv_xname);
863 IFQ_DEQUEUE(&ifp->if_snd, m0);
864 m_freem(m0);
865 continue;
866 }
867 /*
868 * Short on resources, just stop for now.
869 */
870 break;
871 }
872
873 IFQ_DEQUEUE(&ifp->if_snd, m0);
874
875 /*
876 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
877 */
878
879 /* Sync the DMA map. */
880 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
881 BUS_DMASYNC_PREWRITE);
882
883 /* Initialize the fragment list. */
884 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
885 tfd->tfd_frags[seg].frag_word0 =
886 htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
887 FRAG_LEN(dmamap->dm_segs[seg].ds_len));
888 totlen += dmamap->dm_segs[seg].ds_len;
889 }
890
891 #ifdef STGE_EVENT_COUNTERS
892 switch (dmamap->dm_nsegs) {
893 case 1:
894 STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
895 break;
896 case 2:
897 STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
898 break;
899 case 3:
900 STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
901 break;
902 case 4:
903 STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
904 break;
905 case 5:
906 STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
907 break;
908 default:
909 STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
910 break;
911 }
912 #endif /* STGE_EVENT_COUNTERS */
913
914 /*
915 * Initialize checksumming flags in the descriptor.
916 * Byte-swap constants so the compiler can optimize.
917 */
918 csum_flags = 0;
919 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
920 STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
921 csum_flags |= TFD_IPChecksumEnable;
922 }
923
924 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
925 STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
926 csum_flags |= TFD_TCPChecksumEnable;
927 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
928 STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
929 csum_flags |= TFD_UDPChecksumEnable;
930 }
931
932 /*
933 * Initialize the descriptor and give it to the chip.
934 * Check to see if we have a VLAN tag to insert.
935 */
936
937 tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
938 TFD_FragCount(seg) | csum_flags |
939 (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
940 TFD_TxDMAIndicate : 0);
941 if (mtag) {
942 #if 0
943 struct ether_header *eh =
944 mtod(m0, struct ether_header *);
945 u_int16_t etype = ntohs(eh->ether_type);
946 printf("%s: xmit (tag %d) etype %x\n",
947 ifp->if_xname, *mtod(n, int *), etype);
948 #endif
949 tfc |= TFD_VLANTagInsert |
950 #ifdef STGE_VLAN_CFI
951 TFD_CFI |
952 #endif
953 TFD_VID(VLAN_TAG_VALUE(mtag));
954 }
955 tfd->tfd_control = htole64(tfc);
956
957 /* Sync the descriptor. */
958 STGE_CDTXSYNC(sc, nexttx,
959 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
960
961 /*
962 * Kick the transmit DMA logic.
963 */
964 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
965 sc->sc_DMACtrl | DMAC_TxDMAPollNow);
966
967 /*
968 * Store a pointer to the packet so we can free it later.
969 */
970 ds->ds_mbuf = m0;
971
972 /* Advance the tx pointer. */
973 sc->sc_txpending++;
974 sc->sc_txlast = nexttx;
975
976 #if NBPFILTER > 0
977 /*
978 * Pass the packet to any BPF listeners.
979 */
980 if (ifp->if_bpf)
981 bpf_mtap(ifp->if_bpf, m0);
982 #endif /* NBPFILTER > 0 */
983 }
984
985 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
986 /* No more slots left; notify upper layer. */
987 ifp->if_flags |= IFF_OACTIVE;
988 }
989
990 if (sc->sc_txpending != opending) {
991 /*
992 * We enqueued packets. If the transmitter was idle,
993 * reset the txdirty pointer.
994 */
995 if (opending == 0)
996 sc->sc_txdirty = firsttx;
997
998 /* Set a watchdog timer in case the chip flakes out. */
999 ifp->if_timer = 5;
1000 }
1001 }
1002
1003 /*
1004 * stge_watchdog: [ifnet interface function]
1005 *
1006 * Watchdog timer handler.
1007 */
1008 static void
1009 stge_watchdog(struct ifnet *ifp)
1010 {
1011 struct stge_softc *sc = ifp->if_softc;
1012
1013 /*
1014 * Sweep up first, since we don't interrupt every frame.
1015 */
1016 stge_txintr(sc);
1017 if (sc->sc_txpending != 0) {
1018 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1019 ifp->if_oerrors++;
1020
1021 (void) stge_init(ifp);
1022
1023 /* Try to get more packets going. */
1024 stge_start(ifp);
1025 }
1026 }
1027
1028 /*
1029 * stge_ioctl: [ifnet interface function]
1030 *
1031 * Handle control requests from the operator.
1032 */
1033 static int
1034 stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1035 {
1036 struct stge_softc *sc = ifp->if_softc;
1037 struct ifreq *ifr = (struct ifreq *)data;
1038 int s, error;
1039
1040 s = splnet();
1041
1042 switch (cmd) {
1043 case SIOCSIFMEDIA:
1044 case SIOCGIFMEDIA:
1045 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1046 break;
1047
1048 default:
1049 error = ether_ioctl(ifp, cmd, data);
1050 if (error == ENETRESET) {
1051 /*
1052 * Multicast list has changed; set the hardware filter
1053 * accordingly.
1054 */
1055 if (ifp->if_flags & IFF_RUNNING)
1056 stge_set_filter(sc);
1057 error = 0;
1058 }
1059 break;
1060 }
1061
1062 /* Try to get more packets going. */
1063 stge_start(ifp);
1064
1065 splx(s);
1066 return (error);
1067 }
1068
1069 /*
1070 * stge_intr:
1071 *
1072 * Interrupt service routine.
1073 */
1074 static int
1075 stge_intr(void *arg)
1076 {
1077 struct stge_softc *sc = arg;
1078 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1079 uint32_t txstat;
1080 int wantinit;
1081 uint16_t isr;
1082
1083 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1084 IS_InterruptStatus) == 0)
1085 return (0);
1086
1087 for (wantinit = 0; wantinit == 0;) {
1088 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1089 if ((isr & sc->sc_IntEnable) == 0)
1090 break;
1091
1092 /* Host interface errors. */
1093 if (isr & IS_HostError) {
1094 printf("%s: Host interface error\n",
1095 sc->sc_dev.dv_xname);
1096 wantinit = 1;
1097 continue;
1098 }
1099
1100 /* Receive interrupts. */
1101 if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
1102 STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1103 stge_rxintr(sc);
1104 if (isr & IS_RFDListEnd) {
1105 printf("%s: receive ring overflow\n",
1106 sc->sc_dev.dv_xname);
1107 /*
1108 * XXX Should try to recover from this
1109 * XXX more gracefully.
1110 */
1111 wantinit = 1;
1112 }
1113 }
1114
1115 /* Transmit interrupts. */
1116 if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
1117 #ifdef STGE_EVENT_COUNTERS
1118 if (isr & IS_TxDMAComplete)
1119 STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1120 #endif
1121 stge_txintr(sc);
1122 }
1123
1124 /* Statistics overflow. */
1125 if (isr & IS_UpdateStats)
1126 stge_stats_update(sc);
1127
1128 /* Transmission errors. */
1129 if (isr & IS_TxComplete) {
1130 STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1131 for (;;) {
1132 txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1133 STGE_TxStatus);
1134 if ((txstat & TS_TxComplete) == 0)
1135 break;
1136 if (txstat & TS_TxUnderrun) {
1137 sc->sc_txthresh++;
1138 if (sc->sc_txthresh > 0x0fff)
1139 sc->sc_txthresh = 0x0fff;
1140 printf("%s: transmit underrun, new "
1141 "threshold: %d bytes\n",
1142 sc->sc_dev.dv_xname,
1143 sc->sc_txthresh << 5);
1144 }
1145 if (txstat & TS_MaxCollisions)
1146 printf("%s: excessive collisions\n",
1147 sc->sc_dev.dv_xname);
1148 }
1149 wantinit = 1;
1150 }
1151
1152 }
1153
1154 if (wantinit)
1155 stge_init(ifp);
1156
1157 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1158 sc->sc_IntEnable);
1159
1160 /* Try to get more packets going. */
1161 stge_start(ifp);
1162
1163 return (1);
1164 }
1165
1166 /*
1167 * stge_txintr:
1168 *
1169 * Helper; handle transmit interrupts.
1170 */
1171 static void
1172 stge_txintr(struct stge_softc *sc)
1173 {
1174 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1175 struct stge_descsoft *ds;
1176 uint64_t control;
1177 int i;
1178
1179 ifp->if_flags &= ~IFF_OACTIVE;
1180
1181 /*
1182 * Go through our Tx list and free mbufs for those
1183 * frames which have been transmitted.
1184 */
1185 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1186 i = STGE_NEXTTX(i), sc->sc_txpending--) {
1187 ds = &sc->sc_txsoft[i];
1188
1189 STGE_CDTXSYNC(sc, i,
1190 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1191
1192 control = le64toh(sc->sc_txdescs[i].tfd_control);
1193 if ((control & TFD_TFDDone) == 0)
1194 break;
1195
1196 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1197 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1198 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1199 m_freem(ds->ds_mbuf);
1200 ds->ds_mbuf = NULL;
1201 }
1202
1203 /* Update the dirty transmit buffer pointer. */
1204 sc->sc_txdirty = i;
1205
1206 /*
1207 * If there are no more pending transmissions, cancel the watchdog
1208 * timer.
1209 */
1210 if (sc->sc_txpending == 0)
1211 ifp->if_timer = 0;
1212 }
1213
1214 /*
1215 * stge_rxintr:
1216 *
1217 * Helper; handle receive interrupts.
1218 */
1219 static void
1220 stge_rxintr(struct stge_softc *sc)
1221 {
1222 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1223 struct stge_descsoft *ds;
1224 struct mbuf *m, *tailm;
1225 uint64_t status;
1226 int i, len;
1227
1228 for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1229 ds = &sc->sc_rxsoft[i];
1230
1231 STGE_CDRXSYNC(sc, i,
1232 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1233
1234 status = le64toh(sc->sc_rxdescs[i].rfd_status);
1235
1236 if ((status & RFD_RFDDone) == 0)
1237 break;
1238
1239 if (__predict_false(sc->sc_rxdiscard)) {
1240 STGE_INIT_RXDESC(sc, i);
1241 if (status & RFD_FrameEnd) {
1242 /* Reset our state. */
1243 sc->sc_rxdiscard = 0;
1244 }
1245 continue;
1246 }
1247
1248 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1249 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1250
1251 m = ds->ds_mbuf;
1252
1253 /*
1254 * Add a new receive buffer to the ring.
1255 */
1256 if (stge_add_rxbuf(sc, i) != 0) {
1257 /*
1258 * Failed, throw away what we've done so
1259 * far, and discard the rest of the packet.
1260 */
1261 ifp->if_ierrors++;
1262 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1263 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1264 STGE_INIT_RXDESC(sc, i);
1265 if ((status & RFD_FrameEnd) == 0)
1266 sc->sc_rxdiscard = 1;
1267 if (sc->sc_rxhead != NULL)
1268 m_freem(sc->sc_rxhead);
1269 STGE_RXCHAIN_RESET(sc);
1270 continue;
1271 }
1272
1273 #ifdef DIAGNOSTIC
1274 if (status & RFD_FrameStart) {
1275 KASSERT(sc->sc_rxhead == NULL);
1276 KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1277 }
1278 #endif
1279
1280 STGE_RXCHAIN_LINK(sc, m);
1281
1282 /*
1283 * If this is not the end of the packet, keep
1284 * looking.
1285 */
1286 if ((status & RFD_FrameEnd) == 0) {
1287 sc->sc_rxlen += m->m_len;
1288 continue;
1289 }
1290
1291 /*
1292 * Okay, we have the entire packet now...
1293 */
1294 *sc->sc_rxtailp = NULL;
1295 m = sc->sc_rxhead;
1296 tailm = sc->sc_rxtail;
1297
1298 STGE_RXCHAIN_RESET(sc);
1299
1300 /*
1301 * If the packet had an error, drop it. Note we
1302 * count the error later in the periodic stats update.
1303 */
1304 if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1305 RFD_RxAlignmentError | RFD_RxFCSError |
1306 RFD_RxLengthError)) {
1307 m_freem(m);
1308 continue;
1309 }
1310
1311 /*
1312 * No errors.
1313 *
1314 * Note we have configured the chip to not include
1315 * the CRC at the end of the packet.
1316 */
1317 len = RFD_RxDMAFrameLen(status);
1318 tailm->m_len = len - sc->sc_rxlen;
1319
1320 /*
1321 * If the packet is small enough to fit in a
1322 * single header mbuf, allocate one and copy
1323 * the data into it. This greatly reduces
1324 * memory consumption when we receive lots
1325 * of small packets.
1326 */
1327 if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1328 struct mbuf *nm;
1329 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1330 if (nm == NULL) {
1331 ifp->if_ierrors++;
1332 m_freem(m);
1333 continue;
1334 }
1335 nm->m_data += 2;
1336 nm->m_pkthdr.len = nm->m_len = len;
1337 m_copydata(m, 0, len, mtod(nm, caddr_t));
1338 m_freem(m);
1339 m = nm;
1340 }
1341
1342 /*
1343 * Set the incoming checksum information for the packet.
1344 */
1345 if (status & RFD_IPDetected) {
1346 STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1347 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1348 if (status & RFD_IPError)
1349 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1350 if (status & RFD_TCPDetected) {
1351 STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1352 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1353 if (status & RFD_TCPError)
1354 m->m_pkthdr.csum_flags |=
1355 M_CSUM_TCP_UDP_BAD;
1356 } else if (status & RFD_UDPDetected) {
1357 STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1358 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1359 if (status & RFD_UDPError)
1360 m->m_pkthdr.csum_flags |=
1361 M_CSUM_TCP_UDP_BAD;
1362 }
1363 }
1364
1365 m->m_pkthdr.rcvif = ifp;
1366 m->m_pkthdr.len = len;
1367
1368 #if NBPFILTER > 0
1369 /*
1370 * Pass this up to any BPF listeners, but only
1371 * pass if up the stack if it's for us.
1372 */
1373 if (ifp->if_bpf)
1374 bpf_mtap(ifp->if_bpf, m);
1375 #endif /* NBPFILTER > 0 */
1376 #ifdef STGE_VLAN_UNTAG
1377 /*
1378 * Check for VLAN tagged packets
1379 */
1380 if (status & RFD_VLANDetected)
1381 VLAN_INPUT_TAG(ifp, m, RFD_TCI(status), continue);
1382
1383 #endif
1384 #if 0
1385 if (status & RFD_VLANDetected) {
1386 struct ether_header *eh;
1387 u_int16_t etype;
1388
1389 eh = mtod(m, struct ether_header *);
1390 etype = ntohs(eh->ether_type);
1391 printf("%s: VLANtag detected (TCI %d) etype %x\n",
1392 ifp->if_xname, (u_int16_t) RFD_TCI(status),
1393 etype);
1394 }
1395 #endif
1396 /* Pass it on. */
1397 (*ifp->if_input)(ifp, m);
1398 }
1399
1400 /* Update the receive pointer. */
1401 sc->sc_rxptr = i;
1402 }
1403
1404 /*
1405 * stge_tick:
1406 *
1407 * One second timer, used to tick the MII.
1408 */
1409 static void
1410 stge_tick(void *arg)
1411 {
1412 struct stge_softc *sc = arg;
1413 int s;
1414
1415 s = splnet();
1416 mii_tick(&sc->sc_mii);
1417 stge_stats_update(sc);
1418 splx(s);
1419
1420 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1421 }
1422
1423 /*
1424 * stge_stats_update:
1425 *
1426 * Read the TC9021 statistics counters.
1427 */
1428 static void
1429 stge_stats_update(struct stge_softc *sc)
1430 {
1431 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1432 bus_space_tag_t st = sc->sc_st;
1433 bus_space_handle_t sh = sc->sc_sh;
1434
1435 (void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1436
1437 ifp->if_ipackets +=
1438 bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1439
1440 ifp->if_ierrors +=
1441 (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1442
1443 (void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1444
1445 ifp->if_opackets +=
1446 bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1447
1448 ifp->if_collisions +=
1449 bus_space_read_4(st, sh, STGE_LateCollisions) +
1450 bus_space_read_4(st, sh, STGE_MultiColFrames) +
1451 bus_space_read_4(st, sh, STGE_SingleColFrames);
1452
1453 ifp->if_oerrors +=
1454 (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1455 (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1456 }
1457
1458 /*
1459 * stge_reset:
1460 *
1461 * Perform a soft reset on the TC9021.
1462 */
1463 static void
1464 stge_reset(struct stge_softc *sc)
1465 {
1466 uint32_t ac;
1467 int i;
1468
1469 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1470
1471 /*
1472 * Only assert RstOut if we're fiber. We need GMII clocks
1473 * to be present in order for the reset to complete on fiber
1474 * cards.
1475 */
1476 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1477 ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1478 AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1479 (sc->sc_usefiber ? AC_RstOut : 0));
1480
1481 delay(50000);
1482
1483 for (i = 0; i < STGE_TIMEOUT; i++) {
1484 delay(5000);
1485 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1486 AC_ResetBusy) == 0)
1487 break;
1488 }
1489
1490 if (i == STGE_TIMEOUT)
1491 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1492
1493 delay(1000);
1494 }
1495
1496 /*
1497 * stge_init: [ ifnet interface function ]
1498 *
1499 * Initialize the interface. Must be called at splnet().
1500 */
1501 static int
1502 stge_init(struct ifnet *ifp)
1503 {
1504 struct stge_softc *sc = ifp->if_softc;
1505 bus_space_tag_t st = sc->sc_st;
1506 bus_space_handle_t sh = sc->sc_sh;
1507 struct stge_descsoft *ds;
1508 int i, error = 0;
1509
1510 /*
1511 * Cancel any pending I/O.
1512 */
1513 stge_stop(ifp, 0);
1514
1515 /*
1516 * Reset the chip to a known state.
1517 */
1518 stge_reset(sc);
1519
1520 /*
1521 * Initialize the transmit descriptor ring.
1522 */
1523 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1524 for (i = 0; i < STGE_NTXDESC; i++) {
1525 sc->sc_txdescs[i].tfd_next = htole64(
1526 STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1527 sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1528 }
1529 sc->sc_txpending = 0;
1530 sc->sc_txdirty = 0;
1531 sc->sc_txlast = STGE_NTXDESC - 1;
1532
1533 /*
1534 * Initialize the receive descriptor and receive job
1535 * descriptor rings.
1536 */
1537 for (i = 0; i < STGE_NRXDESC; i++) {
1538 ds = &sc->sc_rxsoft[i];
1539 if (ds->ds_mbuf == NULL) {
1540 if ((error = stge_add_rxbuf(sc, i)) != 0) {
1541 printf("%s: unable to allocate or map rx "
1542 "buffer %d, error = %d\n",
1543 sc->sc_dev.dv_xname, i, error);
1544 /*
1545 * XXX Should attempt to run with fewer receive
1546 * XXX buffers instead of just failing.
1547 */
1548 stge_rxdrain(sc);
1549 goto out;
1550 }
1551 } else
1552 STGE_INIT_RXDESC(sc, i);
1553 }
1554 sc->sc_rxptr = 0;
1555 sc->sc_rxdiscard = 0;
1556 STGE_RXCHAIN_RESET(sc);
1557
1558 /* Set the station address. */
1559 for (i = 0; i < 6; i++)
1560 bus_space_write_1(st, sh, STGE_StationAddress0 + i,
1561 LLADDR(ifp->if_sadl)[i]);
1562
1563 /*
1564 * Set the statistics masks. Disable all the RMON stats,
1565 * and disable selected stats in the non-RMON stats registers.
1566 */
1567 bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1568 bus_space_write_4(st, sh, STGE_StatisticsMask,
1569 (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1570 (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1571 (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1572 (1U << 21));
1573
1574 /* Set up the receive filter. */
1575 stge_set_filter(sc);
1576
1577 /*
1578 * Give the transmit and receive ring to the chip.
1579 */
1580 bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1581 bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1582 STGE_CDTXADDR(sc, sc->sc_txdirty));
1583
1584 bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1585 bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1586 STGE_CDRXADDR(sc, sc->sc_rxptr));
1587
1588 /*
1589 * Initialize the Tx auto-poll period. It's OK to make this number
1590 * large (255 is the max, but we use 127) -- we explicitly kick the
1591 * transmit engine when there's actually a packet.
1592 */
1593 bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1594
1595 /* ..and the Rx auto-poll period. */
1596 bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1597
1598 /* Initialize the Tx start threshold. */
1599 bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1600
1601 /* RX DMA thresholds, from linux */
1602 bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
1603 bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
1604
1605 /*
1606 * Initialize the Rx DMA interrupt control register. We
1607 * request an interrupt after every incoming packet, but
1608 * defer it for 32us (64 * 512 ns). When the number of
1609 * interrupts pending reaches 8, we stop deferring the
1610 * interrupt, and signal it immediately.
1611 */
1612 bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1613 RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1614
1615 /*
1616 * Initialize the interrupt mask.
1617 */
1618 sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1619 IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1620 bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1621 bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1622
1623 /*
1624 * Configure the DMA engine.
1625 * XXX Should auto-tune TxBurstLimit.
1626 */
1627 bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1628 DMAC_TxBurstLimit(3));
1629
1630 /*
1631 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1632 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1633 * empty again.
1634 */
1635 bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1636 bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1637
1638 /*
1639 * Set the maximum frame size.
1640 */
1641 bus_space_write_2(st, sh, STGE_MaxFrameSize,
1642 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1643 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1644 ETHER_VLAN_ENCAP_LEN : 0));
1645
1646 /*
1647 * Initialize MacCtrl -- do it before setting the media,
1648 * as setting the media will actually program the register.
1649 *
1650 * Note: We have to poke the IFS value before poking
1651 * anything else.
1652 */
1653 sc->sc_MACCtrl = MC_IFSSelect(0);
1654 bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1655 sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1656 #ifdef STGE_VLAN_UNTAG
1657 sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1658 #endif
1659
1660 if (sc->sc_rev >= 6) { /* >= B.2 */
1661 /* Multi-frag frame bug work-around. */
1662 bus_space_write_2(st, sh, STGE_DebugCtrl,
1663 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1664
1665 /* Tx Poll Now bug work-around. */
1666 bus_space_write_2(st, sh, STGE_DebugCtrl,
1667 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1668 /* XXX ? from linux */
1669 bus_space_write_2(st, sh, STGE_DebugCtrl,
1670 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
1671 }
1672
1673 /*
1674 * Set the current media.
1675 */
1676 mii_mediachg(&sc->sc_mii);
1677
1678 /*
1679 * Start the one second MII clock.
1680 */
1681 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1682
1683 /*
1684 * ...all done!
1685 */
1686 ifp->if_flags |= IFF_RUNNING;
1687 ifp->if_flags &= ~IFF_OACTIVE;
1688
1689 out:
1690 if (error)
1691 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1692 return (error);
1693 }
1694
1695 /*
1696 * stge_drain:
1697 *
1698 * Drain the receive queue.
1699 */
1700 static void
1701 stge_rxdrain(struct stge_softc *sc)
1702 {
1703 struct stge_descsoft *ds;
1704 int i;
1705
1706 for (i = 0; i < STGE_NRXDESC; i++) {
1707 ds = &sc->sc_rxsoft[i];
1708 if (ds->ds_mbuf != NULL) {
1709 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1710 ds->ds_mbuf->m_next = NULL;
1711 m_freem(ds->ds_mbuf);
1712 ds->ds_mbuf = NULL;
1713 }
1714 }
1715 }
1716
1717 /*
1718 * stge_stop: [ ifnet interface function ]
1719 *
1720 * Stop transmission on the interface.
1721 */
1722 static void
1723 stge_stop(struct ifnet *ifp, int disable)
1724 {
1725 struct stge_softc *sc = ifp->if_softc;
1726 struct stge_descsoft *ds;
1727 int i;
1728
1729 /*
1730 * Stop the one second clock.
1731 */
1732 callout_stop(&sc->sc_tick_ch);
1733
1734 /* Down the MII. */
1735 mii_down(&sc->sc_mii);
1736
1737 /*
1738 * Disable interrupts.
1739 */
1740 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1741
1742 /*
1743 * Stop receiver, transmitter, and stats update.
1744 */
1745 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1746 MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1747
1748 /*
1749 * Stop the transmit and receive DMA.
1750 */
1751 stge_dma_wait(sc);
1752 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1753 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1754 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1755 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1756
1757 /*
1758 * Release any queued transmit buffers.
1759 */
1760 for (i = 0; i < STGE_NTXDESC; i++) {
1761 ds = &sc->sc_txsoft[i];
1762 if (ds->ds_mbuf != NULL) {
1763 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1764 m_freem(ds->ds_mbuf);
1765 ds->ds_mbuf = NULL;
1766 }
1767 }
1768
1769 if (disable)
1770 stge_rxdrain(sc);
1771
1772 /*
1773 * Mark the interface down and cancel the watchdog timer.
1774 */
1775 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1776 ifp->if_timer = 0;
1777 }
1778
1779 static int
1780 stge_eeprom_wait(struct stge_softc *sc)
1781 {
1782 int i;
1783
1784 for (i = 0; i < STGE_TIMEOUT; i++) {
1785 delay(1000);
1786 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1787 EC_EepromBusy) == 0)
1788 return (0);
1789 }
1790 return (1);
1791 }
1792
1793 /*
1794 * stge_read_eeprom:
1795 *
1796 * Read data from the serial EEPROM.
1797 */
1798 static void
1799 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1800 {
1801
1802 if (stge_eeprom_wait(sc))
1803 printf("%s: EEPROM failed to come ready\n",
1804 sc->sc_dev.dv_xname);
1805
1806 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1807 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1808 if (stge_eeprom_wait(sc))
1809 printf("%s: EEPROM read timed out\n",
1810 sc->sc_dev.dv_xname);
1811 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1812 }
1813
1814 /*
1815 * stge_add_rxbuf:
1816 *
1817 * Add a receive buffer to the indicated descriptor.
1818 */
1819 static int
1820 stge_add_rxbuf(struct stge_softc *sc, int idx)
1821 {
1822 struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1823 struct mbuf *m;
1824 int error;
1825
1826 MGETHDR(m, M_DONTWAIT, MT_DATA);
1827 if (m == NULL)
1828 return (ENOBUFS);
1829
1830 MCLGET(m, M_DONTWAIT);
1831 if ((m->m_flags & M_EXT) == 0) {
1832 m_freem(m);
1833 return (ENOBUFS);
1834 }
1835
1836 m->m_data = m->m_ext.ext_buf + 2;
1837 m->m_len = MCLBYTES - 2;
1838
1839 if (ds->ds_mbuf != NULL)
1840 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1841
1842 ds->ds_mbuf = m;
1843
1844 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1845 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1846 if (error) {
1847 printf("%s: can't load rx DMA map %d, error = %d\n",
1848 sc->sc_dev.dv_xname, idx, error);
1849 panic("stge_add_rxbuf"); /* XXX */
1850 }
1851
1852 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1853 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1854
1855 STGE_INIT_RXDESC(sc, idx);
1856
1857 return (0);
1858 }
1859
1860 /*
1861 * stge_set_filter:
1862 *
1863 * Set up the receive filter.
1864 */
1865 static void
1866 stge_set_filter(struct stge_softc *sc)
1867 {
1868 struct ethercom *ec = &sc->sc_ethercom;
1869 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1870 struct ether_multi *enm;
1871 struct ether_multistep step;
1872 uint32_t crc;
1873 uint32_t mchash[2];
1874
1875 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1876 if (ifp->if_flags & IFF_BROADCAST)
1877 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1878
1879 /* XXX: ST1023 only works in promiscuous mode */
1880 if (sc->sc_stge1023)
1881 ifp->if_flags |= IFF_PROMISC;
1882
1883 if (ifp->if_flags & IFF_PROMISC) {
1884 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1885 goto allmulti;
1886 }
1887
1888 /*
1889 * Set up the multicast address filter by passing all multicast
1890 * addresses through a CRC generator, and then using the low-order
1891 * 6 bits as an index into the 64 bit multicast hash table. The
1892 * high order bits select the register, while the rest of the bits
1893 * select the bit within the register.
1894 */
1895
1896 memset(mchash, 0, sizeof(mchash));
1897
1898 ETHER_FIRST_MULTI(step, ec, enm);
1899 if (enm == NULL)
1900 goto done;
1901
1902 while (enm != NULL) {
1903 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1904 /*
1905 * We must listen to a range of multicast addresses.
1906 * For now, just accept all multicasts, rather than
1907 * trying to set only those filter bits needed to match
1908 * the range. (At this time, the only use of address
1909 * ranges is for IP multicast routing, for which the
1910 * range is big enough to require all bits set.)
1911 */
1912 goto allmulti;
1913 }
1914
1915 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1916
1917 /* Just want the 6 least significant bits. */
1918 crc &= 0x3f;
1919
1920 /* Set the corresponding bit in the hash table. */
1921 mchash[crc >> 5] |= 1 << (crc & 0x1f);
1922
1923 ETHER_NEXT_MULTI(step, enm);
1924 }
1925
1926 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1927
1928 ifp->if_flags &= ~IFF_ALLMULTI;
1929 goto done;
1930
1931 allmulti:
1932 ifp->if_flags |= IFF_ALLMULTI;
1933 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1934
1935 done:
1936 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1937 /*
1938 * Program the multicast hash table.
1939 */
1940 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1941 mchash[0]);
1942 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1943 mchash[1]);
1944 }
1945
1946 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1947 sc->sc_ReceiveMode);
1948 }
1949
1950 /*
1951 * stge_mii_readreg: [mii interface function]
1952 *
1953 * Read a PHY register on the MII of the TC9021.
1954 */
1955 static int
1956 stge_mii_readreg(struct device *self, int phy, int reg)
1957 {
1958
1959 return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1960 }
1961
1962 /*
1963 * stge_mii_writereg: [mii interface function]
1964 *
1965 * Write a PHY register on the MII of the TC9021.
1966 */
1967 static void
1968 stge_mii_writereg(struct device *self, int phy, int reg, int val)
1969 {
1970
1971 mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1972 }
1973
1974 /*
1975 * stge_mii_statchg: [mii interface function]
1976 *
1977 * Callback from MII layer when media changes.
1978 */
1979 static void
1980 stge_mii_statchg(struct device *self)
1981 {
1982 struct stge_softc *sc = (struct stge_softc *) self;
1983
1984 if (sc->sc_mii.mii_media_active & IFM_FDX)
1985 sc->sc_MACCtrl |= MC_DuplexSelect;
1986 else
1987 sc->sc_MACCtrl &= ~MC_DuplexSelect;
1988
1989 /* XXX 802.1x flow-control? */
1990
1991 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1992 }
1993
1994 /*
1995 * sste_mii_bitbang_read: [mii bit-bang interface function]
1996 *
1997 * Read the MII serial port for the MII bit-bang module.
1998 */
1999 static uint32_t
2000 stge_mii_bitbang_read(struct device *self)
2001 {
2002 struct stge_softc *sc = (void *) self;
2003
2004 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
2005 }
2006
2007 /*
2008 * stge_mii_bitbang_write: [mii big-bang interface function]
2009 *
2010 * Write the MII serial port for the MII bit-bang module.
2011 */
2012 static void
2013 stge_mii_bitbang_write(struct device *self, uint32_t val)
2014 {
2015 struct stge_softc *sc = (void *) self;
2016
2017 bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
2018 val | sc->sc_PhyCtrl);
2019 }
2020
2021 /*
2022 * stge_mediastatus: [ifmedia interface function]
2023 *
2024 * Get the current interface media status.
2025 */
2026 static void
2027 stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2028 {
2029 struct stge_softc *sc = ifp->if_softc;
2030
2031 mii_pollstat(&sc->sc_mii);
2032 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2033 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2034 }
2035
2036 /*
2037 * stge_mediachange: [ifmedia interface function]
2038 *
2039 * Set hardware to newly-selected media.
2040 */
2041 static int
2042 stge_mediachange(struct ifnet *ifp)
2043 {
2044 struct stge_softc *sc = ifp->if_softc;
2045
2046 if (ifp->if_flags & IFF_UP)
2047 mii_mediachg(&sc->sc_mii);
2048 return (0);
2049 }
2050