if_stge.c revision 1.33 1 /* $NetBSD: if_stge.c,v 1.33 2006/06/17 23:34:27 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the Sundance Tech. TC9021 10/100/1000
41 * Ethernet controller.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.33 2006/06/17 23:34:27 christos Exp $");
46
47 #include "bpfilter.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/socket.h>
56 #include <sys/ioctl.h>
57 #include <sys/errno.h>
58 #include <sys/device.h>
59 #include <sys/queue.h>
60
61 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
62
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_ether.h>
67
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71
72 #include <machine/bus.h>
73 #include <machine/intr.h>
74
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 #include <dev/mii/mii_bitbang.h>
78
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 #include <dev/pci/pcidevs.h>
82
83 #include <dev/pci/if_stgereg.h>
84
85 /* #define STGE_CU_BUG 1 */
86 #define STGE_VLAN_UNTAG 1
87 /* #define STGE_VLAN_CFI 1 */
88
89 /*
90 * Transmit descriptor list size.
91 */
92 #define STGE_NTXDESC 256
93 #define STGE_NTXDESC_MASK (STGE_NTXDESC - 1)
94 #define STGE_NEXTTX(x) (((x) + 1) & STGE_NTXDESC_MASK)
95
96 /*
97 * Receive descriptor list size.
98 */
99 #define STGE_NRXDESC 256
100 #define STGE_NRXDESC_MASK (STGE_NRXDESC - 1)
101 #define STGE_NEXTRX(x) (((x) + 1) & STGE_NRXDESC_MASK)
102
103 /*
104 * Only interrupt every N frames. Must be a power-of-two.
105 */
106 #define STGE_TXINTR_SPACING 16
107 #define STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
108
109 /*
110 * Control structures are DMA'd to the TC9021 chip. We allocate them in
111 * a single clump that maps to a single DMA segment to make several things
112 * easier.
113 */
114 struct stge_control_data {
115 /*
116 * The transmit descriptors.
117 */
118 struct stge_tfd scd_txdescs[STGE_NTXDESC];
119
120 /*
121 * The receive descriptors.
122 */
123 struct stge_rfd scd_rxdescs[STGE_NRXDESC];
124 };
125
126 #define STGE_CDOFF(x) offsetof(struct stge_control_data, x)
127 #define STGE_CDTXOFF(x) STGE_CDOFF(scd_txdescs[(x)])
128 #define STGE_CDRXOFF(x) STGE_CDOFF(scd_rxdescs[(x)])
129
130 /*
131 * Software state for transmit and receive jobs.
132 */
133 struct stge_descsoft {
134 struct mbuf *ds_mbuf; /* head of our mbuf chain */
135 bus_dmamap_t ds_dmamap; /* our DMA map */
136 };
137
138 /*
139 * Software state per device.
140 */
141 struct stge_softc {
142 struct device sc_dev; /* generic device information */
143 bus_space_tag_t sc_st; /* bus space tag */
144 bus_space_handle_t sc_sh; /* bus space handle */
145 bus_dma_tag_t sc_dmat; /* bus DMA tag */
146 struct ethercom sc_ethercom; /* ethernet common data */
147 void *sc_sdhook; /* shutdown hook */
148 int sc_rev; /* silicon revision */
149
150 void *sc_ih; /* interrupt cookie */
151
152 struct mii_data sc_mii; /* MII/media information */
153
154 struct callout sc_tick_ch; /* tick callout */
155
156 bus_dmamap_t sc_cddmamap; /* control data DMA map */
157 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
158
159 /*
160 * Software state for transmit and receive descriptors.
161 */
162 struct stge_descsoft sc_txsoft[STGE_NTXDESC];
163 struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
164
165 /*
166 * Control data structures.
167 */
168 struct stge_control_data *sc_control_data;
169 #define sc_txdescs sc_control_data->scd_txdescs
170 #define sc_rxdescs sc_control_data->scd_rxdescs
171
172 #ifdef STGE_EVENT_COUNTERS
173 /*
174 * Event counters.
175 */
176 struct evcnt sc_ev_txstall; /* Tx stalled */
177 struct evcnt sc_ev_txdmaintr; /* Tx DMA interrupts */
178 struct evcnt sc_ev_txindintr; /* Tx Indicate interrupts */
179 struct evcnt sc_ev_rxintr; /* Rx interrupts */
180
181 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
182 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
183 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
184 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
185 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
186 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
187 struct evcnt sc_ev_txcopy; /* Tx packets that we had to copy */
188
189 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
190 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
191 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-bound */
192
193 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
194 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
195 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
196 #endif /* STGE_EVENT_COUNTERS */
197
198 int sc_txpending; /* number of Tx requests pending */
199 int sc_txdirty; /* first dirty Tx descriptor */
200 int sc_txlast; /* last used Tx descriptor */
201
202 int sc_rxptr; /* next ready Rx descriptor/descsoft */
203 int sc_rxdiscard;
204 int sc_rxlen;
205 struct mbuf *sc_rxhead;
206 struct mbuf *sc_rxtail;
207 struct mbuf **sc_rxtailp;
208
209 int sc_txthresh; /* Tx threshold */
210 uint32_t sc_usefiber:1; /* if we're fiber */
211 uint32_t sc_stge1023:1; /* are we a 1023 */
212 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
213 uint32_t sc_MACCtrl; /* prototype MacCtrl register */
214 uint16_t sc_IntEnable; /* prototype IntEnable register */
215 uint16_t sc_ReceiveMode; /* prototype ReceiveMode register */
216 uint8_t sc_PhyCtrl; /* prototype PhyCtrl register */
217 };
218
219 #define STGE_RXCHAIN_RESET(sc) \
220 do { \
221 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
222 *(sc)->sc_rxtailp = NULL; \
223 (sc)->sc_rxlen = 0; \
224 } while (/*CONSTCOND*/0)
225
226 #define STGE_RXCHAIN_LINK(sc, m) \
227 do { \
228 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
229 (sc)->sc_rxtailp = &(m)->m_next; \
230 } while (/*CONSTCOND*/0)
231
232 #ifdef STGE_EVENT_COUNTERS
233 #define STGE_EVCNT_INCR(ev) (ev)->ev_count++
234 #else
235 #define STGE_EVCNT_INCR(ev) /* nothing */
236 #endif
237
238 #define STGE_CDTXADDR(sc, x) ((sc)->sc_cddma + STGE_CDTXOFF((x)))
239 #define STGE_CDRXADDR(sc, x) ((sc)->sc_cddma + STGE_CDRXOFF((x)))
240
241 #define STGE_CDTXSYNC(sc, x, ops) \
242 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
243 STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
244
245 #define STGE_CDRXSYNC(sc, x, ops) \
246 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
247 STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
248
249 #define STGE_INIT_RXDESC(sc, x) \
250 do { \
251 struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
252 struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
253 \
254 /* \
255 * Note: We scoot the packet forward 2 bytes in the buffer \
256 * so that the payload after the Ethernet header is aligned \
257 * to a 4-byte boundary. \
258 */ \
259 __rfd->rfd_frag.frag_word0 = \
260 htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
261 FRAG_LEN(MCLBYTES - 2)); \
262 __rfd->rfd_next = \
263 htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x)))); \
264 __rfd->rfd_status = 0; \
265 STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
266 } while (/*CONSTCOND*/0)
267
268 #define STGE_TIMEOUT 1000
269
270 static void stge_start(struct ifnet *);
271 static void stge_watchdog(struct ifnet *);
272 static int stge_ioctl(struct ifnet *, u_long, caddr_t);
273 static int stge_init(struct ifnet *);
274 static void stge_stop(struct ifnet *, int);
275
276 static void stge_shutdown(void *);
277
278 static void stge_reset(struct stge_softc *);
279 static void stge_rxdrain(struct stge_softc *);
280 static int stge_add_rxbuf(struct stge_softc *, int);
281 static void stge_read_eeprom(struct stge_softc *, int, uint16_t *);
282 static void stge_tick(void *);
283
284 static void stge_stats_update(struct stge_softc *);
285
286 static void stge_set_filter(struct stge_softc *);
287
288 static int stge_intr(void *);
289 static void stge_txintr(struct stge_softc *);
290 static void stge_rxintr(struct stge_softc *);
291
292 static int stge_mii_readreg(struct device *, int, int);
293 static void stge_mii_writereg(struct device *, int, int, int);
294 static void stge_mii_statchg(struct device *);
295
296 static int stge_mediachange(struct ifnet *);
297 static void stge_mediastatus(struct ifnet *, struct ifmediareq *);
298
299 static int stge_match(struct device *, struct cfdata *, void *);
300 static void stge_attach(struct device *, struct device *, void *);
301
302 int stge_copy_small = 0;
303
304 CFATTACH_DECL(stge, sizeof(struct stge_softc),
305 stge_match, stge_attach, NULL, NULL);
306
307 static uint32_t stge_mii_bitbang_read(struct device *);
308 static void stge_mii_bitbang_write(struct device *, uint32_t);
309
310 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
311 stge_mii_bitbang_read,
312 stge_mii_bitbang_write,
313 {
314 PC_MgmtData, /* MII_BIT_MDO */
315 PC_MgmtData, /* MII_BIT_MDI */
316 PC_MgmtClk, /* MII_BIT_MDC */
317 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
318 0, /* MII_BIT_DIR_PHY_HOST */
319 }
320 };
321
322 /*
323 * Devices supported by this driver.
324 */
325 static const struct stge_product {
326 pci_vendor_id_t stge_vendor;
327 pci_product_id_t stge_product;
328 const char *stge_name;
329 } stge_products[] = {
330 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST1023,
331 "Sundance ST-1023 Gigabit Ethernet" },
332
333 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST2021,
334 "Sundance ST-2021 Gigabit Ethernet" },
335
336 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021,
337 "Tamarack TC9021 Gigabit Ethernet" },
338
339 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021_ALT,
340 "Tamarack TC9021 Gigabit Ethernet" },
341
342 /*
343 * The Sundance sample boards use the Sundance vendor ID,
344 * but the Tamarack product ID.
345 */
346 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021,
347 "Sundance TC9021 Gigabit Ethernet" },
348
349 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021_ALT,
350 "Sundance TC9021 Gigabit Ethernet" },
351
352 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL4000,
353 "D-Link DL-4000 Gigabit Ethernet" },
354
355 { PCI_VENDOR_ANTARES, PCI_PRODUCT_ANTARES_TC9021,
356 "Antares Gigabit Ethernet" },
357
358 { 0, 0,
359 NULL },
360 };
361
362 static const struct stge_product *
363 stge_lookup(const struct pci_attach_args *pa)
364 {
365 const struct stge_product *sp;
366
367 for (sp = stge_products; sp->stge_name != NULL; sp++) {
368 if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
369 PCI_PRODUCT(pa->pa_id) == sp->stge_product)
370 return (sp);
371 }
372 return (NULL);
373 }
374
375 static int
376 stge_match(struct device *parent, struct cfdata *cf, void *aux)
377 {
378 struct pci_attach_args *pa = aux;
379
380 if (stge_lookup(pa) != NULL)
381 return (1);
382
383 return (0);
384 }
385
386 static void
387 stge_attach(struct device *parent, struct device *self, void *aux)
388 {
389 struct stge_softc *sc = (struct stge_softc *) self;
390 struct pci_attach_args *pa = aux;
391 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
392 pci_chipset_tag_t pc = pa->pa_pc;
393 pci_intr_handle_t ih;
394 const char *intrstr = NULL;
395 bus_space_tag_t iot, memt;
396 bus_space_handle_t ioh, memh;
397 bus_dma_segment_t seg;
398 int ioh_valid, memh_valid;
399 int i, rseg, error;
400 const struct stge_product *sp;
401 uint8_t enaddr[ETHER_ADDR_LEN];
402
403 callout_init(&sc->sc_tick_ch);
404
405 sp = stge_lookup(pa);
406 if (sp == NULL) {
407 printf("\n");
408 panic("ste_attach: impossible");
409 }
410
411 sc->sc_rev = PCI_REVISION(pa->pa_class);
412
413 printf(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
414
415 /*
416 * Map the device.
417 */
418 ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
419 PCI_MAPREG_TYPE_IO, 0,
420 &iot, &ioh, NULL, NULL) == 0);
421 memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
422 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
423 &memt, &memh, NULL, NULL) == 0);
424
425 if (memh_valid) {
426 sc->sc_st = memt;
427 sc->sc_sh = memh;
428 } else if (ioh_valid) {
429 sc->sc_st = iot;
430 sc->sc_sh = ioh;
431 } else {
432 printf("%s: unable to map device registers\n",
433 sc->sc_dev.dv_xname);
434 return;
435 }
436
437 sc->sc_dmat = pa->pa_dmat;
438
439 /* Enable bus mastering. */
440 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
441 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
442 PCI_COMMAND_MASTER_ENABLE);
443
444 /* power up chip */
445 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
446 NULL)) && error != EOPNOTSUPP) {
447 aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
448 error);
449 return;
450 }
451 /*
452 * Map and establish our interrupt.
453 */
454 if (pci_intr_map(pa, &ih)) {
455 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
456 return;
457 }
458 intrstr = pci_intr_string(pc, ih);
459 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
460 if (sc->sc_ih == NULL) {
461 printf("%s: unable to establish interrupt",
462 sc->sc_dev.dv_xname);
463 if (intrstr != NULL)
464 printf(" at %s", intrstr);
465 printf("\n");
466 return;
467 }
468 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
469
470 /*
471 * Allocate the control data structures, and create and load the
472 * DMA map for it.
473 */
474 if ((error = bus_dmamem_alloc(sc->sc_dmat,
475 sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
476 0)) != 0) {
477 printf("%s: unable to allocate control data, error = %d\n",
478 sc->sc_dev.dv_xname, error);
479 goto fail_0;
480 }
481
482 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
483 sizeof(struct stge_control_data), (caddr_t *)&sc->sc_control_data,
484 BUS_DMA_COHERENT)) != 0) {
485 printf("%s: unable to map control data, error = %d\n",
486 sc->sc_dev.dv_xname, error);
487 goto fail_1;
488 }
489
490 if ((error = bus_dmamap_create(sc->sc_dmat,
491 sizeof(struct stge_control_data), 1,
492 sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
493 printf("%s: unable to create control data DMA map, "
494 "error = %d\n", sc->sc_dev.dv_xname, error);
495 goto fail_2;
496 }
497
498 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
499 sc->sc_control_data, sizeof(struct stge_control_data), NULL,
500 0)) != 0) {
501 printf("%s: unable to load control data DMA map, error = %d\n",
502 sc->sc_dev.dv_xname, error);
503 goto fail_3;
504 }
505
506 /*
507 * Create the transmit buffer DMA maps. Note that rev B.3
508 * and earlier seem to have a bug regarding multi-fragment
509 * packets. We need to limit the number of Tx segments on
510 * such chips to 1.
511 */
512 for (i = 0; i < STGE_NTXDESC; i++) {
513 if ((error = bus_dmamap_create(sc->sc_dmat,
514 ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
515 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
516 printf("%s: unable to create tx DMA map %d, "
517 "error = %d\n", sc->sc_dev.dv_xname, i, error);
518 goto fail_4;
519 }
520 }
521
522 /*
523 * Create the receive buffer DMA maps.
524 */
525 for (i = 0; i < STGE_NRXDESC; i++) {
526 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
527 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
528 printf("%s: unable to create rx DMA map %d, "
529 "error = %d\n", sc->sc_dev.dv_xname, i, error);
530 goto fail_5;
531 }
532 sc->sc_rxsoft[i].ds_mbuf = NULL;
533 }
534
535 /*
536 * Determine if we're copper or fiber. It affects how we
537 * reset the card.
538 */
539 if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
540 AC_PhyMedia)
541 sc->sc_usefiber = 1;
542 else
543 sc->sc_usefiber = 0;
544
545 /*
546 * Reset the chip to a known state.
547 */
548 stge_reset(sc);
549
550 /*
551 * Reading the station address from the EEPROM doesn't seem
552 * to work, at least on my sample boards. Instead, since
553 * the reset sequence does AutoInit, read it from the station
554 * address registers. For Sundance 1023 you can only read it
555 * from EEPROM.
556 */
557 if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
558 enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
559 STGE_StationAddress0) & 0xff;
560 enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
561 STGE_StationAddress0) >> 8;
562 enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
563 STGE_StationAddress1) & 0xff;
564 enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
565 STGE_StationAddress1) >> 8;
566 enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
567 STGE_StationAddress2) & 0xff;
568 enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
569 STGE_StationAddress2) >> 8;
570 sc->sc_stge1023 = 0;
571 } else {
572 uint16_t myaddr[ETHER_ADDR_LEN / 2];
573 for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
574 stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
575 &myaddr[i]);
576 myaddr[i] = le16toh(myaddr[i]);
577 }
578 (void)memcpy(enaddr, myaddr, sizeof(enaddr));
579 sc->sc_stge1023 = 1;
580 }
581
582 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
583 ether_sprintf(enaddr));
584
585 /*
586 * Read some important bits from the PhyCtrl register.
587 */
588 sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
589 STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
590
591 /*
592 * Initialize our media structures and probe the MII.
593 */
594 sc->sc_mii.mii_ifp = ifp;
595 sc->sc_mii.mii_readreg = stge_mii_readreg;
596 sc->sc_mii.mii_writereg = stge_mii_writereg;
597 sc->sc_mii.mii_statchg = stge_mii_statchg;
598 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, stge_mediachange,
599 stge_mediastatus);
600 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
601 MII_OFFSET_ANY, MIIF_DOPAUSE);
602 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
603 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
604 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
605 } else
606 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
607
608 ifp = &sc->sc_ethercom.ec_if;
609 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
610 ifp->if_softc = sc;
611 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
612 ifp->if_ioctl = stge_ioctl;
613 ifp->if_start = stge_start;
614 ifp->if_watchdog = stge_watchdog;
615 ifp->if_init = stge_init;
616 ifp->if_stop = stge_stop;
617 IFQ_SET_READY(&ifp->if_snd);
618
619 /*
620 * The manual recommends disabling early transmit, so we
621 * do. It's disabled anyway, if using IP checksumming,
622 * since the entire packet must be in the FIFO in order
623 * for the chip to perform the checksum.
624 */
625 sc->sc_txthresh = 0x0fff;
626
627 /*
628 * Disable MWI if the PCI layer tells us to.
629 */
630 sc->sc_DMACtrl = 0;
631 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
632 sc->sc_DMACtrl |= DMAC_MWIDisable;
633
634 /*
635 * We can support 802.1Q VLAN-sized frames and jumbo
636 * Ethernet frames.
637 *
638 * XXX Figure out how to do hw-assisted VLAN tagging in
639 * XXX a reasonable way on this chip.
640 */
641 sc->sc_ethercom.ec_capabilities |=
642 ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
643 ETHERCAP_VLAN_HWTAGGING;
644
645 /*
646 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
647 */
648 sc->sc_ethercom.ec_if.if_capabilities |=
649 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
650 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
651 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
652
653 /*
654 * Attach the interface.
655 */
656 if_attach(ifp);
657 ether_ifattach(ifp, enaddr);
658
659 #ifdef STGE_EVENT_COUNTERS
660 /*
661 * Attach event counters.
662 */
663 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
664 NULL, sc->sc_dev.dv_xname, "txstall");
665 evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
666 NULL, sc->sc_dev.dv_xname, "txdmaintr");
667 evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
668 NULL, sc->sc_dev.dv_xname, "txindintr");
669 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
670 NULL, sc->sc_dev.dv_xname, "rxintr");
671
672 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
673 NULL, sc->sc_dev.dv_xname, "txseg1");
674 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
675 NULL, sc->sc_dev.dv_xname, "txseg2");
676 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
677 NULL, sc->sc_dev.dv_xname, "txseg3");
678 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
679 NULL, sc->sc_dev.dv_xname, "txseg4");
680 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
681 NULL, sc->sc_dev.dv_xname, "txseg5");
682 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
683 NULL, sc->sc_dev.dv_xname, "txsegmore");
684 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
685 NULL, sc->sc_dev.dv_xname, "txcopy");
686
687 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
688 NULL, sc->sc_dev.dv_xname, "rxipsum");
689 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
690 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
691 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
692 NULL, sc->sc_dev.dv_xname, "rxudpsum");
693 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
694 NULL, sc->sc_dev.dv_xname, "txipsum");
695 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
696 NULL, sc->sc_dev.dv_xname, "txtcpsum");
697 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
698 NULL, sc->sc_dev.dv_xname, "txudpsum");
699 #endif /* STGE_EVENT_COUNTERS */
700
701 /*
702 * Make sure the interface is shutdown during reboot.
703 */
704 sc->sc_sdhook = shutdownhook_establish(stge_shutdown, sc);
705 if (sc->sc_sdhook == NULL)
706 printf("%s: WARNING: unable to establish shutdown hook\n",
707 sc->sc_dev.dv_xname);
708 return;
709
710 /*
711 * Free any resources we've allocated during the failed attach
712 * attempt. Do this in reverse order and fall through.
713 */
714 fail_5:
715 for (i = 0; i < STGE_NRXDESC; i++) {
716 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
717 bus_dmamap_destroy(sc->sc_dmat,
718 sc->sc_rxsoft[i].ds_dmamap);
719 }
720 fail_4:
721 for (i = 0; i < STGE_NTXDESC; i++) {
722 if (sc->sc_txsoft[i].ds_dmamap != NULL)
723 bus_dmamap_destroy(sc->sc_dmat,
724 sc->sc_txsoft[i].ds_dmamap);
725 }
726 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
727 fail_3:
728 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
729 fail_2:
730 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
731 sizeof(struct stge_control_data));
732 fail_1:
733 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
734 fail_0:
735 return;
736 }
737
738 /*
739 * stge_shutdown:
740 *
741 * Make sure the interface is stopped at reboot time.
742 */
743 static void
744 stge_shutdown(void *arg)
745 {
746 struct stge_softc *sc = arg;
747
748 stge_stop(&sc->sc_ethercom.ec_if, 1);
749 }
750
751 static void
752 stge_dma_wait(struct stge_softc *sc)
753 {
754 int i;
755
756 for (i = 0; i < STGE_TIMEOUT; i++) {
757 delay(2);
758 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
759 DMAC_TxDMAInProg) == 0)
760 break;
761 }
762
763 if (i == STGE_TIMEOUT)
764 printf("%s: DMA wait timed out\n", sc->sc_dev.dv_xname);
765 }
766
767 /*
768 * stge_start: [ifnet interface function]
769 *
770 * Start packet transmission on the interface.
771 */
772 static void
773 stge_start(struct ifnet *ifp)
774 {
775 struct stge_softc *sc = ifp->if_softc;
776 struct mbuf *m0;
777 struct stge_descsoft *ds;
778 struct stge_tfd *tfd;
779 bus_dmamap_t dmamap;
780 int error, firsttx, nexttx, opending, seg, totlen;
781 uint64_t csum_flags;
782
783 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
784 return;
785
786 /*
787 * Remember the previous number of pending transmissions
788 * and the first descriptor we will use.
789 */
790 opending = sc->sc_txpending;
791 firsttx = STGE_NEXTTX(sc->sc_txlast);
792
793 /*
794 * Loop through the send queue, setting up transmit descriptors
795 * until we drain the queue, or use up all available transmit
796 * descriptors.
797 */
798 for (;;) {
799 struct m_tag *mtag;
800 uint64_t tfc;
801
802 /*
803 * Grab a packet off the queue.
804 */
805 IFQ_POLL(&ifp->if_snd, m0);
806 if (m0 == NULL)
807 break;
808
809 /*
810 * Leave one unused descriptor at the end of the
811 * list to prevent wrapping completely around.
812 */
813 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
814 STGE_EVCNT_INCR(&sc->sc_ev_txstall);
815 break;
816 }
817
818 /*
819 * See if we have any VLAN stuff.
820 */
821 mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
822
823 /*
824 * Get the last and next available transmit descriptor.
825 */
826 nexttx = STGE_NEXTTX(sc->sc_txlast);
827 tfd = &sc->sc_txdescs[nexttx];
828 ds = &sc->sc_txsoft[nexttx];
829
830 dmamap = ds->ds_dmamap;
831
832 /*
833 * Load the DMA map. If this fails, the packet either
834 * didn't fit in the alloted number of segments, or we
835 * were short on resources. For the too-many-segments
836 * case, we simply report an error and drop the packet,
837 * since we can't sanely copy a jumbo packet to a single
838 * buffer.
839 */
840 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
841 BUS_DMA_NOWAIT);
842 if (error) {
843 if (error == EFBIG) {
844 printf("%s: Tx packet consumes too many "
845 "DMA segments, dropping...\n",
846 sc->sc_dev.dv_xname);
847 IFQ_DEQUEUE(&ifp->if_snd, m0);
848 m_freem(m0);
849 continue;
850 }
851 /*
852 * Short on resources, just stop for now.
853 */
854 break;
855 }
856
857 IFQ_DEQUEUE(&ifp->if_snd, m0);
858
859 /*
860 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
861 */
862
863 /* Sync the DMA map. */
864 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
865 BUS_DMASYNC_PREWRITE);
866
867 /* Initialize the fragment list. */
868 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
869 tfd->tfd_frags[seg].frag_word0 =
870 htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
871 FRAG_LEN(dmamap->dm_segs[seg].ds_len));
872 totlen += dmamap->dm_segs[seg].ds_len;
873 }
874
875 #ifdef STGE_EVENT_COUNTERS
876 switch (dmamap->dm_nsegs) {
877 case 1:
878 STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
879 break;
880 case 2:
881 STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
882 break;
883 case 3:
884 STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
885 break;
886 case 4:
887 STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
888 break;
889 case 5:
890 STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
891 break;
892 default:
893 STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
894 break;
895 }
896 #endif /* STGE_EVENT_COUNTERS */
897
898 /*
899 * Initialize checksumming flags in the descriptor.
900 * Byte-swap constants so the compiler can optimize.
901 */
902 csum_flags = 0;
903 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
904 STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
905 csum_flags |= TFD_IPChecksumEnable;
906 }
907
908 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
909 STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
910 csum_flags |= TFD_TCPChecksumEnable;
911 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
912 STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
913 csum_flags |= TFD_UDPChecksumEnable;
914 }
915
916 /*
917 * Initialize the descriptor and give it to the chip.
918 * Check to see if we have a VLAN tag to insert.
919 */
920
921 tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
922 TFD_FragCount(seg) | csum_flags |
923 (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
924 TFD_TxDMAIndicate : 0);
925 if (mtag) {
926 #if 0
927 struct ether_header *eh =
928 mtod(m0, struct ether_header *);
929 u_int16_t etype = ntohs(eh->ether_type);
930 printf("%s: xmit (tag %d) etype %x\n",
931 ifp->if_xname, *mtod(n, int *), etype);
932 #endif
933 tfc |= TFD_VLANTagInsert |
934 #ifdef STGE_VLAN_CFI
935 TFD_CFI |
936 #endif
937 TFD_VID(VLAN_TAG_VALUE(mtag));
938 }
939 tfd->tfd_control = htole64(tfc);
940
941 /* Sync the descriptor. */
942 STGE_CDTXSYNC(sc, nexttx,
943 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
944
945 /*
946 * Kick the transmit DMA logic.
947 */
948 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
949 sc->sc_DMACtrl | DMAC_TxDMAPollNow);
950
951 /*
952 * Store a pointer to the packet so we can free it later.
953 */
954 ds->ds_mbuf = m0;
955
956 /* Advance the tx pointer. */
957 sc->sc_txpending++;
958 sc->sc_txlast = nexttx;
959
960 #if NBPFILTER > 0
961 /*
962 * Pass the packet to any BPF listeners.
963 */
964 if (ifp->if_bpf)
965 bpf_mtap(ifp->if_bpf, m0);
966 #endif /* NBPFILTER > 0 */
967 }
968
969 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
970 /* No more slots left; notify upper layer. */
971 ifp->if_flags |= IFF_OACTIVE;
972 }
973
974 if (sc->sc_txpending != opending) {
975 /*
976 * We enqueued packets. If the transmitter was idle,
977 * reset the txdirty pointer.
978 */
979 if (opending == 0)
980 sc->sc_txdirty = firsttx;
981
982 /* Set a watchdog timer in case the chip flakes out. */
983 ifp->if_timer = 5;
984 }
985 }
986
987 /*
988 * stge_watchdog: [ifnet interface function]
989 *
990 * Watchdog timer handler.
991 */
992 static void
993 stge_watchdog(struct ifnet *ifp)
994 {
995 struct stge_softc *sc = ifp->if_softc;
996
997 /*
998 * Sweep up first, since we don't interrupt every frame.
999 */
1000 stge_txintr(sc);
1001 if (sc->sc_txpending != 0) {
1002 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1003 ifp->if_oerrors++;
1004
1005 (void) stge_init(ifp);
1006
1007 /* Try to get more packets going. */
1008 stge_start(ifp);
1009 }
1010 }
1011
1012 /*
1013 * stge_ioctl: [ifnet interface function]
1014 *
1015 * Handle control requests from the operator.
1016 */
1017 static int
1018 stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1019 {
1020 struct stge_softc *sc = ifp->if_softc;
1021 struct ifreq *ifr = (struct ifreq *)data;
1022 int s, error;
1023
1024 s = splnet();
1025
1026 switch (cmd) {
1027 case SIOCSIFMEDIA:
1028 case SIOCGIFMEDIA:
1029 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1030 break;
1031
1032 default:
1033 error = ether_ioctl(ifp, cmd, data);
1034 if (error == ENETRESET) {
1035 /*
1036 * Multicast list has changed; set the hardware filter
1037 * accordingly.
1038 */
1039 if (ifp->if_flags & IFF_RUNNING)
1040 stge_set_filter(sc);
1041 error = 0;
1042 }
1043 break;
1044 }
1045
1046 /* Try to get more packets going. */
1047 stge_start(ifp);
1048
1049 splx(s);
1050 return (error);
1051 }
1052
1053 /*
1054 * stge_intr:
1055 *
1056 * Interrupt service routine.
1057 */
1058 static int
1059 stge_intr(void *arg)
1060 {
1061 struct stge_softc *sc = arg;
1062 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1063 uint32_t txstat;
1064 int wantinit;
1065 uint16_t isr;
1066
1067 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1068 IS_InterruptStatus) == 0)
1069 return (0);
1070
1071 for (wantinit = 0; wantinit == 0;) {
1072 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1073 if ((isr & sc->sc_IntEnable) == 0)
1074 break;
1075
1076 /* Host interface errors. */
1077 if (isr & IS_HostError) {
1078 printf("%s: Host interface error\n",
1079 sc->sc_dev.dv_xname);
1080 wantinit = 1;
1081 continue;
1082 }
1083
1084 /* Receive interrupts. */
1085 if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
1086 STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1087 stge_rxintr(sc);
1088 if (isr & IS_RFDListEnd) {
1089 printf("%s: receive ring overflow\n",
1090 sc->sc_dev.dv_xname);
1091 /*
1092 * XXX Should try to recover from this
1093 * XXX more gracefully.
1094 */
1095 wantinit = 1;
1096 }
1097 }
1098
1099 /* Transmit interrupts. */
1100 if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
1101 #ifdef STGE_EVENT_COUNTERS
1102 if (isr & IS_TxDMAComplete)
1103 STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1104 #endif
1105 stge_txintr(sc);
1106 }
1107
1108 /* Statistics overflow. */
1109 if (isr & IS_UpdateStats)
1110 stge_stats_update(sc);
1111
1112 /* Transmission errors. */
1113 if (isr & IS_TxComplete) {
1114 STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1115 for (;;) {
1116 txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1117 STGE_TxStatus);
1118 if ((txstat & TS_TxComplete) == 0)
1119 break;
1120 if (txstat & TS_TxUnderrun) {
1121 sc->sc_txthresh++;
1122 if (sc->sc_txthresh > 0x0fff)
1123 sc->sc_txthresh = 0x0fff;
1124 printf("%s: transmit underrun, new "
1125 "threshold: %d bytes\n",
1126 sc->sc_dev.dv_xname,
1127 sc->sc_txthresh << 5);
1128 }
1129 if (txstat & TS_MaxCollisions)
1130 printf("%s: excessive collisions\n",
1131 sc->sc_dev.dv_xname);
1132 }
1133 wantinit = 1;
1134 }
1135
1136 }
1137
1138 if (wantinit)
1139 stge_init(ifp);
1140
1141 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1142 sc->sc_IntEnable);
1143
1144 /* Try to get more packets going. */
1145 stge_start(ifp);
1146
1147 return (1);
1148 }
1149
1150 /*
1151 * stge_txintr:
1152 *
1153 * Helper; handle transmit interrupts.
1154 */
1155 static void
1156 stge_txintr(struct stge_softc *sc)
1157 {
1158 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1159 struct stge_descsoft *ds;
1160 uint64_t control;
1161 int i;
1162
1163 ifp->if_flags &= ~IFF_OACTIVE;
1164
1165 /*
1166 * Go through our Tx list and free mbufs for those
1167 * frames which have been transmitted.
1168 */
1169 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1170 i = STGE_NEXTTX(i), sc->sc_txpending--) {
1171 ds = &sc->sc_txsoft[i];
1172
1173 STGE_CDTXSYNC(sc, i,
1174 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1175
1176 control = le64toh(sc->sc_txdescs[i].tfd_control);
1177 if ((control & TFD_TFDDone) == 0)
1178 break;
1179
1180 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1181 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1182 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1183 m_freem(ds->ds_mbuf);
1184 ds->ds_mbuf = NULL;
1185 }
1186
1187 /* Update the dirty transmit buffer pointer. */
1188 sc->sc_txdirty = i;
1189
1190 /*
1191 * If there are no more pending transmissions, cancel the watchdog
1192 * timer.
1193 */
1194 if (sc->sc_txpending == 0)
1195 ifp->if_timer = 0;
1196 }
1197
1198 /*
1199 * stge_rxintr:
1200 *
1201 * Helper; handle receive interrupts.
1202 */
1203 static void
1204 stge_rxintr(struct stge_softc *sc)
1205 {
1206 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1207 struct stge_descsoft *ds;
1208 struct mbuf *m, *tailm;
1209 uint64_t status;
1210 int i, len;
1211
1212 for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1213 ds = &sc->sc_rxsoft[i];
1214
1215 STGE_CDRXSYNC(sc, i,
1216 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1217
1218 status = le64toh(sc->sc_rxdescs[i].rfd_status);
1219
1220 if ((status & RFD_RFDDone) == 0)
1221 break;
1222
1223 if (__predict_false(sc->sc_rxdiscard)) {
1224 STGE_INIT_RXDESC(sc, i);
1225 if (status & RFD_FrameEnd) {
1226 /* Reset our state. */
1227 sc->sc_rxdiscard = 0;
1228 }
1229 continue;
1230 }
1231
1232 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1233 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1234
1235 m = ds->ds_mbuf;
1236
1237 /*
1238 * Add a new receive buffer to the ring.
1239 */
1240 if (stge_add_rxbuf(sc, i) != 0) {
1241 /*
1242 * Failed, throw away what we've done so
1243 * far, and discard the rest of the packet.
1244 */
1245 ifp->if_ierrors++;
1246 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1247 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1248 STGE_INIT_RXDESC(sc, i);
1249 if ((status & RFD_FrameEnd) == 0)
1250 sc->sc_rxdiscard = 1;
1251 if (sc->sc_rxhead != NULL)
1252 m_freem(sc->sc_rxhead);
1253 STGE_RXCHAIN_RESET(sc);
1254 continue;
1255 }
1256
1257 #ifdef DIAGNOSTIC
1258 if (status & RFD_FrameStart) {
1259 KASSERT(sc->sc_rxhead == NULL);
1260 KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1261 }
1262 #endif
1263
1264 STGE_RXCHAIN_LINK(sc, m);
1265
1266 /*
1267 * If this is not the end of the packet, keep
1268 * looking.
1269 */
1270 if ((status & RFD_FrameEnd) == 0) {
1271 sc->sc_rxlen += m->m_len;
1272 continue;
1273 }
1274
1275 /*
1276 * Okay, we have the entire packet now...
1277 */
1278 *sc->sc_rxtailp = NULL;
1279 m = sc->sc_rxhead;
1280 tailm = sc->sc_rxtail;
1281
1282 STGE_RXCHAIN_RESET(sc);
1283
1284 /*
1285 * If the packet had an error, drop it. Note we
1286 * count the error later in the periodic stats update.
1287 */
1288 if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1289 RFD_RxAlignmentError | RFD_RxFCSError |
1290 RFD_RxLengthError)) {
1291 m_freem(m);
1292 continue;
1293 }
1294
1295 /*
1296 * No errors.
1297 *
1298 * Note we have configured the chip to not include
1299 * the CRC at the end of the packet.
1300 */
1301 len = RFD_RxDMAFrameLen(status);
1302 tailm->m_len = len - sc->sc_rxlen;
1303
1304 /*
1305 * If the packet is small enough to fit in a
1306 * single header mbuf, allocate one and copy
1307 * the data into it. This greatly reduces
1308 * memory consumption when we receive lots
1309 * of small packets.
1310 */
1311 if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1312 struct mbuf *nm;
1313 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1314 if (nm == NULL) {
1315 ifp->if_ierrors++;
1316 m_freem(m);
1317 continue;
1318 }
1319 nm->m_data += 2;
1320 nm->m_pkthdr.len = nm->m_len = len;
1321 m_copydata(m, 0, len, mtod(nm, caddr_t));
1322 m_freem(m);
1323 m = nm;
1324 }
1325
1326 /*
1327 * Set the incoming checksum information for the packet.
1328 */
1329 if (status & RFD_IPDetected) {
1330 STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1331 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1332 if (status & RFD_IPError)
1333 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1334 if (status & RFD_TCPDetected) {
1335 STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1336 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1337 if (status & RFD_TCPError)
1338 m->m_pkthdr.csum_flags |=
1339 M_CSUM_TCP_UDP_BAD;
1340 } else if (status & RFD_UDPDetected) {
1341 STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1342 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1343 if (status & RFD_UDPError)
1344 m->m_pkthdr.csum_flags |=
1345 M_CSUM_TCP_UDP_BAD;
1346 }
1347 }
1348
1349 m->m_pkthdr.rcvif = ifp;
1350 m->m_pkthdr.len = len;
1351
1352 #if NBPFILTER > 0
1353 /*
1354 * Pass this up to any BPF listeners, but only
1355 * pass if up the stack if it's for us.
1356 */
1357 if (ifp->if_bpf)
1358 bpf_mtap(ifp->if_bpf, m);
1359 #endif /* NBPFILTER > 0 */
1360 #ifdef STGE_VLAN_UNTAG
1361 /*
1362 * Check for VLAN tagged packets
1363 */
1364 if (status & RFD_VLANDetected)
1365 VLAN_INPUT_TAG(ifp, m, RFD_TCI(status), continue);
1366
1367 #endif
1368 #if 0
1369 if (status & RFD_VLANDetected) {
1370 struct ether_header *eh;
1371 u_int16_t etype;
1372
1373 eh = mtod(m, struct ether_header *);
1374 etype = ntohs(eh->ether_type);
1375 printf("%s: VLANtag detected (TCI %d) etype %x\n",
1376 ifp->if_xname, (u_int16_t) RFD_TCI(status),
1377 etype);
1378 }
1379 #endif
1380 /* Pass it on. */
1381 (*ifp->if_input)(ifp, m);
1382 }
1383
1384 /* Update the receive pointer. */
1385 sc->sc_rxptr = i;
1386 }
1387
1388 /*
1389 * stge_tick:
1390 *
1391 * One second timer, used to tick the MII.
1392 */
1393 static void
1394 stge_tick(void *arg)
1395 {
1396 struct stge_softc *sc = arg;
1397 int s;
1398
1399 s = splnet();
1400 mii_tick(&sc->sc_mii);
1401 stge_stats_update(sc);
1402 splx(s);
1403
1404 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1405 }
1406
1407 /*
1408 * stge_stats_update:
1409 *
1410 * Read the TC9021 statistics counters.
1411 */
1412 static void
1413 stge_stats_update(struct stge_softc *sc)
1414 {
1415 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1416 bus_space_tag_t st = sc->sc_st;
1417 bus_space_handle_t sh = sc->sc_sh;
1418
1419 (void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1420
1421 ifp->if_ipackets +=
1422 bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1423
1424 ifp->if_ierrors +=
1425 (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1426
1427 (void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1428
1429 ifp->if_opackets +=
1430 bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1431
1432 ifp->if_collisions +=
1433 bus_space_read_4(st, sh, STGE_LateCollisions) +
1434 bus_space_read_4(st, sh, STGE_MultiColFrames) +
1435 bus_space_read_4(st, sh, STGE_SingleColFrames);
1436
1437 ifp->if_oerrors +=
1438 (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1439 (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1440 }
1441
1442 /*
1443 * stge_reset:
1444 *
1445 * Perform a soft reset on the TC9021.
1446 */
1447 static void
1448 stge_reset(struct stge_softc *sc)
1449 {
1450 uint32_t ac;
1451 int i;
1452
1453 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1454
1455 /*
1456 * Only assert RstOut if we're fiber. We need GMII clocks
1457 * to be present in order for the reset to complete on fiber
1458 * cards.
1459 */
1460 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1461 ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1462 AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1463 (sc->sc_usefiber ? AC_RstOut : 0));
1464
1465 delay(50000);
1466
1467 for (i = 0; i < STGE_TIMEOUT; i++) {
1468 delay(5000);
1469 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1470 AC_ResetBusy) == 0)
1471 break;
1472 }
1473
1474 if (i == STGE_TIMEOUT)
1475 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1476
1477 delay(1000);
1478 }
1479
1480 /*
1481 * stge_init: [ ifnet interface function ]
1482 *
1483 * Initialize the interface. Must be called at splnet().
1484 */
1485 static int
1486 stge_init(struct ifnet *ifp)
1487 {
1488 struct stge_softc *sc = ifp->if_softc;
1489 bus_space_tag_t st = sc->sc_st;
1490 bus_space_handle_t sh = sc->sc_sh;
1491 struct stge_descsoft *ds;
1492 int i, error = 0;
1493
1494 /*
1495 * Cancel any pending I/O.
1496 */
1497 stge_stop(ifp, 0);
1498
1499 /*
1500 * Reset the chip to a known state.
1501 */
1502 stge_reset(sc);
1503
1504 /*
1505 * Initialize the transmit descriptor ring.
1506 */
1507 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1508 for (i = 0; i < STGE_NTXDESC; i++) {
1509 sc->sc_txdescs[i].tfd_next = htole64(
1510 STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1511 sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1512 }
1513 sc->sc_txpending = 0;
1514 sc->sc_txdirty = 0;
1515 sc->sc_txlast = STGE_NTXDESC - 1;
1516
1517 /*
1518 * Initialize the receive descriptor and receive job
1519 * descriptor rings.
1520 */
1521 for (i = 0; i < STGE_NRXDESC; i++) {
1522 ds = &sc->sc_rxsoft[i];
1523 if (ds->ds_mbuf == NULL) {
1524 if ((error = stge_add_rxbuf(sc, i)) != 0) {
1525 printf("%s: unable to allocate or map rx "
1526 "buffer %d, error = %d\n",
1527 sc->sc_dev.dv_xname, i, error);
1528 /*
1529 * XXX Should attempt to run with fewer receive
1530 * XXX buffers instead of just failing.
1531 */
1532 stge_rxdrain(sc);
1533 goto out;
1534 }
1535 } else
1536 STGE_INIT_RXDESC(sc, i);
1537 }
1538 sc->sc_rxptr = 0;
1539 sc->sc_rxdiscard = 0;
1540 STGE_RXCHAIN_RESET(sc);
1541
1542 /* Set the station address. */
1543 for (i = 0; i < 6; i++)
1544 bus_space_write_1(st, sh, STGE_StationAddress0 + i,
1545 LLADDR(ifp->if_sadl)[i]);
1546
1547 /*
1548 * Set the statistics masks. Disable all the RMON stats,
1549 * and disable selected stats in the non-RMON stats registers.
1550 */
1551 bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1552 bus_space_write_4(st, sh, STGE_StatisticsMask,
1553 (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1554 (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1555 (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1556 (1U << 21));
1557
1558 /* Set up the receive filter. */
1559 stge_set_filter(sc);
1560
1561 /*
1562 * Give the transmit and receive ring to the chip.
1563 */
1564 bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1565 bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1566 STGE_CDTXADDR(sc, sc->sc_txdirty));
1567
1568 bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1569 bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1570 STGE_CDRXADDR(sc, sc->sc_rxptr));
1571
1572 /*
1573 * Initialize the Tx auto-poll period. It's OK to make this number
1574 * large (255 is the max, but we use 127) -- we explicitly kick the
1575 * transmit engine when there's actually a packet.
1576 */
1577 bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1578
1579 /* ..and the Rx auto-poll period. */
1580 bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1581
1582 /* Initialize the Tx start threshold. */
1583 bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1584
1585 /* RX DMA thresholds, from linux */
1586 bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
1587 bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
1588
1589 /*
1590 * Initialize the Rx DMA interrupt control register. We
1591 * request an interrupt after every incoming packet, but
1592 * defer it for 32us (64 * 512 ns). When the number of
1593 * interrupts pending reaches 8, we stop deferring the
1594 * interrupt, and signal it immediately.
1595 */
1596 bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1597 RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1598
1599 /*
1600 * Initialize the interrupt mask.
1601 */
1602 sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1603 IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1604 bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1605 bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1606
1607 /*
1608 * Configure the DMA engine.
1609 * XXX Should auto-tune TxBurstLimit.
1610 */
1611 bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1612 DMAC_TxBurstLimit(3));
1613
1614 /*
1615 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1616 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1617 * empty again.
1618 */
1619 bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1620 bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1621
1622 /*
1623 * Set the maximum frame size.
1624 */
1625 bus_space_write_2(st, sh, STGE_MaxFrameSize,
1626 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1627 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1628 ETHER_VLAN_ENCAP_LEN : 0));
1629
1630 /*
1631 * Initialize MacCtrl -- do it before setting the media,
1632 * as setting the media will actually program the register.
1633 *
1634 * Note: We have to poke the IFS value before poking
1635 * anything else.
1636 */
1637 sc->sc_MACCtrl = MC_IFSSelect(0);
1638 bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1639 sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1640 #ifdef STGE_VLAN_UNTAG
1641 sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1642 #endif
1643
1644 if (sc->sc_rev >= 6) { /* >= B.2 */
1645 /* Multi-frag frame bug work-around. */
1646 bus_space_write_2(st, sh, STGE_DebugCtrl,
1647 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1648
1649 /* Tx Poll Now bug work-around. */
1650 bus_space_write_2(st, sh, STGE_DebugCtrl,
1651 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1652 /* XXX ? from linux */
1653 bus_space_write_2(st, sh, STGE_DebugCtrl,
1654 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
1655 }
1656
1657 /*
1658 * Set the current media.
1659 */
1660 mii_mediachg(&sc->sc_mii);
1661
1662 /*
1663 * Start the one second MII clock.
1664 */
1665 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1666
1667 /*
1668 * ...all done!
1669 */
1670 ifp->if_flags |= IFF_RUNNING;
1671 ifp->if_flags &= ~IFF_OACTIVE;
1672
1673 out:
1674 if (error)
1675 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1676 return (error);
1677 }
1678
1679 /*
1680 * stge_drain:
1681 *
1682 * Drain the receive queue.
1683 */
1684 static void
1685 stge_rxdrain(struct stge_softc *sc)
1686 {
1687 struct stge_descsoft *ds;
1688 int i;
1689
1690 for (i = 0; i < STGE_NRXDESC; i++) {
1691 ds = &sc->sc_rxsoft[i];
1692 if (ds->ds_mbuf != NULL) {
1693 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1694 ds->ds_mbuf->m_next = NULL;
1695 m_freem(ds->ds_mbuf);
1696 ds->ds_mbuf = NULL;
1697 }
1698 }
1699 }
1700
1701 /*
1702 * stge_stop: [ ifnet interface function ]
1703 *
1704 * Stop transmission on the interface.
1705 */
1706 static void
1707 stge_stop(struct ifnet *ifp, int disable)
1708 {
1709 struct stge_softc *sc = ifp->if_softc;
1710 struct stge_descsoft *ds;
1711 int i;
1712
1713 /*
1714 * Stop the one second clock.
1715 */
1716 callout_stop(&sc->sc_tick_ch);
1717
1718 /* Down the MII. */
1719 mii_down(&sc->sc_mii);
1720
1721 /*
1722 * Disable interrupts.
1723 */
1724 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1725
1726 /*
1727 * Stop receiver, transmitter, and stats update.
1728 */
1729 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1730 MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1731
1732 /*
1733 * Stop the transmit and receive DMA.
1734 */
1735 stge_dma_wait(sc);
1736 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1737 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1738 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1739 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1740
1741 /*
1742 * Release any queued transmit buffers.
1743 */
1744 for (i = 0; i < STGE_NTXDESC; i++) {
1745 ds = &sc->sc_txsoft[i];
1746 if (ds->ds_mbuf != NULL) {
1747 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1748 m_freem(ds->ds_mbuf);
1749 ds->ds_mbuf = NULL;
1750 }
1751 }
1752
1753 if (disable)
1754 stge_rxdrain(sc);
1755
1756 /*
1757 * Mark the interface down and cancel the watchdog timer.
1758 */
1759 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1760 ifp->if_timer = 0;
1761 }
1762
1763 static int
1764 stge_eeprom_wait(struct stge_softc *sc)
1765 {
1766 int i;
1767
1768 for (i = 0; i < STGE_TIMEOUT; i++) {
1769 delay(1000);
1770 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1771 EC_EepromBusy) == 0)
1772 return (0);
1773 }
1774 return (1);
1775 }
1776
1777 /*
1778 * stge_read_eeprom:
1779 *
1780 * Read data from the serial EEPROM.
1781 */
1782 static void
1783 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1784 {
1785
1786 if (stge_eeprom_wait(sc))
1787 printf("%s: EEPROM failed to come ready\n",
1788 sc->sc_dev.dv_xname);
1789
1790 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1791 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1792 if (stge_eeprom_wait(sc))
1793 printf("%s: EEPROM read timed out\n",
1794 sc->sc_dev.dv_xname);
1795 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1796 }
1797
1798 /*
1799 * stge_add_rxbuf:
1800 *
1801 * Add a receive buffer to the indicated descriptor.
1802 */
1803 static int
1804 stge_add_rxbuf(struct stge_softc *sc, int idx)
1805 {
1806 struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1807 struct mbuf *m;
1808 int error;
1809
1810 MGETHDR(m, M_DONTWAIT, MT_DATA);
1811 if (m == NULL)
1812 return (ENOBUFS);
1813
1814 MCLGET(m, M_DONTWAIT);
1815 if ((m->m_flags & M_EXT) == 0) {
1816 m_freem(m);
1817 return (ENOBUFS);
1818 }
1819
1820 m->m_data = m->m_ext.ext_buf + 2;
1821 m->m_len = MCLBYTES - 2;
1822
1823 if (ds->ds_mbuf != NULL)
1824 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1825
1826 ds->ds_mbuf = m;
1827
1828 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1829 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1830 if (error) {
1831 printf("%s: can't load rx DMA map %d, error = %d\n",
1832 sc->sc_dev.dv_xname, idx, error);
1833 panic("stge_add_rxbuf"); /* XXX */
1834 }
1835
1836 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1837 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1838
1839 STGE_INIT_RXDESC(sc, idx);
1840
1841 return (0);
1842 }
1843
1844 /*
1845 * stge_set_filter:
1846 *
1847 * Set up the receive filter.
1848 */
1849 static void
1850 stge_set_filter(struct stge_softc *sc)
1851 {
1852 struct ethercom *ec = &sc->sc_ethercom;
1853 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1854 struct ether_multi *enm;
1855 struct ether_multistep step;
1856 uint32_t crc;
1857 uint32_t mchash[2];
1858
1859 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1860 if (ifp->if_flags & IFF_BROADCAST)
1861 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1862
1863 /* XXX: ST1023 only works in promiscuous mode */
1864 if (sc->sc_stge1023)
1865 ifp->if_flags |= IFF_PROMISC;
1866
1867 if (ifp->if_flags & IFF_PROMISC) {
1868 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1869 goto allmulti;
1870 }
1871
1872 /*
1873 * Set up the multicast address filter by passing all multicast
1874 * addresses through a CRC generator, and then using the low-order
1875 * 6 bits as an index into the 64 bit multicast hash table. The
1876 * high order bits select the register, while the rest of the bits
1877 * select the bit within the register.
1878 */
1879
1880 memset(mchash, 0, sizeof(mchash));
1881
1882 ETHER_FIRST_MULTI(step, ec, enm);
1883 if (enm == NULL)
1884 goto done;
1885
1886 while (enm != NULL) {
1887 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1888 /*
1889 * We must listen to a range of multicast addresses.
1890 * For now, just accept all multicasts, rather than
1891 * trying to set only those filter bits needed to match
1892 * the range. (At this time, the only use of address
1893 * ranges is for IP multicast routing, for which the
1894 * range is big enough to require all bits set.)
1895 */
1896 goto allmulti;
1897 }
1898
1899 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1900
1901 /* Just want the 6 least significant bits. */
1902 crc &= 0x3f;
1903
1904 /* Set the corresponding bit in the hash table. */
1905 mchash[crc >> 5] |= 1 << (crc & 0x1f);
1906
1907 ETHER_NEXT_MULTI(step, enm);
1908 }
1909
1910 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1911
1912 ifp->if_flags &= ~IFF_ALLMULTI;
1913 goto done;
1914
1915 allmulti:
1916 ifp->if_flags |= IFF_ALLMULTI;
1917 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1918
1919 done:
1920 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1921 /*
1922 * Program the multicast hash table.
1923 */
1924 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1925 mchash[0]);
1926 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1927 mchash[1]);
1928 }
1929
1930 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1931 sc->sc_ReceiveMode);
1932 }
1933
1934 /*
1935 * stge_mii_readreg: [mii interface function]
1936 *
1937 * Read a PHY register on the MII of the TC9021.
1938 */
1939 static int
1940 stge_mii_readreg(struct device *self, int phy, int reg)
1941 {
1942
1943 return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1944 }
1945
1946 /*
1947 * stge_mii_writereg: [mii interface function]
1948 *
1949 * Write a PHY register on the MII of the TC9021.
1950 */
1951 static void
1952 stge_mii_writereg(struct device *self, int phy, int reg, int val)
1953 {
1954
1955 mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1956 }
1957
1958 /*
1959 * stge_mii_statchg: [mii interface function]
1960 *
1961 * Callback from MII layer when media changes.
1962 */
1963 static void
1964 stge_mii_statchg(struct device *self)
1965 {
1966 struct stge_softc *sc = (struct stge_softc *) self;
1967
1968 if (sc->sc_mii.mii_media_active & IFM_FDX)
1969 sc->sc_MACCtrl |= MC_DuplexSelect;
1970 else
1971 sc->sc_MACCtrl &= ~MC_DuplexSelect;
1972
1973 /* XXX 802.1x flow-control? */
1974
1975 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1976 }
1977
1978 /*
1979 * sste_mii_bitbang_read: [mii bit-bang interface function]
1980 *
1981 * Read the MII serial port for the MII bit-bang module.
1982 */
1983 static uint32_t
1984 stge_mii_bitbang_read(struct device *self)
1985 {
1986 struct stge_softc *sc = (void *) self;
1987
1988 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
1989 }
1990
1991 /*
1992 * stge_mii_bitbang_write: [mii big-bang interface function]
1993 *
1994 * Write the MII serial port for the MII bit-bang module.
1995 */
1996 static void
1997 stge_mii_bitbang_write(struct device *self, uint32_t val)
1998 {
1999 struct stge_softc *sc = (void *) self;
2000
2001 bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
2002 val | sc->sc_PhyCtrl);
2003 }
2004
2005 /*
2006 * stge_mediastatus: [ifmedia interface function]
2007 *
2008 * Get the current interface media status.
2009 */
2010 static void
2011 stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2012 {
2013 struct stge_softc *sc = ifp->if_softc;
2014
2015 mii_pollstat(&sc->sc_mii);
2016 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2017 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2018 }
2019
2020 /*
2021 * stge_mediachange: [ifmedia interface function]
2022 *
2023 * Set hardware to newly-selected media.
2024 */
2025 static int
2026 stge_mediachange(struct ifnet *ifp)
2027 {
2028 struct stge_softc *sc = ifp->if_softc;
2029
2030 if (ifp->if_flags & IFF_UP)
2031 mii_mediachg(&sc->sc_mii);
2032 return (0);
2033 }
2034