if_stge.c revision 1.36 1 /* $NetBSD: if_stge.c,v 1.36 2007/03/04 06:02:23 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the Sundance Tech. TC9021 10/100/1000
41 * Ethernet controller.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.36 2007/03/04 06:02:23 christos Exp $");
46
47 #include "bpfilter.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/socket.h>
56 #include <sys/ioctl.h>
57 #include <sys/errno.h>
58 #include <sys/device.h>
59 #include <sys/queue.h>
60
61 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
62
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_ether.h>
67
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71
72 #include <machine/bus.h>
73 #include <machine/intr.h>
74
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 #include <dev/mii/mii_bitbang.h>
78
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 #include <dev/pci/pcidevs.h>
82
83 #include <dev/pci/if_stgereg.h>
84
85 /* #define STGE_CU_BUG 1 */
86 #define STGE_VLAN_UNTAG 1
87 /* #define STGE_VLAN_CFI 1 */
88
89 /*
90 * Transmit descriptor list size.
91 */
92 #define STGE_NTXDESC 256
93 #define STGE_NTXDESC_MASK (STGE_NTXDESC - 1)
94 #define STGE_NEXTTX(x) (((x) + 1) & STGE_NTXDESC_MASK)
95
96 /*
97 * Receive descriptor list size.
98 */
99 #define STGE_NRXDESC 256
100 #define STGE_NRXDESC_MASK (STGE_NRXDESC - 1)
101 #define STGE_NEXTRX(x) (((x) + 1) & STGE_NRXDESC_MASK)
102
103 /*
104 * Only interrupt every N frames. Must be a power-of-two.
105 */
106 #define STGE_TXINTR_SPACING 16
107 #define STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
108
109 /*
110 * Control structures are DMA'd to the TC9021 chip. We allocate them in
111 * a single clump that maps to a single DMA segment to make several things
112 * easier.
113 */
114 struct stge_control_data {
115 /*
116 * The transmit descriptors.
117 */
118 struct stge_tfd scd_txdescs[STGE_NTXDESC];
119
120 /*
121 * The receive descriptors.
122 */
123 struct stge_rfd scd_rxdescs[STGE_NRXDESC];
124 };
125
126 #define STGE_CDOFF(x) offsetof(struct stge_control_data, x)
127 #define STGE_CDTXOFF(x) STGE_CDOFF(scd_txdescs[(x)])
128 #define STGE_CDRXOFF(x) STGE_CDOFF(scd_rxdescs[(x)])
129
130 /*
131 * Software state for transmit and receive jobs.
132 */
133 struct stge_descsoft {
134 struct mbuf *ds_mbuf; /* head of our mbuf chain */
135 bus_dmamap_t ds_dmamap; /* our DMA map */
136 };
137
138 /*
139 * Software state per device.
140 */
141 struct stge_softc {
142 struct device sc_dev; /* generic device information */
143 bus_space_tag_t sc_st; /* bus space tag */
144 bus_space_handle_t sc_sh; /* bus space handle */
145 bus_dma_tag_t sc_dmat; /* bus DMA tag */
146 struct ethercom sc_ethercom; /* ethernet common data */
147 void *sc_sdhook; /* shutdown hook */
148 int sc_rev; /* silicon revision */
149
150 void *sc_ih; /* interrupt cookie */
151
152 struct mii_data sc_mii; /* MII/media information */
153
154 struct callout sc_tick_ch; /* tick callout */
155
156 bus_dmamap_t sc_cddmamap; /* control data DMA map */
157 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
158
159 /*
160 * Software state for transmit and receive descriptors.
161 */
162 struct stge_descsoft sc_txsoft[STGE_NTXDESC];
163 struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
164
165 /*
166 * Control data structures.
167 */
168 struct stge_control_data *sc_control_data;
169 #define sc_txdescs sc_control_data->scd_txdescs
170 #define sc_rxdescs sc_control_data->scd_rxdescs
171
172 #ifdef STGE_EVENT_COUNTERS
173 /*
174 * Event counters.
175 */
176 struct evcnt sc_ev_txstall; /* Tx stalled */
177 struct evcnt sc_ev_txdmaintr; /* Tx DMA interrupts */
178 struct evcnt sc_ev_txindintr; /* Tx Indicate interrupts */
179 struct evcnt sc_ev_rxintr; /* Rx interrupts */
180
181 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
182 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
183 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
184 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
185 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
186 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
187 struct evcnt sc_ev_txcopy; /* Tx packets that we had to copy */
188
189 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
190 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
191 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-bound */
192
193 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
194 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
195 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
196 #endif /* STGE_EVENT_COUNTERS */
197
198 int sc_txpending; /* number of Tx requests pending */
199 int sc_txdirty; /* first dirty Tx descriptor */
200 int sc_txlast; /* last used Tx descriptor */
201
202 int sc_rxptr; /* next ready Rx descriptor/descsoft */
203 int sc_rxdiscard;
204 int sc_rxlen;
205 struct mbuf *sc_rxhead;
206 struct mbuf *sc_rxtail;
207 struct mbuf **sc_rxtailp;
208
209 int sc_txthresh; /* Tx threshold */
210 uint32_t sc_usefiber:1; /* if we're fiber */
211 uint32_t sc_stge1023:1; /* are we a 1023 */
212 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
213 uint32_t sc_MACCtrl; /* prototype MacCtrl register */
214 uint16_t sc_IntEnable; /* prototype IntEnable register */
215 uint16_t sc_ReceiveMode; /* prototype ReceiveMode register */
216 uint8_t sc_PhyCtrl; /* prototype PhyCtrl register */
217 };
218
219 #define STGE_RXCHAIN_RESET(sc) \
220 do { \
221 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
222 *(sc)->sc_rxtailp = NULL; \
223 (sc)->sc_rxlen = 0; \
224 } while (/*CONSTCOND*/0)
225
226 #define STGE_RXCHAIN_LINK(sc, m) \
227 do { \
228 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
229 (sc)->sc_rxtailp = &(m)->m_next; \
230 } while (/*CONSTCOND*/0)
231
232 #ifdef STGE_EVENT_COUNTERS
233 #define STGE_EVCNT_INCR(ev) (ev)->ev_count++
234 #else
235 #define STGE_EVCNT_INCR(ev) /* nothing */
236 #endif
237
238 #define STGE_CDTXADDR(sc, x) ((sc)->sc_cddma + STGE_CDTXOFF((x)))
239 #define STGE_CDRXADDR(sc, x) ((sc)->sc_cddma + STGE_CDRXOFF((x)))
240
241 #define STGE_CDTXSYNC(sc, x, ops) \
242 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
243 STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
244
245 #define STGE_CDRXSYNC(sc, x, ops) \
246 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
247 STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
248
249 #define STGE_INIT_RXDESC(sc, x) \
250 do { \
251 struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
252 struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
253 \
254 /* \
255 * Note: We scoot the packet forward 2 bytes in the buffer \
256 * so that the payload after the Ethernet header is aligned \
257 * to a 4-byte boundary. \
258 */ \
259 __rfd->rfd_frag.frag_word0 = \
260 htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
261 FRAG_LEN(MCLBYTES - 2)); \
262 __rfd->rfd_next = \
263 htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x)))); \
264 __rfd->rfd_status = 0; \
265 STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
266 } while (/*CONSTCOND*/0)
267
268 #define STGE_TIMEOUT 1000
269
270 static void stge_start(struct ifnet *);
271 static void stge_watchdog(struct ifnet *);
272 static int stge_ioctl(struct ifnet *, u_long, void *);
273 static int stge_init(struct ifnet *);
274 static void stge_stop(struct ifnet *, int);
275
276 static void stge_shutdown(void *);
277
278 static void stge_reset(struct stge_softc *);
279 static void stge_rxdrain(struct stge_softc *);
280 static int stge_add_rxbuf(struct stge_softc *, int);
281 static void stge_read_eeprom(struct stge_softc *, int, uint16_t *);
282 static void stge_tick(void *);
283
284 static void stge_stats_update(struct stge_softc *);
285
286 static void stge_set_filter(struct stge_softc *);
287
288 static int stge_intr(void *);
289 static void stge_txintr(struct stge_softc *);
290 static void stge_rxintr(struct stge_softc *);
291
292 static int stge_mii_readreg(struct device *, int, int);
293 static void stge_mii_writereg(struct device *, int, int, int);
294 static void stge_mii_statchg(struct device *);
295
296 static int stge_mediachange(struct ifnet *);
297 static void stge_mediastatus(struct ifnet *, struct ifmediareq *);
298
299 static int stge_match(struct device *, struct cfdata *, void *);
300 static void stge_attach(struct device *, struct device *, void *);
301
302 int stge_copy_small = 0;
303
304 CFATTACH_DECL(stge, sizeof(struct stge_softc),
305 stge_match, stge_attach, NULL, NULL);
306
307 static uint32_t stge_mii_bitbang_read(struct device *);
308 static void stge_mii_bitbang_write(struct device *, uint32_t);
309
310 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
311 stge_mii_bitbang_read,
312 stge_mii_bitbang_write,
313 {
314 PC_MgmtData, /* MII_BIT_MDO */
315 PC_MgmtData, /* MII_BIT_MDI */
316 PC_MgmtClk, /* MII_BIT_MDC */
317 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
318 0, /* MII_BIT_DIR_PHY_HOST */
319 }
320 };
321
322 /*
323 * Devices supported by this driver.
324 */
325 static const struct stge_product {
326 pci_vendor_id_t stge_vendor;
327 pci_product_id_t stge_product;
328 const char *stge_name;
329 } stge_products[] = {
330 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST1023,
331 "Sundance ST-1023 Gigabit Ethernet" },
332
333 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST2021,
334 "Sundance ST-2021 Gigabit Ethernet" },
335
336 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021,
337 "Tamarack TC9021 Gigabit Ethernet" },
338
339 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021_ALT,
340 "Tamarack TC9021 Gigabit Ethernet" },
341
342 /*
343 * The Sundance sample boards use the Sundance vendor ID,
344 * but the Tamarack product ID.
345 */
346 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021,
347 "Sundance TC9021 Gigabit Ethernet" },
348
349 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021_ALT,
350 "Sundance TC9021 Gigabit Ethernet" },
351
352 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL4000,
353 "D-Link DL-4000 Gigabit Ethernet" },
354
355 { PCI_VENDOR_ANTARES, PCI_PRODUCT_ANTARES_TC9021,
356 "Antares Gigabit Ethernet" },
357
358 { 0, 0,
359 NULL },
360 };
361
362 static const struct stge_product *
363 stge_lookup(const struct pci_attach_args *pa)
364 {
365 const struct stge_product *sp;
366
367 for (sp = stge_products; sp->stge_name != NULL; sp++) {
368 if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
369 PCI_PRODUCT(pa->pa_id) == sp->stge_product)
370 return (sp);
371 }
372 return (NULL);
373 }
374
375 static int
376 stge_match(struct device *parent, struct cfdata *cf,
377 void *aux)
378 {
379 struct pci_attach_args *pa = aux;
380
381 if (stge_lookup(pa) != NULL)
382 return (1);
383
384 return (0);
385 }
386
387 static void
388 stge_attach(struct device *parent, struct device *self, void *aux)
389 {
390 struct stge_softc *sc = (struct stge_softc *) self;
391 struct pci_attach_args *pa = aux;
392 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
393 pci_chipset_tag_t pc = pa->pa_pc;
394 pci_intr_handle_t ih;
395 const char *intrstr = NULL;
396 bus_space_tag_t iot, memt;
397 bus_space_handle_t ioh, memh;
398 bus_dma_segment_t seg;
399 int ioh_valid, memh_valid;
400 int i, rseg, error;
401 const struct stge_product *sp;
402 uint8_t enaddr[ETHER_ADDR_LEN];
403
404 callout_init(&sc->sc_tick_ch);
405
406 sp = stge_lookup(pa);
407 if (sp == NULL) {
408 printf("\n");
409 panic("ste_attach: impossible");
410 }
411
412 sc->sc_rev = PCI_REVISION(pa->pa_class);
413
414 printf(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
415
416 /*
417 * Map the device.
418 */
419 ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
420 PCI_MAPREG_TYPE_IO, 0,
421 &iot, &ioh, NULL, NULL) == 0);
422 memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
423 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
424 &memt, &memh, NULL, NULL) == 0);
425
426 if (memh_valid) {
427 sc->sc_st = memt;
428 sc->sc_sh = memh;
429 } else if (ioh_valid) {
430 sc->sc_st = iot;
431 sc->sc_sh = ioh;
432 } else {
433 printf("%s: unable to map device registers\n",
434 sc->sc_dev.dv_xname);
435 return;
436 }
437
438 sc->sc_dmat = pa->pa_dmat;
439
440 /* Enable bus mastering. */
441 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
442 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
443 PCI_COMMAND_MASTER_ENABLE);
444
445 /* power up chip */
446 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
447 NULL)) && error != EOPNOTSUPP) {
448 aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
449 error);
450 return;
451 }
452 /*
453 * Map and establish our interrupt.
454 */
455 if (pci_intr_map(pa, &ih)) {
456 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
457 return;
458 }
459 intrstr = pci_intr_string(pc, ih);
460 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
461 if (sc->sc_ih == NULL) {
462 printf("%s: unable to establish interrupt",
463 sc->sc_dev.dv_xname);
464 if (intrstr != NULL)
465 printf(" at %s", intrstr);
466 printf("\n");
467 return;
468 }
469 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
470
471 /*
472 * Allocate the control data structures, and create and load the
473 * DMA map for it.
474 */
475 if ((error = bus_dmamem_alloc(sc->sc_dmat,
476 sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
477 0)) != 0) {
478 printf("%s: unable to allocate control data, error = %d\n",
479 sc->sc_dev.dv_xname, error);
480 goto fail_0;
481 }
482
483 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
484 sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
485 BUS_DMA_COHERENT)) != 0) {
486 printf("%s: unable to map control data, error = %d\n",
487 sc->sc_dev.dv_xname, error);
488 goto fail_1;
489 }
490
491 if ((error = bus_dmamap_create(sc->sc_dmat,
492 sizeof(struct stge_control_data), 1,
493 sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
494 printf("%s: unable to create control data DMA map, "
495 "error = %d\n", sc->sc_dev.dv_xname, error);
496 goto fail_2;
497 }
498
499 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
500 sc->sc_control_data, sizeof(struct stge_control_data), NULL,
501 0)) != 0) {
502 printf("%s: unable to load control data DMA map, error = %d\n",
503 sc->sc_dev.dv_xname, error);
504 goto fail_3;
505 }
506
507 /*
508 * Create the transmit buffer DMA maps. Note that rev B.3
509 * and earlier seem to have a bug regarding multi-fragment
510 * packets. We need to limit the number of Tx segments on
511 * such chips to 1.
512 */
513 for (i = 0; i < STGE_NTXDESC; i++) {
514 if ((error = bus_dmamap_create(sc->sc_dmat,
515 ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
516 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
517 printf("%s: unable to create tx DMA map %d, "
518 "error = %d\n", sc->sc_dev.dv_xname, i, error);
519 goto fail_4;
520 }
521 }
522
523 /*
524 * Create the receive buffer DMA maps.
525 */
526 for (i = 0; i < STGE_NRXDESC; i++) {
527 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
528 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
529 printf("%s: unable to create rx DMA map %d, "
530 "error = %d\n", sc->sc_dev.dv_xname, i, error);
531 goto fail_5;
532 }
533 sc->sc_rxsoft[i].ds_mbuf = NULL;
534 }
535
536 /*
537 * Determine if we're copper or fiber. It affects how we
538 * reset the card.
539 */
540 if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
541 AC_PhyMedia)
542 sc->sc_usefiber = 1;
543 else
544 sc->sc_usefiber = 0;
545
546 /*
547 * Reset the chip to a known state.
548 */
549 stge_reset(sc);
550
551 /*
552 * Reading the station address from the EEPROM doesn't seem
553 * to work, at least on my sample boards. Instead, since
554 * the reset sequence does AutoInit, read it from the station
555 * address registers. For Sundance 1023 you can only read it
556 * from EEPROM.
557 */
558 if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
559 enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
560 STGE_StationAddress0) & 0xff;
561 enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
562 STGE_StationAddress0) >> 8;
563 enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
564 STGE_StationAddress1) & 0xff;
565 enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
566 STGE_StationAddress1) >> 8;
567 enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
568 STGE_StationAddress2) & 0xff;
569 enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
570 STGE_StationAddress2) >> 8;
571 sc->sc_stge1023 = 0;
572 } else {
573 uint16_t myaddr[ETHER_ADDR_LEN / 2];
574 for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
575 stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
576 &myaddr[i]);
577 myaddr[i] = le16toh(myaddr[i]);
578 }
579 (void)memcpy(enaddr, myaddr, sizeof(enaddr));
580 sc->sc_stge1023 = 1;
581 }
582
583 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
584 ether_sprintf(enaddr));
585
586 /*
587 * Read some important bits from the PhyCtrl register.
588 */
589 sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
590 STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
591
592 /*
593 * Initialize our media structures and probe the MII.
594 */
595 sc->sc_mii.mii_ifp = ifp;
596 sc->sc_mii.mii_readreg = stge_mii_readreg;
597 sc->sc_mii.mii_writereg = stge_mii_writereg;
598 sc->sc_mii.mii_statchg = stge_mii_statchg;
599 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, stge_mediachange,
600 stge_mediastatus);
601 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
602 MII_OFFSET_ANY, MIIF_DOPAUSE);
603 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
604 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
605 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
606 } else
607 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
608
609 ifp = &sc->sc_ethercom.ec_if;
610 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
611 ifp->if_softc = sc;
612 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
613 ifp->if_ioctl = stge_ioctl;
614 ifp->if_start = stge_start;
615 ifp->if_watchdog = stge_watchdog;
616 ifp->if_init = stge_init;
617 ifp->if_stop = stge_stop;
618 IFQ_SET_READY(&ifp->if_snd);
619
620 /*
621 * The manual recommends disabling early transmit, so we
622 * do. It's disabled anyway, if using IP checksumming,
623 * since the entire packet must be in the FIFO in order
624 * for the chip to perform the checksum.
625 */
626 sc->sc_txthresh = 0x0fff;
627
628 /*
629 * Disable MWI if the PCI layer tells us to.
630 */
631 sc->sc_DMACtrl = 0;
632 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
633 sc->sc_DMACtrl |= DMAC_MWIDisable;
634
635 /*
636 * We can support 802.1Q VLAN-sized frames and jumbo
637 * Ethernet frames.
638 *
639 * XXX Figure out how to do hw-assisted VLAN tagging in
640 * XXX a reasonable way on this chip.
641 */
642 sc->sc_ethercom.ec_capabilities |=
643 ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
644 ETHERCAP_VLAN_HWTAGGING;
645
646 /*
647 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
648 */
649 sc->sc_ethercom.ec_if.if_capabilities |=
650 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
651 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
652 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
653
654 /*
655 * Attach the interface.
656 */
657 if_attach(ifp);
658 ether_ifattach(ifp, enaddr);
659
660 #ifdef STGE_EVENT_COUNTERS
661 /*
662 * Attach event counters.
663 */
664 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
665 NULL, sc->sc_dev.dv_xname, "txstall");
666 evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
667 NULL, sc->sc_dev.dv_xname, "txdmaintr");
668 evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
669 NULL, sc->sc_dev.dv_xname, "txindintr");
670 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
671 NULL, sc->sc_dev.dv_xname, "rxintr");
672
673 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
674 NULL, sc->sc_dev.dv_xname, "txseg1");
675 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
676 NULL, sc->sc_dev.dv_xname, "txseg2");
677 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
678 NULL, sc->sc_dev.dv_xname, "txseg3");
679 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
680 NULL, sc->sc_dev.dv_xname, "txseg4");
681 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
682 NULL, sc->sc_dev.dv_xname, "txseg5");
683 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
684 NULL, sc->sc_dev.dv_xname, "txsegmore");
685 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
686 NULL, sc->sc_dev.dv_xname, "txcopy");
687
688 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
689 NULL, sc->sc_dev.dv_xname, "rxipsum");
690 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
691 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
692 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
693 NULL, sc->sc_dev.dv_xname, "rxudpsum");
694 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
695 NULL, sc->sc_dev.dv_xname, "txipsum");
696 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
697 NULL, sc->sc_dev.dv_xname, "txtcpsum");
698 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
699 NULL, sc->sc_dev.dv_xname, "txudpsum");
700 #endif /* STGE_EVENT_COUNTERS */
701
702 /*
703 * Make sure the interface is shutdown during reboot.
704 */
705 sc->sc_sdhook = shutdownhook_establish(stge_shutdown, sc);
706 if (sc->sc_sdhook == NULL)
707 printf("%s: WARNING: unable to establish shutdown hook\n",
708 sc->sc_dev.dv_xname);
709 return;
710
711 /*
712 * Free any resources we've allocated during the failed attach
713 * attempt. Do this in reverse order and fall through.
714 */
715 fail_5:
716 for (i = 0; i < STGE_NRXDESC; i++) {
717 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
718 bus_dmamap_destroy(sc->sc_dmat,
719 sc->sc_rxsoft[i].ds_dmamap);
720 }
721 fail_4:
722 for (i = 0; i < STGE_NTXDESC; i++) {
723 if (sc->sc_txsoft[i].ds_dmamap != NULL)
724 bus_dmamap_destroy(sc->sc_dmat,
725 sc->sc_txsoft[i].ds_dmamap);
726 }
727 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
728 fail_3:
729 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
730 fail_2:
731 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
732 sizeof(struct stge_control_data));
733 fail_1:
734 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
735 fail_0:
736 return;
737 }
738
739 /*
740 * stge_shutdown:
741 *
742 * Make sure the interface is stopped at reboot time.
743 */
744 static void
745 stge_shutdown(void *arg)
746 {
747 struct stge_softc *sc = arg;
748
749 stge_stop(&sc->sc_ethercom.ec_if, 1);
750 }
751
752 static void
753 stge_dma_wait(struct stge_softc *sc)
754 {
755 int i;
756
757 for (i = 0; i < STGE_TIMEOUT; i++) {
758 delay(2);
759 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
760 DMAC_TxDMAInProg) == 0)
761 break;
762 }
763
764 if (i == STGE_TIMEOUT)
765 printf("%s: DMA wait timed out\n", sc->sc_dev.dv_xname);
766 }
767
768 /*
769 * stge_start: [ifnet interface function]
770 *
771 * Start packet transmission on the interface.
772 */
773 static void
774 stge_start(struct ifnet *ifp)
775 {
776 struct stge_softc *sc = ifp->if_softc;
777 struct mbuf *m0;
778 struct stge_descsoft *ds;
779 struct stge_tfd *tfd;
780 bus_dmamap_t dmamap;
781 int error, firsttx, nexttx, opending, seg, totlen;
782 uint64_t csum_flags;
783
784 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
785 return;
786
787 /*
788 * Remember the previous number of pending transmissions
789 * and the first descriptor we will use.
790 */
791 opending = sc->sc_txpending;
792 firsttx = STGE_NEXTTX(sc->sc_txlast);
793
794 /*
795 * Loop through the send queue, setting up transmit descriptors
796 * until we drain the queue, or use up all available transmit
797 * descriptors.
798 */
799 for (;;) {
800 struct m_tag *mtag;
801 uint64_t tfc;
802
803 /*
804 * Grab a packet off the queue.
805 */
806 IFQ_POLL(&ifp->if_snd, m0);
807 if (m0 == NULL)
808 break;
809
810 /*
811 * Leave one unused descriptor at the end of the
812 * list to prevent wrapping completely around.
813 */
814 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
815 STGE_EVCNT_INCR(&sc->sc_ev_txstall);
816 break;
817 }
818
819 /*
820 * See if we have any VLAN stuff.
821 */
822 mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
823
824 /*
825 * Get the last and next available transmit descriptor.
826 */
827 nexttx = STGE_NEXTTX(sc->sc_txlast);
828 tfd = &sc->sc_txdescs[nexttx];
829 ds = &sc->sc_txsoft[nexttx];
830
831 dmamap = ds->ds_dmamap;
832
833 /*
834 * Load the DMA map. If this fails, the packet either
835 * didn't fit in the alloted number of segments, or we
836 * were short on resources. For the too-many-segments
837 * case, we simply report an error and drop the packet,
838 * since we can't sanely copy a jumbo packet to a single
839 * buffer.
840 */
841 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
842 BUS_DMA_NOWAIT);
843 if (error) {
844 if (error == EFBIG) {
845 printf("%s: Tx packet consumes too many "
846 "DMA segments, dropping...\n",
847 sc->sc_dev.dv_xname);
848 IFQ_DEQUEUE(&ifp->if_snd, m0);
849 m_freem(m0);
850 continue;
851 }
852 /*
853 * Short on resources, just stop for now.
854 */
855 break;
856 }
857
858 IFQ_DEQUEUE(&ifp->if_snd, m0);
859
860 /*
861 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
862 */
863
864 /* Sync the DMA map. */
865 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
866 BUS_DMASYNC_PREWRITE);
867
868 /* Initialize the fragment list. */
869 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
870 tfd->tfd_frags[seg].frag_word0 =
871 htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
872 FRAG_LEN(dmamap->dm_segs[seg].ds_len));
873 totlen += dmamap->dm_segs[seg].ds_len;
874 }
875
876 #ifdef STGE_EVENT_COUNTERS
877 switch (dmamap->dm_nsegs) {
878 case 1:
879 STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
880 break;
881 case 2:
882 STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
883 break;
884 case 3:
885 STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
886 break;
887 case 4:
888 STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
889 break;
890 case 5:
891 STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
892 break;
893 default:
894 STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
895 break;
896 }
897 #endif /* STGE_EVENT_COUNTERS */
898
899 /*
900 * Initialize checksumming flags in the descriptor.
901 * Byte-swap constants so the compiler can optimize.
902 */
903 csum_flags = 0;
904 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
905 STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
906 csum_flags |= TFD_IPChecksumEnable;
907 }
908
909 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
910 STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
911 csum_flags |= TFD_TCPChecksumEnable;
912 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
913 STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
914 csum_flags |= TFD_UDPChecksumEnable;
915 }
916
917 /*
918 * Initialize the descriptor and give it to the chip.
919 * Check to see if we have a VLAN tag to insert.
920 */
921
922 tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
923 TFD_FragCount(seg) | csum_flags |
924 (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
925 TFD_TxDMAIndicate : 0);
926 if (mtag) {
927 #if 0
928 struct ether_header *eh =
929 mtod(m0, struct ether_header *);
930 u_int16_t etype = ntohs(eh->ether_type);
931 printf("%s: xmit (tag %d) etype %x\n",
932 ifp->if_xname, *mtod(n, int *), etype);
933 #endif
934 tfc |= TFD_VLANTagInsert |
935 #ifdef STGE_VLAN_CFI
936 TFD_CFI |
937 #endif
938 TFD_VID(VLAN_TAG_VALUE(mtag));
939 }
940 tfd->tfd_control = htole64(tfc);
941
942 /* Sync the descriptor. */
943 STGE_CDTXSYNC(sc, nexttx,
944 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
945
946 /*
947 * Kick the transmit DMA logic.
948 */
949 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
950 sc->sc_DMACtrl | DMAC_TxDMAPollNow);
951
952 /*
953 * Store a pointer to the packet so we can free it later.
954 */
955 ds->ds_mbuf = m0;
956
957 /* Advance the tx pointer. */
958 sc->sc_txpending++;
959 sc->sc_txlast = nexttx;
960
961 #if NBPFILTER > 0
962 /*
963 * Pass the packet to any BPF listeners.
964 */
965 if (ifp->if_bpf)
966 bpf_mtap(ifp->if_bpf, m0);
967 #endif /* NBPFILTER > 0 */
968 }
969
970 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
971 /* No more slots left; notify upper layer. */
972 ifp->if_flags |= IFF_OACTIVE;
973 }
974
975 if (sc->sc_txpending != opending) {
976 /*
977 * We enqueued packets. If the transmitter was idle,
978 * reset the txdirty pointer.
979 */
980 if (opending == 0)
981 sc->sc_txdirty = firsttx;
982
983 /* Set a watchdog timer in case the chip flakes out. */
984 ifp->if_timer = 5;
985 }
986 }
987
988 /*
989 * stge_watchdog: [ifnet interface function]
990 *
991 * Watchdog timer handler.
992 */
993 static void
994 stge_watchdog(struct ifnet *ifp)
995 {
996 struct stge_softc *sc = ifp->if_softc;
997
998 /*
999 * Sweep up first, since we don't interrupt every frame.
1000 */
1001 stge_txintr(sc);
1002 if (sc->sc_txpending != 0) {
1003 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1004 ifp->if_oerrors++;
1005
1006 (void) stge_init(ifp);
1007
1008 /* Try to get more packets going. */
1009 stge_start(ifp);
1010 }
1011 }
1012
1013 /*
1014 * stge_ioctl: [ifnet interface function]
1015 *
1016 * Handle control requests from the operator.
1017 */
1018 static int
1019 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1020 {
1021 struct stge_softc *sc = ifp->if_softc;
1022 struct ifreq *ifr = (struct ifreq *)data;
1023 int s, error;
1024
1025 s = splnet();
1026
1027 switch (cmd) {
1028 case SIOCSIFMEDIA:
1029 case SIOCGIFMEDIA:
1030 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1031 break;
1032
1033 default:
1034 error = ether_ioctl(ifp, cmd, data);
1035 if (error == ENETRESET) {
1036 /*
1037 * Multicast list has changed; set the hardware filter
1038 * accordingly.
1039 */
1040 if (ifp->if_flags & IFF_RUNNING)
1041 stge_set_filter(sc);
1042 error = 0;
1043 }
1044 break;
1045 }
1046
1047 /* Try to get more packets going. */
1048 stge_start(ifp);
1049
1050 splx(s);
1051 return (error);
1052 }
1053
1054 /*
1055 * stge_intr:
1056 *
1057 * Interrupt service routine.
1058 */
1059 static int
1060 stge_intr(void *arg)
1061 {
1062 struct stge_softc *sc = arg;
1063 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1064 uint32_t txstat;
1065 int wantinit;
1066 uint16_t isr;
1067
1068 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1069 IS_InterruptStatus) == 0)
1070 return (0);
1071
1072 for (wantinit = 0; wantinit == 0;) {
1073 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1074 if ((isr & sc->sc_IntEnable) == 0)
1075 break;
1076
1077 /* Host interface errors. */
1078 if (isr & IS_HostError) {
1079 printf("%s: Host interface error\n",
1080 sc->sc_dev.dv_xname);
1081 wantinit = 1;
1082 continue;
1083 }
1084
1085 /* Receive interrupts. */
1086 if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
1087 STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1088 stge_rxintr(sc);
1089 if (isr & IS_RFDListEnd) {
1090 printf("%s: receive ring overflow\n",
1091 sc->sc_dev.dv_xname);
1092 /*
1093 * XXX Should try to recover from this
1094 * XXX more gracefully.
1095 */
1096 wantinit = 1;
1097 }
1098 }
1099
1100 /* Transmit interrupts. */
1101 if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
1102 #ifdef STGE_EVENT_COUNTERS
1103 if (isr & IS_TxDMAComplete)
1104 STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1105 #endif
1106 stge_txintr(sc);
1107 }
1108
1109 /* Statistics overflow. */
1110 if (isr & IS_UpdateStats)
1111 stge_stats_update(sc);
1112
1113 /* Transmission errors. */
1114 if (isr & IS_TxComplete) {
1115 STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1116 for (;;) {
1117 txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1118 STGE_TxStatus);
1119 if ((txstat & TS_TxComplete) == 0)
1120 break;
1121 if (txstat & TS_TxUnderrun) {
1122 sc->sc_txthresh++;
1123 if (sc->sc_txthresh > 0x0fff)
1124 sc->sc_txthresh = 0x0fff;
1125 printf("%s: transmit underrun, new "
1126 "threshold: %d bytes\n",
1127 sc->sc_dev.dv_xname,
1128 sc->sc_txthresh << 5);
1129 }
1130 if (txstat & TS_MaxCollisions)
1131 printf("%s: excessive collisions\n",
1132 sc->sc_dev.dv_xname);
1133 }
1134 wantinit = 1;
1135 }
1136
1137 }
1138
1139 if (wantinit)
1140 stge_init(ifp);
1141
1142 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1143 sc->sc_IntEnable);
1144
1145 /* Try to get more packets going. */
1146 stge_start(ifp);
1147
1148 return (1);
1149 }
1150
1151 /*
1152 * stge_txintr:
1153 *
1154 * Helper; handle transmit interrupts.
1155 */
1156 static void
1157 stge_txintr(struct stge_softc *sc)
1158 {
1159 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1160 struct stge_descsoft *ds;
1161 uint64_t control;
1162 int i;
1163
1164 ifp->if_flags &= ~IFF_OACTIVE;
1165
1166 /*
1167 * Go through our Tx list and free mbufs for those
1168 * frames which have been transmitted.
1169 */
1170 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1171 i = STGE_NEXTTX(i), sc->sc_txpending--) {
1172 ds = &sc->sc_txsoft[i];
1173
1174 STGE_CDTXSYNC(sc, i,
1175 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1176
1177 control = le64toh(sc->sc_txdescs[i].tfd_control);
1178 if ((control & TFD_TFDDone) == 0)
1179 break;
1180
1181 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1182 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1183 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1184 m_freem(ds->ds_mbuf);
1185 ds->ds_mbuf = NULL;
1186 }
1187
1188 /* Update the dirty transmit buffer pointer. */
1189 sc->sc_txdirty = i;
1190
1191 /*
1192 * If there are no more pending transmissions, cancel the watchdog
1193 * timer.
1194 */
1195 if (sc->sc_txpending == 0)
1196 ifp->if_timer = 0;
1197 }
1198
1199 /*
1200 * stge_rxintr:
1201 *
1202 * Helper; handle receive interrupts.
1203 */
1204 static void
1205 stge_rxintr(struct stge_softc *sc)
1206 {
1207 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1208 struct stge_descsoft *ds;
1209 struct mbuf *m, *tailm;
1210 uint64_t status;
1211 int i, len;
1212
1213 for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1214 ds = &sc->sc_rxsoft[i];
1215
1216 STGE_CDRXSYNC(sc, i,
1217 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1218
1219 status = le64toh(sc->sc_rxdescs[i].rfd_status);
1220
1221 if ((status & RFD_RFDDone) == 0)
1222 break;
1223
1224 if (__predict_false(sc->sc_rxdiscard)) {
1225 STGE_INIT_RXDESC(sc, i);
1226 if (status & RFD_FrameEnd) {
1227 /* Reset our state. */
1228 sc->sc_rxdiscard = 0;
1229 }
1230 continue;
1231 }
1232
1233 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1234 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1235
1236 m = ds->ds_mbuf;
1237
1238 /*
1239 * Add a new receive buffer to the ring.
1240 */
1241 if (stge_add_rxbuf(sc, i) != 0) {
1242 /*
1243 * Failed, throw away what we've done so
1244 * far, and discard the rest of the packet.
1245 */
1246 ifp->if_ierrors++;
1247 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1248 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1249 STGE_INIT_RXDESC(sc, i);
1250 if ((status & RFD_FrameEnd) == 0)
1251 sc->sc_rxdiscard = 1;
1252 if (sc->sc_rxhead != NULL)
1253 m_freem(sc->sc_rxhead);
1254 STGE_RXCHAIN_RESET(sc);
1255 continue;
1256 }
1257
1258 #ifdef DIAGNOSTIC
1259 if (status & RFD_FrameStart) {
1260 KASSERT(sc->sc_rxhead == NULL);
1261 KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1262 }
1263 #endif
1264
1265 STGE_RXCHAIN_LINK(sc, m);
1266
1267 /*
1268 * If this is not the end of the packet, keep
1269 * looking.
1270 */
1271 if ((status & RFD_FrameEnd) == 0) {
1272 sc->sc_rxlen += m->m_len;
1273 continue;
1274 }
1275
1276 /*
1277 * Okay, we have the entire packet now...
1278 */
1279 *sc->sc_rxtailp = NULL;
1280 m = sc->sc_rxhead;
1281 tailm = sc->sc_rxtail;
1282
1283 STGE_RXCHAIN_RESET(sc);
1284
1285 /*
1286 * If the packet had an error, drop it. Note we
1287 * count the error later in the periodic stats update.
1288 */
1289 if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1290 RFD_RxAlignmentError | RFD_RxFCSError |
1291 RFD_RxLengthError)) {
1292 m_freem(m);
1293 continue;
1294 }
1295
1296 /*
1297 * No errors.
1298 *
1299 * Note we have configured the chip to not include
1300 * the CRC at the end of the packet.
1301 */
1302 len = RFD_RxDMAFrameLen(status);
1303 tailm->m_len = len - sc->sc_rxlen;
1304
1305 /*
1306 * If the packet is small enough to fit in a
1307 * single header mbuf, allocate one and copy
1308 * the data into it. This greatly reduces
1309 * memory consumption when we receive lots
1310 * of small packets.
1311 */
1312 if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1313 struct mbuf *nm;
1314 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1315 if (nm == NULL) {
1316 ifp->if_ierrors++;
1317 m_freem(m);
1318 continue;
1319 }
1320 nm->m_data += 2;
1321 nm->m_pkthdr.len = nm->m_len = len;
1322 m_copydata(m, 0, len, mtod(nm, void *));
1323 m_freem(m);
1324 m = nm;
1325 }
1326
1327 /*
1328 * Set the incoming checksum information for the packet.
1329 */
1330 if (status & RFD_IPDetected) {
1331 STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1332 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1333 if (status & RFD_IPError)
1334 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1335 if (status & RFD_TCPDetected) {
1336 STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1337 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1338 if (status & RFD_TCPError)
1339 m->m_pkthdr.csum_flags |=
1340 M_CSUM_TCP_UDP_BAD;
1341 } else if (status & RFD_UDPDetected) {
1342 STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1343 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1344 if (status & RFD_UDPError)
1345 m->m_pkthdr.csum_flags |=
1346 M_CSUM_TCP_UDP_BAD;
1347 }
1348 }
1349
1350 m->m_pkthdr.rcvif = ifp;
1351 m->m_pkthdr.len = len;
1352
1353 #if NBPFILTER > 0
1354 /*
1355 * Pass this up to any BPF listeners, but only
1356 * pass if up the stack if it's for us.
1357 */
1358 if (ifp->if_bpf)
1359 bpf_mtap(ifp->if_bpf, m);
1360 #endif /* NBPFILTER > 0 */
1361 #ifdef STGE_VLAN_UNTAG
1362 /*
1363 * Check for VLAN tagged packets
1364 */
1365 if (status & RFD_VLANDetected)
1366 VLAN_INPUT_TAG(ifp, m, RFD_TCI(status), continue);
1367
1368 #endif
1369 #if 0
1370 if (status & RFD_VLANDetected) {
1371 struct ether_header *eh;
1372 u_int16_t etype;
1373
1374 eh = mtod(m, struct ether_header *);
1375 etype = ntohs(eh->ether_type);
1376 printf("%s: VLANtag detected (TCI %d) etype %x\n",
1377 ifp->if_xname, (u_int16_t) RFD_TCI(status),
1378 etype);
1379 }
1380 #endif
1381 /* Pass it on. */
1382 (*ifp->if_input)(ifp, m);
1383 }
1384
1385 /* Update the receive pointer. */
1386 sc->sc_rxptr = i;
1387 }
1388
1389 /*
1390 * stge_tick:
1391 *
1392 * One second timer, used to tick the MII.
1393 */
1394 static void
1395 stge_tick(void *arg)
1396 {
1397 struct stge_softc *sc = arg;
1398 int s;
1399
1400 s = splnet();
1401 mii_tick(&sc->sc_mii);
1402 stge_stats_update(sc);
1403 splx(s);
1404
1405 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1406 }
1407
1408 /*
1409 * stge_stats_update:
1410 *
1411 * Read the TC9021 statistics counters.
1412 */
1413 static void
1414 stge_stats_update(struct stge_softc *sc)
1415 {
1416 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1417 bus_space_tag_t st = sc->sc_st;
1418 bus_space_handle_t sh = sc->sc_sh;
1419
1420 (void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1421
1422 ifp->if_ipackets +=
1423 bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1424
1425 ifp->if_ierrors +=
1426 (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1427
1428 (void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1429
1430 ifp->if_opackets +=
1431 bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1432
1433 ifp->if_collisions +=
1434 bus_space_read_4(st, sh, STGE_LateCollisions) +
1435 bus_space_read_4(st, sh, STGE_MultiColFrames) +
1436 bus_space_read_4(st, sh, STGE_SingleColFrames);
1437
1438 ifp->if_oerrors +=
1439 (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1440 (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1441 }
1442
1443 /*
1444 * stge_reset:
1445 *
1446 * Perform a soft reset on the TC9021.
1447 */
1448 static void
1449 stge_reset(struct stge_softc *sc)
1450 {
1451 uint32_t ac;
1452 int i;
1453
1454 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1455
1456 /*
1457 * Only assert RstOut if we're fiber. We need GMII clocks
1458 * to be present in order for the reset to complete on fiber
1459 * cards.
1460 */
1461 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1462 ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1463 AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1464 (sc->sc_usefiber ? AC_RstOut : 0));
1465
1466 delay(50000);
1467
1468 for (i = 0; i < STGE_TIMEOUT; i++) {
1469 delay(5000);
1470 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1471 AC_ResetBusy) == 0)
1472 break;
1473 }
1474
1475 if (i == STGE_TIMEOUT)
1476 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1477
1478 delay(1000);
1479 }
1480
1481 /*
1482 * stge_init: [ ifnet interface function ]
1483 *
1484 * Initialize the interface. Must be called at splnet().
1485 */
1486 static int
1487 stge_init(struct ifnet *ifp)
1488 {
1489 struct stge_softc *sc = ifp->if_softc;
1490 bus_space_tag_t st = sc->sc_st;
1491 bus_space_handle_t sh = sc->sc_sh;
1492 struct stge_descsoft *ds;
1493 int i, error = 0;
1494
1495 /*
1496 * Cancel any pending I/O.
1497 */
1498 stge_stop(ifp, 0);
1499
1500 /*
1501 * Reset the chip to a known state.
1502 */
1503 stge_reset(sc);
1504
1505 /*
1506 * Initialize the transmit descriptor ring.
1507 */
1508 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1509 for (i = 0; i < STGE_NTXDESC; i++) {
1510 sc->sc_txdescs[i].tfd_next = htole64(
1511 STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1512 sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1513 }
1514 sc->sc_txpending = 0;
1515 sc->sc_txdirty = 0;
1516 sc->sc_txlast = STGE_NTXDESC - 1;
1517
1518 /*
1519 * Initialize the receive descriptor and receive job
1520 * descriptor rings.
1521 */
1522 for (i = 0; i < STGE_NRXDESC; i++) {
1523 ds = &sc->sc_rxsoft[i];
1524 if (ds->ds_mbuf == NULL) {
1525 if ((error = stge_add_rxbuf(sc, i)) != 0) {
1526 printf("%s: unable to allocate or map rx "
1527 "buffer %d, error = %d\n",
1528 sc->sc_dev.dv_xname, i, error);
1529 /*
1530 * XXX Should attempt to run with fewer receive
1531 * XXX buffers instead of just failing.
1532 */
1533 stge_rxdrain(sc);
1534 goto out;
1535 }
1536 } else
1537 STGE_INIT_RXDESC(sc, i);
1538 }
1539 sc->sc_rxptr = 0;
1540 sc->sc_rxdiscard = 0;
1541 STGE_RXCHAIN_RESET(sc);
1542
1543 /* Set the station address. */
1544 for (i = 0; i < 6; i++)
1545 bus_space_write_1(st, sh, STGE_StationAddress0 + i,
1546 LLADDR(ifp->if_sadl)[i]);
1547
1548 /*
1549 * Set the statistics masks. Disable all the RMON stats,
1550 * and disable selected stats in the non-RMON stats registers.
1551 */
1552 bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1553 bus_space_write_4(st, sh, STGE_StatisticsMask,
1554 (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1555 (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1556 (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1557 (1U << 21));
1558
1559 /* Set up the receive filter. */
1560 stge_set_filter(sc);
1561
1562 /*
1563 * Give the transmit and receive ring to the chip.
1564 */
1565 bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1566 bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1567 STGE_CDTXADDR(sc, sc->sc_txdirty));
1568
1569 bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1570 bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1571 STGE_CDRXADDR(sc, sc->sc_rxptr));
1572
1573 /*
1574 * Initialize the Tx auto-poll period. It's OK to make this number
1575 * large (255 is the max, but we use 127) -- we explicitly kick the
1576 * transmit engine when there's actually a packet.
1577 */
1578 bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1579
1580 /* ..and the Rx auto-poll period. */
1581 bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1582
1583 /* Initialize the Tx start threshold. */
1584 bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1585
1586 /* RX DMA thresholds, from linux */
1587 bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
1588 bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
1589
1590 /*
1591 * Initialize the Rx DMA interrupt control register. We
1592 * request an interrupt after every incoming packet, but
1593 * defer it for 32us (64 * 512 ns). When the number of
1594 * interrupts pending reaches 8, we stop deferring the
1595 * interrupt, and signal it immediately.
1596 */
1597 bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1598 RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1599
1600 /*
1601 * Initialize the interrupt mask.
1602 */
1603 sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1604 IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1605 bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1606 bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1607
1608 /*
1609 * Configure the DMA engine.
1610 * XXX Should auto-tune TxBurstLimit.
1611 */
1612 bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1613 DMAC_TxBurstLimit(3));
1614
1615 /*
1616 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1617 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1618 * empty again.
1619 */
1620 bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1621 bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1622
1623 /*
1624 * Set the maximum frame size.
1625 */
1626 bus_space_write_2(st, sh, STGE_MaxFrameSize,
1627 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1628 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1629 ETHER_VLAN_ENCAP_LEN : 0));
1630
1631 /*
1632 * Initialize MacCtrl -- do it before setting the media,
1633 * as setting the media will actually program the register.
1634 *
1635 * Note: We have to poke the IFS value before poking
1636 * anything else.
1637 */
1638 sc->sc_MACCtrl = MC_IFSSelect(0);
1639 bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1640 sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1641 #ifdef STGE_VLAN_UNTAG
1642 sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1643 #endif
1644
1645 if (sc->sc_rev >= 6) { /* >= B.2 */
1646 /* Multi-frag frame bug work-around. */
1647 bus_space_write_2(st, sh, STGE_DebugCtrl,
1648 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1649
1650 /* Tx Poll Now bug work-around. */
1651 bus_space_write_2(st, sh, STGE_DebugCtrl,
1652 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1653 /* XXX ? from linux */
1654 bus_space_write_2(st, sh, STGE_DebugCtrl,
1655 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
1656 }
1657
1658 /*
1659 * Set the current media.
1660 */
1661 mii_mediachg(&sc->sc_mii);
1662
1663 /*
1664 * Start the one second MII clock.
1665 */
1666 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1667
1668 /*
1669 * ...all done!
1670 */
1671 ifp->if_flags |= IFF_RUNNING;
1672 ifp->if_flags &= ~IFF_OACTIVE;
1673
1674 out:
1675 if (error)
1676 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1677 return (error);
1678 }
1679
1680 /*
1681 * stge_drain:
1682 *
1683 * Drain the receive queue.
1684 */
1685 static void
1686 stge_rxdrain(struct stge_softc *sc)
1687 {
1688 struct stge_descsoft *ds;
1689 int i;
1690
1691 for (i = 0; i < STGE_NRXDESC; i++) {
1692 ds = &sc->sc_rxsoft[i];
1693 if (ds->ds_mbuf != NULL) {
1694 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1695 ds->ds_mbuf->m_next = NULL;
1696 m_freem(ds->ds_mbuf);
1697 ds->ds_mbuf = NULL;
1698 }
1699 }
1700 }
1701
1702 /*
1703 * stge_stop: [ ifnet interface function ]
1704 *
1705 * Stop transmission on the interface.
1706 */
1707 static void
1708 stge_stop(struct ifnet *ifp, int disable)
1709 {
1710 struct stge_softc *sc = ifp->if_softc;
1711 struct stge_descsoft *ds;
1712 int i;
1713
1714 /*
1715 * Stop the one second clock.
1716 */
1717 callout_stop(&sc->sc_tick_ch);
1718
1719 /* Down the MII. */
1720 mii_down(&sc->sc_mii);
1721
1722 /*
1723 * Disable interrupts.
1724 */
1725 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1726
1727 /*
1728 * Stop receiver, transmitter, and stats update.
1729 */
1730 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1731 MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1732
1733 /*
1734 * Stop the transmit and receive DMA.
1735 */
1736 stge_dma_wait(sc);
1737 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1738 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1739 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1740 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1741
1742 /*
1743 * Release any queued transmit buffers.
1744 */
1745 for (i = 0; i < STGE_NTXDESC; i++) {
1746 ds = &sc->sc_txsoft[i];
1747 if (ds->ds_mbuf != NULL) {
1748 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1749 m_freem(ds->ds_mbuf);
1750 ds->ds_mbuf = NULL;
1751 }
1752 }
1753
1754 if (disable)
1755 stge_rxdrain(sc);
1756
1757 /*
1758 * Mark the interface down and cancel the watchdog timer.
1759 */
1760 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1761 ifp->if_timer = 0;
1762 }
1763
1764 static int
1765 stge_eeprom_wait(struct stge_softc *sc)
1766 {
1767 int i;
1768
1769 for (i = 0; i < STGE_TIMEOUT; i++) {
1770 delay(1000);
1771 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1772 EC_EepromBusy) == 0)
1773 return (0);
1774 }
1775 return (1);
1776 }
1777
1778 /*
1779 * stge_read_eeprom:
1780 *
1781 * Read data from the serial EEPROM.
1782 */
1783 static void
1784 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1785 {
1786
1787 if (stge_eeprom_wait(sc))
1788 printf("%s: EEPROM failed to come ready\n",
1789 sc->sc_dev.dv_xname);
1790
1791 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1792 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1793 if (stge_eeprom_wait(sc))
1794 printf("%s: EEPROM read timed out\n",
1795 sc->sc_dev.dv_xname);
1796 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1797 }
1798
1799 /*
1800 * stge_add_rxbuf:
1801 *
1802 * Add a receive buffer to the indicated descriptor.
1803 */
1804 static int
1805 stge_add_rxbuf(struct stge_softc *sc, int idx)
1806 {
1807 struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1808 struct mbuf *m;
1809 int error;
1810
1811 MGETHDR(m, M_DONTWAIT, MT_DATA);
1812 if (m == NULL)
1813 return (ENOBUFS);
1814
1815 MCLGET(m, M_DONTWAIT);
1816 if ((m->m_flags & M_EXT) == 0) {
1817 m_freem(m);
1818 return (ENOBUFS);
1819 }
1820
1821 m->m_data = m->m_ext.ext_buf + 2;
1822 m->m_len = MCLBYTES - 2;
1823
1824 if (ds->ds_mbuf != NULL)
1825 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1826
1827 ds->ds_mbuf = m;
1828
1829 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1830 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1831 if (error) {
1832 printf("%s: can't load rx DMA map %d, error = %d\n",
1833 sc->sc_dev.dv_xname, idx, error);
1834 panic("stge_add_rxbuf"); /* XXX */
1835 }
1836
1837 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1838 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1839
1840 STGE_INIT_RXDESC(sc, idx);
1841
1842 return (0);
1843 }
1844
1845 /*
1846 * stge_set_filter:
1847 *
1848 * Set up the receive filter.
1849 */
1850 static void
1851 stge_set_filter(struct stge_softc *sc)
1852 {
1853 struct ethercom *ec = &sc->sc_ethercom;
1854 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1855 struct ether_multi *enm;
1856 struct ether_multistep step;
1857 uint32_t crc;
1858 uint32_t mchash[2];
1859
1860 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1861 if (ifp->if_flags & IFF_BROADCAST)
1862 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1863
1864 /* XXX: ST1023 only works in promiscuous mode */
1865 if (sc->sc_stge1023)
1866 ifp->if_flags |= IFF_PROMISC;
1867
1868 if (ifp->if_flags & IFF_PROMISC) {
1869 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1870 goto allmulti;
1871 }
1872
1873 /*
1874 * Set up the multicast address filter by passing all multicast
1875 * addresses through a CRC generator, and then using the low-order
1876 * 6 bits as an index into the 64 bit multicast hash table. The
1877 * high order bits select the register, while the rest of the bits
1878 * select the bit within the register.
1879 */
1880
1881 memset(mchash, 0, sizeof(mchash));
1882
1883 ETHER_FIRST_MULTI(step, ec, enm);
1884 if (enm == NULL)
1885 goto done;
1886
1887 while (enm != NULL) {
1888 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1889 /*
1890 * We must listen to a range of multicast addresses.
1891 * For now, just accept all multicasts, rather than
1892 * trying to set only those filter bits needed to match
1893 * the range. (At this time, the only use of address
1894 * ranges is for IP multicast routing, for which the
1895 * range is big enough to require all bits set.)
1896 */
1897 goto allmulti;
1898 }
1899
1900 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1901
1902 /* Just want the 6 least significant bits. */
1903 crc &= 0x3f;
1904
1905 /* Set the corresponding bit in the hash table. */
1906 mchash[crc >> 5] |= 1 << (crc & 0x1f);
1907
1908 ETHER_NEXT_MULTI(step, enm);
1909 }
1910
1911 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1912
1913 ifp->if_flags &= ~IFF_ALLMULTI;
1914 goto done;
1915
1916 allmulti:
1917 ifp->if_flags |= IFF_ALLMULTI;
1918 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1919
1920 done:
1921 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1922 /*
1923 * Program the multicast hash table.
1924 */
1925 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1926 mchash[0]);
1927 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1928 mchash[1]);
1929 }
1930
1931 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1932 sc->sc_ReceiveMode);
1933 }
1934
1935 /*
1936 * stge_mii_readreg: [mii interface function]
1937 *
1938 * Read a PHY register on the MII of the TC9021.
1939 */
1940 static int
1941 stge_mii_readreg(struct device *self, int phy, int reg)
1942 {
1943
1944 return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1945 }
1946
1947 /*
1948 * stge_mii_writereg: [mii interface function]
1949 *
1950 * Write a PHY register on the MII of the TC9021.
1951 */
1952 static void
1953 stge_mii_writereg(struct device *self, int phy, int reg, int val)
1954 {
1955
1956 mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1957 }
1958
1959 /*
1960 * stge_mii_statchg: [mii interface function]
1961 *
1962 * Callback from MII layer when media changes.
1963 */
1964 static void
1965 stge_mii_statchg(struct device *self)
1966 {
1967 struct stge_softc *sc = (struct stge_softc *) self;
1968
1969 if (sc->sc_mii.mii_media_active & IFM_FDX)
1970 sc->sc_MACCtrl |= MC_DuplexSelect;
1971 else
1972 sc->sc_MACCtrl &= ~MC_DuplexSelect;
1973
1974 /* XXX 802.1x flow-control? */
1975
1976 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1977 }
1978
1979 /*
1980 * sste_mii_bitbang_read: [mii bit-bang interface function]
1981 *
1982 * Read the MII serial port for the MII bit-bang module.
1983 */
1984 static uint32_t
1985 stge_mii_bitbang_read(struct device *self)
1986 {
1987 struct stge_softc *sc = (void *) self;
1988
1989 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
1990 }
1991
1992 /*
1993 * stge_mii_bitbang_write: [mii big-bang interface function]
1994 *
1995 * Write the MII serial port for the MII bit-bang module.
1996 */
1997 static void
1998 stge_mii_bitbang_write(struct device *self, uint32_t val)
1999 {
2000 struct stge_softc *sc = (void *) self;
2001
2002 bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
2003 val | sc->sc_PhyCtrl);
2004 }
2005
2006 /*
2007 * stge_mediastatus: [ifmedia interface function]
2008 *
2009 * Get the current interface media status.
2010 */
2011 static void
2012 stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2013 {
2014 struct stge_softc *sc = ifp->if_softc;
2015
2016 mii_pollstat(&sc->sc_mii);
2017 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2018 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2019 }
2020
2021 /*
2022 * stge_mediachange: [ifmedia interface function]
2023 *
2024 * Set hardware to newly-selected media.
2025 */
2026 static int
2027 stge_mediachange(struct ifnet *ifp)
2028 {
2029 struct stge_softc *sc = ifp->if_softc;
2030
2031 if (ifp->if_flags & IFF_UP)
2032 mii_mediachg(&sc->sc_mii);
2033 return (0);
2034 }
2035