Home | History | Annotate | Line # | Download | only in pci
if_stge.c revision 1.40
      1 /*	$NetBSD: if_stge.c,v 1.40 2008/01/19 22:10:19 dyoung Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Device driver for the Sundance Tech. TC9021 10/100/1000
     41  * Ethernet controller.
     42  */
     43 
     44 #include <sys/cdefs.h>
     45 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.40 2008/01/19 22:10:19 dyoung Exp $");
     46 
     47 #include "bpfilter.h"
     48 
     49 #include <sys/param.h>
     50 #include <sys/systm.h>
     51 #include <sys/callout.h>
     52 #include <sys/mbuf.h>
     53 #include <sys/malloc.h>
     54 #include <sys/kernel.h>
     55 #include <sys/socket.h>
     56 #include <sys/ioctl.h>
     57 #include <sys/errno.h>
     58 #include <sys/device.h>
     59 #include <sys/queue.h>
     60 
     61 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     62 
     63 #include <net/if.h>
     64 #include <net/if_dl.h>
     65 #include <net/if_media.h>
     66 #include <net/if_ether.h>
     67 
     68 #if NBPFILTER > 0
     69 #include <net/bpf.h>
     70 #endif
     71 
     72 #include <sys/bus.h>
     73 #include <sys/intr.h>
     74 
     75 #include <dev/mii/mii.h>
     76 #include <dev/mii/miivar.h>
     77 #include <dev/mii/mii_bitbang.h>
     78 
     79 #include <dev/pci/pcireg.h>
     80 #include <dev/pci/pcivar.h>
     81 #include <dev/pci/pcidevs.h>
     82 
     83 #include <dev/pci/if_stgereg.h>
     84 
     85 /* #define	STGE_CU_BUG			1 */
     86 #define	STGE_VLAN_UNTAG			1
     87 /* #define	STGE_VLAN_CFI		1 */
     88 
     89 /*
     90  * Transmit descriptor list size.
     91  */
     92 #define	STGE_NTXDESC		256
     93 #define	STGE_NTXDESC_MASK	(STGE_NTXDESC - 1)
     94 #define	STGE_NEXTTX(x)		(((x) + 1) & STGE_NTXDESC_MASK)
     95 
     96 /*
     97  * Receive descriptor list size.
     98  */
     99 #define	STGE_NRXDESC		256
    100 #define	STGE_NRXDESC_MASK	(STGE_NRXDESC - 1)
    101 #define	STGE_NEXTRX(x)		(((x) + 1) & STGE_NRXDESC_MASK)
    102 
    103 /*
    104  * Only interrupt every N frames.  Must be a power-of-two.
    105  */
    106 #define	STGE_TXINTR_SPACING	16
    107 #define	STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
    108 
    109 /*
    110  * Control structures are DMA'd to the TC9021 chip.  We allocate them in
    111  * a single clump that maps to a single DMA segment to make several things
    112  * easier.
    113  */
    114 struct stge_control_data {
    115 	/*
    116 	 * The transmit descriptors.
    117 	 */
    118 	struct stge_tfd scd_txdescs[STGE_NTXDESC];
    119 
    120 	/*
    121 	 * The receive descriptors.
    122 	 */
    123 	struct stge_rfd scd_rxdescs[STGE_NRXDESC];
    124 };
    125 
    126 #define	STGE_CDOFF(x)	offsetof(struct stge_control_data, x)
    127 #define	STGE_CDTXOFF(x)	STGE_CDOFF(scd_txdescs[(x)])
    128 #define	STGE_CDRXOFF(x)	STGE_CDOFF(scd_rxdescs[(x)])
    129 
    130 /*
    131  * Software state for transmit and receive jobs.
    132  */
    133 struct stge_descsoft {
    134 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
    135 	bus_dmamap_t ds_dmamap;		/* our DMA map */
    136 };
    137 
    138 /*
    139  * Software state per device.
    140  */
    141 struct stge_softc {
    142 	struct device sc_dev;		/* generic device information */
    143 	bus_space_tag_t sc_st;		/* bus space tag */
    144 	bus_space_handle_t sc_sh;	/* bus space handle */
    145 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    146 	struct ethercom sc_ethercom;	/* ethernet common data */
    147 	void *sc_sdhook;		/* shutdown hook */
    148 	int sc_rev;			/* silicon revision */
    149 
    150 	void *sc_ih;			/* interrupt cookie */
    151 
    152 	struct mii_data sc_mii;		/* MII/media information */
    153 
    154 	callout_t sc_tick_ch;		/* tick callout */
    155 
    156 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    157 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    158 
    159 	/*
    160 	 * Software state for transmit and receive descriptors.
    161 	 */
    162 	struct stge_descsoft sc_txsoft[STGE_NTXDESC];
    163 	struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
    164 
    165 	/*
    166 	 * Control data structures.
    167 	 */
    168 	struct stge_control_data *sc_control_data;
    169 #define	sc_txdescs	sc_control_data->scd_txdescs
    170 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    171 
    172 #ifdef STGE_EVENT_COUNTERS
    173 	/*
    174 	 * Event counters.
    175 	 */
    176 	struct evcnt sc_ev_txstall;	/* Tx stalled */
    177 	struct evcnt sc_ev_txdmaintr;	/* Tx DMA interrupts */
    178 	struct evcnt sc_ev_txindintr;	/* Tx Indicate interrupts */
    179 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    180 
    181 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
    182 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
    183 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
    184 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
    185 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
    186 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
    187 	struct evcnt sc_ev_txcopy;	/* Tx packets that we had to copy */
    188 
    189 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    190 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    191 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
    192 
    193 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    194 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    195 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    196 #endif /* STGE_EVENT_COUNTERS */
    197 
    198 	int	sc_txpending;		/* number of Tx requests pending */
    199 	int	sc_txdirty;		/* first dirty Tx descriptor */
    200 	int	sc_txlast;		/* last used Tx descriptor */
    201 
    202 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    203 	int	sc_rxdiscard;
    204 	int	sc_rxlen;
    205 	struct mbuf *sc_rxhead;
    206 	struct mbuf *sc_rxtail;
    207 	struct mbuf **sc_rxtailp;
    208 
    209 	int	sc_txthresh;		/* Tx threshold */
    210 	uint32_t sc_usefiber:1;		/* if we're fiber */
    211 	uint32_t sc_stge1023:1;		/* are we a 1023 */
    212 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
    213 	uint32_t sc_MACCtrl;		/* prototype MacCtrl register */
    214 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
    215 	uint16_t sc_ReceiveMode;	/* prototype ReceiveMode register */
    216 	uint8_t sc_PhyCtrl;		/* prototype PhyCtrl register */
    217 };
    218 
    219 #define	STGE_RXCHAIN_RESET(sc)						\
    220 do {									\
    221 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    222 	*(sc)->sc_rxtailp = NULL;					\
    223 	(sc)->sc_rxlen = 0;						\
    224 } while (/*CONSTCOND*/0)
    225 
    226 #define	STGE_RXCHAIN_LINK(sc, m)					\
    227 do {									\
    228 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    229 	(sc)->sc_rxtailp = &(m)->m_next;				\
    230 } while (/*CONSTCOND*/0)
    231 
    232 #ifdef STGE_EVENT_COUNTERS
    233 #define	STGE_EVCNT_INCR(ev)	(ev)->ev_count++
    234 #else
    235 #define	STGE_EVCNT_INCR(ev)	/* nothing */
    236 #endif
    237 
    238 #define	STGE_CDTXADDR(sc, x)	((sc)->sc_cddma + STGE_CDTXOFF((x)))
    239 #define	STGE_CDRXADDR(sc, x)	((sc)->sc_cddma + STGE_CDRXOFF((x)))
    240 
    241 #define	STGE_CDTXSYNC(sc, x, ops)					\
    242 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    243 	    STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
    244 
    245 #define	STGE_CDRXSYNC(sc, x, ops)					\
    246 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    247 	    STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
    248 
    249 #define	STGE_INIT_RXDESC(sc, x)						\
    250 do {									\
    251 	struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
    252 	struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)];		\
    253 									\
    254 	/*								\
    255 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    256 	 * so that the payload after the Ethernet header is aligned	\
    257 	 * to a 4-byte boundary.					\
    258 	 */								\
    259 	__rfd->rfd_frag.frag_word0 =					\
    260 	    htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
    261 	    FRAG_LEN(MCLBYTES - 2));					\
    262 	__rfd->rfd_next =						\
    263 	    htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x))));	\
    264 	__rfd->rfd_status = 0;						\
    265 	STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    266 } while (/*CONSTCOND*/0)
    267 
    268 #define STGE_TIMEOUT 1000
    269 
    270 static void	stge_start(struct ifnet *);
    271 static void	stge_watchdog(struct ifnet *);
    272 static int	stge_ioctl(struct ifnet *, u_long, void *);
    273 static int	stge_init(struct ifnet *);
    274 static void	stge_stop(struct ifnet *, int);
    275 
    276 static void	stge_shutdown(void *);
    277 
    278 static void	stge_reset(struct stge_softc *);
    279 static void	stge_rxdrain(struct stge_softc *);
    280 static int	stge_add_rxbuf(struct stge_softc *, int);
    281 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
    282 static void	stge_tick(void *);
    283 
    284 static void	stge_stats_update(struct stge_softc *);
    285 
    286 static void	stge_set_filter(struct stge_softc *);
    287 
    288 static int	stge_intr(void *);
    289 static void	stge_txintr(struct stge_softc *);
    290 static void	stge_rxintr(struct stge_softc *);
    291 
    292 static int	stge_mii_readreg(struct device *, int, int);
    293 static void	stge_mii_writereg(struct device *, int, int, int);
    294 static void	stge_mii_statchg(struct device *);
    295 
    296 static int	stge_match(struct device *, struct cfdata *, void *);
    297 static void	stge_attach(struct device *, struct device *, void *);
    298 
    299 int	stge_copy_small = 0;
    300 
    301 CFATTACH_DECL(stge, sizeof(struct stge_softc),
    302     stge_match, stge_attach, NULL, NULL);
    303 
    304 static uint32_t stge_mii_bitbang_read(struct device *);
    305 static void	stge_mii_bitbang_write(struct device *, uint32_t);
    306 
    307 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
    308 	stge_mii_bitbang_read,
    309 	stge_mii_bitbang_write,
    310 	{
    311 		PC_MgmtData,		/* MII_BIT_MDO */
    312 		PC_MgmtData,		/* MII_BIT_MDI */
    313 		PC_MgmtClk,		/* MII_BIT_MDC */
    314 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
    315 		0,			/* MII_BIT_DIR_PHY_HOST */
    316 	}
    317 };
    318 
    319 /*
    320  * Devices supported by this driver.
    321  */
    322 static const struct stge_product {
    323 	pci_vendor_id_t		stge_vendor;
    324 	pci_product_id_t	stge_product;
    325 	const char		*stge_name;
    326 } stge_products[] = {
    327 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST1023,
    328 	  "Sundance ST-1023 Gigabit Ethernet" },
    329 
    330 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST2021,
    331 	  "Sundance ST-2021 Gigabit Ethernet" },
    332 
    333 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021,
    334 	  "Tamarack TC9021 Gigabit Ethernet" },
    335 
    336 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021_ALT,
    337 	  "Tamarack TC9021 Gigabit Ethernet" },
    338 
    339 	/*
    340 	 * The Sundance sample boards use the Sundance vendor ID,
    341 	 * but the Tamarack product ID.
    342 	 */
    343 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021,
    344 	  "Sundance TC9021 Gigabit Ethernet" },
    345 
    346 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021_ALT,
    347 	  "Sundance TC9021 Gigabit Ethernet" },
    348 
    349 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL4000,
    350 	  "D-Link DL-4000 Gigabit Ethernet" },
    351 
    352 	{ PCI_VENDOR_ANTARES,		PCI_PRODUCT_ANTARES_TC9021,
    353 	  "Antares Gigabit Ethernet" },
    354 
    355 	{ 0,				0,
    356 	  NULL },
    357 };
    358 
    359 static const struct stge_product *
    360 stge_lookup(const struct pci_attach_args *pa)
    361 {
    362 	const struct stge_product *sp;
    363 
    364 	for (sp = stge_products; sp->stge_name != NULL; sp++) {
    365 		if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
    366 		    PCI_PRODUCT(pa->pa_id) == sp->stge_product)
    367 			return (sp);
    368 	}
    369 	return (NULL);
    370 }
    371 
    372 static int
    373 stge_match(struct device *parent, struct cfdata *cf,
    374     void *aux)
    375 {
    376 	struct pci_attach_args *pa = aux;
    377 
    378 	if (stge_lookup(pa) != NULL)
    379 		return (1);
    380 
    381 	return (0);
    382 }
    383 
    384 static void
    385 stge_attach(struct device *parent, struct device *self, void *aux)
    386 {
    387 	struct stge_softc *sc = (struct stge_softc *) self;
    388 	struct pci_attach_args *pa = aux;
    389 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    390 	pci_chipset_tag_t pc = pa->pa_pc;
    391 	pci_intr_handle_t ih;
    392 	const char *intrstr = NULL;
    393 	bus_space_tag_t iot, memt;
    394 	bus_space_handle_t ioh, memh;
    395 	bus_dma_segment_t seg;
    396 	int ioh_valid, memh_valid;
    397 	int i, rseg, error;
    398 	const struct stge_product *sp;
    399 	uint8_t enaddr[ETHER_ADDR_LEN];
    400 
    401 	callout_init(&sc->sc_tick_ch, 0);
    402 
    403 	sp = stge_lookup(pa);
    404 	if (sp == NULL) {
    405 		printf("\n");
    406 		panic("ste_attach: impossible");
    407 	}
    408 
    409 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    410 
    411 	printf(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
    412 
    413 	/*
    414 	 * Map the device.
    415 	 */
    416 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
    417 	    PCI_MAPREG_TYPE_IO, 0,
    418 	    &iot, &ioh, NULL, NULL) == 0);
    419 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
    420 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    421 	    &memt, &memh, NULL, NULL) == 0);
    422 
    423 	if (memh_valid) {
    424 		sc->sc_st = memt;
    425 		sc->sc_sh = memh;
    426 	} else if (ioh_valid) {
    427 		sc->sc_st = iot;
    428 		sc->sc_sh = ioh;
    429 	} else {
    430 		printf("%s: unable to map device registers\n",
    431 		    sc->sc_dev.dv_xname);
    432 		return;
    433 	}
    434 
    435 	sc->sc_dmat = pa->pa_dmat;
    436 
    437 	/* Enable bus mastering. */
    438 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    439 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    440 	    PCI_COMMAND_MASTER_ENABLE);
    441 
    442 	/* power up chip */
    443 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
    444 	    NULL)) && error != EOPNOTSUPP) {
    445 		aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
    446 		    error);
    447 		return;
    448 	}
    449 	/*
    450 	 * Map and establish our interrupt.
    451 	 */
    452 	if (pci_intr_map(pa, &ih)) {
    453 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    454 		return;
    455 	}
    456 	intrstr = pci_intr_string(pc, ih);
    457 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
    458 	if (sc->sc_ih == NULL) {
    459 		printf("%s: unable to establish interrupt",
    460 		    sc->sc_dev.dv_xname);
    461 		if (intrstr != NULL)
    462 			printf(" at %s", intrstr);
    463 		printf("\n");
    464 		return;
    465 	}
    466 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    467 
    468 	/*
    469 	 * Allocate the control data structures, and create and load the
    470 	 * DMA map for it.
    471 	 */
    472 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    473 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    474 	    0)) != 0) {
    475 		printf("%s: unable to allocate control data, error = %d\n",
    476 		    sc->sc_dev.dv_xname, error);
    477 		goto fail_0;
    478 	}
    479 
    480 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    481 	    sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
    482 	    BUS_DMA_COHERENT)) != 0) {
    483 		printf("%s: unable to map control data, error = %d\n",
    484 		    sc->sc_dev.dv_xname, error);
    485 		goto fail_1;
    486 	}
    487 
    488 	if ((error = bus_dmamap_create(sc->sc_dmat,
    489 	    sizeof(struct stge_control_data), 1,
    490 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    491 		printf("%s: unable to create control data DMA map, "
    492 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    493 		goto fail_2;
    494 	}
    495 
    496 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    497 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
    498 	    0)) != 0) {
    499 		printf("%s: unable to load control data DMA map, error = %d\n",
    500 		    sc->sc_dev.dv_xname, error);
    501 		goto fail_3;
    502 	}
    503 
    504 	/*
    505 	 * Create the transmit buffer DMA maps.  Note that rev B.3
    506 	 * and earlier seem to have a bug regarding multi-fragment
    507 	 * packets.  We need to limit the number of Tx segments on
    508 	 * such chips to 1.
    509 	 */
    510 	for (i = 0; i < STGE_NTXDESC; i++) {
    511 		if ((error = bus_dmamap_create(sc->sc_dmat,
    512 		    ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
    513 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
    514 			printf("%s: unable to create tx DMA map %d, "
    515 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    516 			goto fail_4;
    517 		}
    518 	}
    519 
    520 	/*
    521 	 * Create the receive buffer DMA maps.
    522 	 */
    523 	for (i = 0; i < STGE_NRXDESC; i++) {
    524 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    525 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
    526 			printf("%s: unable to create rx DMA map %d, "
    527 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    528 			goto fail_5;
    529 		}
    530 		sc->sc_rxsoft[i].ds_mbuf = NULL;
    531 	}
    532 
    533 	/*
    534 	 * Determine if we're copper or fiber.  It affects how we
    535 	 * reset the card.
    536 	 */
    537 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
    538 	    AC_PhyMedia)
    539 		sc->sc_usefiber = 1;
    540 	else
    541 		sc->sc_usefiber = 0;
    542 
    543 	/*
    544 	 * Reset the chip to a known state.
    545 	 */
    546 	stge_reset(sc);
    547 
    548 	/*
    549 	 * Reading the station address from the EEPROM doesn't seem
    550 	 * to work, at least on my sample boards.  Instead, since
    551 	 * the reset sequence does AutoInit, read it from the station
    552 	 * address registers. For Sundance 1023 you can only read it
    553 	 * from EEPROM.
    554 	 */
    555 	if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
    556 		enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    557 		    STGE_StationAddress0) & 0xff;
    558 		enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    559 		    STGE_StationAddress0) >> 8;
    560 		enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    561 		    STGE_StationAddress1) & 0xff;
    562 		enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    563 		    STGE_StationAddress1) >> 8;
    564 		enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    565 		    STGE_StationAddress2) & 0xff;
    566 		enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    567 		    STGE_StationAddress2) >> 8;
    568 		sc->sc_stge1023 = 0;
    569 	} else {
    570 		uint16_t myaddr[ETHER_ADDR_LEN / 2];
    571 		for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
    572 			stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
    573 			    &myaddr[i]);
    574 			myaddr[i] = le16toh(myaddr[i]);
    575 		}
    576 		(void)memcpy(enaddr, myaddr, sizeof(enaddr));
    577 		sc->sc_stge1023 = 1;
    578 	}
    579 
    580 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    581 	    ether_sprintf(enaddr));
    582 
    583 	/*
    584 	 * Read some important bits from the PhyCtrl register.
    585 	 */
    586 	sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
    587 	    STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
    588 
    589 	/*
    590 	 * Initialize our media structures and probe the MII.
    591 	 */
    592 	sc->sc_mii.mii_ifp = ifp;
    593 	sc->sc_mii.mii_readreg = stge_mii_readreg;
    594 	sc->sc_mii.mii_writereg = stge_mii_writereg;
    595 	sc->sc_mii.mii_statchg = stge_mii_statchg;
    596 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
    597 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
    598 	    ether_mediastatus);
    599 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    600 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
    601 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    602 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    603 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    604 	} else
    605 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    606 
    607 	ifp = &sc->sc_ethercom.ec_if;
    608 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    609 	ifp->if_softc = sc;
    610 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    611 	ifp->if_ioctl = stge_ioctl;
    612 	ifp->if_start = stge_start;
    613 	ifp->if_watchdog = stge_watchdog;
    614 	ifp->if_init = stge_init;
    615 	ifp->if_stop = stge_stop;
    616 	IFQ_SET_READY(&ifp->if_snd);
    617 
    618 	/*
    619 	 * The manual recommends disabling early transmit, so we
    620 	 * do.  It's disabled anyway, if using IP checksumming,
    621 	 * since the entire packet must be in the FIFO in order
    622 	 * for the chip to perform the checksum.
    623 	 */
    624 	sc->sc_txthresh = 0x0fff;
    625 
    626 	/*
    627 	 * Disable MWI if the PCI layer tells us to.
    628 	 */
    629 	sc->sc_DMACtrl = 0;
    630 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
    631 		sc->sc_DMACtrl |= DMAC_MWIDisable;
    632 
    633 	/*
    634 	 * We can support 802.1Q VLAN-sized frames and jumbo
    635 	 * Ethernet frames.
    636 	 *
    637 	 * XXX Figure out how to do hw-assisted VLAN tagging in
    638 	 * XXX a reasonable way on this chip.
    639 	 */
    640 	sc->sc_ethercom.ec_capabilities |=
    641 	    ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
    642 	    ETHERCAP_VLAN_HWTAGGING;
    643 
    644 	/*
    645 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
    646 	 */
    647 	sc->sc_ethercom.ec_if.if_capabilities |=
    648 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    649 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    650 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    651 
    652 	/*
    653 	 * Attach the interface.
    654 	 */
    655 	if_attach(ifp);
    656 	ether_ifattach(ifp, enaddr);
    657 
    658 #ifdef STGE_EVENT_COUNTERS
    659 	/*
    660 	 * Attach event counters.
    661 	 */
    662 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
    663 	    NULL, sc->sc_dev.dv_xname, "txstall");
    664 	evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
    665 	    NULL, sc->sc_dev.dv_xname, "txdmaintr");
    666 	evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
    667 	    NULL, sc->sc_dev.dv_xname, "txindintr");
    668 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    669 	    NULL, sc->sc_dev.dv_xname, "rxintr");
    670 
    671 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
    672 	    NULL, sc->sc_dev.dv_xname, "txseg1");
    673 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
    674 	    NULL, sc->sc_dev.dv_xname, "txseg2");
    675 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
    676 	    NULL, sc->sc_dev.dv_xname, "txseg3");
    677 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
    678 	    NULL, sc->sc_dev.dv_xname, "txseg4");
    679 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
    680 	    NULL, sc->sc_dev.dv_xname, "txseg5");
    681 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
    682 	    NULL, sc->sc_dev.dv_xname, "txsegmore");
    683 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
    684 	    NULL, sc->sc_dev.dv_xname, "txcopy");
    685 
    686 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    687 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
    688 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
    689 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
    690 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
    691 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
    692 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    693 	    NULL, sc->sc_dev.dv_xname, "txipsum");
    694 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
    695 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
    696 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
    697 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
    698 #endif /* STGE_EVENT_COUNTERS */
    699 
    700 	/*
    701 	 * Make sure the interface is shutdown during reboot.
    702 	 */
    703 	sc->sc_sdhook = shutdownhook_establish(stge_shutdown, sc);
    704 	if (sc->sc_sdhook == NULL)
    705 		printf("%s: WARNING: unable to establish shutdown hook\n",
    706 		    sc->sc_dev.dv_xname);
    707 	return;
    708 
    709 	/*
    710 	 * Free any resources we've allocated during the failed attach
    711 	 * attempt.  Do this in reverse order and fall through.
    712 	 */
    713  fail_5:
    714 	for (i = 0; i < STGE_NRXDESC; i++) {
    715 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
    716 			bus_dmamap_destroy(sc->sc_dmat,
    717 			    sc->sc_rxsoft[i].ds_dmamap);
    718 	}
    719  fail_4:
    720 	for (i = 0; i < STGE_NTXDESC; i++) {
    721 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
    722 			bus_dmamap_destroy(sc->sc_dmat,
    723 			    sc->sc_txsoft[i].ds_dmamap);
    724 	}
    725 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    726  fail_3:
    727 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    728  fail_2:
    729 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    730 	    sizeof(struct stge_control_data));
    731  fail_1:
    732 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    733  fail_0:
    734 	return;
    735 }
    736 
    737 /*
    738  * stge_shutdown:
    739  *
    740  *	Make sure the interface is stopped at reboot time.
    741  */
    742 static void
    743 stge_shutdown(void *arg)
    744 {
    745 	struct stge_softc *sc = arg;
    746 
    747 	stge_stop(&sc->sc_ethercom.ec_if, 1);
    748 }
    749 
    750 static void
    751 stge_dma_wait(struct stge_softc *sc)
    752 {
    753 	int i;
    754 
    755 	for (i = 0; i < STGE_TIMEOUT; i++) {
    756 		delay(2);
    757 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
    758 		     DMAC_TxDMAInProg) == 0)
    759 			break;
    760 	}
    761 
    762 	if (i == STGE_TIMEOUT)
    763 		printf("%s: DMA wait timed out\n", sc->sc_dev.dv_xname);
    764 }
    765 
    766 /*
    767  * stge_start:		[ifnet interface function]
    768  *
    769  *	Start packet transmission on the interface.
    770  */
    771 static void
    772 stge_start(struct ifnet *ifp)
    773 {
    774 	struct stge_softc *sc = ifp->if_softc;
    775 	struct mbuf *m0;
    776 	struct stge_descsoft *ds;
    777 	struct stge_tfd *tfd;
    778 	bus_dmamap_t dmamap;
    779 	int error, firsttx, nexttx, opending, seg, totlen;
    780 	uint64_t csum_flags;
    781 
    782 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    783 		return;
    784 
    785 	/*
    786 	 * Remember the previous number of pending transmissions
    787 	 * and the first descriptor we will use.
    788 	 */
    789 	opending = sc->sc_txpending;
    790 	firsttx = STGE_NEXTTX(sc->sc_txlast);
    791 
    792 	/*
    793 	 * Loop through the send queue, setting up transmit descriptors
    794 	 * until we drain the queue, or use up all available transmit
    795 	 * descriptors.
    796 	 */
    797 	for (;;) {
    798 		struct m_tag *mtag;
    799 		uint64_t tfc;
    800 
    801 		/*
    802 		 * Grab a packet off the queue.
    803 		 */
    804 		IFQ_POLL(&ifp->if_snd, m0);
    805 		if (m0 == NULL)
    806 			break;
    807 
    808 		/*
    809 		 * Leave one unused descriptor at the end of the
    810 		 * list to prevent wrapping completely around.
    811 		 */
    812 		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
    813 			STGE_EVCNT_INCR(&sc->sc_ev_txstall);
    814 			break;
    815 		}
    816 
    817 		/*
    818 		 * See if we have any VLAN stuff.
    819 		 */
    820 		mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
    821 
    822 		/*
    823 		 * Get the last and next available transmit descriptor.
    824 		 */
    825 		nexttx = STGE_NEXTTX(sc->sc_txlast);
    826 		tfd = &sc->sc_txdescs[nexttx];
    827 		ds = &sc->sc_txsoft[nexttx];
    828 
    829 		dmamap = ds->ds_dmamap;
    830 
    831 		/*
    832 		 * Load the DMA map.  If this fails, the packet either
    833 		 * didn't fit in the alloted number of segments, or we
    834 		 * were short on resources.  For the too-many-segments
    835 		 * case, we simply report an error and drop the packet,
    836 		 * since we can't sanely copy a jumbo packet to a single
    837 		 * buffer.
    838 		 */
    839 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    840 		    BUS_DMA_NOWAIT);
    841 		if (error) {
    842 			if (error == EFBIG) {
    843 				printf("%s: Tx packet consumes too many "
    844 				    "DMA segments, dropping...\n",
    845 				    sc->sc_dev.dv_xname);
    846 				IFQ_DEQUEUE(&ifp->if_snd, m0);
    847 				m_freem(m0);
    848 				continue;
    849 			}
    850 			/*
    851 			 * Short on resources, just stop for now.
    852 			 */
    853 			break;
    854 		}
    855 
    856 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    857 
    858 		/*
    859 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    860 		 */
    861 
    862 		/* Sync the DMA map. */
    863 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    864 		    BUS_DMASYNC_PREWRITE);
    865 
    866 		/* Initialize the fragment list. */
    867 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
    868 			tfd->tfd_frags[seg].frag_word0 =
    869 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
    870 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
    871 			totlen += dmamap->dm_segs[seg].ds_len;
    872 		}
    873 
    874 #ifdef STGE_EVENT_COUNTERS
    875 		switch (dmamap->dm_nsegs) {
    876 		case 1:
    877 			STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
    878 			break;
    879 		case 2:
    880 			STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
    881 			break;
    882 		case 3:
    883 			STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
    884 			break;
    885 		case 4:
    886 			STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
    887 			break;
    888 		case 5:
    889 			STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
    890 			break;
    891 		default:
    892 			STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
    893 			break;
    894 		}
    895 #endif /* STGE_EVENT_COUNTERS */
    896 
    897 		/*
    898 		 * Initialize checksumming flags in the descriptor.
    899 		 * Byte-swap constants so the compiler can optimize.
    900 		 */
    901 		csum_flags = 0;
    902 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
    903 			STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
    904 			csum_flags |= TFD_IPChecksumEnable;
    905 		}
    906 
    907 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
    908 			STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
    909 			csum_flags |= TFD_TCPChecksumEnable;
    910 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
    911 			STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
    912 			csum_flags |= TFD_UDPChecksumEnable;
    913 		}
    914 
    915 		/*
    916 		 * Initialize the descriptor and give it to the chip.
    917 		 * Check to see if we have a VLAN tag to insert.
    918 		 */
    919 
    920 		tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
    921 		    TFD_FragCount(seg) | csum_flags |
    922 		    (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
    923 			TFD_TxDMAIndicate : 0);
    924 		if (mtag) {
    925 #if	0
    926 			struct ether_header *eh =
    927 			    mtod(m0, struct ether_header *);
    928 			u_int16_t etype = ntohs(eh->ether_type);
    929 			printf("%s: xmit (tag %d) etype %x\n",
    930 			   ifp->if_xname, *mtod(n, int *), etype);
    931 #endif
    932 			tfc |= TFD_VLANTagInsert |
    933 #ifdef	STGE_VLAN_CFI
    934 			    TFD_CFI |
    935 #endif
    936 			    TFD_VID(VLAN_TAG_VALUE(mtag));
    937 		}
    938 		tfd->tfd_control = htole64(tfc);
    939 
    940 		/* Sync the descriptor. */
    941 		STGE_CDTXSYNC(sc, nexttx,
    942 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    943 
    944 		/*
    945 		 * Kick the transmit DMA logic.
    946 		 */
    947 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
    948 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
    949 
    950 		/*
    951 		 * Store a pointer to the packet so we can free it later.
    952 		 */
    953 		ds->ds_mbuf = m0;
    954 
    955 		/* Advance the tx pointer. */
    956 		sc->sc_txpending++;
    957 		sc->sc_txlast = nexttx;
    958 
    959 #if NBPFILTER > 0
    960 		/*
    961 		 * Pass the packet to any BPF listeners.
    962 		 */
    963 		if (ifp->if_bpf)
    964 			bpf_mtap(ifp->if_bpf, m0);
    965 #endif /* NBPFILTER > 0 */
    966 	}
    967 
    968 	if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
    969 		/* No more slots left; notify upper layer. */
    970 		ifp->if_flags |= IFF_OACTIVE;
    971 	}
    972 
    973 	if (sc->sc_txpending != opending) {
    974 		/*
    975 		 * We enqueued packets.  If the transmitter was idle,
    976 		 * reset the txdirty pointer.
    977 		 */
    978 		if (opending == 0)
    979 			sc->sc_txdirty = firsttx;
    980 
    981 		/* Set a watchdog timer in case the chip flakes out. */
    982 		ifp->if_timer = 5;
    983 	}
    984 }
    985 
    986 /*
    987  * stge_watchdog:	[ifnet interface function]
    988  *
    989  *	Watchdog timer handler.
    990  */
    991 static void
    992 stge_watchdog(struct ifnet *ifp)
    993 {
    994 	struct stge_softc *sc = ifp->if_softc;
    995 
    996 	/*
    997 	 * Sweep up first, since we don't interrupt every frame.
    998 	 */
    999 	stge_txintr(sc);
   1000 	if (sc->sc_txpending != 0) {
   1001 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1002 		ifp->if_oerrors++;
   1003 
   1004 		(void) stge_init(ifp);
   1005 
   1006 		/* Try to get more packets going. */
   1007 		stge_start(ifp);
   1008 	}
   1009 }
   1010 
   1011 /*
   1012  * stge_ioctl:		[ifnet interface function]
   1013  *
   1014  *	Handle control requests from the operator.
   1015  */
   1016 static int
   1017 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1018 {
   1019 	struct stge_softc *sc = ifp->if_softc;
   1020 	int s, error;
   1021 
   1022 	s = splnet();
   1023 
   1024 	error = ether_ioctl(ifp, cmd, data);
   1025 	if (error == ENETRESET) {
   1026 		/*
   1027 		 * Multicast list has changed; set the hardware filter
   1028 		 * accordingly.
   1029 		 */
   1030 		if (ifp->if_flags & IFF_RUNNING)
   1031 			stge_set_filter(sc);
   1032 		error = 0;
   1033 	}
   1034 
   1035 	/* Try to get more packets going. */
   1036 	stge_start(ifp);
   1037 
   1038 	splx(s);
   1039 	return (error);
   1040 }
   1041 
   1042 /*
   1043  * stge_intr:
   1044  *
   1045  *	Interrupt service routine.
   1046  */
   1047 static int
   1048 stge_intr(void *arg)
   1049 {
   1050 	struct stge_softc *sc = arg;
   1051 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1052 	uint32_t txstat;
   1053 	int wantinit;
   1054 	uint16_t isr;
   1055 
   1056 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
   1057 	     IS_InterruptStatus) == 0)
   1058 		return (0);
   1059 
   1060 	for (wantinit = 0; wantinit == 0;) {
   1061 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
   1062 		if ((isr & sc->sc_IntEnable) == 0)
   1063 			break;
   1064 
   1065 		/* Host interface errors. */
   1066 		if (isr & IS_HostError) {
   1067 			printf("%s: Host interface error\n",
   1068 			    sc->sc_dev.dv_xname);
   1069 			wantinit = 1;
   1070 			continue;
   1071 		}
   1072 
   1073 		/* Receive interrupts. */
   1074 		if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
   1075 			STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
   1076 			stge_rxintr(sc);
   1077 			if (isr & IS_RFDListEnd) {
   1078 				printf("%s: receive ring overflow\n",
   1079 				    sc->sc_dev.dv_xname);
   1080 				/*
   1081 				 * XXX Should try to recover from this
   1082 				 * XXX more gracefully.
   1083 				 */
   1084 				wantinit = 1;
   1085 			}
   1086 		}
   1087 
   1088 		/* Transmit interrupts. */
   1089 		if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
   1090 #ifdef STGE_EVENT_COUNTERS
   1091 			if (isr & IS_TxDMAComplete)
   1092 				STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
   1093 #endif
   1094 			stge_txintr(sc);
   1095 		}
   1096 
   1097 		/* Statistics overflow. */
   1098 		if (isr & IS_UpdateStats)
   1099 			stge_stats_update(sc);
   1100 
   1101 		/* Transmission errors. */
   1102 		if (isr & IS_TxComplete) {
   1103 			STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
   1104 			for (;;) {
   1105 				txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
   1106 				    STGE_TxStatus);
   1107 				if ((txstat & TS_TxComplete) == 0)
   1108 					break;
   1109 				if (txstat & TS_TxUnderrun) {
   1110 					sc->sc_txthresh++;
   1111 					if (sc->sc_txthresh > 0x0fff)
   1112 						sc->sc_txthresh = 0x0fff;
   1113 					printf("%s: transmit underrun, new "
   1114 					    "threshold: %d bytes\n",
   1115 					    sc->sc_dev.dv_xname,
   1116 					    sc->sc_txthresh << 5);
   1117 				}
   1118 				if (txstat & TS_MaxCollisions)
   1119 					printf("%s: excessive collisions\n",
   1120 					    sc->sc_dev.dv_xname);
   1121 			}
   1122 			wantinit = 1;
   1123 		}
   1124 
   1125 	}
   1126 
   1127 	if (wantinit)
   1128 		stge_init(ifp);
   1129 
   1130 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
   1131 	    sc->sc_IntEnable);
   1132 
   1133 	/* Try to get more packets going. */
   1134 	stge_start(ifp);
   1135 
   1136 	return (1);
   1137 }
   1138 
   1139 /*
   1140  * stge_txintr:
   1141  *
   1142  *	Helper; handle transmit interrupts.
   1143  */
   1144 static void
   1145 stge_txintr(struct stge_softc *sc)
   1146 {
   1147 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1148 	struct stge_descsoft *ds;
   1149 	uint64_t control;
   1150 	int i;
   1151 
   1152 	ifp->if_flags &= ~IFF_OACTIVE;
   1153 
   1154 	/*
   1155 	 * Go through our Tx list and free mbufs for those
   1156 	 * frames which have been transmitted.
   1157 	 */
   1158 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
   1159 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
   1160 		ds = &sc->sc_txsoft[i];
   1161 
   1162 		STGE_CDTXSYNC(sc, i,
   1163 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1164 
   1165 		control = le64toh(sc->sc_txdescs[i].tfd_control);
   1166 		if ((control & TFD_TFDDone) == 0)
   1167 			break;
   1168 
   1169 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
   1170 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1171 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1172 		m_freem(ds->ds_mbuf);
   1173 		ds->ds_mbuf = NULL;
   1174 	}
   1175 
   1176 	/* Update the dirty transmit buffer pointer. */
   1177 	sc->sc_txdirty = i;
   1178 
   1179 	/*
   1180 	 * If there are no more pending transmissions, cancel the watchdog
   1181 	 * timer.
   1182 	 */
   1183 	if (sc->sc_txpending == 0)
   1184 		ifp->if_timer = 0;
   1185 }
   1186 
   1187 /*
   1188  * stge_rxintr:
   1189  *
   1190  *	Helper; handle receive interrupts.
   1191  */
   1192 static void
   1193 stge_rxintr(struct stge_softc *sc)
   1194 {
   1195 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1196 	struct stge_descsoft *ds;
   1197 	struct mbuf *m, *tailm;
   1198 	uint64_t status;
   1199 	int i, len;
   1200 
   1201 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
   1202 		ds = &sc->sc_rxsoft[i];
   1203 
   1204 		STGE_CDRXSYNC(sc, i,
   1205 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1206 
   1207 		status = le64toh(sc->sc_rxdescs[i].rfd_status);
   1208 
   1209 		if ((status & RFD_RFDDone) == 0)
   1210 			break;
   1211 
   1212 		if (__predict_false(sc->sc_rxdiscard)) {
   1213 			STGE_INIT_RXDESC(sc, i);
   1214 			if (status & RFD_FrameEnd) {
   1215 				/* Reset our state. */
   1216 				sc->sc_rxdiscard = 0;
   1217 			}
   1218 			continue;
   1219 		}
   1220 
   1221 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1222 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1223 
   1224 		m = ds->ds_mbuf;
   1225 
   1226 		/*
   1227 		 * Add a new receive buffer to the ring.
   1228 		 */
   1229 		if (stge_add_rxbuf(sc, i) != 0) {
   1230 			/*
   1231 			 * Failed, throw away what we've done so
   1232 			 * far, and discard the rest of the packet.
   1233 			 */
   1234 			ifp->if_ierrors++;
   1235 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1236 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1237 			STGE_INIT_RXDESC(sc, i);
   1238 			if ((status & RFD_FrameEnd) == 0)
   1239 				sc->sc_rxdiscard = 1;
   1240 			if (sc->sc_rxhead != NULL)
   1241 				m_freem(sc->sc_rxhead);
   1242 			STGE_RXCHAIN_RESET(sc);
   1243 			continue;
   1244 		}
   1245 
   1246 #ifdef DIAGNOSTIC
   1247 		if (status & RFD_FrameStart) {
   1248 			KASSERT(sc->sc_rxhead == NULL);
   1249 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
   1250 		}
   1251 #endif
   1252 
   1253 		STGE_RXCHAIN_LINK(sc, m);
   1254 
   1255 		/*
   1256 		 * If this is not the end of the packet, keep
   1257 		 * looking.
   1258 		 */
   1259 		if ((status & RFD_FrameEnd) == 0) {
   1260 			sc->sc_rxlen += m->m_len;
   1261 			continue;
   1262 		}
   1263 
   1264 		/*
   1265 		 * Okay, we have the entire packet now...
   1266 		 */
   1267 		*sc->sc_rxtailp = NULL;
   1268 		m = sc->sc_rxhead;
   1269 		tailm = sc->sc_rxtail;
   1270 
   1271 		STGE_RXCHAIN_RESET(sc);
   1272 
   1273 		/*
   1274 		 * If the packet had an error, drop it.  Note we
   1275 		 * count the error later in the periodic stats update.
   1276 		 */
   1277 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
   1278 			      RFD_RxAlignmentError | RFD_RxFCSError |
   1279 			      RFD_RxLengthError)) {
   1280 			m_freem(m);
   1281 			continue;
   1282 		}
   1283 
   1284 		/*
   1285 		 * No errors.
   1286 		 *
   1287 		 * Note we have configured the chip to not include
   1288 		 * the CRC at the end of the packet.
   1289 		 */
   1290 		len = RFD_RxDMAFrameLen(status);
   1291 		tailm->m_len = len - sc->sc_rxlen;
   1292 
   1293 		/*
   1294 		 * If the packet is small enough to fit in a
   1295 		 * single header mbuf, allocate one and copy
   1296 		 * the data into it.  This greatly reduces
   1297 		 * memory consumption when we receive lots
   1298 		 * of small packets.
   1299 		 */
   1300 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
   1301 			struct mbuf *nm;
   1302 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1303 			if (nm == NULL) {
   1304 				ifp->if_ierrors++;
   1305 				m_freem(m);
   1306 				continue;
   1307 			}
   1308 			nm->m_data += 2;
   1309 			nm->m_pkthdr.len = nm->m_len = len;
   1310 			m_copydata(m, 0, len, mtod(nm, void *));
   1311 			m_freem(m);
   1312 			m = nm;
   1313 		}
   1314 
   1315 		/*
   1316 		 * Set the incoming checksum information for the packet.
   1317 		 */
   1318 		if (status & RFD_IPDetected) {
   1319 			STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1320 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1321 			if (status & RFD_IPError)
   1322 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1323 			if (status & RFD_TCPDetected) {
   1324 				STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   1325 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1326 				if (status & RFD_TCPError)
   1327 					m->m_pkthdr.csum_flags |=
   1328 					    M_CSUM_TCP_UDP_BAD;
   1329 			} else if (status & RFD_UDPDetected) {
   1330 				STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   1331 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1332 				if (status & RFD_UDPError)
   1333 					m->m_pkthdr.csum_flags |=
   1334 					    M_CSUM_TCP_UDP_BAD;
   1335 			}
   1336 		}
   1337 
   1338 		m->m_pkthdr.rcvif = ifp;
   1339 		m->m_pkthdr.len = len;
   1340 
   1341 #if NBPFILTER > 0
   1342 		/*
   1343 		 * Pass this up to any BPF listeners, but only
   1344 		 * pass if up the stack if it's for us.
   1345 		 */
   1346 		if (ifp->if_bpf)
   1347 			bpf_mtap(ifp->if_bpf, m);
   1348 #endif /* NBPFILTER > 0 */
   1349 #ifdef	STGE_VLAN_UNTAG
   1350 		/*
   1351 		 * Check for VLAN tagged packets
   1352 		 */
   1353 		if (status & RFD_VLANDetected)
   1354 			VLAN_INPUT_TAG(ifp, m, RFD_TCI(status), continue);
   1355 
   1356 #endif
   1357 #if	0
   1358 		if (status & RFD_VLANDetected) {
   1359 			struct ether_header *eh;
   1360 			u_int16_t etype;
   1361 
   1362 			eh = mtod(m, struct ether_header *);
   1363 			etype = ntohs(eh->ether_type);
   1364 			printf("%s: VLANtag detected (TCI %d) etype %x\n",
   1365 			    ifp->if_xname, (u_int16_t) RFD_TCI(status),
   1366 			    etype);
   1367 		}
   1368 #endif
   1369 		/* Pass it on. */
   1370 		(*ifp->if_input)(ifp, m);
   1371 	}
   1372 
   1373 	/* Update the receive pointer. */
   1374 	sc->sc_rxptr = i;
   1375 }
   1376 
   1377 /*
   1378  * stge_tick:
   1379  *
   1380  *	One second timer, used to tick the MII.
   1381  */
   1382 static void
   1383 stge_tick(void *arg)
   1384 {
   1385 	struct stge_softc *sc = arg;
   1386 	int s;
   1387 
   1388 	s = splnet();
   1389 	mii_tick(&sc->sc_mii);
   1390 	stge_stats_update(sc);
   1391 	splx(s);
   1392 
   1393 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
   1394 }
   1395 
   1396 /*
   1397  * stge_stats_update:
   1398  *
   1399  *	Read the TC9021 statistics counters.
   1400  */
   1401 static void
   1402 stge_stats_update(struct stge_softc *sc)
   1403 {
   1404 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1405 	bus_space_tag_t st = sc->sc_st;
   1406 	bus_space_handle_t sh = sc->sc_sh;
   1407 
   1408 	(void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
   1409 
   1410 	ifp->if_ipackets +=
   1411 	    bus_space_read_4(st, sh, STGE_FramesRcvdOk);
   1412 
   1413 	ifp->if_ierrors +=
   1414 	    (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
   1415 
   1416 	(void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
   1417 
   1418 	ifp->if_opackets +=
   1419 	    bus_space_read_4(st, sh, STGE_FramesXmtdOk);
   1420 
   1421 	ifp->if_collisions +=
   1422 	    bus_space_read_4(st, sh, STGE_LateCollisions) +
   1423 	    bus_space_read_4(st, sh, STGE_MultiColFrames) +
   1424 	    bus_space_read_4(st, sh, STGE_SingleColFrames);
   1425 
   1426 	ifp->if_oerrors +=
   1427 	    (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
   1428 	    (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
   1429 }
   1430 
   1431 /*
   1432  * stge_reset:
   1433  *
   1434  *	Perform a soft reset on the TC9021.
   1435  */
   1436 static void
   1437 stge_reset(struct stge_softc *sc)
   1438 {
   1439 	uint32_t ac;
   1440 	int i;
   1441 
   1442 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
   1443 
   1444 	/*
   1445 	 * Only assert RstOut if we're fiber.  We need GMII clocks
   1446 	 * to be present in order for the reset to complete on fiber
   1447 	 * cards.
   1448 	 */
   1449 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
   1450 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
   1451 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
   1452 	    (sc->sc_usefiber ? AC_RstOut : 0));
   1453 
   1454 	delay(50000);
   1455 
   1456 	for (i = 0; i < STGE_TIMEOUT; i++) {
   1457 		delay(5000);
   1458 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
   1459 		     AC_ResetBusy) == 0)
   1460 			break;
   1461 	}
   1462 
   1463 	if (i == STGE_TIMEOUT)
   1464 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   1465 
   1466 	delay(1000);
   1467 }
   1468 
   1469 /*
   1470  * stge_init:		[ ifnet interface function ]
   1471  *
   1472  *	Initialize the interface.  Must be called at splnet().
   1473  */
   1474 static int
   1475 stge_init(struct ifnet *ifp)
   1476 {
   1477 	struct stge_softc *sc = ifp->if_softc;
   1478 	bus_space_tag_t st = sc->sc_st;
   1479 	bus_space_handle_t sh = sc->sc_sh;
   1480 	struct stge_descsoft *ds;
   1481 	int i, error = 0;
   1482 
   1483 	/*
   1484 	 * Cancel any pending I/O.
   1485 	 */
   1486 	stge_stop(ifp, 0);
   1487 
   1488 	/*
   1489 	 * Reset the chip to a known state.
   1490 	 */
   1491 	stge_reset(sc);
   1492 
   1493 	/*
   1494 	 * Initialize the transmit descriptor ring.
   1495 	 */
   1496 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1497 	for (i = 0; i < STGE_NTXDESC; i++) {
   1498 		sc->sc_txdescs[i].tfd_next = htole64(
   1499 		    STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
   1500 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
   1501 	}
   1502 	sc->sc_txpending = 0;
   1503 	sc->sc_txdirty = 0;
   1504 	sc->sc_txlast = STGE_NTXDESC - 1;
   1505 
   1506 	/*
   1507 	 * Initialize the receive descriptor and receive job
   1508 	 * descriptor rings.
   1509 	 */
   1510 	for (i = 0; i < STGE_NRXDESC; i++) {
   1511 		ds = &sc->sc_rxsoft[i];
   1512 		if (ds->ds_mbuf == NULL) {
   1513 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
   1514 				printf("%s: unable to allocate or map rx "
   1515 				    "buffer %d, error = %d\n",
   1516 				    sc->sc_dev.dv_xname, i, error);
   1517 				/*
   1518 				 * XXX Should attempt to run with fewer receive
   1519 				 * XXX buffers instead of just failing.
   1520 				 */
   1521 				stge_rxdrain(sc);
   1522 				goto out;
   1523 			}
   1524 		} else
   1525 			STGE_INIT_RXDESC(sc, i);
   1526 	}
   1527 	sc->sc_rxptr = 0;
   1528 	sc->sc_rxdiscard = 0;
   1529 	STGE_RXCHAIN_RESET(sc);
   1530 
   1531 	/* Set the station address. */
   1532 	for (i = 0; i < 6; i++)
   1533 		bus_space_write_1(st, sh, STGE_StationAddress0 + i,
   1534 		    CLLADDR(ifp->if_sadl)[i]);
   1535 
   1536 	/*
   1537 	 * Set the statistics masks.  Disable all the RMON stats,
   1538 	 * and disable selected stats in the non-RMON stats registers.
   1539 	 */
   1540 	bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
   1541 	bus_space_write_4(st, sh, STGE_StatisticsMask,
   1542 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
   1543 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
   1544 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
   1545 	    (1U << 21));
   1546 
   1547 	/* Set up the receive filter. */
   1548 	stge_set_filter(sc);
   1549 
   1550 	/*
   1551 	 * Give the transmit and receive ring to the chip.
   1552 	 */
   1553 	bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
   1554 	bus_space_write_4(st, sh, STGE_TFDListPtrLo,
   1555 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
   1556 
   1557 	bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
   1558 	bus_space_write_4(st, sh, STGE_RFDListPtrLo,
   1559 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
   1560 
   1561 	/*
   1562 	 * Initialize the Tx auto-poll period.  It's OK to make this number
   1563 	 * large (255 is the max, but we use 127) -- we explicitly kick the
   1564 	 * transmit engine when there's actually a packet.
   1565 	 */
   1566 	bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
   1567 
   1568 	/* ..and the Rx auto-poll period. */
   1569 	bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
   1570 
   1571 	/* Initialize the Tx start threshold. */
   1572 	bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
   1573 
   1574 	/* RX DMA thresholds, from linux */
   1575 	bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
   1576 	bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
   1577 
   1578 	/*
   1579 	 * Initialize the Rx DMA interrupt control register.  We
   1580 	 * request an interrupt after every incoming packet, but
   1581 	 * defer it for 32us (64 * 512 ns).  When the number of
   1582 	 * interrupts pending reaches 8, we stop deferring the
   1583 	 * interrupt, and signal it immediately.
   1584 	 */
   1585 	bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
   1586 	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
   1587 
   1588 	/*
   1589 	 * Initialize the interrupt mask.
   1590 	 */
   1591 	sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
   1592 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
   1593 	bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
   1594 	bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
   1595 
   1596 	/*
   1597 	 * Configure the DMA engine.
   1598 	 * XXX Should auto-tune TxBurstLimit.
   1599 	 */
   1600 	bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
   1601 	    DMAC_TxBurstLimit(3));
   1602 
   1603 	/*
   1604 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
   1605 	 * FIFO, and send an un-PAUSE frame when the FIFO is totally
   1606 	 * empty again.
   1607 	 */
   1608 	bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
   1609 	bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
   1610 
   1611 	/*
   1612 	 * Set the maximum frame size.
   1613 	 */
   1614 	bus_space_write_2(st, sh, STGE_MaxFrameSize,
   1615 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
   1616 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
   1617 	     ETHER_VLAN_ENCAP_LEN : 0));
   1618 
   1619 	/*
   1620 	 * Initialize MacCtrl -- do it before setting the media,
   1621 	 * as setting the media will actually program the register.
   1622 	 *
   1623 	 * Note: We have to poke the IFS value before poking
   1624 	 * anything else.
   1625 	 */
   1626 	sc->sc_MACCtrl = MC_IFSSelect(0);
   1627 	bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
   1628 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
   1629 #ifdef	STGE_VLAN_UNTAG
   1630 	sc->sc_MACCtrl |= MC_AutoVLANuntagging;
   1631 #endif
   1632 
   1633 	if (sc->sc_rev >= 6) {		/* >= B.2 */
   1634 		/* Multi-frag frame bug work-around. */
   1635 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1636 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
   1637 
   1638 		/* Tx Poll Now bug work-around. */
   1639 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1640 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
   1641 		/* XXX ? from linux */
   1642 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1643 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
   1644 	}
   1645 
   1646 	/*
   1647 	 * Set the current media.
   1648 	 */
   1649 	if ((error = ether_mediachange(ifp)) != 0)
   1650 		goto out;
   1651 
   1652 	/*
   1653 	 * Start the one second MII clock.
   1654 	 */
   1655 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
   1656 
   1657 	/*
   1658 	 * ...all done!
   1659 	 */
   1660 	ifp->if_flags |= IFF_RUNNING;
   1661 	ifp->if_flags &= ~IFF_OACTIVE;
   1662 
   1663  out:
   1664 	if (error)
   1665 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1666 	return (error);
   1667 }
   1668 
   1669 /*
   1670  * stge_drain:
   1671  *
   1672  *	Drain the receive queue.
   1673  */
   1674 static void
   1675 stge_rxdrain(struct stge_softc *sc)
   1676 {
   1677 	struct stge_descsoft *ds;
   1678 	int i;
   1679 
   1680 	for (i = 0; i < STGE_NRXDESC; i++) {
   1681 		ds = &sc->sc_rxsoft[i];
   1682 		if (ds->ds_mbuf != NULL) {
   1683 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1684 			ds->ds_mbuf->m_next = NULL;
   1685 			m_freem(ds->ds_mbuf);
   1686 			ds->ds_mbuf = NULL;
   1687 		}
   1688 	}
   1689 }
   1690 
   1691 /*
   1692  * stge_stop:		[ ifnet interface function ]
   1693  *
   1694  *	Stop transmission on the interface.
   1695  */
   1696 static void
   1697 stge_stop(struct ifnet *ifp, int disable)
   1698 {
   1699 	struct stge_softc *sc = ifp->if_softc;
   1700 	struct stge_descsoft *ds;
   1701 	int i;
   1702 
   1703 	/*
   1704 	 * Stop the one second clock.
   1705 	 */
   1706 	callout_stop(&sc->sc_tick_ch);
   1707 
   1708 	/* Down the MII. */
   1709 	mii_down(&sc->sc_mii);
   1710 
   1711 	/*
   1712 	 * Disable interrupts.
   1713 	 */
   1714 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
   1715 
   1716 	/*
   1717 	 * Stop receiver, transmitter, and stats update.
   1718 	 */
   1719 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
   1720 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
   1721 
   1722 	/*
   1723 	 * Stop the transmit and receive DMA.
   1724 	 */
   1725 	stge_dma_wait(sc);
   1726 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
   1727 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
   1728 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
   1729 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
   1730 
   1731 	/*
   1732 	 * Release any queued transmit buffers.
   1733 	 */
   1734 	for (i = 0; i < STGE_NTXDESC; i++) {
   1735 		ds = &sc->sc_txsoft[i];
   1736 		if (ds->ds_mbuf != NULL) {
   1737 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1738 			m_freem(ds->ds_mbuf);
   1739 			ds->ds_mbuf = NULL;
   1740 		}
   1741 	}
   1742 
   1743 	if (disable)
   1744 		stge_rxdrain(sc);
   1745 
   1746 	/*
   1747 	 * Mark the interface down and cancel the watchdog timer.
   1748 	 */
   1749 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1750 	ifp->if_timer = 0;
   1751 }
   1752 
   1753 static int
   1754 stge_eeprom_wait(struct stge_softc *sc)
   1755 {
   1756 	int i;
   1757 
   1758 	for (i = 0; i < STGE_TIMEOUT; i++) {
   1759 		delay(1000);
   1760 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
   1761 		     EC_EepromBusy) == 0)
   1762 			return (0);
   1763 	}
   1764 	return (1);
   1765 }
   1766 
   1767 /*
   1768  * stge_read_eeprom:
   1769  *
   1770  *	Read data from the serial EEPROM.
   1771  */
   1772 static void
   1773 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
   1774 {
   1775 
   1776 	if (stge_eeprom_wait(sc))
   1777 		printf("%s: EEPROM failed to come ready\n",
   1778 		    sc->sc_dev.dv_xname);
   1779 
   1780 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
   1781 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
   1782 	if (stge_eeprom_wait(sc))
   1783 		printf("%s: EEPROM read timed out\n",
   1784 		    sc->sc_dev.dv_xname);
   1785 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
   1786 }
   1787 
   1788 /*
   1789  * stge_add_rxbuf:
   1790  *
   1791  *	Add a receive buffer to the indicated descriptor.
   1792  */
   1793 static int
   1794 stge_add_rxbuf(struct stge_softc *sc, int idx)
   1795 {
   1796 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
   1797 	struct mbuf *m;
   1798 	int error;
   1799 
   1800 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1801 	if (m == NULL)
   1802 		return (ENOBUFS);
   1803 
   1804 	MCLGET(m, M_DONTWAIT);
   1805 	if ((m->m_flags & M_EXT) == 0) {
   1806 		m_freem(m);
   1807 		return (ENOBUFS);
   1808 	}
   1809 
   1810 	m->m_data = m->m_ext.ext_buf + 2;
   1811 	m->m_len = MCLBYTES - 2;
   1812 
   1813 	if (ds->ds_mbuf != NULL)
   1814 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1815 
   1816 	ds->ds_mbuf = m;
   1817 
   1818 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
   1819 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1820 	if (error) {
   1821 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1822 		    sc->sc_dev.dv_xname, idx, error);
   1823 		panic("stge_add_rxbuf");	/* XXX */
   1824 	}
   1825 
   1826 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1827 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1828 
   1829 	STGE_INIT_RXDESC(sc, idx);
   1830 
   1831 	return (0);
   1832 }
   1833 
   1834 /*
   1835  * stge_set_filter:
   1836  *
   1837  *	Set up the receive filter.
   1838  */
   1839 static void
   1840 stge_set_filter(struct stge_softc *sc)
   1841 {
   1842 	struct ethercom *ec = &sc->sc_ethercom;
   1843 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1844 	struct ether_multi *enm;
   1845 	struct ether_multistep step;
   1846 	uint32_t crc;
   1847 	uint32_t mchash[2];
   1848 
   1849 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
   1850 	if (ifp->if_flags & IFF_BROADCAST)
   1851 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
   1852 
   1853 	/* XXX: ST1023 only works in promiscuous mode */
   1854 	if (sc->sc_stge1023)
   1855 		ifp->if_flags |= IFF_PROMISC;
   1856 
   1857 	if (ifp->if_flags & IFF_PROMISC) {
   1858 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
   1859 		goto allmulti;
   1860 	}
   1861 
   1862 	/*
   1863 	 * Set up the multicast address filter by passing all multicast
   1864 	 * addresses through a CRC generator, and then using the low-order
   1865 	 * 6 bits as an index into the 64 bit multicast hash table.  The
   1866 	 * high order bits select the register, while the rest of the bits
   1867 	 * select the bit within the register.
   1868 	 */
   1869 
   1870 	memset(mchash, 0, sizeof(mchash));
   1871 
   1872 	ETHER_FIRST_MULTI(step, ec, enm);
   1873 	if (enm == NULL)
   1874 		goto done;
   1875 
   1876 	while (enm != NULL) {
   1877 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1878 			/*
   1879 			 * We must listen to a range of multicast addresses.
   1880 			 * For now, just accept all multicasts, rather than
   1881 			 * trying to set only those filter bits needed to match
   1882 			 * the range.  (At this time, the only use of address
   1883 			 * ranges is for IP multicast routing, for which the
   1884 			 * range is big enough to require all bits set.)
   1885 			 */
   1886 			goto allmulti;
   1887 		}
   1888 
   1889 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1890 
   1891 		/* Just want the 6 least significant bits. */
   1892 		crc &= 0x3f;
   1893 
   1894 		/* Set the corresponding bit in the hash table. */
   1895 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
   1896 
   1897 		ETHER_NEXT_MULTI(step, enm);
   1898 	}
   1899 
   1900 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
   1901 
   1902 	ifp->if_flags &= ~IFF_ALLMULTI;
   1903 	goto done;
   1904 
   1905  allmulti:
   1906 	ifp->if_flags |= IFF_ALLMULTI;
   1907 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
   1908 
   1909  done:
   1910 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1911 		/*
   1912 		 * Program the multicast hash table.
   1913 		 */
   1914 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
   1915 		    mchash[0]);
   1916 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
   1917 		    mchash[1]);
   1918 	}
   1919 
   1920 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
   1921 	    sc->sc_ReceiveMode);
   1922 }
   1923 
   1924 /*
   1925  * stge_mii_readreg:	[mii interface function]
   1926  *
   1927  *	Read a PHY register on the MII of the TC9021.
   1928  */
   1929 static int
   1930 stge_mii_readreg(struct device *self, int phy, int reg)
   1931 {
   1932 
   1933 	return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
   1934 }
   1935 
   1936 /*
   1937  * stge_mii_writereg:	[mii interface function]
   1938  *
   1939  *	Write a PHY register on the MII of the TC9021.
   1940  */
   1941 static void
   1942 stge_mii_writereg(struct device *self, int phy, int reg, int val)
   1943 {
   1944 
   1945 	mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
   1946 }
   1947 
   1948 /*
   1949  * stge_mii_statchg:	[mii interface function]
   1950  *
   1951  *	Callback from MII layer when media changes.
   1952  */
   1953 static void
   1954 stge_mii_statchg(struct device *self)
   1955 {
   1956 	struct stge_softc *sc = (struct stge_softc *) self;
   1957 
   1958 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   1959 		sc->sc_MACCtrl |= MC_DuplexSelect;
   1960 	else
   1961 		sc->sc_MACCtrl &= ~MC_DuplexSelect;
   1962 
   1963 	/* XXX 802.1x flow-control? */
   1964 
   1965 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
   1966 }
   1967 
   1968 /*
   1969  * sste_mii_bitbang_read: [mii bit-bang interface function]
   1970  *
   1971  *	Read the MII serial port for the MII bit-bang module.
   1972  */
   1973 static uint32_t
   1974 stge_mii_bitbang_read(struct device *self)
   1975 {
   1976 	struct stge_softc *sc = (void *) self;
   1977 
   1978 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
   1979 }
   1980 
   1981 /*
   1982  * stge_mii_bitbang_write: [mii big-bang interface function]
   1983  *
   1984  *	Write the MII serial port for the MII bit-bang module.
   1985  */
   1986 static void
   1987 stge_mii_bitbang_write(struct device *self, uint32_t val)
   1988 {
   1989 	struct stge_softc *sc = (void *) self;
   1990 
   1991 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
   1992 	    val | sc->sc_PhyCtrl);
   1993 }
   1994