if_stge.c revision 1.40 1 /* $NetBSD: if_stge.c,v 1.40 2008/01/19 22:10:19 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the Sundance Tech. TC9021 10/100/1000
41 * Ethernet controller.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.40 2008/01/19 22:10:19 dyoung Exp $");
46
47 #include "bpfilter.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/socket.h>
56 #include <sys/ioctl.h>
57 #include <sys/errno.h>
58 #include <sys/device.h>
59 #include <sys/queue.h>
60
61 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
62
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_ether.h>
67
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71
72 #include <sys/bus.h>
73 #include <sys/intr.h>
74
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 #include <dev/mii/mii_bitbang.h>
78
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 #include <dev/pci/pcidevs.h>
82
83 #include <dev/pci/if_stgereg.h>
84
85 /* #define STGE_CU_BUG 1 */
86 #define STGE_VLAN_UNTAG 1
87 /* #define STGE_VLAN_CFI 1 */
88
89 /*
90 * Transmit descriptor list size.
91 */
92 #define STGE_NTXDESC 256
93 #define STGE_NTXDESC_MASK (STGE_NTXDESC - 1)
94 #define STGE_NEXTTX(x) (((x) + 1) & STGE_NTXDESC_MASK)
95
96 /*
97 * Receive descriptor list size.
98 */
99 #define STGE_NRXDESC 256
100 #define STGE_NRXDESC_MASK (STGE_NRXDESC - 1)
101 #define STGE_NEXTRX(x) (((x) + 1) & STGE_NRXDESC_MASK)
102
103 /*
104 * Only interrupt every N frames. Must be a power-of-two.
105 */
106 #define STGE_TXINTR_SPACING 16
107 #define STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
108
109 /*
110 * Control structures are DMA'd to the TC9021 chip. We allocate them in
111 * a single clump that maps to a single DMA segment to make several things
112 * easier.
113 */
114 struct stge_control_data {
115 /*
116 * The transmit descriptors.
117 */
118 struct stge_tfd scd_txdescs[STGE_NTXDESC];
119
120 /*
121 * The receive descriptors.
122 */
123 struct stge_rfd scd_rxdescs[STGE_NRXDESC];
124 };
125
126 #define STGE_CDOFF(x) offsetof(struct stge_control_data, x)
127 #define STGE_CDTXOFF(x) STGE_CDOFF(scd_txdescs[(x)])
128 #define STGE_CDRXOFF(x) STGE_CDOFF(scd_rxdescs[(x)])
129
130 /*
131 * Software state for transmit and receive jobs.
132 */
133 struct stge_descsoft {
134 struct mbuf *ds_mbuf; /* head of our mbuf chain */
135 bus_dmamap_t ds_dmamap; /* our DMA map */
136 };
137
138 /*
139 * Software state per device.
140 */
141 struct stge_softc {
142 struct device sc_dev; /* generic device information */
143 bus_space_tag_t sc_st; /* bus space tag */
144 bus_space_handle_t sc_sh; /* bus space handle */
145 bus_dma_tag_t sc_dmat; /* bus DMA tag */
146 struct ethercom sc_ethercom; /* ethernet common data */
147 void *sc_sdhook; /* shutdown hook */
148 int sc_rev; /* silicon revision */
149
150 void *sc_ih; /* interrupt cookie */
151
152 struct mii_data sc_mii; /* MII/media information */
153
154 callout_t sc_tick_ch; /* tick callout */
155
156 bus_dmamap_t sc_cddmamap; /* control data DMA map */
157 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
158
159 /*
160 * Software state for transmit and receive descriptors.
161 */
162 struct stge_descsoft sc_txsoft[STGE_NTXDESC];
163 struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
164
165 /*
166 * Control data structures.
167 */
168 struct stge_control_data *sc_control_data;
169 #define sc_txdescs sc_control_data->scd_txdescs
170 #define sc_rxdescs sc_control_data->scd_rxdescs
171
172 #ifdef STGE_EVENT_COUNTERS
173 /*
174 * Event counters.
175 */
176 struct evcnt sc_ev_txstall; /* Tx stalled */
177 struct evcnt sc_ev_txdmaintr; /* Tx DMA interrupts */
178 struct evcnt sc_ev_txindintr; /* Tx Indicate interrupts */
179 struct evcnt sc_ev_rxintr; /* Rx interrupts */
180
181 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
182 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
183 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
184 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
185 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
186 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
187 struct evcnt sc_ev_txcopy; /* Tx packets that we had to copy */
188
189 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
190 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
191 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-bound */
192
193 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
194 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
195 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
196 #endif /* STGE_EVENT_COUNTERS */
197
198 int sc_txpending; /* number of Tx requests pending */
199 int sc_txdirty; /* first dirty Tx descriptor */
200 int sc_txlast; /* last used Tx descriptor */
201
202 int sc_rxptr; /* next ready Rx descriptor/descsoft */
203 int sc_rxdiscard;
204 int sc_rxlen;
205 struct mbuf *sc_rxhead;
206 struct mbuf *sc_rxtail;
207 struct mbuf **sc_rxtailp;
208
209 int sc_txthresh; /* Tx threshold */
210 uint32_t sc_usefiber:1; /* if we're fiber */
211 uint32_t sc_stge1023:1; /* are we a 1023 */
212 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
213 uint32_t sc_MACCtrl; /* prototype MacCtrl register */
214 uint16_t sc_IntEnable; /* prototype IntEnable register */
215 uint16_t sc_ReceiveMode; /* prototype ReceiveMode register */
216 uint8_t sc_PhyCtrl; /* prototype PhyCtrl register */
217 };
218
219 #define STGE_RXCHAIN_RESET(sc) \
220 do { \
221 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
222 *(sc)->sc_rxtailp = NULL; \
223 (sc)->sc_rxlen = 0; \
224 } while (/*CONSTCOND*/0)
225
226 #define STGE_RXCHAIN_LINK(sc, m) \
227 do { \
228 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
229 (sc)->sc_rxtailp = &(m)->m_next; \
230 } while (/*CONSTCOND*/0)
231
232 #ifdef STGE_EVENT_COUNTERS
233 #define STGE_EVCNT_INCR(ev) (ev)->ev_count++
234 #else
235 #define STGE_EVCNT_INCR(ev) /* nothing */
236 #endif
237
238 #define STGE_CDTXADDR(sc, x) ((sc)->sc_cddma + STGE_CDTXOFF((x)))
239 #define STGE_CDRXADDR(sc, x) ((sc)->sc_cddma + STGE_CDRXOFF((x)))
240
241 #define STGE_CDTXSYNC(sc, x, ops) \
242 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
243 STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
244
245 #define STGE_CDRXSYNC(sc, x, ops) \
246 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
247 STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
248
249 #define STGE_INIT_RXDESC(sc, x) \
250 do { \
251 struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
252 struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
253 \
254 /* \
255 * Note: We scoot the packet forward 2 bytes in the buffer \
256 * so that the payload after the Ethernet header is aligned \
257 * to a 4-byte boundary. \
258 */ \
259 __rfd->rfd_frag.frag_word0 = \
260 htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
261 FRAG_LEN(MCLBYTES - 2)); \
262 __rfd->rfd_next = \
263 htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x)))); \
264 __rfd->rfd_status = 0; \
265 STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
266 } while (/*CONSTCOND*/0)
267
268 #define STGE_TIMEOUT 1000
269
270 static void stge_start(struct ifnet *);
271 static void stge_watchdog(struct ifnet *);
272 static int stge_ioctl(struct ifnet *, u_long, void *);
273 static int stge_init(struct ifnet *);
274 static void stge_stop(struct ifnet *, int);
275
276 static void stge_shutdown(void *);
277
278 static void stge_reset(struct stge_softc *);
279 static void stge_rxdrain(struct stge_softc *);
280 static int stge_add_rxbuf(struct stge_softc *, int);
281 static void stge_read_eeprom(struct stge_softc *, int, uint16_t *);
282 static void stge_tick(void *);
283
284 static void stge_stats_update(struct stge_softc *);
285
286 static void stge_set_filter(struct stge_softc *);
287
288 static int stge_intr(void *);
289 static void stge_txintr(struct stge_softc *);
290 static void stge_rxintr(struct stge_softc *);
291
292 static int stge_mii_readreg(struct device *, int, int);
293 static void stge_mii_writereg(struct device *, int, int, int);
294 static void stge_mii_statchg(struct device *);
295
296 static int stge_match(struct device *, struct cfdata *, void *);
297 static void stge_attach(struct device *, struct device *, void *);
298
299 int stge_copy_small = 0;
300
301 CFATTACH_DECL(stge, sizeof(struct stge_softc),
302 stge_match, stge_attach, NULL, NULL);
303
304 static uint32_t stge_mii_bitbang_read(struct device *);
305 static void stge_mii_bitbang_write(struct device *, uint32_t);
306
307 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
308 stge_mii_bitbang_read,
309 stge_mii_bitbang_write,
310 {
311 PC_MgmtData, /* MII_BIT_MDO */
312 PC_MgmtData, /* MII_BIT_MDI */
313 PC_MgmtClk, /* MII_BIT_MDC */
314 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
315 0, /* MII_BIT_DIR_PHY_HOST */
316 }
317 };
318
319 /*
320 * Devices supported by this driver.
321 */
322 static const struct stge_product {
323 pci_vendor_id_t stge_vendor;
324 pci_product_id_t stge_product;
325 const char *stge_name;
326 } stge_products[] = {
327 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST1023,
328 "Sundance ST-1023 Gigabit Ethernet" },
329
330 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST2021,
331 "Sundance ST-2021 Gigabit Ethernet" },
332
333 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021,
334 "Tamarack TC9021 Gigabit Ethernet" },
335
336 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021_ALT,
337 "Tamarack TC9021 Gigabit Ethernet" },
338
339 /*
340 * The Sundance sample boards use the Sundance vendor ID,
341 * but the Tamarack product ID.
342 */
343 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021,
344 "Sundance TC9021 Gigabit Ethernet" },
345
346 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021_ALT,
347 "Sundance TC9021 Gigabit Ethernet" },
348
349 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL4000,
350 "D-Link DL-4000 Gigabit Ethernet" },
351
352 { PCI_VENDOR_ANTARES, PCI_PRODUCT_ANTARES_TC9021,
353 "Antares Gigabit Ethernet" },
354
355 { 0, 0,
356 NULL },
357 };
358
359 static const struct stge_product *
360 stge_lookup(const struct pci_attach_args *pa)
361 {
362 const struct stge_product *sp;
363
364 for (sp = stge_products; sp->stge_name != NULL; sp++) {
365 if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
366 PCI_PRODUCT(pa->pa_id) == sp->stge_product)
367 return (sp);
368 }
369 return (NULL);
370 }
371
372 static int
373 stge_match(struct device *parent, struct cfdata *cf,
374 void *aux)
375 {
376 struct pci_attach_args *pa = aux;
377
378 if (stge_lookup(pa) != NULL)
379 return (1);
380
381 return (0);
382 }
383
384 static void
385 stge_attach(struct device *parent, struct device *self, void *aux)
386 {
387 struct stge_softc *sc = (struct stge_softc *) self;
388 struct pci_attach_args *pa = aux;
389 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
390 pci_chipset_tag_t pc = pa->pa_pc;
391 pci_intr_handle_t ih;
392 const char *intrstr = NULL;
393 bus_space_tag_t iot, memt;
394 bus_space_handle_t ioh, memh;
395 bus_dma_segment_t seg;
396 int ioh_valid, memh_valid;
397 int i, rseg, error;
398 const struct stge_product *sp;
399 uint8_t enaddr[ETHER_ADDR_LEN];
400
401 callout_init(&sc->sc_tick_ch, 0);
402
403 sp = stge_lookup(pa);
404 if (sp == NULL) {
405 printf("\n");
406 panic("ste_attach: impossible");
407 }
408
409 sc->sc_rev = PCI_REVISION(pa->pa_class);
410
411 printf(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
412
413 /*
414 * Map the device.
415 */
416 ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
417 PCI_MAPREG_TYPE_IO, 0,
418 &iot, &ioh, NULL, NULL) == 0);
419 memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
420 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
421 &memt, &memh, NULL, NULL) == 0);
422
423 if (memh_valid) {
424 sc->sc_st = memt;
425 sc->sc_sh = memh;
426 } else if (ioh_valid) {
427 sc->sc_st = iot;
428 sc->sc_sh = ioh;
429 } else {
430 printf("%s: unable to map device registers\n",
431 sc->sc_dev.dv_xname);
432 return;
433 }
434
435 sc->sc_dmat = pa->pa_dmat;
436
437 /* Enable bus mastering. */
438 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
439 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
440 PCI_COMMAND_MASTER_ENABLE);
441
442 /* power up chip */
443 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
444 NULL)) && error != EOPNOTSUPP) {
445 aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
446 error);
447 return;
448 }
449 /*
450 * Map and establish our interrupt.
451 */
452 if (pci_intr_map(pa, &ih)) {
453 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
454 return;
455 }
456 intrstr = pci_intr_string(pc, ih);
457 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
458 if (sc->sc_ih == NULL) {
459 printf("%s: unable to establish interrupt",
460 sc->sc_dev.dv_xname);
461 if (intrstr != NULL)
462 printf(" at %s", intrstr);
463 printf("\n");
464 return;
465 }
466 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
467
468 /*
469 * Allocate the control data structures, and create and load the
470 * DMA map for it.
471 */
472 if ((error = bus_dmamem_alloc(sc->sc_dmat,
473 sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
474 0)) != 0) {
475 printf("%s: unable to allocate control data, error = %d\n",
476 sc->sc_dev.dv_xname, error);
477 goto fail_0;
478 }
479
480 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
481 sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
482 BUS_DMA_COHERENT)) != 0) {
483 printf("%s: unable to map control data, error = %d\n",
484 sc->sc_dev.dv_xname, error);
485 goto fail_1;
486 }
487
488 if ((error = bus_dmamap_create(sc->sc_dmat,
489 sizeof(struct stge_control_data), 1,
490 sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
491 printf("%s: unable to create control data DMA map, "
492 "error = %d\n", sc->sc_dev.dv_xname, error);
493 goto fail_2;
494 }
495
496 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
497 sc->sc_control_data, sizeof(struct stge_control_data), NULL,
498 0)) != 0) {
499 printf("%s: unable to load control data DMA map, error = %d\n",
500 sc->sc_dev.dv_xname, error);
501 goto fail_3;
502 }
503
504 /*
505 * Create the transmit buffer DMA maps. Note that rev B.3
506 * and earlier seem to have a bug regarding multi-fragment
507 * packets. We need to limit the number of Tx segments on
508 * such chips to 1.
509 */
510 for (i = 0; i < STGE_NTXDESC; i++) {
511 if ((error = bus_dmamap_create(sc->sc_dmat,
512 ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
513 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
514 printf("%s: unable to create tx DMA map %d, "
515 "error = %d\n", sc->sc_dev.dv_xname, i, error);
516 goto fail_4;
517 }
518 }
519
520 /*
521 * Create the receive buffer DMA maps.
522 */
523 for (i = 0; i < STGE_NRXDESC; i++) {
524 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
525 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
526 printf("%s: unable to create rx DMA map %d, "
527 "error = %d\n", sc->sc_dev.dv_xname, i, error);
528 goto fail_5;
529 }
530 sc->sc_rxsoft[i].ds_mbuf = NULL;
531 }
532
533 /*
534 * Determine if we're copper or fiber. It affects how we
535 * reset the card.
536 */
537 if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
538 AC_PhyMedia)
539 sc->sc_usefiber = 1;
540 else
541 sc->sc_usefiber = 0;
542
543 /*
544 * Reset the chip to a known state.
545 */
546 stge_reset(sc);
547
548 /*
549 * Reading the station address from the EEPROM doesn't seem
550 * to work, at least on my sample boards. Instead, since
551 * the reset sequence does AutoInit, read it from the station
552 * address registers. For Sundance 1023 you can only read it
553 * from EEPROM.
554 */
555 if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
556 enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
557 STGE_StationAddress0) & 0xff;
558 enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
559 STGE_StationAddress0) >> 8;
560 enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
561 STGE_StationAddress1) & 0xff;
562 enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
563 STGE_StationAddress1) >> 8;
564 enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
565 STGE_StationAddress2) & 0xff;
566 enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
567 STGE_StationAddress2) >> 8;
568 sc->sc_stge1023 = 0;
569 } else {
570 uint16_t myaddr[ETHER_ADDR_LEN / 2];
571 for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
572 stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
573 &myaddr[i]);
574 myaddr[i] = le16toh(myaddr[i]);
575 }
576 (void)memcpy(enaddr, myaddr, sizeof(enaddr));
577 sc->sc_stge1023 = 1;
578 }
579
580 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
581 ether_sprintf(enaddr));
582
583 /*
584 * Read some important bits from the PhyCtrl register.
585 */
586 sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
587 STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
588
589 /*
590 * Initialize our media structures and probe the MII.
591 */
592 sc->sc_mii.mii_ifp = ifp;
593 sc->sc_mii.mii_readreg = stge_mii_readreg;
594 sc->sc_mii.mii_writereg = stge_mii_writereg;
595 sc->sc_mii.mii_statchg = stge_mii_statchg;
596 sc->sc_ethercom.ec_mii = &sc->sc_mii;
597 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
598 ether_mediastatus);
599 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
600 MII_OFFSET_ANY, MIIF_DOPAUSE);
601 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
602 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
603 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
604 } else
605 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
606
607 ifp = &sc->sc_ethercom.ec_if;
608 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
609 ifp->if_softc = sc;
610 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
611 ifp->if_ioctl = stge_ioctl;
612 ifp->if_start = stge_start;
613 ifp->if_watchdog = stge_watchdog;
614 ifp->if_init = stge_init;
615 ifp->if_stop = stge_stop;
616 IFQ_SET_READY(&ifp->if_snd);
617
618 /*
619 * The manual recommends disabling early transmit, so we
620 * do. It's disabled anyway, if using IP checksumming,
621 * since the entire packet must be in the FIFO in order
622 * for the chip to perform the checksum.
623 */
624 sc->sc_txthresh = 0x0fff;
625
626 /*
627 * Disable MWI if the PCI layer tells us to.
628 */
629 sc->sc_DMACtrl = 0;
630 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
631 sc->sc_DMACtrl |= DMAC_MWIDisable;
632
633 /*
634 * We can support 802.1Q VLAN-sized frames and jumbo
635 * Ethernet frames.
636 *
637 * XXX Figure out how to do hw-assisted VLAN tagging in
638 * XXX a reasonable way on this chip.
639 */
640 sc->sc_ethercom.ec_capabilities |=
641 ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
642 ETHERCAP_VLAN_HWTAGGING;
643
644 /*
645 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
646 */
647 sc->sc_ethercom.ec_if.if_capabilities |=
648 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
649 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
650 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
651
652 /*
653 * Attach the interface.
654 */
655 if_attach(ifp);
656 ether_ifattach(ifp, enaddr);
657
658 #ifdef STGE_EVENT_COUNTERS
659 /*
660 * Attach event counters.
661 */
662 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
663 NULL, sc->sc_dev.dv_xname, "txstall");
664 evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
665 NULL, sc->sc_dev.dv_xname, "txdmaintr");
666 evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
667 NULL, sc->sc_dev.dv_xname, "txindintr");
668 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
669 NULL, sc->sc_dev.dv_xname, "rxintr");
670
671 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
672 NULL, sc->sc_dev.dv_xname, "txseg1");
673 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
674 NULL, sc->sc_dev.dv_xname, "txseg2");
675 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
676 NULL, sc->sc_dev.dv_xname, "txseg3");
677 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
678 NULL, sc->sc_dev.dv_xname, "txseg4");
679 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
680 NULL, sc->sc_dev.dv_xname, "txseg5");
681 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
682 NULL, sc->sc_dev.dv_xname, "txsegmore");
683 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
684 NULL, sc->sc_dev.dv_xname, "txcopy");
685
686 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
687 NULL, sc->sc_dev.dv_xname, "rxipsum");
688 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
689 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
690 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
691 NULL, sc->sc_dev.dv_xname, "rxudpsum");
692 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
693 NULL, sc->sc_dev.dv_xname, "txipsum");
694 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
695 NULL, sc->sc_dev.dv_xname, "txtcpsum");
696 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
697 NULL, sc->sc_dev.dv_xname, "txudpsum");
698 #endif /* STGE_EVENT_COUNTERS */
699
700 /*
701 * Make sure the interface is shutdown during reboot.
702 */
703 sc->sc_sdhook = shutdownhook_establish(stge_shutdown, sc);
704 if (sc->sc_sdhook == NULL)
705 printf("%s: WARNING: unable to establish shutdown hook\n",
706 sc->sc_dev.dv_xname);
707 return;
708
709 /*
710 * Free any resources we've allocated during the failed attach
711 * attempt. Do this in reverse order and fall through.
712 */
713 fail_5:
714 for (i = 0; i < STGE_NRXDESC; i++) {
715 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
716 bus_dmamap_destroy(sc->sc_dmat,
717 sc->sc_rxsoft[i].ds_dmamap);
718 }
719 fail_4:
720 for (i = 0; i < STGE_NTXDESC; i++) {
721 if (sc->sc_txsoft[i].ds_dmamap != NULL)
722 bus_dmamap_destroy(sc->sc_dmat,
723 sc->sc_txsoft[i].ds_dmamap);
724 }
725 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
726 fail_3:
727 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
728 fail_2:
729 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
730 sizeof(struct stge_control_data));
731 fail_1:
732 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
733 fail_0:
734 return;
735 }
736
737 /*
738 * stge_shutdown:
739 *
740 * Make sure the interface is stopped at reboot time.
741 */
742 static void
743 stge_shutdown(void *arg)
744 {
745 struct stge_softc *sc = arg;
746
747 stge_stop(&sc->sc_ethercom.ec_if, 1);
748 }
749
750 static void
751 stge_dma_wait(struct stge_softc *sc)
752 {
753 int i;
754
755 for (i = 0; i < STGE_TIMEOUT; i++) {
756 delay(2);
757 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
758 DMAC_TxDMAInProg) == 0)
759 break;
760 }
761
762 if (i == STGE_TIMEOUT)
763 printf("%s: DMA wait timed out\n", sc->sc_dev.dv_xname);
764 }
765
766 /*
767 * stge_start: [ifnet interface function]
768 *
769 * Start packet transmission on the interface.
770 */
771 static void
772 stge_start(struct ifnet *ifp)
773 {
774 struct stge_softc *sc = ifp->if_softc;
775 struct mbuf *m0;
776 struct stge_descsoft *ds;
777 struct stge_tfd *tfd;
778 bus_dmamap_t dmamap;
779 int error, firsttx, nexttx, opending, seg, totlen;
780 uint64_t csum_flags;
781
782 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
783 return;
784
785 /*
786 * Remember the previous number of pending transmissions
787 * and the first descriptor we will use.
788 */
789 opending = sc->sc_txpending;
790 firsttx = STGE_NEXTTX(sc->sc_txlast);
791
792 /*
793 * Loop through the send queue, setting up transmit descriptors
794 * until we drain the queue, or use up all available transmit
795 * descriptors.
796 */
797 for (;;) {
798 struct m_tag *mtag;
799 uint64_t tfc;
800
801 /*
802 * Grab a packet off the queue.
803 */
804 IFQ_POLL(&ifp->if_snd, m0);
805 if (m0 == NULL)
806 break;
807
808 /*
809 * Leave one unused descriptor at the end of the
810 * list to prevent wrapping completely around.
811 */
812 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
813 STGE_EVCNT_INCR(&sc->sc_ev_txstall);
814 break;
815 }
816
817 /*
818 * See if we have any VLAN stuff.
819 */
820 mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
821
822 /*
823 * Get the last and next available transmit descriptor.
824 */
825 nexttx = STGE_NEXTTX(sc->sc_txlast);
826 tfd = &sc->sc_txdescs[nexttx];
827 ds = &sc->sc_txsoft[nexttx];
828
829 dmamap = ds->ds_dmamap;
830
831 /*
832 * Load the DMA map. If this fails, the packet either
833 * didn't fit in the alloted number of segments, or we
834 * were short on resources. For the too-many-segments
835 * case, we simply report an error and drop the packet,
836 * since we can't sanely copy a jumbo packet to a single
837 * buffer.
838 */
839 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
840 BUS_DMA_NOWAIT);
841 if (error) {
842 if (error == EFBIG) {
843 printf("%s: Tx packet consumes too many "
844 "DMA segments, dropping...\n",
845 sc->sc_dev.dv_xname);
846 IFQ_DEQUEUE(&ifp->if_snd, m0);
847 m_freem(m0);
848 continue;
849 }
850 /*
851 * Short on resources, just stop for now.
852 */
853 break;
854 }
855
856 IFQ_DEQUEUE(&ifp->if_snd, m0);
857
858 /*
859 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
860 */
861
862 /* Sync the DMA map. */
863 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
864 BUS_DMASYNC_PREWRITE);
865
866 /* Initialize the fragment list. */
867 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
868 tfd->tfd_frags[seg].frag_word0 =
869 htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
870 FRAG_LEN(dmamap->dm_segs[seg].ds_len));
871 totlen += dmamap->dm_segs[seg].ds_len;
872 }
873
874 #ifdef STGE_EVENT_COUNTERS
875 switch (dmamap->dm_nsegs) {
876 case 1:
877 STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
878 break;
879 case 2:
880 STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
881 break;
882 case 3:
883 STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
884 break;
885 case 4:
886 STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
887 break;
888 case 5:
889 STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
890 break;
891 default:
892 STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
893 break;
894 }
895 #endif /* STGE_EVENT_COUNTERS */
896
897 /*
898 * Initialize checksumming flags in the descriptor.
899 * Byte-swap constants so the compiler can optimize.
900 */
901 csum_flags = 0;
902 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
903 STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
904 csum_flags |= TFD_IPChecksumEnable;
905 }
906
907 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
908 STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
909 csum_flags |= TFD_TCPChecksumEnable;
910 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
911 STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
912 csum_flags |= TFD_UDPChecksumEnable;
913 }
914
915 /*
916 * Initialize the descriptor and give it to the chip.
917 * Check to see if we have a VLAN tag to insert.
918 */
919
920 tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
921 TFD_FragCount(seg) | csum_flags |
922 (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
923 TFD_TxDMAIndicate : 0);
924 if (mtag) {
925 #if 0
926 struct ether_header *eh =
927 mtod(m0, struct ether_header *);
928 u_int16_t etype = ntohs(eh->ether_type);
929 printf("%s: xmit (tag %d) etype %x\n",
930 ifp->if_xname, *mtod(n, int *), etype);
931 #endif
932 tfc |= TFD_VLANTagInsert |
933 #ifdef STGE_VLAN_CFI
934 TFD_CFI |
935 #endif
936 TFD_VID(VLAN_TAG_VALUE(mtag));
937 }
938 tfd->tfd_control = htole64(tfc);
939
940 /* Sync the descriptor. */
941 STGE_CDTXSYNC(sc, nexttx,
942 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
943
944 /*
945 * Kick the transmit DMA logic.
946 */
947 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
948 sc->sc_DMACtrl | DMAC_TxDMAPollNow);
949
950 /*
951 * Store a pointer to the packet so we can free it later.
952 */
953 ds->ds_mbuf = m0;
954
955 /* Advance the tx pointer. */
956 sc->sc_txpending++;
957 sc->sc_txlast = nexttx;
958
959 #if NBPFILTER > 0
960 /*
961 * Pass the packet to any BPF listeners.
962 */
963 if (ifp->if_bpf)
964 bpf_mtap(ifp->if_bpf, m0);
965 #endif /* NBPFILTER > 0 */
966 }
967
968 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
969 /* No more slots left; notify upper layer. */
970 ifp->if_flags |= IFF_OACTIVE;
971 }
972
973 if (sc->sc_txpending != opending) {
974 /*
975 * We enqueued packets. If the transmitter was idle,
976 * reset the txdirty pointer.
977 */
978 if (opending == 0)
979 sc->sc_txdirty = firsttx;
980
981 /* Set a watchdog timer in case the chip flakes out. */
982 ifp->if_timer = 5;
983 }
984 }
985
986 /*
987 * stge_watchdog: [ifnet interface function]
988 *
989 * Watchdog timer handler.
990 */
991 static void
992 stge_watchdog(struct ifnet *ifp)
993 {
994 struct stge_softc *sc = ifp->if_softc;
995
996 /*
997 * Sweep up first, since we don't interrupt every frame.
998 */
999 stge_txintr(sc);
1000 if (sc->sc_txpending != 0) {
1001 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1002 ifp->if_oerrors++;
1003
1004 (void) stge_init(ifp);
1005
1006 /* Try to get more packets going. */
1007 stge_start(ifp);
1008 }
1009 }
1010
1011 /*
1012 * stge_ioctl: [ifnet interface function]
1013 *
1014 * Handle control requests from the operator.
1015 */
1016 static int
1017 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1018 {
1019 struct stge_softc *sc = ifp->if_softc;
1020 int s, error;
1021
1022 s = splnet();
1023
1024 error = ether_ioctl(ifp, cmd, data);
1025 if (error == ENETRESET) {
1026 /*
1027 * Multicast list has changed; set the hardware filter
1028 * accordingly.
1029 */
1030 if (ifp->if_flags & IFF_RUNNING)
1031 stge_set_filter(sc);
1032 error = 0;
1033 }
1034
1035 /* Try to get more packets going. */
1036 stge_start(ifp);
1037
1038 splx(s);
1039 return (error);
1040 }
1041
1042 /*
1043 * stge_intr:
1044 *
1045 * Interrupt service routine.
1046 */
1047 static int
1048 stge_intr(void *arg)
1049 {
1050 struct stge_softc *sc = arg;
1051 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1052 uint32_t txstat;
1053 int wantinit;
1054 uint16_t isr;
1055
1056 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1057 IS_InterruptStatus) == 0)
1058 return (0);
1059
1060 for (wantinit = 0; wantinit == 0;) {
1061 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1062 if ((isr & sc->sc_IntEnable) == 0)
1063 break;
1064
1065 /* Host interface errors. */
1066 if (isr & IS_HostError) {
1067 printf("%s: Host interface error\n",
1068 sc->sc_dev.dv_xname);
1069 wantinit = 1;
1070 continue;
1071 }
1072
1073 /* Receive interrupts. */
1074 if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
1075 STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1076 stge_rxintr(sc);
1077 if (isr & IS_RFDListEnd) {
1078 printf("%s: receive ring overflow\n",
1079 sc->sc_dev.dv_xname);
1080 /*
1081 * XXX Should try to recover from this
1082 * XXX more gracefully.
1083 */
1084 wantinit = 1;
1085 }
1086 }
1087
1088 /* Transmit interrupts. */
1089 if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
1090 #ifdef STGE_EVENT_COUNTERS
1091 if (isr & IS_TxDMAComplete)
1092 STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1093 #endif
1094 stge_txintr(sc);
1095 }
1096
1097 /* Statistics overflow. */
1098 if (isr & IS_UpdateStats)
1099 stge_stats_update(sc);
1100
1101 /* Transmission errors. */
1102 if (isr & IS_TxComplete) {
1103 STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1104 for (;;) {
1105 txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1106 STGE_TxStatus);
1107 if ((txstat & TS_TxComplete) == 0)
1108 break;
1109 if (txstat & TS_TxUnderrun) {
1110 sc->sc_txthresh++;
1111 if (sc->sc_txthresh > 0x0fff)
1112 sc->sc_txthresh = 0x0fff;
1113 printf("%s: transmit underrun, new "
1114 "threshold: %d bytes\n",
1115 sc->sc_dev.dv_xname,
1116 sc->sc_txthresh << 5);
1117 }
1118 if (txstat & TS_MaxCollisions)
1119 printf("%s: excessive collisions\n",
1120 sc->sc_dev.dv_xname);
1121 }
1122 wantinit = 1;
1123 }
1124
1125 }
1126
1127 if (wantinit)
1128 stge_init(ifp);
1129
1130 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1131 sc->sc_IntEnable);
1132
1133 /* Try to get more packets going. */
1134 stge_start(ifp);
1135
1136 return (1);
1137 }
1138
1139 /*
1140 * stge_txintr:
1141 *
1142 * Helper; handle transmit interrupts.
1143 */
1144 static void
1145 stge_txintr(struct stge_softc *sc)
1146 {
1147 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1148 struct stge_descsoft *ds;
1149 uint64_t control;
1150 int i;
1151
1152 ifp->if_flags &= ~IFF_OACTIVE;
1153
1154 /*
1155 * Go through our Tx list and free mbufs for those
1156 * frames which have been transmitted.
1157 */
1158 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1159 i = STGE_NEXTTX(i), sc->sc_txpending--) {
1160 ds = &sc->sc_txsoft[i];
1161
1162 STGE_CDTXSYNC(sc, i,
1163 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1164
1165 control = le64toh(sc->sc_txdescs[i].tfd_control);
1166 if ((control & TFD_TFDDone) == 0)
1167 break;
1168
1169 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1170 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1171 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1172 m_freem(ds->ds_mbuf);
1173 ds->ds_mbuf = NULL;
1174 }
1175
1176 /* Update the dirty transmit buffer pointer. */
1177 sc->sc_txdirty = i;
1178
1179 /*
1180 * If there are no more pending transmissions, cancel the watchdog
1181 * timer.
1182 */
1183 if (sc->sc_txpending == 0)
1184 ifp->if_timer = 0;
1185 }
1186
1187 /*
1188 * stge_rxintr:
1189 *
1190 * Helper; handle receive interrupts.
1191 */
1192 static void
1193 stge_rxintr(struct stge_softc *sc)
1194 {
1195 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1196 struct stge_descsoft *ds;
1197 struct mbuf *m, *tailm;
1198 uint64_t status;
1199 int i, len;
1200
1201 for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1202 ds = &sc->sc_rxsoft[i];
1203
1204 STGE_CDRXSYNC(sc, i,
1205 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1206
1207 status = le64toh(sc->sc_rxdescs[i].rfd_status);
1208
1209 if ((status & RFD_RFDDone) == 0)
1210 break;
1211
1212 if (__predict_false(sc->sc_rxdiscard)) {
1213 STGE_INIT_RXDESC(sc, i);
1214 if (status & RFD_FrameEnd) {
1215 /* Reset our state. */
1216 sc->sc_rxdiscard = 0;
1217 }
1218 continue;
1219 }
1220
1221 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1222 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1223
1224 m = ds->ds_mbuf;
1225
1226 /*
1227 * Add a new receive buffer to the ring.
1228 */
1229 if (stge_add_rxbuf(sc, i) != 0) {
1230 /*
1231 * Failed, throw away what we've done so
1232 * far, and discard the rest of the packet.
1233 */
1234 ifp->if_ierrors++;
1235 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1236 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1237 STGE_INIT_RXDESC(sc, i);
1238 if ((status & RFD_FrameEnd) == 0)
1239 sc->sc_rxdiscard = 1;
1240 if (sc->sc_rxhead != NULL)
1241 m_freem(sc->sc_rxhead);
1242 STGE_RXCHAIN_RESET(sc);
1243 continue;
1244 }
1245
1246 #ifdef DIAGNOSTIC
1247 if (status & RFD_FrameStart) {
1248 KASSERT(sc->sc_rxhead == NULL);
1249 KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1250 }
1251 #endif
1252
1253 STGE_RXCHAIN_LINK(sc, m);
1254
1255 /*
1256 * If this is not the end of the packet, keep
1257 * looking.
1258 */
1259 if ((status & RFD_FrameEnd) == 0) {
1260 sc->sc_rxlen += m->m_len;
1261 continue;
1262 }
1263
1264 /*
1265 * Okay, we have the entire packet now...
1266 */
1267 *sc->sc_rxtailp = NULL;
1268 m = sc->sc_rxhead;
1269 tailm = sc->sc_rxtail;
1270
1271 STGE_RXCHAIN_RESET(sc);
1272
1273 /*
1274 * If the packet had an error, drop it. Note we
1275 * count the error later in the periodic stats update.
1276 */
1277 if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1278 RFD_RxAlignmentError | RFD_RxFCSError |
1279 RFD_RxLengthError)) {
1280 m_freem(m);
1281 continue;
1282 }
1283
1284 /*
1285 * No errors.
1286 *
1287 * Note we have configured the chip to not include
1288 * the CRC at the end of the packet.
1289 */
1290 len = RFD_RxDMAFrameLen(status);
1291 tailm->m_len = len - sc->sc_rxlen;
1292
1293 /*
1294 * If the packet is small enough to fit in a
1295 * single header mbuf, allocate one and copy
1296 * the data into it. This greatly reduces
1297 * memory consumption when we receive lots
1298 * of small packets.
1299 */
1300 if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1301 struct mbuf *nm;
1302 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1303 if (nm == NULL) {
1304 ifp->if_ierrors++;
1305 m_freem(m);
1306 continue;
1307 }
1308 nm->m_data += 2;
1309 nm->m_pkthdr.len = nm->m_len = len;
1310 m_copydata(m, 0, len, mtod(nm, void *));
1311 m_freem(m);
1312 m = nm;
1313 }
1314
1315 /*
1316 * Set the incoming checksum information for the packet.
1317 */
1318 if (status & RFD_IPDetected) {
1319 STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1320 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1321 if (status & RFD_IPError)
1322 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1323 if (status & RFD_TCPDetected) {
1324 STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1325 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1326 if (status & RFD_TCPError)
1327 m->m_pkthdr.csum_flags |=
1328 M_CSUM_TCP_UDP_BAD;
1329 } else if (status & RFD_UDPDetected) {
1330 STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1331 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1332 if (status & RFD_UDPError)
1333 m->m_pkthdr.csum_flags |=
1334 M_CSUM_TCP_UDP_BAD;
1335 }
1336 }
1337
1338 m->m_pkthdr.rcvif = ifp;
1339 m->m_pkthdr.len = len;
1340
1341 #if NBPFILTER > 0
1342 /*
1343 * Pass this up to any BPF listeners, but only
1344 * pass if up the stack if it's for us.
1345 */
1346 if (ifp->if_bpf)
1347 bpf_mtap(ifp->if_bpf, m);
1348 #endif /* NBPFILTER > 0 */
1349 #ifdef STGE_VLAN_UNTAG
1350 /*
1351 * Check for VLAN tagged packets
1352 */
1353 if (status & RFD_VLANDetected)
1354 VLAN_INPUT_TAG(ifp, m, RFD_TCI(status), continue);
1355
1356 #endif
1357 #if 0
1358 if (status & RFD_VLANDetected) {
1359 struct ether_header *eh;
1360 u_int16_t etype;
1361
1362 eh = mtod(m, struct ether_header *);
1363 etype = ntohs(eh->ether_type);
1364 printf("%s: VLANtag detected (TCI %d) etype %x\n",
1365 ifp->if_xname, (u_int16_t) RFD_TCI(status),
1366 etype);
1367 }
1368 #endif
1369 /* Pass it on. */
1370 (*ifp->if_input)(ifp, m);
1371 }
1372
1373 /* Update the receive pointer. */
1374 sc->sc_rxptr = i;
1375 }
1376
1377 /*
1378 * stge_tick:
1379 *
1380 * One second timer, used to tick the MII.
1381 */
1382 static void
1383 stge_tick(void *arg)
1384 {
1385 struct stge_softc *sc = arg;
1386 int s;
1387
1388 s = splnet();
1389 mii_tick(&sc->sc_mii);
1390 stge_stats_update(sc);
1391 splx(s);
1392
1393 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1394 }
1395
1396 /*
1397 * stge_stats_update:
1398 *
1399 * Read the TC9021 statistics counters.
1400 */
1401 static void
1402 stge_stats_update(struct stge_softc *sc)
1403 {
1404 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1405 bus_space_tag_t st = sc->sc_st;
1406 bus_space_handle_t sh = sc->sc_sh;
1407
1408 (void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1409
1410 ifp->if_ipackets +=
1411 bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1412
1413 ifp->if_ierrors +=
1414 (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1415
1416 (void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1417
1418 ifp->if_opackets +=
1419 bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1420
1421 ifp->if_collisions +=
1422 bus_space_read_4(st, sh, STGE_LateCollisions) +
1423 bus_space_read_4(st, sh, STGE_MultiColFrames) +
1424 bus_space_read_4(st, sh, STGE_SingleColFrames);
1425
1426 ifp->if_oerrors +=
1427 (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1428 (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1429 }
1430
1431 /*
1432 * stge_reset:
1433 *
1434 * Perform a soft reset on the TC9021.
1435 */
1436 static void
1437 stge_reset(struct stge_softc *sc)
1438 {
1439 uint32_t ac;
1440 int i;
1441
1442 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1443
1444 /*
1445 * Only assert RstOut if we're fiber. We need GMII clocks
1446 * to be present in order for the reset to complete on fiber
1447 * cards.
1448 */
1449 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1450 ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1451 AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1452 (sc->sc_usefiber ? AC_RstOut : 0));
1453
1454 delay(50000);
1455
1456 for (i = 0; i < STGE_TIMEOUT; i++) {
1457 delay(5000);
1458 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1459 AC_ResetBusy) == 0)
1460 break;
1461 }
1462
1463 if (i == STGE_TIMEOUT)
1464 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1465
1466 delay(1000);
1467 }
1468
1469 /*
1470 * stge_init: [ ifnet interface function ]
1471 *
1472 * Initialize the interface. Must be called at splnet().
1473 */
1474 static int
1475 stge_init(struct ifnet *ifp)
1476 {
1477 struct stge_softc *sc = ifp->if_softc;
1478 bus_space_tag_t st = sc->sc_st;
1479 bus_space_handle_t sh = sc->sc_sh;
1480 struct stge_descsoft *ds;
1481 int i, error = 0;
1482
1483 /*
1484 * Cancel any pending I/O.
1485 */
1486 stge_stop(ifp, 0);
1487
1488 /*
1489 * Reset the chip to a known state.
1490 */
1491 stge_reset(sc);
1492
1493 /*
1494 * Initialize the transmit descriptor ring.
1495 */
1496 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1497 for (i = 0; i < STGE_NTXDESC; i++) {
1498 sc->sc_txdescs[i].tfd_next = htole64(
1499 STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1500 sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1501 }
1502 sc->sc_txpending = 0;
1503 sc->sc_txdirty = 0;
1504 sc->sc_txlast = STGE_NTXDESC - 1;
1505
1506 /*
1507 * Initialize the receive descriptor and receive job
1508 * descriptor rings.
1509 */
1510 for (i = 0; i < STGE_NRXDESC; i++) {
1511 ds = &sc->sc_rxsoft[i];
1512 if (ds->ds_mbuf == NULL) {
1513 if ((error = stge_add_rxbuf(sc, i)) != 0) {
1514 printf("%s: unable to allocate or map rx "
1515 "buffer %d, error = %d\n",
1516 sc->sc_dev.dv_xname, i, error);
1517 /*
1518 * XXX Should attempt to run with fewer receive
1519 * XXX buffers instead of just failing.
1520 */
1521 stge_rxdrain(sc);
1522 goto out;
1523 }
1524 } else
1525 STGE_INIT_RXDESC(sc, i);
1526 }
1527 sc->sc_rxptr = 0;
1528 sc->sc_rxdiscard = 0;
1529 STGE_RXCHAIN_RESET(sc);
1530
1531 /* Set the station address. */
1532 for (i = 0; i < 6; i++)
1533 bus_space_write_1(st, sh, STGE_StationAddress0 + i,
1534 CLLADDR(ifp->if_sadl)[i]);
1535
1536 /*
1537 * Set the statistics masks. Disable all the RMON stats,
1538 * and disable selected stats in the non-RMON stats registers.
1539 */
1540 bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1541 bus_space_write_4(st, sh, STGE_StatisticsMask,
1542 (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1543 (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1544 (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1545 (1U << 21));
1546
1547 /* Set up the receive filter. */
1548 stge_set_filter(sc);
1549
1550 /*
1551 * Give the transmit and receive ring to the chip.
1552 */
1553 bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1554 bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1555 STGE_CDTXADDR(sc, sc->sc_txdirty));
1556
1557 bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1558 bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1559 STGE_CDRXADDR(sc, sc->sc_rxptr));
1560
1561 /*
1562 * Initialize the Tx auto-poll period. It's OK to make this number
1563 * large (255 is the max, but we use 127) -- we explicitly kick the
1564 * transmit engine when there's actually a packet.
1565 */
1566 bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1567
1568 /* ..and the Rx auto-poll period. */
1569 bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1570
1571 /* Initialize the Tx start threshold. */
1572 bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1573
1574 /* RX DMA thresholds, from linux */
1575 bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
1576 bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
1577
1578 /*
1579 * Initialize the Rx DMA interrupt control register. We
1580 * request an interrupt after every incoming packet, but
1581 * defer it for 32us (64 * 512 ns). When the number of
1582 * interrupts pending reaches 8, we stop deferring the
1583 * interrupt, and signal it immediately.
1584 */
1585 bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1586 RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1587
1588 /*
1589 * Initialize the interrupt mask.
1590 */
1591 sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1592 IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1593 bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1594 bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1595
1596 /*
1597 * Configure the DMA engine.
1598 * XXX Should auto-tune TxBurstLimit.
1599 */
1600 bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1601 DMAC_TxBurstLimit(3));
1602
1603 /*
1604 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1605 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1606 * empty again.
1607 */
1608 bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1609 bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1610
1611 /*
1612 * Set the maximum frame size.
1613 */
1614 bus_space_write_2(st, sh, STGE_MaxFrameSize,
1615 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1616 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1617 ETHER_VLAN_ENCAP_LEN : 0));
1618
1619 /*
1620 * Initialize MacCtrl -- do it before setting the media,
1621 * as setting the media will actually program the register.
1622 *
1623 * Note: We have to poke the IFS value before poking
1624 * anything else.
1625 */
1626 sc->sc_MACCtrl = MC_IFSSelect(0);
1627 bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1628 sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1629 #ifdef STGE_VLAN_UNTAG
1630 sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1631 #endif
1632
1633 if (sc->sc_rev >= 6) { /* >= B.2 */
1634 /* Multi-frag frame bug work-around. */
1635 bus_space_write_2(st, sh, STGE_DebugCtrl,
1636 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1637
1638 /* Tx Poll Now bug work-around. */
1639 bus_space_write_2(st, sh, STGE_DebugCtrl,
1640 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1641 /* XXX ? from linux */
1642 bus_space_write_2(st, sh, STGE_DebugCtrl,
1643 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
1644 }
1645
1646 /*
1647 * Set the current media.
1648 */
1649 if ((error = ether_mediachange(ifp)) != 0)
1650 goto out;
1651
1652 /*
1653 * Start the one second MII clock.
1654 */
1655 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1656
1657 /*
1658 * ...all done!
1659 */
1660 ifp->if_flags |= IFF_RUNNING;
1661 ifp->if_flags &= ~IFF_OACTIVE;
1662
1663 out:
1664 if (error)
1665 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1666 return (error);
1667 }
1668
1669 /*
1670 * stge_drain:
1671 *
1672 * Drain the receive queue.
1673 */
1674 static void
1675 stge_rxdrain(struct stge_softc *sc)
1676 {
1677 struct stge_descsoft *ds;
1678 int i;
1679
1680 for (i = 0; i < STGE_NRXDESC; i++) {
1681 ds = &sc->sc_rxsoft[i];
1682 if (ds->ds_mbuf != NULL) {
1683 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1684 ds->ds_mbuf->m_next = NULL;
1685 m_freem(ds->ds_mbuf);
1686 ds->ds_mbuf = NULL;
1687 }
1688 }
1689 }
1690
1691 /*
1692 * stge_stop: [ ifnet interface function ]
1693 *
1694 * Stop transmission on the interface.
1695 */
1696 static void
1697 stge_stop(struct ifnet *ifp, int disable)
1698 {
1699 struct stge_softc *sc = ifp->if_softc;
1700 struct stge_descsoft *ds;
1701 int i;
1702
1703 /*
1704 * Stop the one second clock.
1705 */
1706 callout_stop(&sc->sc_tick_ch);
1707
1708 /* Down the MII. */
1709 mii_down(&sc->sc_mii);
1710
1711 /*
1712 * Disable interrupts.
1713 */
1714 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1715
1716 /*
1717 * Stop receiver, transmitter, and stats update.
1718 */
1719 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1720 MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1721
1722 /*
1723 * Stop the transmit and receive DMA.
1724 */
1725 stge_dma_wait(sc);
1726 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1727 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1728 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1729 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1730
1731 /*
1732 * Release any queued transmit buffers.
1733 */
1734 for (i = 0; i < STGE_NTXDESC; i++) {
1735 ds = &sc->sc_txsoft[i];
1736 if (ds->ds_mbuf != NULL) {
1737 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1738 m_freem(ds->ds_mbuf);
1739 ds->ds_mbuf = NULL;
1740 }
1741 }
1742
1743 if (disable)
1744 stge_rxdrain(sc);
1745
1746 /*
1747 * Mark the interface down and cancel the watchdog timer.
1748 */
1749 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1750 ifp->if_timer = 0;
1751 }
1752
1753 static int
1754 stge_eeprom_wait(struct stge_softc *sc)
1755 {
1756 int i;
1757
1758 for (i = 0; i < STGE_TIMEOUT; i++) {
1759 delay(1000);
1760 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1761 EC_EepromBusy) == 0)
1762 return (0);
1763 }
1764 return (1);
1765 }
1766
1767 /*
1768 * stge_read_eeprom:
1769 *
1770 * Read data from the serial EEPROM.
1771 */
1772 static void
1773 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1774 {
1775
1776 if (stge_eeprom_wait(sc))
1777 printf("%s: EEPROM failed to come ready\n",
1778 sc->sc_dev.dv_xname);
1779
1780 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1781 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1782 if (stge_eeprom_wait(sc))
1783 printf("%s: EEPROM read timed out\n",
1784 sc->sc_dev.dv_xname);
1785 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1786 }
1787
1788 /*
1789 * stge_add_rxbuf:
1790 *
1791 * Add a receive buffer to the indicated descriptor.
1792 */
1793 static int
1794 stge_add_rxbuf(struct stge_softc *sc, int idx)
1795 {
1796 struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1797 struct mbuf *m;
1798 int error;
1799
1800 MGETHDR(m, M_DONTWAIT, MT_DATA);
1801 if (m == NULL)
1802 return (ENOBUFS);
1803
1804 MCLGET(m, M_DONTWAIT);
1805 if ((m->m_flags & M_EXT) == 0) {
1806 m_freem(m);
1807 return (ENOBUFS);
1808 }
1809
1810 m->m_data = m->m_ext.ext_buf + 2;
1811 m->m_len = MCLBYTES - 2;
1812
1813 if (ds->ds_mbuf != NULL)
1814 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1815
1816 ds->ds_mbuf = m;
1817
1818 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1819 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1820 if (error) {
1821 printf("%s: can't load rx DMA map %d, error = %d\n",
1822 sc->sc_dev.dv_xname, idx, error);
1823 panic("stge_add_rxbuf"); /* XXX */
1824 }
1825
1826 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1827 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1828
1829 STGE_INIT_RXDESC(sc, idx);
1830
1831 return (0);
1832 }
1833
1834 /*
1835 * stge_set_filter:
1836 *
1837 * Set up the receive filter.
1838 */
1839 static void
1840 stge_set_filter(struct stge_softc *sc)
1841 {
1842 struct ethercom *ec = &sc->sc_ethercom;
1843 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1844 struct ether_multi *enm;
1845 struct ether_multistep step;
1846 uint32_t crc;
1847 uint32_t mchash[2];
1848
1849 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1850 if (ifp->if_flags & IFF_BROADCAST)
1851 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1852
1853 /* XXX: ST1023 only works in promiscuous mode */
1854 if (sc->sc_stge1023)
1855 ifp->if_flags |= IFF_PROMISC;
1856
1857 if (ifp->if_flags & IFF_PROMISC) {
1858 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1859 goto allmulti;
1860 }
1861
1862 /*
1863 * Set up the multicast address filter by passing all multicast
1864 * addresses through a CRC generator, and then using the low-order
1865 * 6 bits as an index into the 64 bit multicast hash table. The
1866 * high order bits select the register, while the rest of the bits
1867 * select the bit within the register.
1868 */
1869
1870 memset(mchash, 0, sizeof(mchash));
1871
1872 ETHER_FIRST_MULTI(step, ec, enm);
1873 if (enm == NULL)
1874 goto done;
1875
1876 while (enm != NULL) {
1877 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1878 /*
1879 * We must listen to a range of multicast addresses.
1880 * For now, just accept all multicasts, rather than
1881 * trying to set only those filter bits needed to match
1882 * the range. (At this time, the only use of address
1883 * ranges is for IP multicast routing, for which the
1884 * range is big enough to require all bits set.)
1885 */
1886 goto allmulti;
1887 }
1888
1889 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1890
1891 /* Just want the 6 least significant bits. */
1892 crc &= 0x3f;
1893
1894 /* Set the corresponding bit in the hash table. */
1895 mchash[crc >> 5] |= 1 << (crc & 0x1f);
1896
1897 ETHER_NEXT_MULTI(step, enm);
1898 }
1899
1900 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1901
1902 ifp->if_flags &= ~IFF_ALLMULTI;
1903 goto done;
1904
1905 allmulti:
1906 ifp->if_flags |= IFF_ALLMULTI;
1907 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1908
1909 done:
1910 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1911 /*
1912 * Program the multicast hash table.
1913 */
1914 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1915 mchash[0]);
1916 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1917 mchash[1]);
1918 }
1919
1920 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1921 sc->sc_ReceiveMode);
1922 }
1923
1924 /*
1925 * stge_mii_readreg: [mii interface function]
1926 *
1927 * Read a PHY register on the MII of the TC9021.
1928 */
1929 static int
1930 stge_mii_readreg(struct device *self, int phy, int reg)
1931 {
1932
1933 return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1934 }
1935
1936 /*
1937 * stge_mii_writereg: [mii interface function]
1938 *
1939 * Write a PHY register on the MII of the TC9021.
1940 */
1941 static void
1942 stge_mii_writereg(struct device *self, int phy, int reg, int val)
1943 {
1944
1945 mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1946 }
1947
1948 /*
1949 * stge_mii_statchg: [mii interface function]
1950 *
1951 * Callback from MII layer when media changes.
1952 */
1953 static void
1954 stge_mii_statchg(struct device *self)
1955 {
1956 struct stge_softc *sc = (struct stge_softc *) self;
1957
1958 if (sc->sc_mii.mii_media_active & IFM_FDX)
1959 sc->sc_MACCtrl |= MC_DuplexSelect;
1960 else
1961 sc->sc_MACCtrl &= ~MC_DuplexSelect;
1962
1963 /* XXX 802.1x flow-control? */
1964
1965 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1966 }
1967
1968 /*
1969 * sste_mii_bitbang_read: [mii bit-bang interface function]
1970 *
1971 * Read the MII serial port for the MII bit-bang module.
1972 */
1973 static uint32_t
1974 stge_mii_bitbang_read(struct device *self)
1975 {
1976 struct stge_softc *sc = (void *) self;
1977
1978 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
1979 }
1980
1981 /*
1982 * stge_mii_bitbang_write: [mii big-bang interface function]
1983 *
1984 * Write the MII serial port for the MII bit-bang module.
1985 */
1986 static void
1987 stge_mii_bitbang_write(struct device *self, uint32_t val)
1988 {
1989 struct stge_softc *sc = (void *) self;
1990
1991 bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
1992 val | sc->sc_PhyCtrl);
1993 }
1994