Home | History | Annotate | Line # | Download | only in pci
if_stge.c revision 1.44
      1 /*	$NetBSD: if_stge.c,v 1.44 2008/04/10 19:13:37 cegger Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Device driver for the Sundance Tech. TC9021 10/100/1000
     41  * Ethernet controller.
     42  */
     43 
     44 #include <sys/cdefs.h>
     45 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.44 2008/04/10 19:13:37 cegger Exp $");
     46 
     47 #include "bpfilter.h"
     48 
     49 #include <sys/param.h>
     50 #include <sys/systm.h>
     51 #include <sys/callout.h>
     52 #include <sys/mbuf.h>
     53 #include <sys/malloc.h>
     54 #include <sys/kernel.h>
     55 #include <sys/socket.h>
     56 #include <sys/ioctl.h>
     57 #include <sys/errno.h>
     58 #include <sys/device.h>
     59 #include <sys/queue.h>
     60 
     61 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     62 
     63 #include <net/if.h>
     64 #include <net/if_dl.h>
     65 #include <net/if_media.h>
     66 #include <net/if_ether.h>
     67 
     68 #if NBPFILTER > 0
     69 #include <net/bpf.h>
     70 #endif
     71 
     72 #include <sys/bus.h>
     73 #include <sys/intr.h>
     74 
     75 #include <dev/mii/mii.h>
     76 #include <dev/mii/miivar.h>
     77 #include <dev/mii/mii_bitbang.h>
     78 
     79 #include <dev/pci/pcireg.h>
     80 #include <dev/pci/pcivar.h>
     81 #include <dev/pci/pcidevs.h>
     82 
     83 #include <dev/pci/if_stgereg.h>
     84 
     85 /* #define	STGE_CU_BUG			1 */
     86 #define	STGE_VLAN_UNTAG			1
     87 /* #define	STGE_VLAN_CFI		1 */
     88 
     89 /*
     90  * Transmit descriptor list size.
     91  */
     92 #define	STGE_NTXDESC		256
     93 #define	STGE_NTXDESC_MASK	(STGE_NTXDESC - 1)
     94 #define	STGE_NEXTTX(x)		(((x) + 1) & STGE_NTXDESC_MASK)
     95 
     96 /*
     97  * Receive descriptor list size.
     98  */
     99 #define	STGE_NRXDESC		256
    100 #define	STGE_NRXDESC_MASK	(STGE_NRXDESC - 1)
    101 #define	STGE_NEXTRX(x)		(((x) + 1) & STGE_NRXDESC_MASK)
    102 
    103 /*
    104  * Only interrupt every N frames.  Must be a power-of-two.
    105  */
    106 #define	STGE_TXINTR_SPACING	16
    107 #define	STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
    108 
    109 /*
    110  * Control structures are DMA'd to the TC9021 chip.  We allocate them in
    111  * a single clump that maps to a single DMA segment to make several things
    112  * easier.
    113  */
    114 struct stge_control_data {
    115 	/*
    116 	 * The transmit descriptors.
    117 	 */
    118 	struct stge_tfd scd_txdescs[STGE_NTXDESC];
    119 
    120 	/*
    121 	 * The receive descriptors.
    122 	 */
    123 	struct stge_rfd scd_rxdescs[STGE_NRXDESC];
    124 };
    125 
    126 #define	STGE_CDOFF(x)	offsetof(struct stge_control_data, x)
    127 #define	STGE_CDTXOFF(x)	STGE_CDOFF(scd_txdescs[(x)])
    128 #define	STGE_CDRXOFF(x)	STGE_CDOFF(scd_rxdescs[(x)])
    129 
    130 /*
    131  * Software state for transmit and receive jobs.
    132  */
    133 struct stge_descsoft {
    134 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
    135 	bus_dmamap_t ds_dmamap;		/* our DMA map */
    136 };
    137 
    138 /*
    139  * Software state per device.
    140  */
    141 struct stge_softc {
    142 	struct device sc_dev;		/* generic device information */
    143 	bus_space_tag_t sc_st;		/* bus space tag */
    144 	bus_space_handle_t sc_sh;	/* bus space handle */
    145 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    146 	struct ethercom sc_ethercom;	/* ethernet common data */
    147 	void *sc_sdhook;		/* shutdown hook */
    148 	int sc_rev;			/* silicon revision */
    149 
    150 	void *sc_ih;			/* interrupt cookie */
    151 
    152 	struct mii_data sc_mii;		/* MII/media information */
    153 
    154 	callout_t sc_tick_ch;		/* tick callout */
    155 
    156 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    157 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    158 
    159 	/*
    160 	 * Software state for transmit and receive descriptors.
    161 	 */
    162 	struct stge_descsoft sc_txsoft[STGE_NTXDESC];
    163 	struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
    164 
    165 	/*
    166 	 * Control data structures.
    167 	 */
    168 	struct stge_control_data *sc_control_data;
    169 #define	sc_txdescs	sc_control_data->scd_txdescs
    170 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    171 
    172 #ifdef STGE_EVENT_COUNTERS
    173 	/*
    174 	 * Event counters.
    175 	 */
    176 	struct evcnt sc_ev_txstall;	/* Tx stalled */
    177 	struct evcnt sc_ev_txdmaintr;	/* Tx DMA interrupts */
    178 	struct evcnt sc_ev_txindintr;	/* Tx Indicate interrupts */
    179 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    180 
    181 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
    182 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
    183 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
    184 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
    185 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
    186 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
    187 	struct evcnt sc_ev_txcopy;	/* Tx packets that we had to copy */
    188 
    189 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    190 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    191 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
    192 
    193 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    194 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    195 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    196 #endif /* STGE_EVENT_COUNTERS */
    197 
    198 	int	sc_txpending;		/* number of Tx requests pending */
    199 	int	sc_txdirty;		/* first dirty Tx descriptor */
    200 	int	sc_txlast;		/* last used Tx descriptor */
    201 
    202 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    203 	int	sc_rxdiscard;
    204 	int	sc_rxlen;
    205 	struct mbuf *sc_rxhead;
    206 	struct mbuf *sc_rxtail;
    207 	struct mbuf **sc_rxtailp;
    208 
    209 	int	sc_txthresh;		/* Tx threshold */
    210 	uint32_t sc_usefiber:1;		/* if we're fiber */
    211 	uint32_t sc_stge1023:1;		/* are we a 1023 */
    212 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
    213 	uint32_t sc_MACCtrl;		/* prototype MacCtrl register */
    214 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
    215 	uint16_t sc_ReceiveMode;	/* prototype ReceiveMode register */
    216 	uint8_t sc_PhyCtrl;		/* prototype PhyCtrl register */
    217 };
    218 
    219 #define	STGE_RXCHAIN_RESET(sc)						\
    220 do {									\
    221 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    222 	*(sc)->sc_rxtailp = NULL;					\
    223 	(sc)->sc_rxlen = 0;						\
    224 } while (/*CONSTCOND*/0)
    225 
    226 #define	STGE_RXCHAIN_LINK(sc, m)					\
    227 do {									\
    228 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    229 	(sc)->sc_rxtailp = &(m)->m_next;				\
    230 } while (/*CONSTCOND*/0)
    231 
    232 #ifdef STGE_EVENT_COUNTERS
    233 #define	STGE_EVCNT_INCR(ev)	(ev)->ev_count++
    234 #else
    235 #define	STGE_EVCNT_INCR(ev)	/* nothing */
    236 #endif
    237 
    238 #define	STGE_CDTXADDR(sc, x)	((sc)->sc_cddma + STGE_CDTXOFF((x)))
    239 #define	STGE_CDRXADDR(sc, x)	((sc)->sc_cddma + STGE_CDRXOFF((x)))
    240 
    241 #define	STGE_CDTXSYNC(sc, x, ops)					\
    242 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    243 	    STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
    244 
    245 #define	STGE_CDRXSYNC(sc, x, ops)					\
    246 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    247 	    STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
    248 
    249 #define	STGE_INIT_RXDESC(sc, x)						\
    250 do {									\
    251 	struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
    252 	struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)];		\
    253 									\
    254 	/*								\
    255 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    256 	 * so that the payload after the Ethernet header is aligned	\
    257 	 * to a 4-byte boundary.					\
    258 	 */								\
    259 	__rfd->rfd_frag.frag_word0 =					\
    260 	    htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
    261 	    FRAG_LEN(MCLBYTES - 2));					\
    262 	__rfd->rfd_next =						\
    263 	    htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x))));	\
    264 	__rfd->rfd_status = 0;						\
    265 	STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    266 } while (/*CONSTCOND*/0)
    267 
    268 #define STGE_TIMEOUT 1000
    269 
    270 static void	stge_start(struct ifnet *);
    271 static void	stge_watchdog(struct ifnet *);
    272 static int	stge_ioctl(struct ifnet *, u_long, void *);
    273 static int	stge_init(struct ifnet *);
    274 static void	stge_stop(struct ifnet *, int);
    275 
    276 static void	stge_shutdown(void *);
    277 
    278 static void	stge_reset(struct stge_softc *);
    279 static void	stge_rxdrain(struct stge_softc *);
    280 static int	stge_add_rxbuf(struct stge_softc *, int);
    281 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
    282 static void	stge_tick(void *);
    283 
    284 static void	stge_stats_update(struct stge_softc *);
    285 
    286 static void	stge_set_filter(struct stge_softc *);
    287 
    288 static int	stge_intr(void *);
    289 static void	stge_txintr(struct stge_softc *);
    290 static void	stge_rxintr(struct stge_softc *);
    291 
    292 static int	stge_mii_readreg(device_t, int, int);
    293 static void	stge_mii_writereg(device_t, int, int, int);
    294 static void	stge_mii_statchg(device_t);
    295 
    296 static int	stge_match(device_t, struct cfdata *, void *);
    297 static void	stge_attach(device_t, device_t, void *);
    298 
    299 int	stge_copy_small = 0;
    300 
    301 CFATTACH_DECL(stge, sizeof(struct stge_softc),
    302     stge_match, stge_attach, NULL, NULL);
    303 
    304 static uint32_t stge_mii_bitbang_read(device_t);
    305 static void	stge_mii_bitbang_write(device_t, uint32_t);
    306 
    307 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
    308 	stge_mii_bitbang_read,
    309 	stge_mii_bitbang_write,
    310 	{
    311 		PC_MgmtData,		/* MII_BIT_MDO */
    312 		PC_MgmtData,		/* MII_BIT_MDI */
    313 		PC_MgmtClk,		/* MII_BIT_MDC */
    314 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
    315 		0,			/* MII_BIT_DIR_PHY_HOST */
    316 	}
    317 };
    318 
    319 /*
    320  * Devices supported by this driver.
    321  */
    322 static const struct stge_product {
    323 	pci_vendor_id_t		stge_vendor;
    324 	pci_product_id_t	stge_product;
    325 	const char		*stge_name;
    326 } stge_products[] = {
    327 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST1023,
    328 	  "Sundance ST-1023 Gigabit Ethernet" },
    329 
    330 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST2021,
    331 	  "Sundance ST-2021 Gigabit Ethernet" },
    332 
    333 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021,
    334 	  "Tamarack TC9021 Gigabit Ethernet" },
    335 
    336 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021_ALT,
    337 	  "Tamarack TC9021 Gigabit Ethernet" },
    338 
    339 	/*
    340 	 * The Sundance sample boards use the Sundance vendor ID,
    341 	 * but the Tamarack product ID.
    342 	 */
    343 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021,
    344 	  "Sundance TC9021 Gigabit Ethernet" },
    345 
    346 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021_ALT,
    347 	  "Sundance TC9021 Gigabit Ethernet" },
    348 
    349 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL4000,
    350 	  "D-Link DL-4000 Gigabit Ethernet" },
    351 
    352 	{ PCI_VENDOR_ANTARES,		PCI_PRODUCT_ANTARES_TC9021,
    353 	  "Antares Gigabit Ethernet" },
    354 
    355 	{ 0,				0,
    356 	  NULL },
    357 };
    358 
    359 static const struct stge_product *
    360 stge_lookup(const struct pci_attach_args *pa)
    361 {
    362 	const struct stge_product *sp;
    363 
    364 	for (sp = stge_products; sp->stge_name != NULL; sp++) {
    365 		if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
    366 		    PCI_PRODUCT(pa->pa_id) == sp->stge_product)
    367 			return (sp);
    368 	}
    369 	return (NULL);
    370 }
    371 
    372 static int
    373 stge_match(device_t parent, struct cfdata *cf, void *aux)
    374 {
    375 	struct pci_attach_args *pa = aux;
    376 
    377 	if (stge_lookup(pa) != NULL)
    378 		return (1);
    379 
    380 	return (0);
    381 }
    382 
    383 static void
    384 stge_attach(device_t parent, device_t self, void *aux)
    385 {
    386 	struct stge_softc *sc = device_private(self);
    387 	struct pci_attach_args *pa = aux;
    388 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    389 	pci_chipset_tag_t pc = pa->pa_pc;
    390 	pci_intr_handle_t ih;
    391 	const char *intrstr = NULL;
    392 	bus_space_tag_t iot, memt;
    393 	bus_space_handle_t ioh, memh;
    394 	bus_dma_segment_t seg;
    395 	int ioh_valid, memh_valid;
    396 	int i, rseg, error;
    397 	const struct stge_product *sp;
    398 	uint8_t enaddr[ETHER_ADDR_LEN];
    399 
    400 	callout_init(&sc->sc_tick_ch, 0);
    401 
    402 	sp = stge_lookup(pa);
    403 	if (sp == NULL) {
    404 		printf("\n");
    405 		panic("ste_attach: impossible");
    406 	}
    407 
    408 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    409 
    410 	printf(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
    411 
    412 	/*
    413 	 * Map the device.
    414 	 */
    415 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
    416 	    PCI_MAPREG_TYPE_IO, 0,
    417 	    &iot, &ioh, NULL, NULL) == 0);
    418 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
    419 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    420 	    &memt, &memh, NULL, NULL) == 0);
    421 
    422 	if (memh_valid) {
    423 		sc->sc_st = memt;
    424 		sc->sc_sh = memh;
    425 	} else if (ioh_valid) {
    426 		sc->sc_st = iot;
    427 		sc->sc_sh = ioh;
    428 	} else {
    429 		aprint_error_dev(&sc->sc_dev, "unable to map device registers\n");
    430 		return;
    431 	}
    432 
    433 	sc->sc_dmat = pa->pa_dmat;
    434 
    435 	/* Enable bus mastering. */
    436 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    437 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    438 	    PCI_COMMAND_MASTER_ENABLE);
    439 
    440 	/* power up chip */
    441 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
    442 	    error != EOPNOTSUPP) {
    443 		aprint_error_dev(&sc->sc_dev, "cannot activate %d\n",
    444 		    error);
    445 		return;
    446 	}
    447 	/*
    448 	 * Map and establish our interrupt.
    449 	 */
    450 	if (pci_intr_map(pa, &ih)) {
    451 		aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
    452 		return;
    453 	}
    454 	intrstr = pci_intr_string(pc, ih);
    455 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
    456 	if (sc->sc_ih == NULL) {
    457 		aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
    458 		if (intrstr != NULL)
    459 			printf(" at %s", intrstr);
    460 		printf("\n");
    461 		return;
    462 	}
    463 	printf("%s: interrupting at %s\n", device_xname(&sc->sc_dev), intrstr);
    464 
    465 	/*
    466 	 * Allocate the control data structures, and create and load the
    467 	 * DMA map for it.
    468 	 */
    469 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    470 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    471 	    0)) != 0) {
    472 		aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n",
    473 		    error);
    474 		goto fail_0;
    475 	}
    476 
    477 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    478 	    sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
    479 	    BUS_DMA_COHERENT)) != 0) {
    480 		aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
    481 		    error);
    482 		goto fail_1;
    483 	}
    484 
    485 	if ((error = bus_dmamap_create(sc->sc_dmat,
    486 	    sizeof(struct stge_control_data), 1,
    487 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    488 		aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
    489 		    "error = %d\n", error);
    490 		goto fail_2;
    491 	}
    492 
    493 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    494 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
    495 	    0)) != 0) {
    496 		aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
    497 		    error);
    498 		goto fail_3;
    499 	}
    500 
    501 	/*
    502 	 * Create the transmit buffer DMA maps.  Note that rev B.3
    503 	 * and earlier seem to have a bug regarding multi-fragment
    504 	 * packets.  We need to limit the number of Tx segments on
    505 	 * such chips to 1.
    506 	 */
    507 	for (i = 0; i < STGE_NTXDESC; i++) {
    508 		if ((error = bus_dmamap_create(sc->sc_dmat,
    509 		    ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
    510 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
    511 			aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
    512 			    "error = %d\n", i, error);
    513 			goto fail_4;
    514 		}
    515 	}
    516 
    517 	/*
    518 	 * Create the receive buffer DMA maps.
    519 	 */
    520 	for (i = 0; i < STGE_NRXDESC; i++) {
    521 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    522 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
    523 			aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
    524 			    "error = %d\n", i, error);
    525 			goto fail_5;
    526 		}
    527 		sc->sc_rxsoft[i].ds_mbuf = NULL;
    528 	}
    529 
    530 	/*
    531 	 * Determine if we're copper or fiber.  It affects how we
    532 	 * reset the card.
    533 	 */
    534 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
    535 	    AC_PhyMedia)
    536 		sc->sc_usefiber = 1;
    537 	else
    538 		sc->sc_usefiber = 0;
    539 
    540 	/*
    541 	 * Reset the chip to a known state.
    542 	 */
    543 	stge_reset(sc);
    544 
    545 	/*
    546 	 * Reading the station address from the EEPROM doesn't seem
    547 	 * to work, at least on my sample boards.  Instead, since
    548 	 * the reset sequence does AutoInit, read it from the station
    549 	 * address registers. For Sundance 1023 you can only read it
    550 	 * from EEPROM.
    551 	 */
    552 	if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
    553 		enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    554 		    STGE_StationAddress0) & 0xff;
    555 		enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    556 		    STGE_StationAddress0) >> 8;
    557 		enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    558 		    STGE_StationAddress1) & 0xff;
    559 		enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    560 		    STGE_StationAddress1) >> 8;
    561 		enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    562 		    STGE_StationAddress2) & 0xff;
    563 		enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    564 		    STGE_StationAddress2) >> 8;
    565 		sc->sc_stge1023 = 0;
    566 	} else {
    567 		uint16_t myaddr[ETHER_ADDR_LEN / 2];
    568 		for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
    569 			stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
    570 			    &myaddr[i]);
    571 			myaddr[i] = le16toh(myaddr[i]);
    572 		}
    573 		(void)memcpy(enaddr, myaddr, sizeof(enaddr));
    574 		sc->sc_stge1023 = 1;
    575 	}
    576 
    577 	printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
    578 	    ether_sprintf(enaddr));
    579 
    580 	/*
    581 	 * Read some important bits from the PhyCtrl register.
    582 	 */
    583 	sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
    584 	    STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
    585 
    586 	/*
    587 	 * Initialize our media structures and probe the MII.
    588 	 */
    589 	sc->sc_mii.mii_ifp = ifp;
    590 	sc->sc_mii.mii_readreg = stge_mii_readreg;
    591 	sc->sc_mii.mii_writereg = stge_mii_writereg;
    592 	sc->sc_mii.mii_statchg = stge_mii_statchg;
    593 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
    594 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
    595 	    ether_mediastatus);
    596 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    597 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
    598 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    599 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    600 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    601 	} else
    602 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    603 
    604 	ifp = &sc->sc_ethercom.ec_if;
    605 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
    606 	ifp->if_softc = sc;
    607 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    608 	ifp->if_ioctl = stge_ioctl;
    609 	ifp->if_start = stge_start;
    610 	ifp->if_watchdog = stge_watchdog;
    611 	ifp->if_init = stge_init;
    612 	ifp->if_stop = stge_stop;
    613 	IFQ_SET_READY(&ifp->if_snd);
    614 
    615 	/*
    616 	 * The manual recommends disabling early transmit, so we
    617 	 * do.  It's disabled anyway, if using IP checksumming,
    618 	 * since the entire packet must be in the FIFO in order
    619 	 * for the chip to perform the checksum.
    620 	 */
    621 	sc->sc_txthresh = 0x0fff;
    622 
    623 	/*
    624 	 * Disable MWI if the PCI layer tells us to.
    625 	 */
    626 	sc->sc_DMACtrl = 0;
    627 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
    628 		sc->sc_DMACtrl |= DMAC_MWIDisable;
    629 
    630 	/*
    631 	 * We can support 802.1Q VLAN-sized frames and jumbo
    632 	 * Ethernet frames.
    633 	 *
    634 	 * XXX Figure out how to do hw-assisted VLAN tagging in
    635 	 * XXX a reasonable way on this chip.
    636 	 */
    637 	sc->sc_ethercom.ec_capabilities |=
    638 	    ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
    639 	    ETHERCAP_VLAN_HWTAGGING;
    640 
    641 	/*
    642 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
    643 	 */
    644 	sc->sc_ethercom.ec_if.if_capabilities |=
    645 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    646 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    647 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    648 
    649 	/*
    650 	 * Attach the interface.
    651 	 */
    652 	if_attach(ifp);
    653 	ether_ifattach(ifp, enaddr);
    654 
    655 #ifdef STGE_EVENT_COUNTERS
    656 	/*
    657 	 * Attach event counters.
    658 	 */
    659 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
    660 	    NULL, device_xname(&sc->sc_dev), "txstall");
    661 	evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
    662 	    NULL, device_xname(&sc->sc_dev), "txdmaintr");
    663 	evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
    664 	    NULL, device_xname(&sc->sc_dev), "txindintr");
    665 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    666 	    NULL, device_xname(&sc->sc_dev), "rxintr");
    667 
    668 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
    669 	    NULL, device_xname(&sc->sc_dev), "txseg1");
    670 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
    671 	    NULL, device_xname(&sc->sc_dev), "txseg2");
    672 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
    673 	    NULL, device_xname(&sc->sc_dev), "txseg3");
    674 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
    675 	    NULL, device_xname(&sc->sc_dev), "txseg4");
    676 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
    677 	    NULL, device_xname(&sc->sc_dev), "txseg5");
    678 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
    679 	    NULL, device_xname(&sc->sc_dev), "txsegmore");
    680 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
    681 	    NULL, device_xname(&sc->sc_dev), "txcopy");
    682 
    683 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    684 	    NULL, device_xname(&sc->sc_dev), "rxipsum");
    685 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
    686 	    NULL, device_xname(&sc->sc_dev), "rxtcpsum");
    687 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
    688 	    NULL, device_xname(&sc->sc_dev), "rxudpsum");
    689 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    690 	    NULL, device_xname(&sc->sc_dev), "txipsum");
    691 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
    692 	    NULL, device_xname(&sc->sc_dev), "txtcpsum");
    693 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
    694 	    NULL, device_xname(&sc->sc_dev), "txudpsum");
    695 #endif /* STGE_EVENT_COUNTERS */
    696 
    697 	/*
    698 	 * Make sure the interface is shutdown during reboot.
    699 	 */
    700 	sc->sc_sdhook = shutdownhook_establish(stge_shutdown, sc);
    701 	if (sc->sc_sdhook == NULL)
    702 		printf("%s: WARNING: unable to establish shutdown hook\n",
    703 		    device_xname(&sc->sc_dev));
    704 	return;
    705 
    706 	/*
    707 	 * Free any resources we've allocated during the failed attach
    708 	 * attempt.  Do this in reverse order and fall through.
    709 	 */
    710  fail_5:
    711 	for (i = 0; i < STGE_NRXDESC; i++) {
    712 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
    713 			bus_dmamap_destroy(sc->sc_dmat,
    714 			    sc->sc_rxsoft[i].ds_dmamap);
    715 	}
    716  fail_4:
    717 	for (i = 0; i < STGE_NTXDESC; i++) {
    718 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
    719 			bus_dmamap_destroy(sc->sc_dmat,
    720 			    sc->sc_txsoft[i].ds_dmamap);
    721 	}
    722 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    723  fail_3:
    724 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    725  fail_2:
    726 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    727 	    sizeof(struct stge_control_data));
    728  fail_1:
    729 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    730  fail_0:
    731 	return;
    732 }
    733 
    734 /*
    735  * stge_shutdown:
    736  *
    737  *	Make sure the interface is stopped at reboot time.
    738  */
    739 static void
    740 stge_shutdown(void *arg)
    741 {
    742 	struct stge_softc *sc = arg;
    743 
    744 	stge_stop(&sc->sc_ethercom.ec_if, 1);
    745 }
    746 
    747 static void
    748 stge_dma_wait(struct stge_softc *sc)
    749 {
    750 	int i;
    751 
    752 	for (i = 0; i < STGE_TIMEOUT; i++) {
    753 		delay(2);
    754 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
    755 		     DMAC_TxDMAInProg) == 0)
    756 			break;
    757 	}
    758 
    759 	if (i == STGE_TIMEOUT)
    760 		printf("%s: DMA wait timed out\n", device_xname(&sc->sc_dev));
    761 }
    762 
    763 /*
    764  * stge_start:		[ifnet interface function]
    765  *
    766  *	Start packet transmission on the interface.
    767  */
    768 static void
    769 stge_start(struct ifnet *ifp)
    770 {
    771 	struct stge_softc *sc = ifp->if_softc;
    772 	struct mbuf *m0;
    773 	struct stge_descsoft *ds;
    774 	struct stge_tfd *tfd;
    775 	bus_dmamap_t dmamap;
    776 	int error, firsttx, nexttx, opending, seg, totlen;
    777 	uint64_t csum_flags;
    778 
    779 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    780 		return;
    781 
    782 	/*
    783 	 * Remember the previous number of pending transmissions
    784 	 * and the first descriptor we will use.
    785 	 */
    786 	opending = sc->sc_txpending;
    787 	firsttx = STGE_NEXTTX(sc->sc_txlast);
    788 
    789 	/*
    790 	 * Loop through the send queue, setting up transmit descriptors
    791 	 * until we drain the queue, or use up all available transmit
    792 	 * descriptors.
    793 	 */
    794 	for (;;) {
    795 		struct m_tag *mtag;
    796 		uint64_t tfc;
    797 
    798 		/*
    799 		 * Grab a packet off the queue.
    800 		 */
    801 		IFQ_POLL(&ifp->if_snd, m0);
    802 		if (m0 == NULL)
    803 			break;
    804 
    805 		/*
    806 		 * Leave one unused descriptor at the end of the
    807 		 * list to prevent wrapping completely around.
    808 		 */
    809 		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
    810 			STGE_EVCNT_INCR(&sc->sc_ev_txstall);
    811 			break;
    812 		}
    813 
    814 		/*
    815 		 * See if we have any VLAN stuff.
    816 		 */
    817 		mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
    818 
    819 		/*
    820 		 * Get the last and next available transmit descriptor.
    821 		 */
    822 		nexttx = STGE_NEXTTX(sc->sc_txlast);
    823 		tfd = &sc->sc_txdescs[nexttx];
    824 		ds = &sc->sc_txsoft[nexttx];
    825 
    826 		dmamap = ds->ds_dmamap;
    827 
    828 		/*
    829 		 * Load the DMA map.  If this fails, the packet either
    830 		 * didn't fit in the alloted number of segments, or we
    831 		 * were short on resources.  For the too-many-segments
    832 		 * case, we simply report an error and drop the packet,
    833 		 * since we can't sanely copy a jumbo packet to a single
    834 		 * buffer.
    835 		 */
    836 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    837 		    BUS_DMA_NOWAIT);
    838 		if (error) {
    839 			if (error == EFBIG) {
    840 				printf("%s: Tx packet consumes too many "
    841 				    "DMA segments, dropping...\n",
    842 				    device_xname(&sc->sc_dev));
    843 				IFQ_DEQUEUE(&ifp->if_snd, m0);
    844 				m_freem(m0);
    845 				continue;
    846 			}
    847 			/*
    848 			 * Short on resources, just stop for now.
    849 			 */
    850 			break;
    851 		}
    852 
    853 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    854 
    855 		/*
    856 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    857 		 */
    858 
    859 		/* Sync the DMA map. */
    860 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    861 		    BUS_DMASYNC_PREWRITE);
    862 
    863 		/* Initialize the fragment list. */
    864 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
    865 			tfd->tfd_frags[seg].frag_word0 =
    866 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
    867 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
    868 			totlen += dmamap->dm_segs[seg].ds_len;
    869 		}
    870 
    871 #ifdef STGE_EVENT_COUNTERS
    872 		switch (dmamap->dm_nsegs) {
    873 		case 1:
    874 			STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
    875 			break;
    876 		case 2:
    877 			STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
    878 			break;
    879 		case 3:
    880 			STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
    881 			break;
    882 		case 4:
    883 			STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
    884 			break;
    885 		case 5:
    886 			STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
    887 			break;
    888 		default:
    889 			STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
    890 			break;
    891 		}
    892 #endif /* STGE_EVENT_COUNTERS */
    893 
    894 		/*
    895 		 * Initialize checksumming flags in the descriptor.
    896 		 * Byte-swap constants so the compiler can optimize.
    897 		 */
    898 		csum_flags = 0;
    899 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
    900 			STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
    901 			csum_flags |= TFD_IPChecksumEnable;
    902 		}
    903 
    904 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
    905 			STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
    906 			csum_flags |= TFD_TCPChecksumEnable;
    907 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
    908 			STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
    909 			csum_flags |= TFD_UDPChecksumEnable;
    910 		}
    911 
    912 		/*
    913 		 * Initialize the descriptor and give it to the chip.
    914 		 * Check to see if we have a VLAN tag to insert.
    915 		 */
    916 
    917 		tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
    918 		    TFD_FragCount(seg) | csum_flags |
    919 		    (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
    920 			TFD_TxDMAIndicate : 0);
    921 		if (mtag) {
    922 #if	0
    923 			struct ether_header *eh =
    924 			    mtod(m0, struct ether_header *);
    925 			u_int16_t etype = ntohs(eh->ether_type);
    926 			printf("%s: xmit (tag %d) etype %x\n",
    927 			   ifp->if_xname, *mtod(n, int *), etype);
    928 #endif
    929 			tfc |= TFD_VLANTagInsert |
    930 #ifdef	STGE_VLAN_CFI
    931 			    TFD_CFI |
    932 #endif
    933 			    TFD_VID(VLAN_TAG_VALUE(mtag));
    934 		}
    935 		tfd->tfd_control = htole64(tfc);
    936 
    937 		/* Sync the descriptor. */
    938 		STGE_CDTXSYNC(sc, nexttx,
    939 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    940 
    941 		/*
    942 		 * Kick the transmit DMA logic.
    943 		 */
    944 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
    945 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
    946 
    947 		/*
    948 		 * Store a pointer to the packet so we can free it later.
    949 		 */
    950 		ds->ds_mbuf = m0;
    951 
    952 		/* Advance the tx pointer. */
    953 		sc->sc_txpending++;
    954 		sc->sc_txlast = nexttx;
    955 
    956 #if NBPFILTER > 0
    957 		/*
    958 		 * Pass the packet to any BPF listeners.
    959 		 */
    960 		if (ifp->if_bpf)
    961 			bpf_mtap(ifp->if_bpf, m0);
    962 #endif /* NBPFILTER > 0 */
    963 	}
    964 
    965 	if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
    966 		/* No more slots left; notify upper layer. */
    967 		ifp->if_flags |= IFF_OACTIVE;
    968 	}
    969 
    970 	if (sc->sc_txpending != opending) {
    971 		/*
    972 		 * We enqueued packets.  If the transmitter was idle,
    973 		 * reset the txdirty pointer.
    974 		 */
    975 		if (opending == 0)
    976 			sc->sc_txdirty = firsttx;
    977 
    978 		/* Set a watchdog timer in case the chip flakes out. */
    979 		ifp->if_timer = 5;
    980 	}
    981 }
    982 
    983 /*
    984  * stge_watchdog:	[ifnet interface function]
    985  *
    986  *	Watchdog timer handler.
    987  */
    988 static void
    989 stge_watchdog(struct ifnet *ifp)
    990 {
    991 	struct stge_softc *sc = ifp->if_softc;
    992 
    993 	/*
    994 	 * Sweep up first, since we don't interrupt every frame.
    995 	 */
    996 	stge_txintr(sc);
    997 	if (sc->sc_txpending != 0) {
    998 		printf("%s: device timeout\n", device_xname(&sc->sc_dev));
    999 		ifp->if_oerrors++;
   1000 
   1001 		(void) stge_init(ifp);
   1002 
   1003 		/* Try to get more packets going. */
   1004 		stge_start(ifp);
   1005 	}
   1006 }
   1007 
   1008 /*
   1009  * stge_ioctl:		[ifnet interface function]
   1010  *
   1011  *	Handle control requests from the operator.
   1012  */
   1013 static int
   1014 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1015 {
   1016 	struct stge_softc *sc = ifp->if_softc;
   1017 	int s, error;
   1018 
   1019 	s = splnet();
   1020 
   1021 	error = ether_ioctl(ifp, cmd, data);
   1022 	if (error == ENETRESET) {
   1023 		error = 0;
   1024 
   1025 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1026 			;
   1027 		else if (ifp->if_flags & IFF_RUNNING) {
   1028 			/*
   1029 			 * Multicast list has changed; set the hardware filter
   1030 			 * accordingly.
   1031 			 */
   1032 			stge_set_filter(sc);
   1033 		}
   1034 	}
   1035 
   1036 	/* Try to get more packets going. */
   1037 	stge_start(ifp);
   1038 
   1039 	splx(s);
   1040 	return (error);
   1041 }
   1042 
   1043 /*
   1044  * stge_intr:
   1045  *
   1046  *	Interrupt service routine.
   1047  */
   1048 static int
   1049 stge_intr(void *arg)
   1050 {
   1051 	struct stge_softc *sc = arg;
   1052 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1053 	uint32_t txstat;
   1054 	int wantinit;
   1055 	uint16_t isr;
   1056 
   1057 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
   1058 	     IS_InterruptStatus) == 0)
   1059 		return (0);
   1060 
   1061 	for (wantinit = 0; wantinit == 0;) {
   1062 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
   1063 		if ((isr & sc->sc_IntEnable) == 0)
   1064 			break;
   1065 
   1066 		/* Host interface errors. */
   1067 		if (isr & IS_HostError) {
   1068 			printf("%s: Host interface error\n",
   1069 			    device_xname(&sc->sc_dev));
   1070 			wantinit = 1;
   1071 			continue;
   1072 		}
   1073 
   1074 		/* Receive interrupts. */
   1075 		if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
   1076 			STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
   1077 			stge_rxintr(sc);
   1078 			if (isr & IS_RFDListEnd) {
   1079 				printf("%s: receive ring overflow\n",
   1080 				    device_xname(&sc->sc_dev));
   1081 				/*
   1082 				 * XXX Should try to recover from this
   1083 				 * XXX more gracefully.
   1084 				 */
   1085 				wantinit = 1;
   1086 			}
   1087 		}
   1088 
   1089 		/* Transmit interrupts. */
   1090 		if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
   1091 #ifdef STGE_EVENT_COUNTERS
   1092 			if (isr & IS_TxDMAComplete)
   1093 				STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
   1094 #endif
   1095 			stge_txintr(sc);
   1096 		}
   1097 
   1098 		/* Statistics overflow. */
   1099 		if (isr & IS_UpdateStats)
   1100 			stge_stats_update(sc);
   1101 
   1102 		/* Transmission errors. */
   1103 		if (isr & IS_TxComplete) {
   1104 			STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
   1105 			for (;;) {
   1106 				txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
   1107 				    STGE_TxStatus);
   1108 				if ((txstat & TS_TxComplete) == 0)
   1109 					break;
   1110 				if (txstat & TS_TxUnderrun) {
   1111 					sc->sc_txthresh++;
   1112 					if (sc->sc_txthresh > 0x0fff)
   1113 						sc->sc_txthresh = 0x0fff;
   1114 					printf("%s: transmit underrun, new "
   1115 					    "threshold: %d bytes\n",
   1116 					    device_xname(&sc->sc_dev),
   1117 					    sc->sc_txthresh << 5);
   1118 				}
   1119 				if (txstat & TS_MaxCollisions)
   1120 					printf("%s: excessive collisions\n",
   1121 					    device_xname(&sc->sc_dev));
   1122 			}
   1123 			wantinit = 1;
   1124 		}
   1125 
   1126 	}
   1127 
   1128 	if (wantinit)
   1129 		stge_init(ifp);
   1130 
   1131 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
   1132 	    sc->sc_IntEnable);
   1133 
   1134 	/* Try to get more packets going. */
   1135 	stge_start(ifp);
   1136 
   1137 	return (1);
   1138 }
   1139 
   1140 /*
   1141  * stge_txintr:
   1142  *
   1143  *	Helper; handle transmit interrupts.
   1144  */
   1145 static void
   1146 stge_txintr(struct stge_softc *sc)
   1147 {
   1148 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1149 	struct stge_descsoft *ds;
   1150 	uint64_t control;
   1151 	int i;
   1152 
   1153 	ifp->if_flags &= ~IFF_OACTIVE;
   1154 
   1155 	/*
   1156 	 * Go through our Tx list and free mbufs for those
   1157 	 * frames which have been transmitted.
   1158 	 */
   1159 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
   1160 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
   1161 		ds = &sc->sc_txsoft[i];
   1162 
   1163 		STGE_CDTXSYNC(sc, i,
   1164 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1165 
   1166 		control = le64toh(sc->sc_txdescs[i].tfd_control);
   1167 		if ((control & TFD_TFDDone) == 0)
   1168 			break;
   1169 
   1170 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
   1171 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1172 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1173 		m_freem(ds->ds_mbuf);
   1174 		ds->ds_mbuf = NULL;
   1175 	}
   1176 
   1177 	/* Update the dirty transmit buffer pointer. */
   1178 	sc->sc_txdirty = i;
   1179 
   1180 	/*
   1181 	 * If there are no more pending transmissions, cancel the watchdog
   1182 	 * timer.
   1183 	 */
   1184 	if (sc->sc_txpending == 0)
   1185 		ifp->if_timer = 0;
   1186 }
   1187 
   1188 /*
   1189  * stge_rxintr:
   1190  *
   1191  *	Helper; handle receive interrupts.
   1192  */
   1193 static void
   1194 stge_rxintr(struct stge_softc *sc)
   1195 {
   1196 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1197 	struct stge_descsoft *ds;
   1198 	struct mbuf *m, *tailm;
   1199 	uint64_t status;
   1200 	int i, len;
   1201 
   1202 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
   1203 		ds = &sc->sc_rxsoft[i];
   1204 
   1205 		STGE_CDRXSYNC(sc, i,
   1206 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1207 
   1208 		status = le64toh(sc->sc_rxdescs[i].rfd_status);
   1209 
   1210 		if ((status & RFD_RFDDone) == 0)
   1211 			break;
   1212 
   1213 		if (__predict_false(sc->sc_rxdiscard)) {
   1214 			STGE_INIT_RXDESC(sc, i);
   1215 			if (status & RFD_FrameEnd) {
   1216 				/* Reset our state. */
   1217 				sc->sc_rxdiscard = 0;
   1218 			}
   1219 			continue;
   1220 		}
   1221 
   1222 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1223 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1224 
   1225 		m = ds->ds_mbuf;
   1226 
   1227 		/*
   1228 		 * Add a new receive buffer to the ring.
   1229 		 */
   1230 		if (stge_add_rxbuf(sc, i) != 0) {
   1231 			/*
   1232 			 * Failed, throw away what we've done so
   1233 			 * far, and discard the rest of the packet.
   1234 			 */
   1235 			ifp->if_ierrors++;
   1236 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1237 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1238 			STGE_INIT_RXDESC(sc, i);
   1239 			if ((status & RFD_FrameEnd) == 0)
   1240 				sc->sc_rxdiscard = 1;
   1241 			if (sc->sc_rxhead != NULL)
   1242 				m_freem(sc->sc_rxhead);
   1243 			STGE_RXCHAIN_RESET(sc);
   1244 			continue;
   1245 		}
   1246 
   1247 #ifdef DIAGNOSTIC
   1248 		if (status & RFD_FrameStart) {
   1249 			KASSERT(sc->sc_rxhead == NULL);
   1250 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
   1251 		}
   1252 #endif
   1253 
   1254 		STGE_RXCHAIN_LINK(sc, m);
   1255 
   1256 		/*
   1257 		 * If this is not the end of the packet, keep
   1258 		 * looking.
   1259 		 */
   1260 		if ((status & RFD_FrameEnd) == 0) {
   1261 			sc->sc_rxlen += m->m_len;
   1262 			continue;
   1263 		}
   1264 
   1265 		/*
   1266 		 * Okay, we have the entire packet now...
   1267 		 */
   1268 		*sc->sc_rxtailp = NULL;
   1269 		m = sc->sc_rxhead;
   1270 		tailm = sc->sc_rxtail;
   1271 
   1272 		STGE_RXCHAIN_RESET(sc);
   1273 
   1274 		/*
   1275 		 * If the packet had an error, drop it.  Note we
   1276 		 * count the error later in the periodic stats update.
   1277 		 */
   1278 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
   1279 			      RFD_RxAlignmentError | RFD_RxFCSError |
   1280 			      RFD_RxLengthError)) {
   1281 			m_freem(m);
   1282 			continue;
   1283 		}
   1284 
   1285 		/*
   1286 		 * No errors.
   1287 		 *
   1288 		 * Note we have configured the chip to not include
   1289 		 * the CRC at the end of the packet.
   1290 		 */
   1291 		len = RFD_RxDMAFrameLen(status);
   1292 		tailm->m_len = len - sc->sc_rxlen;
   1293 
   1294 		/*
   1295 		 * If the packet is small enough to fit in a
   1296 		 * single header mbuf, allocate one and copy
   1297 		 * the data into it.  This greatly reduces
   1298 		 * memory consumption when we receive lots
   1299 		 * of small packets.
   1300 		 */
   1301 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
   1302 			struct mbuf *nm;
   1303 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1304 			if (nm == NULL) {
   1305 				ifp->if_ierrors++;
   1306 				m_freem(m);
   1307 				continue;
   1308 			}
   1309 			nm->m_data += 2;
   1310 			nm->m_pkthdr.len = nm->m_len = len;
   1311 			m_copydata(m, 0, len, mtod(nm, void *));
   1312 			m_freem(m);
   1313 			m = nm;
   1314 		}
   1315 
   1316 		/*
   1317 		 * Set the incoming checksum information for the packet.
   1318 		 */
   1319 		if (status & RFD_IPDetected) {
   1320 			STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1321 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1322 			if (status & RFD_IPError)
   1323 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1324 			if (status & RFD_TCPDetected) {
   1325 				STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   1326 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1327 				if (status & RFD_TCPError)
   1328 					m->m_pkthdr.csum_flags |=
   1329 					    M_CSUM_TCP_UDP_BAD;
   1330 			} else if (status & RFD_UDPDetected) {
   1331 				STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   1332 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1333 				if (status & RFD_UDPError)
   1334 					m->m_pkthdr.csum_flags |=
   1335 					    M_CSUM_TCP_UDP_BAD;
   1336 			}
   1337 		}
   1338 
   1339 		m->m_pkthdr.rcvif = ifp;
   1340 		m->m_pkthdr.len = len;
   1341 
   1342 #if NBPFILTER > 0
   1343 		/*
   1344 		 * Pass this up to any BPF listeners, but only
   1345 		 * pass if up the stack if it's for us.
   1346 		 */
   1347 		if (ifp->if_bpf)
   1348 			bpf_mtap(ifp->if_bpf, m);
   1349 #endif /* NBPFILTER > 0 */
   1350 #ifdef	STGE_VLAN_UNTAG
   1351 		/*
   1352 		 * Check for VLAN tagged packets
   1353 		 */
   1354 		if (status & RFD_VLANDetected)
   1355 			VLAN_INPUT_TAG(ifp, m, RFD_TCI(status), continue);
   1356 
   1357 #endif
   1358 #if	0
   1359 		if (status & RFD_VLANDetected) {
   1360 			struct ether_header *eh;
   1361 			u_int16_t etype;
   1362 
   1363 			eh = mtod(m, struct ether_header *);
   1364 			etype = ntohs(eh->ether_type);
   1365 			printf("%s: VLANtag detected (TCI %d) etype %x\n",
   1366 			    ifp->if_xname, (u_int16_t) RFD_TCI(status),
   1367 			    etype);
   1368 		}
   1369 #endif
   1370 		/* Pass it on. */
   1371 		(*ifp->if_input)(ifp, m);
   1372 	}
   1373 
   1374 	/* Update the receive pointer. */
   1375 	sc->sc_rxptr = i;
   1376 }
   1377 
   1378 /*
   1379  * stge_tick:
   1380  *
   1381  *	One second timer, used to tick the MII.
   1382  */
   1383 static void
   1384 stge_tick(void *arg)
   1385 {
   1386 	struct stge_softc *sc = arg;
   1387 	int s;
   1388 
   1389 	s = splnet();
   1390 	mii_tick(&sc->sc_mii);
   1391 	stge_stats_update(sc);
   1392 	splx(s);
   1393 
   1394 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
   1395 }
   1396 
   1397 /*
   1398  * stge_stats_update:
   1399  *
   1400  *	Read the TC9021 statistics counters.
   1401  */
   1402 static void
   1403 stge_stats_update(struct stge_softc *sc)
   1404 {
   1405 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1406 	bus_space_tag_t st = sc->sc_st;
   1407 	bus_space_handle_t sh = sc->sc_sh;
   1408 
   1409 	(void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
   1410 
   1411 	ifp->if_ipackets +=
   1412 	    bus_space_read_4(st, sh, STGE_FramesRcvdOk);
   1413 
   1414 	ifp->if_ierrors +=
   1415 	    (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
   1416 
   1417 	(void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
   1418 
   1419 	ifp->if_opackets +=
   1420 	    bus_space_read_4(st, sh, STGE_FramesXmtdOk);
   1421 
   1422 	ifp->if_collisions +=
   1423 	    bus_space_read_4(st, sh, STGE_LateCollisions) +
   1424 	    bus_space_read_4(st, sh, STGE_MultiColFrames) +
   1425 	    bus_space_read_4(st, sh, STGE_SingleColFrames);
   1426 
   1427 	ifp->if_oerrors +=
   1428 	    (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
   1429 	    (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
   1430 }
   1431 
   1432 /*
   1433  * stge_reset:
   1434  *
   1435  *	Perform a soft reset on the TC9021.
   1436  */
   1437 static void
   1438 stge_reset(struct stge_softc *sc)
   1439 {
   1440 	uint32_t ac;
   1441 	int i;
   1442 
   1443 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
   1444 
   1445 	/*
   1446 	 * Only assert RstOut if we're fiber.  We need GMII clocks
   1447 	 * to be present in order for the reset to complete on fiber
   1448 	 * cards.
   1449 	 */
   1450 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
   1451 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
   1452 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
   1453 	    (sc->sc_usefiber ? AC_RstOut : 0));
   1454 
   1455 	delay(50000);
   1456 
   1457 	for (i = 0; i < STGE_TIMEOUT; i++) {
   1458 		delay(5000);
   1459 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
   1460 		     AC_ResetBusy) == 0)
   1461 			break;
   1462 	}
   1463 
   1464 	if (i == STGE_TIMEOUT)
   1465 		printf("%s: reset failed to complete\n", device_xname(&sc->sc_dev));
   1466 
   1467 	delay(1000);
   1468 }
   1469 
   1470 /*
   1471  * stge_init:		[ ifnet interface function ]
   1472  *
   1473  *	Initialize the interface.  Must be called at splnet().
   1474  */
   1475 static int
   1476 stge_init(struct ifnet *ifp)
   1477 {
   1478 	struct stge_softc *sc = ifp->if_softc;
   1479 	bus_space_tag_t st = sc->sc_st;
   1480 	bus_space_handle_t sh = sc->sc_sh;
   1481 	struct stge_descsoft *ds;
   1482 	int i, error = 0;
   1483 
   1484 	/*
   1485 	 * Cancel any pending I/O.
   1486 	 */
   1487 	stge_stop(ifp, 0);
   1488 
   1489 	/*
   1490 	 * Reset the chip to a known state.
   1491 	 */
   1492 	stge_reset(sc);
   1493 
   1494 	/*
   1495 	 * Initialize the transmit descriptor ring.
   1496 	 */
   1497 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1498 	for (i = 0; i < STGE_NTXDESC; i++) {
   1499 		sc->sc_txdescs[i].tfd_next = htole64(
   1500 		    STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
   1501 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
   1502 	}
   1503 	sc->sc_txpending = 0;
   1504 	sc->sc_txdirty = 0;
   1505 	sc->sc_txlast = STGE_NTXDESC - 1;
   1506 
   1507 	/*
   1508 	 * Initialize the receive descriptor and receive job
   1509 	 * descriptor rings.
   1510 	 */
   1511 	for (i = 0; i < STGE_NRXDESC; i++) {
   1512 		ds = &sc->sc_rxsoft[i];
   1513 		if (ds->ds_mbuf == NULL) {
   1514 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
   1515 				printf("%s: unable to allocate or map rx "
   1516 				    "buffer %d, error = %d\n",
   1517 				    device_xname(&sc->sc_dev), i, error);
   1518 				/*
   1519 				 * XXX Should attempt to run with fewer receive
   1520 				 * XXX buffers instead of just failing.
   1521 				 */
   1522 				stge_rxdrain(sc);
   1523 				goto out;
   1524 			}
   1525 		} else
   1526 			STGE_INIT_RXDESC(sc, i);
   1527 	}
   1528 	sc->sc_rxptr = 0;
   1529 	sc->sc_rxdiscard = 0;
   1530 	STGE_RXCHAIN_RESET(sc);
   1531 
   1532 	/* Set the station address. */
   1533 	for (i = 0; i < 6; i++)
   1534 		bus_space_write_1(st, sh, STGE_StationAddress0 + i,
   1535 		    CLLADDR(ifp->if_sadl)[i]);
   1536 
   1537 	/*
   1538 	 * Set the statistics masks.  Disable all the RMON stats,
   1539 	 * and disable selected stats in the non-RMON stats registers.
   1540 	 */
   1541 	bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
   1542 	bus_space_write_4(st, sh, STGE_StatisticsMask,
   1543 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
   1544 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
   1545 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
   1546 	    (1U << 21));
   1547 
   1548 	/* Set up the receive filter. */
   1549 	stge_set_filter(sc);
   1550 
   1551 	/*
   1552 	 * Give the transmit and receive ring to the chip.
   1553 	 */
   1554 	bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
   1555 	bus_space_write_4(st, sh, STGE_TFDListPtrLo,
   1556 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
   1557 
   1558 	bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
   1559 	bus_space_write_4(st, sh, STGE_RFDListPtrLo,
   1560 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
   1561 
   1562 	/*
   1563 	 * Initialize the Tx auto-poll period.  It's OK to make this number
   1564 	 * large (255 is the max, but we use 127) -- we explicitly kick the
   1565 	 * transmit engine when there's actually a packet.
   1566 	 */
   1567 	bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
   1568 
   1569 	/* ..and the Rx auto-poll period. */
   1570 	bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
   1571 
   1572 	/* Initialize the Tx start threshold. */
   1573 	bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
   1574 
   1575 	/* RX DMA thresholds, from linux */
   1576 	bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
   1577 	bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
   1578 
   1579 	/*
   1580 	 * Initialize the Rx DMA interrupt control register.  We
   1581 	 * request an interrupt after every incoming packet, but
   1582 	 * defer it for 32us (64 * 512 ns).  When the number of
   1583 	 * interrupts pending reaches 8, we stop deferring the
   1584 	 * interrupt, and signal it immediately.
   1585 	 */
   1586 	bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
   1587 	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
   1588 
   1589 	/*
   1590 	 * Initialize the interrupt mask.
   1591 	 */
   1592 	sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
   1593 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
   1594 	bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
   1595 	bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
   1596 
   1597 	/*
   1598 	 * Configure the DMA engine.
   1599 	 * XXX Should auto-tune TxBurstLimit.
   1600 	 */
   1601 	bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
   1602 	    DMAC_TxBurstLimit(3));
   1603 
   1604 	/*
   1605 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
   1606 	 * FIFO, and send an un-PAUSE frame when the FIFO is totally
   1607 	 * empty again.
   1608 	 */
   1609 	bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
   1610 	bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
   1611 
   1612 	/*
   1613 	 * Set the maximum frame size.
   1614 	 */
   1615 	bus_space_write_2(st, sh, STGE_MaxFrameSize,
   1616 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
   1617 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
   1618 	     ETHER_VLAN_ENCAP_LEN : 0));
   1619 
   1620 	/*
   1621 	 * Initialize MacCtrl -- do it before setting the media,
   1622 	 * as setting the media will actually program the register.
   1623 	 *
   1624 	 * Note: We have to poke the IFS value before poking
   1625 	 * anything else.
   1626 	 */
   1627 	sc->sc_MACCtrl = MC_IFSSelect(0);
   1628 	bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
   1629 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
   1630 #ifdef	STGE_VLAN_UNTAG
   1631 	sc->sc_MACCtrl |= MC_AutoVLANuntagging;
   1632 #endif
   1633 
   1634 	if (sc->sc_rev >= 6) {		/* >= B.2 */
   1635 		/* Multi-frag frame bug work-around. */
   1636 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1637 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
   1638 
   1639 		/* Tx Poll Now bug work-around. */
   1640 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1641 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
   1642 		/* XXX ? from linux */
   1643 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1644 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
   1645 	}
   1646 
   1647 	/*
   1648 	 * Set the current media.
   1649 	 */
   1650 	if ((error = ether_mediachange(ifp)) != 0)
   1651 		goto out;
   1652 
   1653 	/*
   1654 	 * Start the one second MII clock.
   1655 	 */
   1656 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
   1657 
   1658 	/*
   1659 	 * ...all done!
   1660 	 */
   1661 	ifp->if_flags |= IFF_RUNNING;
   1662 	ifp->if_flags &= ~IFF_OACTIVE;
   1663 
   1664  out:
   1665 	if (error)
   1666 		printf("%s: interface not running\n", device_xname(&sc->sc_dev));
   1667 	return (error);
   1668 }
   1669 
   1670 /*
   1671  * stge_drain:
   1672  *
   1673  *	Drain the receive queue.
   1674  */
   1675 static void
   1676 stge_rxdrain(struct stge_softc *sc)
   1677 {
   1678 	struct stge_descsoft *ds;
   1679 	int i;
   1680 
   1681 	for (i = 0; i < STGE_NRXDESC; i++) {
   1682 		ds = &sc->sc_rxsoft[i];
   1683 		if (ds->ds_mbuf != NULL) {
   1684 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1685 			ds->ds_mbuf->m_next = NULL;
   1686 			m_freem(ds->ds_mbuf);
   1687 			ds->ds_mbuf = NULL;
   1688 		}
   1689 	}
   1690 }
   1691 
   1692 /*
   1693  * stge_stop:		[ ifnet interface function ]
   1694  *
   1695  *	Stop transmission on the interface.
   1696  */
   1697 static void
   1698 stge_stop(struct ifnet *ifp, int disable)
   1699 {
   1700 	struct stge_softc *sc = ifp->if_softc;
   1701 	struct stge_descsoft *ds;
   1702 	int i;
   1703 
   1704 	/*
   1705 	 * Stop the one second clock.
   1706 	 */
   1707 	callout_stop(&sc->sc_tick_ch);
   1708 
   1709 	/* Down the MII. */
   1710 	mii_down(&sc->sc_mii);
   1711 
   1712 	/*
   1713 	 * Disable interrupts.
   1714 	 */
   1715 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
   1716 
   1717 	/*
   1718 	 * Stop receiver, transmitter, and stats update.
   1719 	 */
   1720 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
   1721 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
   1722 
   1723 	/*
   1724 	 * Stop the transmit and receive DMA.
   1725 	 */
   1726 	stge_dma_wait(sc);
   1727 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
   1728 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
   1729 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
   1730 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
   1731 
   1732 	/*
   1733 	 * Release any queued transmit buffers.
   1734 	 */
   1735 	for (i = 0; i < STGE_NTXDESC; i++) {
   1736 		ds = &sc->sc_txsoft[i];
   1737 		if (ds->ds_mbuf != NULL) {
   1738 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1739 			m_freem(ds->ds_mbuf);
   1740 			ds->ds_mbuf = NULL;
   1741 		}
   1742 	}
   1743 
   1744 	/*
   1745 	 * Mark the interface down and cancel the watchdog timer.
   1746 	 */
   1747 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1748 	ifp->if_timer = 0;
   1749 
   1750 	if (disable)
   1751 		stge_rxdrain(sc);
   1752 }
   1753 
   1754 static int
   1755 stge_eeprom_wait(struct stge_softc *sc)
   1756 {
   1757 	int i;
   1758 
   1759 	for (i = 0; i < STGE_TIMEOUT; i++) {
   1760 		delay(1000);
   1761 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
   1762 		     EC_EepromBusy) == 0)
   1763 			return (0);
   1764 	}
   1765 	return (1);
   1766 }
   1767 
   1768 /*
   1769  * stge_read_eeprom:
   1770  *
   1771  *	Read data from the serial EEPROM.
   1772  */
   1773 static void
   1774 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
   1775 {
   1776 
   1777 	if (stge_eeprom_wait(sc))
   1778 		printf("%s: EEPROM failed to come ready\n",
   1779 		    device_xname(&sc->sc_dev));
   1780 
   1781 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
   1782 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
   1783 	if (stge_eeprom_wait(sc))
   1784 		printf("%s: EEPROM read timed out\n",
   1785 		    device_xname(&sc->sc_dev));
   1786 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
   1787 }
   1788 
   1789 /*
   1790  * stge_add_rxbuf:
   1791  *
   1792  *	Add a receive buffer to the indicated descriptor.
   1793  */
   1794 static int
   1795 stge_add_rxbuf(struct stge_softc *sc, int idx)
   1796 {
   1797 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
   1798 	struct mbuf *m;
   1799 	int error;
   1800 
   1801 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1802 	if (m == NULL)
   1803 		return (ENOBUFS);
   1804 
   1805 	MCLGET(m, M_DONTWAIT);
   1806 	if ((m->m_flags & M_EXT) == 0) {
   1807 		m_freem(m);
   1808 		return (ENOBUFS);
   1809 	}
   1810 
   1811 	m->m_data = m->m_ext.ext_buf + 2;
   1812 	m->m_len = MCLBYTES - 2;
   1813 
   1814 	if (ds->ds_mbuf != NULL)
   1815 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1816 
   1817 	ds->ds_mbuf = m;
   1818 
   1819 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
   1820 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1821 	if (error) {
   1822 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1823 		    device_xname(&sc->sc_dev), idx, error);
   1824 		panic("stge_add_rxbuf");	/* XXX */
   1825 	}
   1826 
   1827 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1828 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1829 
   1830 	STGE_INIT_RXDESC(sc, idx);
   1831 
   1832 	return (0);
   1833 }
   1834 
   1835 /*
   1836  * stge_set_filter:
   1837  *
   1838  *	Set up the receive filter.
   1839  */
   1840 static void
   1841 stge_set_filter(struct stge_softc *sc)
   1842 {
   1843 	struct ethercom *ec = &sc->sc_ethercom;
   1844 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1845 	struct ether_multi *enm;
   1846 	struct ether_multistep step;
   1847 	uint32_t crc;
   1848 	uint32_t mchash[2];
   1849 
   1850 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
   1851 	if (ifp->if_flags & IFF_BROADCAST)
   1852 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
   1853 
   1854 	/* XXX: ST1023 only works in promiscuous mode */
   1855 	if (sc->sc_stge1023)
   1856 		ifp->if_flags |= IFF_PROMISC;
   1857 
   1858 	if (ifp->if_flags & IFF_PROMISC) {
   1859 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
   1860 		goto allmulti;
   1861 	}
   1862 
   1863 	/*
   1864 	 * Set up the multicast address filter by passing all multicast
   1865 	 * addresses through a CRC generator, and then using the low-order
   1866 	 * 6 bits as an index into the 64 bit multicast hash table.  The
   1867 	 * high order bits select the register, while the rest of the bits
   1868 	 * select the bit within the register.
   1869 	 */
   1870 
   1871 	memset(mchash, 0, sizeof(mchash));
   1872 
   1873 	ETHER_FIRST_MULTI(step, ec, enm);
   1874 	if (enm == NULL)
   1875 		goto done;
   1876 
   1877 	while (enm != NULL) {
   1878 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1879 			/*
   1880 			 * We must listen to a range of multicast addresses.
   1881 			 * For now, just accept all multicasts, rather than
   1882 			 * trying to set only those filter bits needed to match
   1883 			 * the range.  (At this time, the only use of address
   1884 			 * ranges is for IP multicast routing, for which the
   1885 			 * range is big enough to require all bits set.)
   1886 			 */
   1887 			goto allmulti;
   1888 		}
   1889 
   1890 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1891 
   1892 		/* Just want the 6 least significant bits. */
   1893 		crc &= 0x3f;
   1894 
   1895 		/* Set the corresponding bit in the hash table. */
   1896 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
   1897 
   1898 		ETHER_NEXT_MULTI(step, enm);
   1899 	}
   1900 
   1901 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
   1902 
   1903 	ifp->if_flags &= ~IFF_ALLMULTI;
   1904 	goto done;
   1905 
   1906  allmulti:
   1907 	ifp->if_flags |= IFF_ALLMULTI;
   1908 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
   1909 
   1910  done:
   1911 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1912 		/*
   1913 		 * Program the multicast hash table.
   1914 		 */
   1915 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
   1916 		    mchash[0]);
   1917 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
   1918 		    mchash[1]);
   1919 	}
   1920 
   1921 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
   1922 	    sc->sc_ReceiveMode);
   1923 }
   1924 
   1925 /*
   1926  * stge_mii_readreg:	[mii interface function]
   1927  *
   1928  *	Read a PHY register on the MII of the TC9021.
   1929  */
   1930 static int
   1931 stge_mii_readreg(device_t self, int phy, int reg)
   1932 {
   1933 
   1934 	return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
   1935 }
   1936 
   1937 /*
   1938  * stge_mii_writereg:	[mii interface function]
   1939  *
   1940  *	Write a PHY register on the MII of the TC9021.
   1941  */
   1942 static void
   1943 stge_mii_writereg(device_t self, int phy, int reg, int val)
   1944 {
   1945 
   1946 	mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
   1947 }
   1948 
   1949 /*
   1950  * stge_mii_statchg:	[mii interface function]
   1951  *
   1952  *	Callback from MII layer when media changes.
   1953  */
   1954 static void
   1955 stge_mii_statchg(device_t self)
   1956 {
   1957 	struct stge_softc *sc = device_private(self);
   1958 
   1959 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   1960 		sc->sc_MACCtrl |= MC_DuplexSelect;
   1961 	else
   1962 		sc->sc_MACCtrl &= ~MC_DuplexSelect;
   1963 
   1964 	/* XXX 802.1x flow-control? */
   1965 
   1966 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
   1967 }
   1968 
   1969 /*
   1970  * sste_mii_bitbang_read: [mii bit-bang interface function]
   1971  *
   1972  *	Read the MII serial port for the MII bit-bang module.
   1973  */
   1974 static uint32_t
   1975 stge_mii_bitbang_read(device_t self)
   1976 {
   1977 	struct stge_softc *sc = device_private(self);
   1978 
   1979 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
   1980 }
   1981 
   1982 /*
   1983  * stge_mii_bitbang_write: [mii big-bang interface function]
   1984  *
   1985  *	Write the MII serial port for the MII bit-bang module.
   1986  */
   1987 static void
   1988 stge_mii_bitbang_write(device_t self, uint32_t val)
   1989 {
   1990 	struct stge_softc *sc = device_private(self);
   1991 
   1992 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
   1993 	    val | sc->sc_PhyCtrl);
   1994 }
   1995