if_stge.c revision 1.44 1 /* $NetBSD: if_stge.c,v 1.44 2008/04/10 19:13:37 cegger Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the Sundance Tech. TC9021 10/100/1000
41 * Ethernet controller.
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.44 2008/04/10 19:13:37 cegger Exp $");
46
47 #include "bpfilter.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/socket.h>
56 #include <sys/ioctl.h>
57 #include <sys/errno.h>
58 #include <sys/device.h>
59 #include <sys/queue.h>
60
61 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
62
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_ether.h>
67
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71
72 #include <sys/bus.h>
73 #include <sys/intr.h>
74
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77 #include <dev/mii/mii_bitbang.h>
78
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 #include <dev/pci/pcidevs.h>
82
83 #include <dev/pci/if_stgereg.h>
84
85 /* #define STGE_CU_BUG 1 */
86 #define STGE_VLAN_UNTAG 1
87 /* #define STGE_VLAN_CFI 1 */
88
89 /*
90 * Transmit descriptor list size.
91 */
92 #define STGE_NTXDESC 256
93 #define STGE_NTXDESC_MASK (STGE_NTXDESC - 1)
94 #define STGE_NEXTTX(x) (((x) + 1) & STGE_NTXDESC_MASK)
95
96 /*
97 * Receive descriptor list size.
98 */
99 #define STGE_NRXDESC 256
100 #define STGE_NRXDESC_MASK (STGE_NRXDESC - 1)
101 #define STGE_NEXTRX(x) (((x) + 1) & STGE_NRXDESC_MASK)
102
103 /*
104 * Only interrupt every N frames. Must be a power-of-two.
105 */
106 #define STGE_TXINTR_SPACING 16
107 #define STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
108
109 /*
110 * Control structures are DMA'd to the TC9021 chip. We allocate them in
111 * a single clump that maps to a single DMA segment to make several things
112 * easier.
113 */
114 struct stge_control_data {
115 /*
116 * The transmit descriptors.
117 */
118 struct stge_tfd scd_txdescs[STGE_NTXDESC];
119
120 /*
121 * The receive descriptors.
122 */
123 struct stge_rfd scd_rxdescs[STGE_NRXDESC];
124 };
125
126 #define STGE_CDOFF(x) offsetof(struct stge_control_data, x)
127 #define STGE_CDTXOFF(x) STGE_CDOFF(scd_txdescs[(x)])
128 #define STGE_CDRXOFF(x) STGE_CDOFF(scd_rxdescs[(x)])
129
130 /*
131 * Software state for transmit and receive jobs.
132 */
133 struct stge_descsoft {
134 struct mbuf *ds_mbuf; /* head of our mbuf chain */
135 bus_dmamap_t ds_dmamap; /* our DMA map */
136 };
137
138 /*
139 * Software state per device.
140 */
141 struct stge_softc {
142 struct device sc_dev; /* generic device information */
143 bus_space_tag_t sc_st; /* bus space tag */
144 bus_space_handle_t sc_sh; /* bus space handle */
145 bus_dma_tag_t sc_dmat; /* bus DMA tag */
146 struct ethercom sc_ethercom; /* ethernet common data */
147 void *sc_sdhook; /* shutdown hook */
148 int sc_rev; /* silicon revision */
149
150 void *sc_ih; /* interrupt cookie */
151
152 struct mii_data sc_mii; /* MII/media information */
153
154 callout_t sc_tick_ch; /* tick callout */
155
156 bus_dmamap_t sc_cddmamap; /* control data DMA map */
157 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
158
159 /*
160 * Software state for transmit and receive descriptors.
161 */
162 struct stge_descsoft sc_txsoft[STGE_NTXDESC];
163 struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
164
165 /*
166 * Control data structures.
167 */
168 struct stge_control_data *sc_control_data;
169 #define sc_txdescs sc_control_data->scd_txdescs
170 #define sc_rxdescs sc_control_data->scd_rxdescs
171
172 #ifdef STGE_EVENT_COUNTERS
173 /*
174 * Event counters.
175 */
176 struct evcnt sc_ev_txstall; /* Tx stalled */
177 struct evcnt sc_ev_txdmaintr; /* Tx DMA interrupts */
178 struct evcnt sc_ev_txindintr; /* Tx Indicate interrupts */
179 struct evcnt sc_ev_rxintr; /* Rx interrupts */
180
181 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
182 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
183 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
184 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
185 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
186 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
187 struct evcnt sc_ev_txcopy; /* Tx packets that we had to copy */
188
189 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
190 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
191 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-bound */
192
193 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
194 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
195 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
196 #endif /* STGE_EVENT_COUNTERS */
197
198 int sc_txpending; /* number of Tx requests pending */
199 int sc_txdirty; /* first dirty Tx descriptor */
200 int sc_txlast; /* last used Tx descriptor */
201
202 int sc_rxptr; /* next ready Rx descriptor/descsoft */
203 int sc_rxdiscard;
204 int sc_rxlen;
205 struct mbuf *sc_rxhead;
206 struct mbuf *sc_rxtail;
207 struct mbuf **sc_rxtailp;
208
209 int sc_txthresh; /* Tx threshold */
210 uint32_t sc_usefiber:1; /* if we're fiber */
211 uint32_t sc_stge1023:1; /* are we a 1023 */
212 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
213 uint32_t sc_MACCtrl; /* prototype MacCtrl register */
214 uint16_t sc_IntEnable; /* prototype IntEnable register */
215 uint16_t sc_ReceiveMode; /* prototype ReceiveMode register */
216 uint8_t sc_PhyCtrl; /* prototype PhyCtrl register */
217 };
218
219 #define STGE_RXCHAIN_RESET(sc) \
220 do { \
221 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
222 *(sc)->sc_rxtailp = NULL; \
223 (sc)->sc_rxlen = 0; \
224 } while (/*CONSTCOND*/0)
225
226 #define STGE_RXCHAIN_LINK(sc, m) \
227 do { \
228 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
229 (sc)->sc_rxtailp = &(m)->m_next; \
230 } while (/*CONSTCOND*/0)
231
232 #ifdef STGE_EVENT_COUNTERS
233 #define STGE_EVCNT_INCR(ev) (ev)->ev_count++
234 #else
235 #define STGE_EVCNT_INCR(ev) /* nothing */
236 #endif
237
238 #define STGE_CDTXADDR(sc, x) ((sc)->sc_cddma + STGE_CDTXOFF((x)))
239 #define STGE_CDRXADDR(sc, x) ((sc)->sc_cddma + STGE_CDRXOFF((x)))
240
241 #define STGE_CDTXSYNC(sc, x, ops) \
242 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
243 STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
244
245 #define STGE_CDRXSYNC(sc, x, ops) \
246 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
247 STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
248
249 #define STGE_INIT_RXDESC(sc, x) \
250 do { \
251 struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
252 struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
253 \
254 /* \
255 * Note: We scoot the packet forward 2 bytes in the buffer \
256 * so that the payload after the Ethernet header is aligned \
257 * to a 4-byte boundary. \
258 */ \
259 __rfd->rfd_frag.frag_word0 = \
260 htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
261 FRAG_LEN(MCLBYTES - 2)); \
262 __rfd->rfd_next = \
263 htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x)))); \
264 __rfd->rfd_status = 0; \
265 STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
266 } while (/*CONSTCOND*/0)
267
268 #define STGE_TIMEOUT 1000
269
270 static void stge_start(struct ifnet *);
271 static void stge_watchdog(struct ifnet *);
272 static int stge_ioctl(struct ifnet *, u_long, void *);
273 static int stge_init(struct ifnet *);
274 static void stge_stop(struct ifnet *, int);
275
276 static void stge_shutdown(void *);
277
278 static void stge_reset(struct stge_softc *);
279 static void stge_rxdrain(struct stge_softc *);
280 static int stge_add_rxbuf(struct stge_softc *, int);
281 static void stge_read_eeprom(struct stge_softc *, int, uint16_t *);
282 static void stge_tick(void *);
283
284 static void stge_stats_update(struct stge_softc *);
285
286 static void stge_set_filter(struct stge_softc *);
287
288 static int stge_intr(void *);
289 static void stge_txintr(struct stge_softc *);
290 static void stge_rxintr(struct stge_softc *);
291
292 static int stge_mii_readreg(device_t, int, int);
293 static void stge_mii_writereg(device_t, int, int, int);
294 static void stge_mii_statchg(device_t);
295
296 static int stge_match(device_t, struct cfdata *, void *);
297 static void stge_attach(device_t, device_t, void *);
298
299 int stge_copy_small = 0;
300
301 CFATTACH_DECL(stge, sizeof(struct stge_softc),
302 stge_match, stge_attach, NULL, NULL);
303
304 static uint32_t stge_mii_bitbang_read(device_t);
305 static void stge_mii_bitbang_write(device_t, uint32_t);
306
307 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
308 stge_mii_bitbang_read,
309 stge_mii_bitbang_write,
310 {
311 PC_MgmtData, /* MII_BIT_MDO */
312 PC_MgmtData, /* MII_BIT_MDI */
313 PC_MgmtClk, /* MII_BIT_MDC */
314 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
315 0, /* MII_BIT_DIR_PHY_HOST */
316 }
317 };
318
319 /*
320 * Devices supported by this driver.
321 */
322 static const struct stge_product {
323 pci_vendor_id_t stge_vendor;
324 pci_product_id_t stge_product;
325 const char *stge_name;
326 } stge_products[] = {
327 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST1023,
328 "Sundance ST-1023 Gigabit Ethernet" },
329
330 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST2021,
331 "Sundance ST-2021 Gigabit Ethernet" },
332
333 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021,
334 "Tamarack TC9021 Gigabit Ethernet" },
335
336 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021_ALT,
337 "Tamarack TC9021 Gigabit Ethernet" },
338
339 /*
340 * The Sundance sample boards use the Sundance vendor ID,
341 * but the Tamarack product ID.
342 */
343 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021,
344 "Sundance TC9021 Gigabit Ethernet" },
345
346 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021_ALT,
347 "Sundance TC9021 Gigabit Ethernet" },
348
349 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL4000,
350 "D-Link DL-4000 Gigabit Ethernet" },
351
352 { PCI_VENDOR_ANTARES, PCI_PRODUCT_ANTARES_TC9021,
353 "Antares Gigabit Ethernet" },
354
355 { 0, 0,
356 NULL },
357 };
358
359 static const struct stge_product *
360 stge_lookup(const struct pci_attach_args *pa)
361 {
362 const struct stge_product *sp;
363
364 for (sp = stge_products; sp->stge_name != NULL; sp++) {
365 if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
366 PCI_PRODUCT(pa->pa_id) == sp->stge_product)
367 return (sp);
368 }
369 return (NULL);
370 }
371
372 static int
373 stge_match(device_t parent, struct cfdata *cf, void *aux)
374 {
375 struct pci_attach_args *pa = aux;
376
377 if (stge_lookup(pa) != NULL)
378 return (1);
379
380 return (0);
381 }
382
383 static void
384 stge_attach(device_t parent, device_t self, void *aux)
385 {
386 struct stge_softc *sc = device_private(self);
387 struct pci_attach_args *pa = aux;
388 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
389 pci_chipset_tag_t pc = pa->pa_pc;
390 pci_intr_handle_t ih;
391 const char *intrstr = NULL;
392 bus_space_tag_t iot, memt;
393 bus_space_handle_t ioh, memh;
394 bus_dma_segment_t seg;
395 int ioh_valid, memh_valid;
396 int i, rseg, error;
397 const struct stge_product *sp;
398 uint8_t enaddr[ETHER_ADDR_LEN];
399
400 callout_init(&sc->sc_tick_ch, 0);
401
402 sp = stge_lookup(pa);
403 if (sp == NULL) {
404 printf("\n");
405 panic("ste_attach: impossible");
406 }
407
408 sc->sc_rev = PCI_REVISION(pa->pa_class);
409
410 printf(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
411
412 /*
413 * Map the device.
414 */
415 ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
416 PCI_MAPREG_TYPE_IO, 0,
417 &iot, &ioh, NULL, NULL) == 0);
418 memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
419 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
420 &memt, &memh, NULL, NULL) == 0);
421
422 if (memh_valid) {
423 sc->sc_st = memt;
424 sc->sc_sh = memh;
425 } else if (ioh_valid) {
426 sc->sc_st = iot;
427 sc->sc_sh = ioh;
428 } else {
429 aprint_error_dev(&sc->sc_dev, "unable to map device registers\n");
430 return;
431 }
432
433 sc->sc_dmat = pa->pa_dmat;
434
435 /* Enable bus mastering. */
436 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
437 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
438 PCI_COMMAND_MASTER_ENABLE);
439
440 /* power up chip */
441 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
442 error != EOPNOTSUPP) {
443 aprint_error_dev(&sc->sc_dev, "cannot activate %d\n",
444 error);
445 return;
446 }
447 /*
448 * Map and establish our interrupt.
449 */
450 if (pci_intr_map(pa, &ih)) {
451 aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
452 return;
453 }
454 intrstr = pci_intr_string(pc, ih);
455 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
456 if (sc->sc_ih == NULL) {
457 aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
458 if (intrstr != NULL)
459 printf(" at %s", intrstr);
460 printf("\n");
461 return;
462 }
463 printf("%s: interrupting at %s\n", device_xname(&sc->sc_dev), intrstr);
464
465 /*
466 * Allocate the control data structures, and create and load the
467 * DMA map for it.
468 */
469 if ((error = bus_dmamem_alloc(sc->sc_dmat,
470 sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
471 0)) != 0) {
472 aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n",
473 error);
474 goto fail_0;
475 }
476
477 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
478 sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
479 BUS_DMA_COHERENT)) != 0) {
480 aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
481 error);
482 goto fail_1;
483 }
484
485 if ((error = bus_dmamap_create(sc->sc_dmat,
486 sizeof(struct stge_control_data), 1,
487 sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
488 aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
489 "error = %d\n", error);
490 goto fail_2;
491 }
492
493 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
494 sc->sc_control_data, sizeof(struct stge_control_data), NULL,
495 0)) != 0) {
496 aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
497 error);
498 goto fail_3;
499 }
500
501 /*
502 * Create the transmit buffer DMA maps. Note that rev B.3
503 * and earlier seem to have a bug regarding multi-fragment
504 * packets. We need to limit the number of Tx segments on
505 * such chips to 1.
506 */
507 for (i = 0; i < STGE_NTXDESC; i++) {
508 if ((error = bus_dmamap_create(sc->sc_dmat,
509 ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
510 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
511 aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
512 "error = %d\n", i, error);
513 goto fail_4;
514 }
515 }
516
517 /*
518 * Create the receive buffer DMA maps.
519 */
520 for (i = 0; i < STGE_NRXDESC; i++) {
521 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
522 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
523 aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
524 "error = %d\n", i, error);
525 goto fail_5;
526 }
527 sc->sc_rxsoft[i].ds_mbuf = NULL;
528 }
529
530 /*
531 * Determine if we're copper or fiber. It affects how we
532 * reset the card.
533 */
534 if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
535 AC_PhyMedia)
536 sc->sc_usefiber = 1;
537 else
538 sc->sc_usefiber = 0;
539
540 /*
541 * Reset the chip to a known state.
542 */
543 stge_reset(sc);
544
545 /*
546 * Reading the station address from the EEPROM doesn't seem
547 * to work, at least on my sample boards. Instead, since
548 * the reset sequence does AutoInit, read it from the station
549 * address registers. For Sundance 1023 you can only read it
550 * from EEPROM.
551 */
552 if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
553 enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
554 STGE_StationAddress0) & 0xff;
555 enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
556 STGE_StationAddress0) >> 8;
557 enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
558 STGE_StationAddress1) & 0xff;
559 enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
560 STGE_StationAddress1) >> 8;
561 enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
562 STGE_StationAddress2) & 0xff;
563 enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
564 STGE_StationAddress2) >> 8;
565 sc->sc_stge1023 = 0;
566 } else {
567 uint16_t myaddr[ETHER_ADDR_LEN / 2];
568 for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
569 stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
570 &myaddr[i]);
571 myaddr[i] = le16toh(myaddr[i]);
572 }
573 (void)memcpy(enaddr, myaddr, sizeof(enaddr));
574 sc->sc_stge1023 = 1;
575 }
576
577 printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
578 ether_sprintf(enaddr));
579
580 /*
581 * Read some important bits from the PhyCtrl register.
582 */
583 sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
584 STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
585
586 /*
587 * Initialize our media structures and probe the MII.
588 */
589 sc->sc_mii.mii_ifp = ifp;
590 sc->sc_mii.mii_readreg = stge_mii_readreg;
591 sc->sc_mii.mii_writereg = stge_mii_writereg;
592 sc->sc_mii.mii_statchg = stge_mii_statchg;
593 sc->sc_ethercom.ec_mii = &sc->sc_mii;
594 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
595 ether_mediastatus);
596 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
597 MII_OFFSET_ANY, MIIF_DOPAUSE);
598 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
599 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
600 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
601 } else
602 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
603
604 ifp = &sc->sc_ethercom.ec_if;
605 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
606 ifp->if_softc = sc;
607 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
608 ifp->if_ioctl = stge_ioctl;
609 ifp->if_start = stge_start;
610 ifp->if_watchdog = stge_watchdog;
611 ifp->if_init = stge_init;
612 ifp->if_stop = stge_stop;
613 IFQ_SET_READY(&ifp->if_snd);
614
615 /*
616 * The manual recommends disabling early transmit, so we
617 * do. It's disabled anyway, if using IP checksumming,
618 * since the entire packet must be in the FIFO in order
619 * for the chip to perform the checksum.
620 */
621 sc->sc_txthresh = 0x0fff;
622
623 /*
624 * Disable MWI if the PCI layer tells us to.
625 */
626 sc->sc_DMACtrl = 0;
627 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
628 sc->sc_DMACtrl |= DMAC_MWIDisable;
629
630 /*
631 * We can support 802.1Q VLAN-sized frames and jumbo
632 * Ethernet frames.
633 *
634 * XXX Figure out how to do hw-assisted VLAN tagging in
635 * XXX a reasonable way on this chip.
636 */
637 sc->sc_ethercom.ec_capabilities |=
638 ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
639 ETHERCAP_VLAN_HWTAGGING;
640
641 /*
642 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
643 */
644 sc->sc_ethercom.ec_if.if_capabilities |=
645 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
646 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
647 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
648
649 /*
650 * Attach the interface.
651 */
652 if_attach(ifp);
653 ether_ifattach(ifp, enaddr);
654
655 #ifdef STGE_EVENT_COUNTERS
656 /*
657 * Attach event counters.
658 */
659 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
660 NULL, device_xname(&sc->sc_dev), "txstall");
661 evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
662 NULL, device_xname(&sc->sc_dev), "txdmaintr");
663 evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
664 NULL, device_xname(&sc->sc_dev), "txindintr");
665 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
666 NULL, device_xname(&sc->sc_dev), "rxintr");
667
668 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
669 NULL, device_xname(&sc->sc_dev), "txseg1");
670 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
671 NULL, device_xname(&sc->sc_dev), "txseg2");
672 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
673 NULL, device_xname(&sc->sc_dev), "txseg3");
674 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
675 NULL, device_xname(&sc->sc_dev), "txseg4");
676 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
677 NULL, device_xname(&sc->sc_dev), "txseg5");
678 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
679 NULL, device_xname(&sc->sc_dev), "txsegmore");
680 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
681 NULL, device_xname(&sc->sc_dev), "txcopy");
682
683 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
684 NULL, device_xname(&sc->sc_dev), "rxipsum");
685 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
686 NULL, device_xname(&sc->sc_dev), "rxtcpsum");
687 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
688 NULL, device_xname(&sc->sc_dev), "rxudpsum");
689 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
690 NULL, device_xname(&sc->sc_dev), "txipsum");
691 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
692 NULL, device_xname(&sc->sc_dev), "txtcpsum");
693 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
694 NULL, device_xname(&sc->sc_dev), "txudpsum");
695 #endif /* STGE_EVENT_COUNTERS */
696
697 /*
698 * Make sure the interface is shutdown during reboot.
699 */
700 sc->sc_sdhook = shutdownhook_establish(stge_shutdown, sc);
701 if (sc->sc_sdhook == NULL)
702 printf("%s: WARNING: unable to establish shutdown hook\n",
703 device_xname(&sc->sc_dev));
704 return;
705
706 /*
707 * Free any resources we've allocated during the failed attach
708 * attempt. Do this in reverse order and fall through.
709 */
710 fail_5:
711 for (i = 0; i < STGE_NRXDESC; i++) {
712 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
713 bus_dmamap_destroy(sc->sc_dmat,
714 sc->sc_rxsoft[i].ds_dmamap);
715 }
716 fail_4:
717 for (i = 0; i < STGE_NTXDESC; i++) {
718 if (sc->sc_txsoft[i].ds_dmamap != NULL)
719 bus_dmamap_destroy(sc->sc_dmat,
720 sc->sc_txsoft[i].ds_dmamap);
721 }
722 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
723 fail_3:
724 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
725 fail_2:
726 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
727 sizeof(struct stge_control_data));
728 fail_1:
729 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
730 fail_0:
731 return;
732 }
733
734 /*
735 * stge_shutdown:
736 *
737 * Make sure the interface is stopped at reboot time.
738 */
739 static void
740 stge_shutdown(void *arg)
741 {
742 struct stge_softc *sc = arg;
743
744 stge_stop(&sc->sc_ethercom.ec_if, 1);
745 }
746
747 static void
748 stge_dma_wait(struct stge_softc *sc)
749 {
750 int i;
751
752 for (i = 0; i < STGE_TIMEOUT; i++) {
753 delay(2);
754 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
755 DMAC_TxDMAInProg) == 0)
756 break;
757 }
758
759 if (i == STGE_TIMEOUT)
760 printf("%s: DMA wait timed out\n", device_xname(&sc->sc_dev));
761 }
762
763 /*
764 * stge_start: [ifnet interface function]
765 *
766 * Start packet transmission on the interface.
767 */
768 static void
769 stge_start(struct ifnet *ifp)
770 {
771 struct stge_softc *sc = ifp->if_softc;
772 struct mbuf *m0;
773 struct stge_descsoft *ds;
774 struct stge_tfd *tfd;
775 bus_dmamap_t dmamap;
776 int error, firsttx, nexttx, opending, seg, totlen;
777 uint64_t csum_flags;
778
779 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
780 return;
781
782 /*
783 * Remember the previous number of pending transmissions
784 * and the first descriptor we will use.
785 */
786 opending = sc->sc_txpending;
787 firsttx = STGE_NEXTTX(sc->sc_txlast);
788
789 /*
790 * Loop through the send queue, setting up transmit descriptors
791 * until we drain the queue, or use up all available transmit
792 * descriptors.
793 */
794 for (;;) {
795 struct m_tag *mtag;
796 uint64_t tfc;
797
798 /*
799 * Grab a packet off the queue.
800 */
801 IFQ_POLL(&ifp->if_snd, m0);
802 if (m0 == NULL)
803 break;
804
805 /*
806 * Leave one unused descriptor at the end of the
807 * list to prevent wrapping completely around.
808 */
809 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
810 STGE_EVCNT_INCR(&sc->sc_ev_txstall);
811 break;
812 }
813
814 /*
815 * See if we have any VLAN stuff.
816 */
817 mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
818
819 /*
820 * Get the last and next available transmit descriptor.
821 */
822 nexttx = STGE_NEXTTX(sc->sc_txlast);
823 tfd = &sc->sc_txdescs[nexttx];
824 ds = &sc->sc_txsoft[nexttx];
825
826 dmamap = ds->ds_dmamap;
827
828 /*
829 * Load the DMA map. If this fails, the packet either
830 * didn't fit in the alloted number of segments, or we
831 * were short on resources. For the too-many-segments
832 * case, we simply report an error and drop the packet,
833 * since we can't sanely copy a jumbo packet to a single
834 * buffer.
835 */
836 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
837 BUS_DMA_NOWAIT);
838 if (error) {
839 if (error == EFBIG) {
840 printf("%s: Tx packet consumes too many "
841 "DMA segments, dropping...\n",
842 device_xname(&sc->sc_dev));
843 IFQ_DEQUEUE(&ifp->if_snd, m0);
844 m_freem(m0);
845 continue;
846 }
847 /*
848 * Short on resources, just stop for now.
849 */
850 break;
851 }
852
853 IFQ_DEQUEUE(&ifp->if_snd, m0);
854
855 /*
856 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
857 */
858
859 /* Sync the DMA map. */
860 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
861 BUS_DMASYNC_PREWRITE);
862
863 /* Initialize the fragment list. */
864 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
865 tfd->tfd_frags[seg].frag_word0 =
866 htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
867 FRAG_LEN(dmamap->dm_segs[seg].ds_len));
868 totlen += dmamap->dm_segs[seg].ds_len;
869 }
870
871 #ifdef STGE_EVENT_COUNTERS
872 switch (dmamap->dm_nsegs) {
873 case 1:
874 STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
875 break;
876 case 2:
877 STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
878 break;
879 case 3:
880 STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
881 break;
882 case 4:
883 STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
884 break;
885 case 5:
886 STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
887 break;
888 default:
889 STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
890 break;
891 }
892 #endif /* STGE_EVENT_COUNTERS */
893
894 /*
895 * Initialize checksumming flags in the descriptor.
896 * Byte-swap constants so the compiler can optimize.
897 */
898 csum_flags = 0;
899 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
900 STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
901 csum_flags |= TFD_IPChecksumEnable;
902 }
903
904 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
905 STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
906 csum_flags |= TFD_TCPChecksumEnable;
907 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
908 STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
909 csum_flags |= TFD_UDPChecksumEnable;
910 }
911
912 /*
913 * Initialize the descriptor and give it to the chip.
914 * Check to see if we have a VLAN tag to insert.
915 */
916
917 tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
918 TFD_FragCount(seg) | csum_flags |
919 (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
920 TFD_TxDMAIndicate : 0);
921 if (mtag) {
922 #if 0
923 struct ether_header *eh =
924 mtod(m0, struct ether_header *);
925 u_int16_t etype = ntohs(eh->ether_type);
926 printf("%s: xmit (tag %d) etype %x\n",
927 ifp->if_xname, *mtod(n, int *), etype);
928 #endif
929 tfc |= TFD_VLANTagInsert |
930 #ifdef STGE_VLAN_CFI
931 TFD_CFI |
932 #endif
933 TFD_VID(VLAN_TAG_VALUE(mtag));
934 }
935 tfd->tfd_control = htole64(tfc);
936
937 /* Sync the descriptor. */
938 STGE_CDTXSYNC(sc, nexttx,
939 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
940
941 /*
942 * Kick the transmit DMA logic.
943 */
944 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
945 sc->sc_DMACtrl | DMAC_TxDMAPollNow);
946
947 /*
948 * Store a pointer to the packet so we can free it later.
949 */
950 ds->ds_mbuf = m0;
951
952 /* Advance the tx pointer. */
953 sc->sc_txpending++;
954 sc->sc_txlast = nexttx;
955
956 #if NBPFILTER > 0
957 /*
958 * Pass the packet to any BPF listeners.
959 */
960 if (ifp->if_bpf)
961 bpf_mtap(ifp->if_bpf, m0);
962 #endif /* NBPFILTER > 0 */
963 }
964
965 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
966 /* No more slots left; notify upper layer. */
967 ifp->if_flags |= IFF_OACTIVE;
968 }
969
970 if (sc->sc_txpending != opending) {
971 /*
972 * We enqueued packets. If the transmitter was idle,
973 * reset the txdirty pointer.
974 */
975 if (opending == 0)
976 sc->sc_txdirty = firsttx;
977
978 /* Set a watchdog timer in case the chip flakes out. */
979 ifp->if_timer = 5;
980 }
981 }
982
983 /*
984 * stge_watchdog: [ifnet interface function]
985 *
986 * Watchdog timer handler.
987 */
988 static void
989 stge_watchdog(struct ifnet *ifp)
990 {
991 struct stge_softc *sc = ifp->if_softc;
992
993 /*
994 * Sweep up first, since we don't interrupt every frame.
995 */
996 stge_txintr(sc);
997 if (sc->sc_txpending != 0) {
998 printf("%s: device timeout\n", device_xname(&sc->sc_dev));
999 ifp->if_oerrors++;
1000
1001 (void) stge_init(ifp);
1002
1003 /* Try to get more packets going. */
1004 stge_start(ifp);
1005 }
1006 }
1007
1008 /*
1009 * stge_ioctl: [ifnet interface function]
1010 *
1011 * Handle control requests from the operator.
1012 */
1013 static int
1014 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1015 {
1016 struct stge_softc *sc = ifp->if_softc;
1017 int s, error;
1018
1019 s = splnet();
1020
1021 error = ether_ioctl(ifp, cmd, data);
1022 if (error == ENETRESET) {
1023 error = 0;
1024
1025 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1026 ;
1027 else if (ifp->if_flags & IFF_RUNNING) {
1028 /*
1029 * Multicast list has changed; set the hardware filter
1030 * accordingly.
1031 */
1032 stge_set_filter(sc);
1033 }
1034 }
1035
1036 /* Try to get more packets going. */
1037 stge_start(ifp);
1038
1039 splx(s);
1040 return (error);
1041 }
1042
1043 /*
1044 * stge_intr:
1045 *
1046 * Interrupt service routine.
1047 */
1048 static int
1049 stge_intr(void *arg)
1050 {
1051 struct stge_softc *sc = arg;
1052 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1053 uint32_t txstat;
1054 int wantinit;
1055 uint16_t isr;
1056
1057 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1058 IS_InterruptStatus) == 0)
1059 return (0);
1060
1061 for (wantinit = 0; wantinit == 0;) {
1062 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1063 if ((isr & sc->sc_IntEnable) == 0)
1064 break;
1065
1066 /* Host interface errors. */
1067 if (isr & IS_HostError) {
1068 printf("%s: Host interface error\n",
1069 device_xname(&sc->sc_dev));
1070 wantinit = 1;
1071 continue;
1072 }
1073
1074 /* Receive interrupts. */
1075 if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
1076 STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1077 stge_rxintr(sc);
1078 if (isr & IS_RFDListEnd) {
1079 printf("%s: receive ring overflow\n",
1080 device_xname(&sc->sc_dev));
1081 /*
1082 * XXX Should try to recover from this
1083 * XXX more gracefully.
1084 */
1085 wantinit = 1;
1086 }
1087 }
1088
1089 /* Transmit interrupts. */
1090 if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
1091 #ifdef STGE_EVENT_COUNTERS
1092 if (isr & IS_TxDMAComplete)
1093 STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1094 #endif
1095 stge_txintr(sc);
1096 }
1097
1098 /* Statistics overflow. */
1099 if (isr & IS_UpdateStats)
1100 stge_stats_update(sc);
1101
1102 /* Transmission errors. */
1103 if (isr & IS_TxComplete) {
1104 STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1105 for (;;) {
1106 txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1107 STGE_TxStatus);
1108 if ((txstat & TS_TxComplete) == 0)
1109 break;
1110 if (txstat & TS_TxUnderrun) {
1111 sc->sc_txthresh++;
1112 if (sc->sc_txthresh > 0x0fff)
1113 sc->sc_txthresh = 0x0fff;
1114 printf("%s: transmit underrun, new "
1115 "threshold: %d bytes\n",
1116 device_xname(&sc->sc_dev),
1117 sc->sc_txthresh << 5);
1118 }
1119 if (txstat & TS_MaxCollisions)
1120 printf("%s: excessive collisions\n",
1121 device_xname(&sc->sc_dev));
1122 }
1123 wantinit = 1;
1124 }
1125
1126 }
1127
1128 if (wantinit)
1129 stge_init(ifp);
1130
1131 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1132 sc->sc_IntEnable);
1133
1134 /* Try to get more packets going. */
1135 stge_start(ifp);
1136
1137 return (1);
1138 }
1139
1140 /*
1141 * stge_txintr:
1142 *
1143 * Helper; handle transmit interrupts.
1144 */
1145 static void
1146 stge_txintr(struct stge_softc *sc)
1147 {
1148 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1149 struct stge_descsoft *ds;
1150 uint64_t control;
1151 int i;
1152
1153 ifp->if_flags &= ~IFF_OACTIVE;
1154
1155 /*
1156 * Go through our Tx list and free mbufs for those
1157 * frames which have been transmitted.
1158 */
1159 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1160 i = STGE_NEXTTX(i), sc->sc_txpending--) {
1161 ds = &sc->sc_txsoft[i];
1162
1163 STGE_CDTXSYNC(sc, i,
1164 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1165
1166 control = le64toh(sc->sc_txdescs[i].tfd_control);
1167 if ((control & TFD_TFDDone) == 0)
1168 break;
1169
1170 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1171 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1172 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1173 m_freem(ds->ds_mbuf);
1174 ds->ds_mbuf = NULL;
1175 }
1176
1177 /* Update the dirty transmit buffer pointer. */
1178 sc->sc_txdirty = i;
1179
1180 /*
1181 * If there are no more pending transmissions, cancel the watchdog
1182 * timer.
1183 */
1184 if (sc->sc_txpending == 0)
1185 ifp->if_timer = 0;
1186 }
1187
1188 /*
1189 * stge_rxintr:
1190 *
1191 * Helper; handle receive interrupts.
1192 */
1193 static void
1194 stge_rxintr(struct stge_softc *sc)
1195 {
1196 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1197 struct stge_descsoft *ds;
1198 struct mbuf *m, *tailm;
1199 uint64_t status;
1200 int i, len;
1201
1202 for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1203 ds = &sc->sc_rxsoft[i];
1204
1205 STGE_CDRXSYNC(sc, i,
1206 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1207
1208 status = le64toh(sc->sc_rxdescs[i].rfd_status);
1209
1210 if ((status & RFD_RFDDone) == 0)
1211 break;
1212
1213 if (__predict_false(sc->sc_rxdiscard)) {
1214 STGE_INIT_RXDESC(sc, i);
1215 if (status & RFD_FrameEnd) {
1216 /* Reset our state. */
1217 sc->sc_rxdiscard = 0;
1218 }
1219 continue;
1220 }
1221
1222 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1223 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1224
1225 m = ds->ds_mbuf;
1226
1227 /*
1228 * Add a new receive buffer to the ring.
1229 */
1230 if (stge_add_rxbuf(sc, i) != 0) {
1231 /*
1232 * Failed, throw away what we've done so
1233 * far, and discard the rest of the packet.
1234 */
1235 ifp->if_ierrors++;
1236 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1237 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1238 STGE_INIT_RXDESC(sc, i);
1239 if ((status & RFD_FrameEnd) == 0)
1240 sc->sc_rxdiscard = 1;
1241 if (sc->sc_rxhead != NULL)
1242 m_freem(sc->sc_rxhead);
1243 STGE_RXCHAIN_RESET(sc);
1244 continue;
1245 }
1246
1247 #ifdef DIAGNOSTIC
1248 if (status & RFD_FrameStart) {
1249 KASSERT(sc->sc_rxhead == NULL);
1250 KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1251 }
1252 #endif
1253
1254 STGE_RXCHAIN_LINK(sc, m);
1255
1256 /*
1257 * If this is not the end of the packet, keep
1258 * looking.
1259 */
1260 if ((status & RFD_FrameEnd) == 0) {
1261 sc->sc_rxlen += m->m_len;
1262 continue;
1263 }
1264
1265 /*
1266 * Okay, we have the entire packet now...
1267 */
1268 *sc->sc_rxtailp = NULL;
1269 m = sc->sc_rxhead;
1270 tailm = sc->sc_rxtail;
1271
1272 STGE_RXCHAIN_RESET(sc);
1273
1274 /*
1275 * If the packet had an error, drop it. Note we
1276 * count the error later in the periodic stats update.
1277 */
1278 if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1279 RFD_RxAlignmentError | RFD_RxFCSError |
1280 RFD_RxLengthError)) {
1281 m_freem(m);
1282 continue;
1283 }
1284
1285 /*
1286 * No errors.
1287 *
1288 * Note we have configured the chip to not include
1289 * the CRC at the end of the packet.
1290 */
1291 len = RFD_RxDMAFrameLen(status);
1292 tailm->m_len = len - sc->sc_rxlen;
1293
1294 /*
1295 * If the packet is small enough to fit in a
1296 * single header mbuf, allocate one and copy
1297 * the data into it. This greatly reduces
1298 * memory consumption when we receive lots
1299 * of small packets.
1300 */
1301 if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1302 struct mbuf *nm;
1303 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1304 if (nm == NULL) {
1305 ifp->if_ierrors++;
1306 m_freem(m);
1307 continue;
1308 }
1309 nm->m_data += 2;
1310 nm->m_pkthdr.len = nm->m_len = len;
1311 m_copydata(m, 0, len, mtod(nm, void *));
1312 m_freem(m);
1313 m = nm;
1314 }
1315
1316 /*
1317 * Set the incoming checksum information for the packet.
1318 */
1319 if (status & RFD_IPDetected) {
1320 STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1321 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1322 if (status & RFD_IPError)
1323 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1324 if (status & RFD_TCPDetected) {
1325 STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1326 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1327 if (status & RFD_TCPError)
1328 m->m_pkthdr.csum_flags |=
1329 M_CSUM_TCP_UDP_BAD;
1330 } else if (status & RFD_UDPDetected) {
1331 STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1332 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1333 if (status & RFD_UDPError)
1334 m->m_pkthdr.csum_flags |=
1335 M_CSUM_TCP_UDP_BAD;
1336 }
1337 }
1338
1339 m->m_pkthdr.rcvif = ifp;
1340 m->m_pkthdr.len = len;
1341
1342 #if NBPFILTER > 0
1343 /*
1344 * Pass this up to any BPF listeners, but only
1345 * pass if up the stack if it's for us.
1346 */
1347 if (ifp->if_bpf)
1348 bpf_mtap(ifp->if_bpf, m);
1349 #endif /* NBPFILTER > 0 */
1350 #ifdef STGE_VLAN_UNTAG
1351 /*
1352 * Check for VLAN tagged packets
1353 */
1354 if (status & RFD_VLANDetected)
1355 VLAN_INPUT_TAG(ifp, m, RFD_TCI(status), continue);
1356
1357 #endif
1358 #if 0
1359 if (status & RFD_VLANDetected) {
1360 struct ether_header *eh;
1361 u_int16_t etype;
1362
1363 eh = mtod(m, struct ether_header *);
1364 etype = ntohs(eh->ether_type);
1365 printf("%s: VLANtag detected (TCI %d) etype %x\n",
1366 ifp->if_xname, (u_int16_t) RFD_TCI(status),
1367 etype);
1368 }
1369 #endif
1370 /* Pass it on. */
1371 (*ifp->if_input)(ifp, m);
1372 }
1373
1374 /* Update the receive pointer. */
1375 sc->sc_rxptr = i;
1376 }
1377
1378 /*
1379 * stge_tick:
1380 *
1381 * One second timer, used to tick the MII.
1382 */
1383 static void
1384 stge_tick(void *arg)
1385 {
1386 struct stge_softc *sc = arg;
1387 int s;
1388
1389 s = splnet();
1390 mii_tick(&sc->sc_mii);
1391 stge_stats_update(sc);
1392 splx(s);
1393
1394 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1395 }
1396
1397 /*
1398 * stge_stats_update:
1399 *
1400 * Read the TC9021 statistics counters.
1401 */
1402 static void
1403 stge_stats_update(struct stge_softc *sc)
1404 {
1405 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1406 bus_space_tag_t st = sc->sc_st;
1407 bus_space_handle_t sh = sc->sc_sh;
1408
1409 (void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1410
1411 ifp->if_ipackets +=
1412 bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1413
1414 ifp->if_ierrors +=
1415 (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1416
1417 (void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1418
1419 ifp->if_opackets +=
1420 bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1421
1422 ifp->if_collisions +=
1423 bus_space_read_4(st, sh, STGE_LateCollisions) +
1424 bus_space_read_4(st, sh, STGE_MultiColFrames) +
1425 bus_space_read_4(st, sh, STGE_SingleColFrames);
1426
1427 ifp->if_oerrors +=
1428 (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1429 (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1430 }
1431
1432 /*
1433 * stge_reset:
1434 *
1435 * Perform a soft reset on the TC9021.
1436 */
1437 static void
1438 stge_reset(struct stge_softc *sc)
1439 {
1440 uint32_t ac;
1441 int i;
1442
1443 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1444
1445 /*
1446 * Only assert RstOut if we're fiber. We need GMII clocks
1447 * to be present in order for the reset to complete on fiber
1448 * cards.
1449 */
1450 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1451 ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1452 AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1453 (sc->sc_usefiber ? AC_RstOut : 0));
1454
1455 delay(50000);
1456
1457 for (i = 0; i < STGE_TIMEOUT; i++) {
1458 delay(5000);
1459 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1460 AC_ResetBusy) == 0)
1461 break;
1462 }
1463
1464 if (i == STGE_TIMEOUT)
1465 printf("%s: reset failed to complete\n", device_xname(&sc->sc_dev));
1466
1467 delay(1000);
1468 }
1469
1470 /*
1471 * stge_init: [ ifnet interface function ]
1472 *
1473 * Initialize the interface. Must be called at splnet().
1474 */
1475 static int
1476 stge_init(struct ifnet *ifp)
1477 {
1478 struct stge_softc *sc = ifp->if_softc;
1479 bus_space_tag_t st = sc->sc_st;
1480 bus_space_handle_t sh = sc->sc_sh;
1481 struct stge_descsoft *ds;
1482 int i, error = 0;
1483
1484 /*
1485 * Cancel any pending I/O.
1486 */
1487 stge_stop(ifp, 0);
1488
1489 /*
1490 * Reset the chip to a known state.
1491 */
1492 stge_reset(sc);
1493
1494 /*
1495 * Initialize the transmit descriptor ring.
1496 */
1497 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1498 for (i = 0; i < STGE_NTXDESC; i++) {
1499 sc->sc_txdescs[i].tfd_next = htole64(
1500 STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1501 sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1502 }
1503 sc->sc_txpending = 0;
1504 sc->sc_txdirty = 0;
1505 sc->sc_txlast = STGE_NTXDESC - 1;
1506
1507 /*
1508 * Initialize the receive descriptor and receive job
1509 * descriptor rings.
1510 */
1511 for (i = 0; i < STGE_NRXDESC; i++) {
1512 ds = &sc->sc_rxsoft[i];
1513 if (ds->ds_mbuf == NULL) {
1514 if ((error = stge_add_rxbuf(sc, i)) != 0) {
1515 printf("%s: unable to allocate or map rx "
1516 "buffer %d, error = %d\n",
1517 device_xname(&sc->sc_dev), i, error);
1518 /*
1519 * XXX Should attempt to run with fewer receive
1520 * XXX buffers instead of just failing.
1521 */
1522 stge_rxdrain(sc);
1523 goto out;
1524 }
1525 } else
1526 STGE_INIT_RXDESC(sc, i);
1527 }
1528 sc->sc_rxptr = 0;
1529 sc->sc_rxdiscard = 0;
1530 STGE_RXCHAIN_RESET(sc);
1531
1532 /* Set the station address. */
1533 for (i = 0; i < 6; i++)
1534 bus_space_write_1(st, sh, STGE_StationAddress0 + i,
1535 CLLADDR(ifp->if_sadl)[i]);
1536
1537 /*
1538 * Set the statistics masks. Disable all the RMON stats,
1539 * and disable selected stats in the non-RMON stats registers.
1540 */
1541 bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1542 bus_space_write_4(st, sh, STGE_StatisticsMask,
1543 (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1544 (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1545 (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1546 (1U << 21));
1547
1548 /* Set up the receive filter. */
1549 stge_set_filter(sc);
1550
1551 /*
1552 * Give the transmit and receive ring to the chip.
1553 */
1554 bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1555 bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1556 STGE_CDTXADDR(sc, sc->sc_txdirty));
1557
1558 bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1559 bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1560 STGE_CDRXADDR(sc, sc->sc_rxptr));
1561
1562 /*
1563 * Initialize the Tx auto-poll period. It's OK to make this number
1564 * large (255 is the max, but we use 127) -- we explicitly kick the
1565 * transmit engine when there's actually a packet.
1566 */
1567 bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1568
1569 /* ..and the Rx auto-poll period. */
1570 bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1571
1572 /* Initialize the Tx start threshold. */
1573 bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1574
1575 /* RX DMA thresholds, from linux */
1576 bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
1577 bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
1578
1579 /*
1580 * Initialize the Rx DMA interrupt control register. We
1581 * request an interrupt after every incoming packet, but
1582 * defer it for 32us (64 * 512 ns). When the number of
1583 * interrupts pending reaches 8, we stop deferring the
1584 * interrupt, and signal it immediately.
1585 */
1586 bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1587 RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1588
1589 /*
1590 * Initialize the interrupt mask.
1591 */
1592 sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1593 IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1594 bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1595 bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1596
1597 /*
1598 * Configure the DMA engine.
1599 * XXX Should auto-tune TxBurstLimit.
1600 */
1601 bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1602 DMAC_TxBurstLimit(3));
1603
1604 /*
1605 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1606 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1607 * empty again.
1608 */
1609 bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1610 bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1611
1612 /*
1613 * Set the maximum frame size.
1614 */
1615 bus_space_write_2(st, sh, STGE_MaxFrameSize,
1616 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1617 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1618 ETHER_VLAN_ENCAP_LEN : 0));
1619
1620 /*
1621 * Initialize MacCtrl -- do it before setting the media,
1622 * as setting the media will actually program the register.
1623 *
1624 * Note: We have to poke the IFS value before poking
1625 * anything else.
1626 */
1627 sc->sc_MACCtrl = MC_IFSSelect(0);
1628 bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1629 sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1630 #ifdef STGE_VLAN_UNTAG
1631 sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1632 #endif
1633
1634 if (sc->sc_rev >= 6) { /* >= B.2 */
1635 /* Multi-frag frame bug work-around. */
1636 bus_space_write_2(st, sh, STGE_DebugCtrl,
1637 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1638
1639 /* Tx Poll Now bug work-around. */
1640 bus_space_write_2(st, sh, STGE_DebugCtrl,
1641 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1642 /* XXX ? from linux */
1643 bus_space_write_2(st, sh, STGE_DebugCtrl,
1644 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
1645 }
1646
1647 /*
1648 * Set the current media.
1649 */
1650 if ((error = ether_mediachange(ifp)) != 0)
1651 goto out;
1652
1653 /*
1654 * Start the one second MII clock.
1655 */
1656 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1657
1658 /*
1659 * ...all done!
1660 */
1661 ifp->if_flags |= IFF_RUNNING;
1662 ifp->if_flags &= ~IFF_OACTIVE;
1663
1664 out:
1665 if (error)
1666 printf("%s: interface not running\n", device_xname(&sc->sc_dev));
1667 return (error);
1668 }
1669
1670 /*
1671 * stge_drain:
1672 *
1673 * Drain the receive queue.
1674 */
1675 static void
1676 stge_rxdrain(struct stge_softc *sc)
1677 {
1678 struct stge_descsoft *ds;
1679 int i;
1680
1681 for (i = 0; i < STGE_NRXDESC; i++) {
1682 ds = &sc->sc_rxsoft[i];
1683 if (ds->ds_mbuf != NULL) {
1684 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1685 ds->ds_mbuf->m_next = NULL;
1686 m_freem(ds->ds_mbuf);
1687 ds->ds_mbuf = NULL;
1688 }
1689 }
1690 }
1691
1692 /*
1693 * stge_stop: [ ifnet interface function ]
1694 *
1695 * Stop transmission on the interface.
1696 */
1697 static void
1698 stge_stop(struct ifnet *ifp, int disable)
1699 {
1700 struct stge_softc *sc = ifp->if_softc;
1701 struct stge_descsoft *ds;
1702 int i;
1703
1704 /*
1705 * Stop the one second clock.
1706 */
1707 callout_stop(&sc->sc_tick_ch);
1708
1709 /* Down the MII. */
1710 mii_down(&sc->sc_mii);
1711
1712 /*
1713 * Disable interrupts.
1714 */
1715 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1716
1717 /*
1718 * Stop receiver, transmitter, and stats update.
1719 */
1720 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1721 MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1722
1723 /*
1724 * Stop the transmit and receive DMA.
1725 */
1726 stge_dma_wait(sc);
1727 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1728 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1729 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1730 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1731
1732 /*
1733 * Release any queued transmit buffers.
1734 */
1735 for (i = 0; i < STGE_NTXDESC; i++) {
1736 ds = &sc->sc_txsoft[i];
1737 if (ds->ds_mbuf != NULL) {
1738 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1739 m_freem(ds->ds_mbuf);
1740 ds->ds_mbuf = NULL;
1741 }
1742 }
1743
1744 /*
1745 * Mark the interface down and cancel the watchdog timer.
1746 */
1747 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1748 ifp->if_timer = 0;
1749
1750 if (disable)
1751 stge_rxdrain(sc);
1752 }
1753
1754 static int
1755 stge_eeprom_wait(struct stge_softc *sc)
1756 {
1757 int i;
1758
1759 for (i = 0; i < STGE_TIMEOUT; i++) {
1760 delay(1000);
1761 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1762 EC_EepromBusy) == 0)
1763 return (0);
1764 }
1765 return (1);
1766 }
1767
1768 /*
1769 * stge_read_eeprom:
1770 *
1771 * Read data from the serial EEPROM.
1772 */
1773 static void
1774 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1775 {
1776
1777 if (stge_eeprom_wait(sc))
1778 printf("%s: EEPROM failed to come ready\n",
1779 device_xname(&sc->sc_dev));
1780
1781 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1782 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1783 if (stge_eeprom_wait(sc))
1784 printf("%s: EEPROM read timed out\n",
1785 device_xname(&sc->sc_dev));
1786 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1787 }
1788
1789 /*
1790 * stge_add_rxbuf:
1791 *
1792 * Add a receive buffer to the indicated descriptor.
1793 */
1794 static int
1795 stge_add_rxbuf(struct stge_softc *sc, int idx)
1796 {
1797 struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1798 struct mbuf *m;
1799 int error;
1800
1801 MGETHDR(m, M_DONTWAIT, MT_DATA);
1802 if (m == NULL)
1803 return (ENOBUFS);
1804
1805 MCLGET(m, M_DONTWAIT);
1806 if ((m->m_flags & M_EXT) == 0) {
1807 m_freem(m);
1808 return (ENOBUFS);
1809 }
1810
1811 m->m_data = m->m_ext.ext_buf + 2;
1812 m->m_len = MCLBYTES - 2;
1813
1814 if (ds->ds_mbuf != NULL)
1815 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1816
1817 ds->ds_mbuf = m;
1818
1819 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1820 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1821 if (error) {
1822 printf("%s: can't load rx DMA map %d, error = %d\n",
1823 device_xname(&sc->sc_dev), idx, error);
1824 panic("stge_add_rxbuf"); /* XXX */
1825 }
1826
1827 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1828 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1829
1830 STGE_INIT_RXDESC(sc, idx);
1831
1832 return (0);
1833 }
1834
1835 /*
1836 * stge_set_filter:
1837 *
1838 * Set up the receive filter.
1839 */
1840 static void
1841 stge_set_filter(struct stge_softc *sc)
1842 {
1843 struct ethercom *ec = &sc->sc_ethercom;
1844 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1845 struct ether_multi *enm;
1846 struct ether_multistep step;
1847 uint32_t crc;
1848 uint32_t mchash[2];
1849
1850 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1851 if (ifp->if_flags & IFF_BROADCAST)
1852 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1853
1854 /* XXX: ST1023 only works in promiscuous mode */
1855 if (sc->sc_stge1023)
1856 ifp->if_flags |= IFF_PROMISC;
1857
1858 if (ifp->if_flags & IFF_PROMISC) {
1859 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1860 goto allmulti;
1861 }
1862
1863 /*
1864 * Set up the multicast address filter by passing all multicast
1865 * addresses through a CRC generator, and then using the low-order
1866 * 6 bits as an index into the 64 bit multicast hash table. The
1867 * high order bits select the register, while the rest of the bits
1868 * select the bit within the register.
1869 */
1870
1871 memset(mchash, 0, sizeof(mchash));
1872
1873 ETHER_FIRST_MULTI(step, ec, enm);
1874 if (enm == NULL)
1875 goto done;
1876
1877 while (enm != NULL) {
1878 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1879 /*
1880 * We must listen to a range of multicast addresses.
1881 * For now, just accept all multicasts, rather than
1882 * trying to set only those filter bits needed to match
1883 * the range. (At this time, the only use of address
1884 * ranges is for IP multicast routing, for which the
1885 * range is big enough to require all bits set.)
1886 */
1887 goto allmulti;
1888 }
1889
1890 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1891
1892 /* Just want the 6 least significant bits. */
1893 crc &= 0x3f;
1894
1895 /* Set the corresponding bit in the hash table. */
1896 mchash[crc >> 5] |= 1 << (crc & 0x1f);
1897
1898 ETHER_NEXT_MULTI(step, enm);
1899 }
1900
1901 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1902
1903 ifp->if_flags &= ~IFF_ALLMULTI;
1904 goto done;
1905
1906 allmulti:
1907 ifp->if_flags |= IFF_ALLMULTI;
1908 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1909
1910 done:
1911 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1912 /*
1913 * Program the multicast hash table.
1914 */
1915 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1916 mchash[0]);
1917 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1918 mchash[1]);
1919 }
1920
1921 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1922 sc->sc_ReceiveMode);
1923 }
1924
1925 /*
1926 * stge_mii_readreg: [mii interface function]
1927 *
1928 * Read a PHY register on the MII of the TC9021.
1929 */
1930 static int
1931 stge_mii_readreg(device_t self, int phy, int reg)
1932 {
1933
1934 return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1935 }
1936
1937 /*
1938 * stge_mii_writereg: [mii interface function]
1939 *
1940 * Write a PHY register on the MII of the TC9021.
1941 */
1942 static void
1943 stge_mii_writereg(device_t self, int phy, int reg, int val)
1944 {
1945
1946 mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1947 }
1948
1949 /*
1950 * stge_mii_statchg: [mii interface function]
1951 *
1952 * Callback from MII layer when media changes.
1953 */
1954 static void
1955 stge_mii_statchg(device_t self)
1956 {
1957 struct stge_softc *sc = device_private(self);
1958
1959 if (sc->sc_mii.mii_media_active & IFM_FDX)
1960 sc->sc_MACCtrl |= MC_DuplexSelect;
1961 else
1962 sc->sc_MACCtrl &= ~MC_DuplexSelect;
1963
1964 /* XXX 802.1x flow-control? */
1965
1966 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1967 }
1968
1969 /*
1970 * sste_mii_bitbang_read: [mii bit-bang interface function]
1971 *
1972 * Read the MII serial port for the MII bit-bang module.
1973 */
1974 static uint32_t
1975 stge_mii_bitbang_read(device_t self)
1976 {
1977 struct stge_softc *sc = device_private(self);
1978
1979 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
1980 }
1981
1982 /*
1983 * stge_mii_bitbang_write: [mii big-bang interface function]
1984 *
1985 * Write the MII serial port for the MII bit-bang module.
1986 */
1987 static void
1988 stge_mii_bitbang_write(device_t self, uint32_t val)
1989 {
1990 struct stge_softc *sc = device_private(self);
1991
1992 bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
1993 val | sc->sc_PhyCtrl);
1994 }
1995