if_stge.c revision 1.46 1 /* $NetBSD: if_stge.c,v 1.46 2009/05/06 09:25:16 cegger Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the Sundance Tech. TC9021 10/100/1000
34 * Ethernet controller.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.46 2009/05/06 09:25:16 cegger Exp $");
39
40 #include "bpfilter.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/ioctl.h>
50 #include <sys/errno.h>
51 #include <sys/device.h>
52 #include <sys/queue.h>
53
54 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
55
56 #include <net/if.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
60
61 #if NBPFILTER > 0
62 #include <net/bpf.h>
63 #endif
64
65 #include <sys/bus.h>
66 #include <sys/intr.h>
67
68 #include <dev/mii/mii.h>
69 #include <dev/mii/miivar.h>
70 #include <dev/mii/mii_bitbang.h>
71
72 #include <dev/pci/pcireg.h>
73 #include <dev/pci/pcivar.h>
74 #include <dev/pci/pcidevs.h>
75
76 #include <dev/pci/if_stgereg.h>
77
78 /* #define STGE_CU_BUG 1 */
79 #define STGE_VLAN_UNTAG 1
80 /* #define STGE_VLAN_CFI 1 */
81
82 /*
83 * Transmit descriptor list size.
84 */
85 #define STGE_NTXDESC 256
86 #define STGE_NTXDESC_MASK (STGE_NTXDESC - 1)
87 #define STGE_NEXTTX(x) (((x) + 1) & STGE_NTXDESC_MASK)
88
89 /*
90 * Receive descriptor list size.
91 */
92 #define STGE_NRXDESC 256
93 #define STGE_NRXDESC_MASK (STGE_NRXDESC - 1)
94 #define STGE_NEXTRX(x) (((x) + 1) & STGE_NRXDESC_MASK)
95
96 /*
97 * Only interrupt every N frames. Must be a power-of-two.
98 */
99 #define STGE_TXINTR_SPACING 16
100 #define STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
101
102 /*
103 * Control structures are DMA'd to the TC9021 chip. We allocate them in
104 * a single clump that maps to a single DMA segment to make several things
105 * easier.
106 */
107 struct stge_control_data {
108 /*
109 * The transmit descriptors.
110 */
111 struct stge_tfd scd_txdescs[STGE_NTXDESC];
112
113 /*
114 * The receive descriptors.
115 */
116 struct stge_rfd scd_rxdescs[STGE_NRXDESC];
117 };
118
119 #define STGE_CDOFF(x) offsetof(struct stge_control_data, x)
120 #define STGE_CDTXOFF(x) STGE_CDOFF(scd_txdescs[(x)])
121 #define STGE_CDRXOFF(x) STGE_CDOFF(scd_rxdescs[(x)])
122
123 /*
124 * Software state for transmit and receive jobs.
125 */
126 struct stge_descsoft {
127 struct mbuf *ds_mbuf; /* head of our mbuf chain */
128 bus_dmamap_t ds_dmamap; /* our DMA map */
129 };
130
131 /*
132 * Software state per device.
133 */
134 struct stge_softc {
135 struct device sc_dev; /* generic device information */
136 bus_space_tag_t sc_st; /* bus space tag */
137 bus_space_handle_t sc_sh; /* bus space handle */
138 bus_dma_tag_t sc_dmat; /* bus DMA tag */
139 struct ethercom sc_ethercom; /* ethernet common data */
140 void *sc_sdhook; /* shutdown hook */
141 int sc_rev; /* silicon revision */
142
143 void *sc_ih; /* interrupt cookie */
144
145 struct mii_data sc_mii; /* MII/media information */
146
147 callout_t sc_tick_ch; /* tick callout */
148
149 bus_dmamap_t sc_cddmamap; /* control data DMA map */
150 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
151
152 /*
153 * Software state for transmit and receive descriptors.
154 */
155 struct stge_descsoft sc_txsoft[STGE_NTXDESC];
156 struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
157
158 /*
159 * Control data structures.
160 */
161 struct stge_control_data *sc_control_data;
162 #define sc_txdescs sc_control_data->scd_txdescs
163 #define sc_rxdescs sc_control_data->scd_rxdescs
164
165 #ifdef STGE_EVENT_COUNTERS
166 /*
167 * Event counters.
168 */
169 struct evcnt sc_ev_txstall; /* Tx stalled */
170 struct evcnt sc_ev_txdmaintr; /* Tx DMA interrupts */
171 struct evcnt sc_ev_txindintr; /* Tx Indicate interrupts */
172 struct evcnt sc_ev_rxintr; /* Rx interrupts */
173
174 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
175 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
176 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
177 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
178 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
179 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
180 struct evcnt sc_ev_txcopy; /* Tx packets that we had to copy */
181
182 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
183 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
184 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-bound */
185
186 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
187 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
188 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
189 #endif /* STGE_EVENT_COUNTERS */
190
191 int sc_txpending; /* number of Tx requests pending */
192 int sc_txdirty; /* first dirty Tx descriptor */
193 int sc_txlast; /* last used Tx descriptor */
194
195 int sc_rxptr; /* next ready Rx descriptor/descsoft */
196 int sc_rxdiscard;
197 int sc_rxlen;
198 struct mbuf *sc_rxhead;
199 struct mbuf *sc_rxtail;
200 struct mbuf **sc_rxtailp;
201
202 int sc_txthresh; /* Tx threshold */
203 uint32_t sc_usefiber:1; /* if we're fiber */
204 uint32_t sc_stge1023:1; /* are we a 1023 */
205 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
206 uint32_t sc_MACCtrl; /* prototype MacCtrl register */
207 uint16_t sc_IntEnable; /* prototype IntEnable register */
208 uint16_t sc_ReceiveMode; /* prototype ReceiveMode register */
209 uint8_t sc_PhyCtrl; /* prototype PhyCtrl register */
210 };
211
212 #define STGE_RXCHAIN_RESET(sc) \
213 do { \
214 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
215 *(sc)->sc_rxtailp = NULL; \
216 (sc)->sc_rxlen = 0; \
217 } while (/*CONSTCOND*/0)
218
219 #define STGE_RXCHAIN_LINK(sc, m) \
220 do { \
221 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
222 (sc)->sc_rxtailp = &(m)->m_next; \
223 } while (/*CONSTCOND*/0)
224
225 #ifdef STGE_EVENT_COUNTERS
226 #define STGE_EVCNT_INCR(ev) (ev)->ev_count++
227 #else
228 #define STGE_EVCNT_INCR(ev) /* nothing */
229 #endif
230
231 #define STGE_CDTXADDR(sc, x) ((sc)->sc_cddma + STGE_CDTXOFF((x)))
232 #define STGE_CDRXADDR(sc, x) ((sc)->sc_cddma + STGE_CDRXOFF((x)))
233
234 #define STGE_CDTXSYNC(sc, x, ops) \
235 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
236 STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
237
238 #define STGE_CDRXSYNC(sc, x, ops) \
239 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
240 STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
241
242 #define STGE_INIT_RXDESC(sc, x) \
243 do { \
244 struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
245 struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
246 \
247 /* \
248 * Note: We scoot the packet forward 2 bytes in the buffer \
249 * so that the payload after the Ethernet header is aligned \
250 * to a 4-byte boundary. \
251 */ \
252 __rfd->rfd_frag.frag_word0 = \
253 htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
254 FRAG_LEN(MCLBYTES - 2)); \
255 __rfd->rfd_next = \
256 htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x)))); \
257 __rfd->rfd_status = 0; \
258 STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
259 } while (/*CONSTCOND*/0)
260
261 #define STGE_TIMEOUT 1000
262
263 static void stge_start(struct ifnet *);
264 static void stge_watchdog(struct ifnet *);
265 static int stge_ioctl(struct ifnet *, u_long, void *);
266 static int stge_init(struct ifnet *);
267 static void stge_stop(struct ifnet *, int);
268
269 static void stge_shutdown(void *);
270
271 static void stge_reset(struct stge_softc *);
272 static void stge_rxdrain(struct stge_softc *);
273 static int stge_add_rxbuf(struct stge_softc *, int);
274 static void stge_read_eeprom(struct stge_softc *, int, uint16_t *);
275 static void stge_tick(void *);
276
277 static void stge_stats_update(struct stge_softc *);
278
279 static void stge_set_filter(struct stge_softc *);
280
281 static int stge_intr(void *);
282 static void stge_txintr(struct stge_softc *);
283 static void stge_rxintr(struct stge_softc *);
284
285 static int stge_mii_readreg(device_t, int, int);
286 static void stge_mii_writereg(device_t, int, int, int);
287 static void stge_mii_statchg(device_t);
288
289 static int stge_match(device_t, cfdata_t, void *);
290 static void stge_attach(device_t, device_t, void *);
291
292 int stge_copy_small = 0;
293
294 CFATTACH_DECL(stge, sizeof(struct stge_softc),
295 stge_match, stge_attach, NULL, NULL);
296
297 static uint32_t stge_mii_bitbang_read(device_t);
298 static void stge_mii_bitbang_write(device_t, uint32_t);
299
300 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
301 stge_mii_bitbang_read,
302 stge_mii_bitbang_write,
303 {
304 PC_MgmtData, /* MII_BIT_MDO */
305 PC_MgmtData, /* MII_BIT_MDI */
306 PC_MgmtClk, /* MII_BIT_MDC */
307 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
308 0, /* MII_BIT_DIR_PHY_HOST */
309 }
310 };
311
312 /*
313 * Devices supported by this driver.
314 */
315 static const struct stge_product {
316 pci_vendor_id_t stge_vendor;
317 pci_product_id_t stge_product;
318 const char *stge_name;
319 } stge_products[] = {
320 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST1023,
321 "Sundance ST-1023 Gigabit Ethernet" },
322
323 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST2021,
324 "Sundance ST-2021 Gigabit Ethernet" },
325
326 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021,
327 "Tamarack TC9021 Gigabit Ethernet" },
328
329 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021_ALT,
330 "Tamarack TC9021 Gigabit Ethernet" },
331
332 /*
333 * The Sundance sample boards use the Sundance vendor ID,
334 * but the Tamarack product ID.
335 */
336 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021,
337 "Sundance TC9021 Gigabit Ethernet" },
338
339 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021_ALT,
340 "Sundance TC9021 Gigabit Ethernet" },
341
342 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL4000,
343 "D-Link DL-4000 Gigabit Ethernet" },
344
345 { PCI_VENDOR_ANTARES, PCI_PRODUCT_ANTARES_TC9021,
346 "Antares Gigabit Ethernet" },
347
348 { 0, 0,
349 NULL },
350 };
351
352 static const struct stge_product *
353 stge_lookup(const struct pci_attach_args *pa)
354 {
355 const struct stge_product *sp;
356
357 for (sp = stge_products; sp->stge_name != NULL; sp++) {
358 if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
359 PCI_PRODUCT(pa->pa_id) == sp->stge_product)
360 return (sp);
361 }
362 return (NULL);
363 }
364
365 static int
366 stge_match(device_t parent, cfdata_t cf, void *aux)
367 {
368 struct pci_attach_args *pa = aux;
369
370 if (stge_lookup(pa) != NULL)
371 return (1);
372
373 return (0);
374 }
375
376 static void
377 stge_attach(device_t parent, device_t self, void *aux)
378 {
379 struct stge_softc *sc = device_private(self);
380 struct pci_attach_args *pa = aux;
381 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
382 pci_chipset_tag_t pc = pa->pa_pc;
383 pci_intr_handle_t ih;
384 const char *intrstr = NULL;
385 bus_space_tag_t iot, memt;
386 bus_space_handle_t ioh, memh;
387 bus_dma_segment_t seg;
388 int ioh_valid, memh_valid;
389 int i, rseg, error;
390 const struct stge_product *sp;
391 uint8_t enaddr[ETHER_ADDR_LEN];
392
393 callout_init(&sc->sc_tick_ch, 0);
394
395 sp = stge_lookup(pa);
396 if (sp == NULL) {
397 printf("\n");
398 panic("ste_attach: impossible");
399 }
400
401 sc->sc_rev = PCI_REVISION(pa->pa_class);
402
403 printf(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
404
405 /*
406 * Map the device.
407 */
408 ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
409 PCI_MAPREG_TYPE_IO, 0,
410 &iot, &ioh, NULL, NULL) == 0);
411 memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
412 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
413 &memt, &memh, NULL, NULL) == 0);
414
415 if (memh_valid) {
416 sc->sc_st = memt;
417 sc->sc_sh = memh;
418 } else if (ioh_valid) {
419 sc->sc_st = iot;
420 sc->sc_sh = ioh;
421 } else {
422 aprint_error_dev(&sc->sc_dev, "unable to map device registers\n");
423 return;
424 }
425
426 sc->sc_dmat = pa->pa_dmat;
427
428 /* Enable bus mastering. */
429 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
430 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
431 PCI_COMMAND_MASTER_ENABLE);
432
433 /* power up chip */
434 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
435 error != EOPNOTSUPP) {
436 aprint_error_dev(&sc->sc_dev, "cannot activate %d\n",
437 error);
438 return;
439 }
440 /*
441 * Map and establish our interrupt.
442 */
443 if (pci_intr_map(pa, &ih)) {
444 aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
445 return;
446 }
447 intrstr = pci_intr_string(pc, ih);
448 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
449 if (sc->sc_ih == NULL) {
450 aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
451 if (intrstr != NULL)
452 printf(" at %s", intrstr);
453 printf("\n");
454 return;
455 }
456 printf("%s: interrupting at %s\n", device_xname(&sc->sc_dev), intrstr);
457
458 /*
459 * Allocate the control data structures, and create and load the
460 * DMA map for it.
461 */
462 if ((error = bus_dmamem_alloc(sc->sc_dmat,
463 sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
464 0)) != 0) {
465 aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n",
466 error);
467 goto fail_0;
468 }
469
470 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
471 sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
472 BUS_DMA_COHERENT)) != 0) {
473 aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
474 error);
475 goto fail_1;
476 }
477
478 if ((error = bus_dmamap_create(sc->sc_dmat,
479 sizeof(struct stge_control_data), 1,
480 sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
481 aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
482 "error = %d\n", error);
483 goto fail_2;
484 }
485
486 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
487 sc->sc_control_data, sizeof(struct stge_control_data), NULL,
488 0)) != 0) {
489 aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
490 error);
491 goto fail_3;
492 }
493
494 /*
495 * Create the transmit buffer DMA maps. Note that rev B.3
496 * and earlier seem to have a bug regarding multi-fragment
497 * packets. We need to limit the number of Tx segments on
498 * such chips to 1.
499 */
500 for (i = 0; i < STGE_NTXDESC; i++) {
501 if ((error = bus_dmamap_create(sc->sc_dmat,
502 ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
503 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
504 aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
505 "error = %d\n", i, error);
506 goto fail_4;
507 }
508 }
509
510 /*
511 * Create the receive buffer DMA maps.
512 */
513 for (i = 0; i < STGE_NRXDESC; i++) {
514 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
515 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
516 aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
517 "error = %d\n", i, error);
518 goto fail_5;
519 }
520 sc->sc_rxsoft[i].ds_mbuf = NULL;
521 }
522
523 /*
524 * Determine if we're copper or fiber. It affects how we
525 * reset the card.
526 */
527 if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
528 AC_PhyMedia)
529 sc->sc_usefiber = 1;
530 else
531 sc->sc_usefiber = 0;
532
533 /*
534 * Reset the chip to a known state.
535 */
536 stge_reset(sc);
537
538 /*
539 * Reading the station address from the EEPROM doesn't seem
540 * to work, at least on my sample boards. Instead, since
541 * the reset sequence does AutoInit, read it from the station
542 * address registers. For Sundance 1023 you can only read it
543 * from EEPROM.
544 */
545 if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
546 enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
547 STGE_StationAddress0) & 0xff;
548 enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
549 STGE_StationAddress0) >> 8;
550 enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
551 STGE_StationAddress1) & 0xff;
552 enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
553 STGE_StationAddress1) >> 8;
554 enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
555 STGE_StationAddress2) & 0xff;
556 enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
557 STGE_StationAddress2) >> 8;
558 sc->sc_stge1023 = 0;
559 } else {
560 uint16_t myaddr[ETHER_ADDR_LEN / 2];
561 for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
562 stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
563 &myaddr[i]);
564 myaddr[i] = le16toh(myaddr[i]);
565 }
566 (void)memcpy(enaddr, myaddr, sizeof(enaddr));
567 sc->sc_stge1023 = 1;
568 }
569
570 printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
571 ether_sprintf(enaddr));
572
573 /*
574 * Read some important bits from the PhyCtrl register.
575 */
576 sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
577 STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
578
579 /*
580 * Initialize our media structures and probe the MII.
581 */
582 sc->sc_mii.mii_ifp = ifp;
583 sc->sc_mii.mii_readreg = stge_mii_readreg;
584 sc->sc_mii.mii_writereg = stge_mii_writereg;
585 sc->sc_mii.mii_statchg = stge_mii_statchg;
586 sc->sc_ethercom.ec_mii = &sc->sc_mii;
587 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
588 ether_mediastatus);
589 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
590 MII_OFFSET_ANY, MIIF_DOPAUSE);
591 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
592 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
593 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
594 } else
595 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
596
597 ifp = &sc->sc_ethercom.ec_if;
598 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
599 ifp->if_softc = sc;
600 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
601 ifp->if_ioctl = stge_ioctl;
602 ifp->if_start = stge_start;
603 ifp->if_watchdog = stge_watchdog;
604 ifp->if_init = stge_init;
605 ifp->if_stop = stge_stop;
606 IFQ_SET_READY(&ifp->if_snd);
607
608 /*
609 * The manual recommends disabling early transmit, so we
610 * do. It's disabled anyway, if using IP checksumming,
611 * since the entire packet must be in the FIFO in order
612 * for the chip to perform the checksum.
613 */
614 sc->sc_txthresh = 0x0fff;
615
616 /*
617 * Disable MWI if the PCI layer tells us to.
618 */
619 sc->sc_DMACtrl = 0;
620 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
621 sc->sc_DMACtrl |= DMAC_MWIDisable;
622
623 /*
624 * We can support 802.1Q VLAN-sized frames and jumbo
625 * Ethernet frames.
626 *
627 * XXX Figure out how to do hw-assisted VLAN tagging in
628 * XXX a reasonable way on this chip.
629 */
630 sc->sc_ethercom.ec_capabilities |=
631 ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
632 ETHERCAP_VLAN_HWTAGGING;
633
634 /*
635 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
636 */
637 sc->sc_ethercom.ec_if.if_capabilities |=
638 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
639 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
640 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
641
642 /*
643 * Attach the interface.
644 */
645 if_attach(ifp);
646 ether_ifattach(ifp, enaddr);
647
648 #ifdef STGE_EVENT_COUNTERS
649 /*
650 * Attach event counters.
651 */
652 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
653 NULL, device_xname(&sc->sc_dev), "txstall");
654 evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
655 NULL, device_xname(&sc->sc_dev), "txdmaintr");
656 evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
657 NULL, device_xname(&sc->sc_dev), "txindintr");
658 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
659 NULL, device_xname(&sc->sc_dev), "rxintr");
660
661 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
662 NULL, device_xname(&sc->sc_dev), "txseg1");
663 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
664 NULL, device_xname(&sc->sc_dev), "txseg2");
665 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
666 NULL, device_xname(&sc->sc_dev), "txseg3");
667 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
668 NULL, device_xname(&sc->sc_dev), "txseg4");
669 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
670 NULL, device_xname(&sc->sc_dev), "txseg5");
671 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
672 NULL, device_xname(&sc->sc_dev), "txsegmore");
673 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
674 NULL, device_xname(&sc->sc_dev), "txcopy");
675
676 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
677 NULL, device_xname(&sc->sc_dev), "rxipsum");
678 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
679 NULL, device_xname(&sc->sc_dev), "rxtcpsum");
680 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
681 NULL, device_xname(&sc->sc_dev), "rxudpsum");
682 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
683 NULL, device_xname(&sc->sc_dev), "txipsum");
684 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
685 NULL, device_xname(&sc->sc_dev), "txtcpsum");
686 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
687 NULL, device_xname(&sc->sc_dev), "txudpsum");
688 #endif /* STGE_EVENT_COUNTERS */
689
690 /*
691 * Make sure the interface is shutdown during reboot.
692 */
693 sc->sc_sdhook = shutdownhook_establish(stge_shutdown, sc);
694 if (sc->sc_sdhook == NULL)
695 printf("%s: WARNING: unable to establish shutdown hook\n",
696 device_xname(&sc->sc_dev));
697 return;
698
699 /*
700 * Free any resources we've allocated during the failed attach
701 * attempt. Do this in reverse order and fall through.
702 */
703 fail_5:
704 for (i = 0; i < STGE_NRXDESC; i++) {
705 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
706 bus_dmamap_destroy(sc->sc_dmat,
707 sc->sc_rxsoft[i].ds_dmamap);
708 }
709 fail_4:
710 for (i = 0; i < STGE_NTXDESC; i++) {
711 if (sc->sc_txsoft[i].ds_dmamap != NULL)
712 bus_dmamap_destroy(sc->sc_dmat,
713 sc->sc_txsoft[i].ds_dmamap);
714 }
715 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
716 fail_3:
717 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
718 fail_2:
719 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
720 sizeof(struct stge_control_data));
721 fail_1:
722 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
723 fail_0:
724 return;
725 }
726
727 /*
728 * stge_shutdown:
729 *
730 * Make sure the interface is stopped at reboot time.
731 */
732 static void
733 stge_shutdown(void *arg)
734 {
735 struct stge_softc *sc = arg;
736
737 stge_stop(&sc->sc_ethercom.ec_if, 1);
738 }
739
740 static void
741 stge_dma_wait(struct stge_softc *sc)
742 {
743 int i;
744
745 for (i = 0; i < STGE_TIMEOUT; i++) {
746 delay(2);
747 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
748 DMAC_TxDMAInProg) == 0)
749 break;
750 }
751
752 if (i == STGE_TIMEOUT)
753 printf("%s: DMA wait timed out\n", device_xname(&sc->sc_dev));
754 }
755
756 /*
757 * stge_start: [ifnet interface function]
758 *
759 * Start packet transmission on the interface.
760 */
761 static void
762 stge_start(struct ifnet *ifp)
763 {
764 struct stge_softc *sc = ifp->if_softc;
765 struct mbuf *m0;
766 struct stge_descsoft *ds;
767 struct stge_tfd *tfd;
768 bus_dmamap_t dmamap;
769 int error, firsttx, nexttx, opending, seg, totlen;
770 uint64_t csum_flags;
771
772 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
773 return;
774
775 /*
776 * Remember the previous number of pending transmissions
777 * and the first descriptor we will use.
778 */
779 opending = sc->sc_txpending;
780 firsttx = STGE_NEXTTX(sc->sc_txlast);
781
782 /*
783 * Loop through the send queue, setting up transmit descriptors
784 * until we drain the queue, or use up all available transmit
785 * descriptors.
786 */
787 for (;;) {
788 struct m_tag *mtag;
789 uint64_t tfc;
790
791 /*
792 * Grab a packet off the queue.
793 */
794 IFQ_POLL(&ifp->if_snd, m0);
795 if (m0 == NULL)
796 break;
797
798 /*
799 * Leave one unused descriptor at the end of the
800 * list to prevent wrapping completely around.
801 */
802 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
803 STGE_EVCNT_INCR(&sc->sc_ev_txstall);
804 break;
805 }
806
807 /*
808 * See if we have any VLAN stuff.
809 */
810 mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
811
812 /*
813 * Get the last and next available transmit descriptor.
814 */
815 nexttx = STGE_NEXTTX(sc->sc_txlast);
816 tfd = &sc->sc_txdescs[nexttx];
817 ds = &sc->sc_txsoft[nexttx];
818
819 dmamap = ds->ds_dmamap;
820
821 /*
822 * Load the DMA map. If this fails, the packet either
823 * didn't fit in the alloted number of segments, or we
824 * were short on resources. For the too-many-segments
825 * case, we simply report an error and drop the packet,
826 * since we can't sanely copy a jumbo packet to a single
827 * buffer.
828 */
829 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
830 BUS_DMA_NOWAIT);
831 if (error) {
832 if (error == EFBIG) {
833 printf("%s: Tx packet consumes too many "
834 "DMA segments, dropping...\n",
835 device_xname(&sc->sc_dev));
836 IFQ_DEQUEUE(&ifp->if_snd, m0);
837 m_freem(m0);
838 continue;
839 }
840 /*
841 * Short on resources, just stop for now.
842 */
843 break;
844 }
845
846 IFQ_DEQUEUE(&ifp->if_snd, m0);
847
848 /*
849 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
850 */
851
852 /* Sync the DMA map. */
853 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
854 BUS_DMASYNC_PREWRITE);
855
856 /* Initialize the fragment list. */
857 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
858 tfd->tfd_frags[seg].frag_word0 =
859 htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
860 FRAG_LEN(dmamap->dm_segs[seg].ds_len));
861 totlen += dmamap->dm_segs[seg].ds_len;
862 }
863
864 #ifdef STGE_EVENT_COUNTERS
865 switch (dmamap->dm_nsegs) {
866 case 1:
867 STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
868 break;
869 case 2:
870 STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
871 break;
872 case 3:
873 STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
874 break;
875 case 4:
876 STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
877 break;
878 case 5:
879 STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
880 break;
881 default:
882 STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
883 break;
884 }
885 #endif /* STGE_EVENT_COUNTERS */
886
887 /*
888 * Initialize checksumming flags in the descriptor.
889 * Byte-swap constants so the compiler can optimize.
890 */
891 csum_flags = 0;
892 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
893 STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
894 csum_flags |= TFD_IPChecksumEnable;
895 }
896
897 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
898 STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
899 csum_flags |= TFD_TCPChecksumEnable;
900 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
901 STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
902 csum_flags |= TFD_UDPChecksumEnable;
903 }
904
905 /*
906 * Initialize the descriptor and give it to the chip.
907 * Check to see if we have a VLAN tag to insert.
908 */
909
910 tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
911 TFD_FragCount(seg) | csum_flags |
912 (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
913 TFD_TxDMAIndicate : 0);
914 if (mtag) {
915 #if 0
916 struct ether_header *eh =
917 mtod(m0, struct ether_header *);
918 u_int16_t etype = ntohs(eh->ether_type);
919 printf("%s: xmit (tag %d) etype %x\n",
920 ifp->if_xname, *mtod(n, int *), etype);
921 #endif
922 tfc |= TFD_VLANTagInsert |
923 #ifdef STGE_VLAN_CFI
924 TFD_CFI |
925 #endif
926 TFD_VID(VLAN_TAG_VALUE(mtag));
927 }
928 tfd->tfd_control = htole64(tfc);
929
930 /* Sync the descriptor. */
931 STGE_CDTXSYNC(sc, nexttx,
932 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
933
934 /*
935 * Kick the transmit DMA logic.
936 */
937 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
938 sc->sc_DMACtrl | DMAC_TxDMAPollNow);
939
940 /*
941 * Store a pointer to the packet so we can free it later.
942 */
943 ds->ds_mbuf = m0;
944
945 /* Advance the tx pointer. */
946 sc->sc_txpending++;
947 sc->sc_txlast = nexttx;
948
949 #if NBPFILTER > 0
950 /*
951 * Pass the packet to any BPF listeners.
952 */
953 if (ifp->if_bpf)
954 bpf_mtap(ifp->if_bpf, m0);
955 #endif /* NBPFILTER > 0 */
956 }
957
958 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
959 /* No more slots left; notify upper layer. */
960 ifp->if_flags |= IFF_OACTIVE;
961 }
962
963 if (sc->sc_txpending != opending) {
964 /*
965 * We enqueued packets. If the transmitter was idle,
966 * reset the txdirty pointer.
967 */
968 if (opending == 0)
969 sc->sc_txdirty = firsttx;
970
971 /* Set a watchdog timer in case the chip flakes out. */
972 ifp->if_timer = 5;
973 }
974 }
975
976 /*
977 * stge_watchdog: [ifnet interface function]
978 *
979 * Watchdog timer handler.
980 */
981 static void
982 stge_watchdog(struct ifnet *ifp)
983 {
984 struct stge_softc *sc = ifp->if_softc;
985
986 /*
987 * Sweep up first, since we don't interrupt every frame.
988 */
989 stge_txintr(sc);
990 if (sc->sc_txpending != 0) {
991 printf("%s: device timeout\n", device_xname(&sc->sc_dev));
992 ifp->if_oerrors++;
993
994 (void) stge_init(ifp);
995
996 /* Try to get more packets going. */
997 stge_start(ifp);
998 }
999 }
1000
1001 /*
1002 * stge_ioctl: [ifnet interface function]
1003 *
1004 * Handle control requests from the operator.
1005 */
1006 static int
1007 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1008 {
1009 struct stge_softc *sc = ifp->if_softc;
1010 int s, error;
1011
1012 s = splnet();
1013
1014 error = ether_ioctl(ifp, cmd, data);
1015 if (error == ENETRESET) {
1016 error = 0;
1017
1018 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1019 ;
1020 else if (ifp->if_flags & IFF_RUNNING) {
1021 /*
1022 * Multicast list has changed; set the hardware filter
1023 * accordingly.
1024 */
1025 stge_set_filter(sc);
1026 }
1027 }
1028
1029 /* Try to get more packets going. */
1030 stge_start(ifp);
1031
1032 splx(s);
1033 return (error);
1034 }
1035
1036 /*
1037 * stge_intr:
1038 *
1039 * Interrupt service routine.
1040 */
1041 static int
1042 stge_intr(void *arg)
1043 {
1044 struct stge_softc *sc = arg;
1045 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1046 uint32_t txstat;
1047 int wantinit;
1048 uint16_t isr;
1049
1050 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1051 IS_InterruptStatus) == 0)
1052 return (0);
1053
1054 for (wantinit = 0; wantinit == 0;) {
1055 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1056 if ((isr & sc->sc_IntEnable) == 0)
1057 break;
1058
1059 /* Host interface errors. */
1060 if (isr & IS_HostError) {
1061 printf("%s: Host interface error\n",
1062 device_xname(&sc->sc_dev));
1063 wantinit = 1;
1064 continue;
1065 }
1066
1067 /* Receive interrupts. */
1068 if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
1069 STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1070 stge_rxintr(sc);
1071 if (isr & IS_RFDListEnd) {
1072 printf("%s: receive ring overflow\n",
1073 device_xname(&sc->sc_dev));
1074 /*
1075 * XXX Should try to recover from this
1076 * XXX more gracefully.
1077 */
1078 wantinit = 1;
1079 }
1080 }
1081
1082 /* Transmit interrupts. */
1083 if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
1084 #ifdef STGE_EVENT_COUNTERS
1085 if (isr & IS_TxDMAComplete)
1086 STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1087 #endif
1088 stge_txintr(sc);
1089 }
1090
1091 /* Statistics overflow. */
1092 if (isr & IS_UpdateStats)
1093 stge_stats_update(sc);
1094
1095 /* Transmission errors. */
1096 if (isr & IS_TxComplete) {
1097 STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1098 for (;;) {
1099 txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1100 STGE_TxStatus);
1101 if ((txstat & TS_TxComplete) == 0)
1102 break;
1103 if (txstat & TS_TxUnderrun) {
1104 sc->sc_txthresh++;
1105 if (sc->sc_txthresh > 0x0fff)
1106 sc->sc_txthresh = 0x0fff;
1107 printf("%s: transmit underrun, new "
1108 "threshold: %d bytes\n",
1109 device_xname(&sc->sc_dev),
1110 sc->sc_txthresh << 5);
1111 }
1112 if (txstat & TS_MaxCollisions)
1113 printf("%s: excessive collisions\n",
1114 device_xname(&sc->sc_dev));
1115 }
1116 wantinit = 1;
1117 }
1118
1119 }
1120
1121 if (wantinit)
1122 stge_init(ifp);
1123
1124 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1125 sc->sc_IntEnable);
1126
1127 /* Try to get more packets going. */
1128 stge_start(ifp);
1129
1130 return (1);
1131 }
1132
1133 /*
1134 * stge_txintr:
1135 *
1136 * Helper; handle transmit interrupts.
1137 */
1138 static void
1139 stge_txintr(struct stge_softc *sc)
1140 {
1141 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1142 struct stge_descsoft *ds;
1143 uint64_t control;
1144 int i;
1145
1146 ifp->if_flags &= ~IFF_OACTIVE;
1147
1148 /*
1149 * Go through our Tx list and free mbufs for those
1150 * frames which have been transmitted.
1151 */
1152 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1153 i = STGE_NEXTTX(i), sc->sc_txpending--) {
1154 ds = &sc->sc_txsoft[i];
1155
1156 STGE_CDTXSYNC(sc, i,
1157 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1158
1159 control = le64toh(sc->sc_txdescs[i].tfd_control);
1160 if ((control & TFD_TFDDone) == 0)
1161 break;
1162
1163 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1164 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1165 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1166 m_freem(ds->ds_mbuf);
1167 ds->ds_mbuf = NULL;
1168 }
1169
1170 /* Update the dirty transmit buffer pointer. */
1171 sc->sc_txdirty = i;
1172
1173 /*
1174 * If there are no more pending transmissions, cancel the watchdog
1175 * timer.
1176 */
1177 if (sc->sc_txpending == 0)
1178 ifp->if_timer = 0;
1179 }
1180
1181 /*
1182 * stge_rxintr:
1183 *
1184 * Helper; handle receive interrupts.
1185 */
1186 static void
1187 stge_rxintr(struct stge_softc *sc)
1188 {
1189 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1190 struct stge_descsoft *ds;
1191 struct mbuf *m, *tailm;
1192 uint64_t status;
1193 int i, len;
1194
1195 for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1196 ds = &sc->sc_rxsoft[i];
1197
1198 STGE_CDRXSYNC(sc, i,
1199 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1200
1201 status = le64toh(sc->sc_rxdescs[i].rfd_status);
1202
1203 if ((status & RFD_RFDDone) == 0)
1204 break;
1205
1206 if (__predict_false(sc->sc_rxdiscard)) {
1207 STGE_INIT_RXDESC(sc, i);
1208 if (status & RFD_FrameEnd) {
1209 /* Reset our state. */
1210 sc->sc_rxdiscard = 0;
1211 }
1212 continue;
1213 }
1214
1215 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1216 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1217
1218 m = ds->ds_mbuf;
1219
1220 /*
1221 * Add a new receive buffer to the ring.
1222 */
1223 if (stge_add_rxbuf(sc, i) != 0) {
1224 /*
1225 * Failed, throw away what we've done so
1226 * far, and discard the rest of the packet.
1227 */
1228 ifp->if_ierrors++;
1229 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1230 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1231 STGE_INIT_RXDESC(sc, i);
1232 if ((status & RFD_FrameEnd) == 0)
1233 sc->sc_rxdiscard = 1;
1234 if (sc->sc_rxhead != NULL)
1235 m_freem(sc->sc_rxhead);
1236 STGE_RXCHAIN_RESET(sc);
1237 continue;
1238 }
1239
1240 #ifdef DIAGNOSTIC
1241 if (status & RFD_FrameStart) {
1242 KASSERT(sc->sc_rxhead == NULL);
1243 KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1244 }
1245 #endif
1246
1247 STGE_RXCHAIN_LINK(sc, m);
1248
1249 /*
1250 * If this is not the end of the packet, keep
1251 * looking.
1252 */
1253 if ((status & RFD_FrameEnd) == 0) {
1254 sc->sc_rxlen += m->m_len;
1255 continue;
1256 }
1257
1258 /*
1259 * Okay, we have the entire packet now...
1260 */
1261 *sc->sc_rxtailp = NULL;
1262 m = sc->sc_rxhead;
1263 tailm = sc->sc_rxtail;
1264
1265 STGE_RXCHAIN_RESET(sc);
1266
1267 /*
1268 * If the packet had an error, drop it. Note we
1269 * count the error later in the periodic stats update.
1270 */
1271 if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1272 RFD_RxAlignmentError | RFD_RxFCSError |
1273 RFD_RxLengthError)) {
1274 m_freem(m);
1275 continue;
1276 }
1277
1278 /*
1279 * No errors.
1280 *
1281 * Note we have configured the chip to not include
1282 * the CRC at the end of the packet.
1283 */
1284 len = RFD_RxDMAFrameLen(status);
1285 tailm->m_len = len - sc->sc_rxlen;
1286
1287 /*
1288 * If the packet is small enough to fit in a
1289 * single header mbuf, allocate one and copy
1290 * the data into it. This greatly reduces
1291 * memory consumption when we receive lots
1292 * of small packets.
1293 */
1294 if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1295 struct mbuf *nm;
1296 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1297 if (nm == NULL) {
1298 ifp->if_ierrors++;
1299 m_freem(m);
1300 continue;
1301 }
1302 nm->m_data += 2;
1303 nm->m_pkthdr.len = nm->m_len = len;
1304 m_copydata(m, 0, len, mtod(nm, void *));
1305 m_freem(m);
1306 m = nm;
1307 }
1308
1309 /*
1310 * Set the incoming checksum information for the packet.
1311 */
1312 if (status & RFD_IPDetected) {
1313 STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1314 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1315 if (status & RFD_IPError)
1316 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1317 if (status & RFD_TCPDetected) {
1318 STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1319 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1320 if (status & RFD_TCPError)
1321 m->m_pkthdr.csum_flags |=
1322 M_CSUM_TCP_UDP_BAD;
1323 } else if (status & RFD_UDPDetected) {
1324 STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1325 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1326 if (status & RFD_UDPError)
1327 m->m_pkthdr.csum_flags |=
1328 M_CSUM_TCP_UDP_BAD;
1329 }
1330 }
1331
1332 m->m_pkthdr.rcvif = ifp;
1333 m->m_pkthdr.len = len;
1334
1335 #if NBPFILTER > 0
1336 /*
1337 * Pass this up to any BPF listeners, but only
1338 * pass if up the stack if it's for us.
1339 */
1340 if (ifp->if_bpf)
1341 bpf_mtap(ifp->if_bpf, m);
1342 #endif /* NBPFILTER > 0 */
1343 #ifdef STGE_VLAN_UNTAG
1344 /*
1345 * Check for VLAN tagged packets
1346 */
1347 if (status & RFD_VLANDetected)
1348 VLAN_INPUT_TAG(ifp, m, RFD_TCI(status), continue);
1349
1350 #endif
1351 #if 0
1352 if (status & RFD_VLANDetected) {
1353 struct ether_header *eh;
1354 u_int16_t etype;
1355
1356 eh = mtod(m, struct ether_header *);
1357 etype = ntohs(eh->ether_type);
1358 printf("%s: VLANtag detected (TCI %d) etype %x\n",
1359 ifp->if_xname, (u_int16_t) RFD_TCI(status),
1360 etype);
1361 }
1362 #endif
1363 /* Pass it on. */
1364 (*ifp->if_input)(ifp, m);
1365 }
1366
1367 /* Update the receive pointer. */
1368 sc->sc_rxptr = i;
1369 }
1370
1371 /*
1372 * stge_tick:
1373 *
1374 * One second timer, used to tick the MII.
1375 */
1376 static void
1377 stge_tick(void *arg)
1378 {
1379 struct stge_softc *sc = arg;
1380 int s;
1381
1382 s = splnet();
1383 mii_tick(&sc->sc_mii);
1384 stge_stats_update(sc);
1385 splx(s);
1386
1387 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1388 }
1389
1390 /*
1391 * stge_stats_update:
1392 *
1393 * Read the TC9021 statistics counters.
1394 */
1395 static void
1396 stge_stats_update(struct stge_softc *sc)
1397 {
1398 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1399 bus_space_tag_t st = sc->sc_st;
1400 bus_space_handle_t sh = sc->sc_sh;
1401
1402 (void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1403
1404 ifp->if_ipackets +=
1405 bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1406
1407 ifp->if_ierrors +=
1408 (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1409
1410 (void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1411
1412 ifp->if_opackets +=
1413 bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1414
1415 ifp->if_collisions +=
1416 bus_space_read_4(st, sh, STGE_LateCollisions) +
1417 bus_space_read_4(st, sh, STGE_MultiColFrames) +
1418 bus_space_read_4(st, sh, STGE_SingleColFrames);
1419
1420 ifp->if_oerrors +=
1421 (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1422 (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1423 }
1424
1425 /*
1426 * stge_reset:
1427 *
1428 * Perform a soft reset on the TC9021.
1429 */
1430 static void
1431 stge_reset(struct stge_softc *sc)
1432 {
1433 uint32_t ac;
1434 int i;
1435
1436 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1437
1438 /*
1439 * Only assert RstOut if we're fiber. We need GMII clocks
1440 * to be present in order for the reset to complete on fiber
1441 * cards.
1442 */
1443 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1444 ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1445 AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1446 (sc->sc_usefiber ? AC_RstOut : 0));
1447
1448 delay(50000);
1449
1450 for (i = 0; i < STGE_TIMEOUT; i++) {
1451 delay(5000);
1452 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1453 AC_ResetBusy) == 0)
1454 break;
1455 }
1456
1457 if (i == STGE_TIMEOUT)
1458 printf("%s: reset failed to complete\n", device_xname(&sc->sc_dev));
1459
1460 delay(1000);
1461 }
1462
1463 /*
1464 * stge_init: [ ifnet interface function ]
1465 *
1466 * Initialize the interface. Must be called at splnet().
1467 */
1468 static int
1469 stge_init(struct ifnet *ifp)
1470 {
1471 struct stge_softc *sc = ifp->if_softc;
1472 bus_space_tag_t st = sc->sc_st;
1473 bus_space_handle_t sh = sc->sc_sh;
1474 struct stge_descsoft *ds;
1475 int i, error = 0;
1476
1477 /*
1478 * Cancel any pending I/O.
1479 */
1480 stge_stop(ifp, 0);
1481
1482 /*
1483 * Reset the chip to a known state.
1484 */
1485 stge_reset(sc);
1486
1487 /*
1488 * Initialize the transmit descriptor ring.
1489 */
1490 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1491 for (i = 0; i < STGE_NTXDESC; i++) {
1492 sc->sc_txdescs[i].tfd_next = htole64(
1493 STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1494 sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1495 }
1496 sc->sc_txpending = 0;
1497 sc->sc_txdirty = 0;
1498 sc->sc_txlast = STGE_NTXDESC - 1;
1499
1500 /*
1501 * Initialize the receive descriptor and receive job
1502 * descriptor rings.
1503 */
1504 for (i = 0; i < STGE_NRXDESC; i++) {
1505 ds = &sc->sc_rxsoft[i];
1506 if (ds->ds_mbuf == NULL) {
1507 if ((error = stge_add_rxbuf(sc, i)) != 0) {
1508 printf("%s: unable to allocate or map rx "
1509 "buffer %d, error = %d\n",
1510 device_xname(&sc->sc_dev), i, error);
1511 /*
1512 * XXX Should attempt to run with fewer receive
1513 * XXX buffers instead of just failing.
1514 */
1515 stge_rxdrain(sc);
1516 goto out;
1517 }
1518 } else
1519 STGE_INIT_RXDESC(sc, i);
1520 }
1521 sc->sc_rxptr = 0;
1522 sc->sc_rxdiscard = 0;
1523 STGE_RXCHAIN_RESET(sc);
1524
1525 /* Set the station address. */
1526 for (i = 0; i < 6; i++)
1527 bus_space_write_1(st, sh, STGE_StationAddress0 + i,
1528 CLLADDR(ifp->if_sadl)[i]);
1529
1530 /*
1531 * Set the statistics masks. Disable all the RMON stats,
1532 * and disable selected stats in the non-RMON stats registers.
1533 */
1534 bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1535 bus_space_write_4(st, sh, STGE_StatisticsMask,
1536 (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1537 (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1538 (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1539 (1U << 21));
1540
1541 /* Set up the receive filter. */
1542 stge_set_filter(sc);
1543
1544 /*
1545 * Give the transmit and receive ring to the chip.
1546 */
1547 bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1548 bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1549 STGE_CDTXADDR(sc, sc->sc_txdirty));
1550
1551 bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1552 bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1553 STGE_CDRXADDR(sc, sc->sc_rxptr));
1554
1555 /*
1556 * Initialize the Tx auto-poll period. It's OK to make this number
1557 * large (255 is the max, but we use 127) -- we explicitly kick the
1558 * transmit engine when there's actually a packet.
1559 */
1560 bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1561
1562 /* ..and the Rx auto-poll period. */
1563 bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1564
1565 /* Initialize the Tx start threshold. */
1566 bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1567
1568 /* RX DMA thresholds, from linux */
1569 bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
1570 bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
1571
1572 /*
1573 * Initialize the Rx DMA interrupt control register. We
1574 * request an interrupt after every incoming packet, but
1575 * defer it for 32us (64 * 512 ns). When the number of
1576 * interrupts pending reaches 8, we stop deferring the
1577 * interrupt, and signal it immediately.
1578 */
1579 bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1580 RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1581
1582 /*
1583 * Initialize the interrupt mask.
1584 */
1585 sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1586 IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1587 bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1588 bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1589
1590 /*
1591 * Configure the DMA engine.
1592 * XXX Should auto-tune TxBurstLimit.
1593 */
1594 bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1595 DMAC_TxBurstLimit(3));
1596
1597 /*
1598 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1599 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1600 * empty again.
1601 */
1602 bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1603 bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1604
1605 /*
1606 * Set the maximum frame size.
1607 */
1608 bus_space_write_2(st, sh, STGE_MaxFrameSize,
1609 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1610 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1611 ETHER_VLAN_ENCAP_LEN : 0));
1612
1613 /*
1614 * Initialize MacCtrl -- do it before setting the media,
1615 * as setting the media will actually program the register.
1616 *
1617 * Note: We have to poke the IFS value before poking
1618 * anything else.
1619 */
1620 sc->sc_MACCtrl = MC_IFSSelect(0);
1621 bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1622 sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1623 #ifdef STGE_VLAN_UNTAG
1624 sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1625 #endif
1626
1627 if (sc->sc_rev >= 6) { /* >= B.2 */
1628 /* Multi-frag frame bug work-around. */
1629 bus_space_write_2(st, sh, STGE_DebugCtrl,
1630 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1631
1632 /* Tx Poll Now bug work-around. */
1633 bus_space_write_2(st, sh, STGE_DebugCtrl,
1634 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1635 /* XXX ? from linux */
1636 bus_space_write_2(st, sh, STGE_DebugCtrl,
1637 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
1638 }
1639
1640 /*
1641 * Set the current media.
1642 */
1643 if ((error = ether_mediachange(ifp)) != 0)
1644 goto out;
1645
1646 /*
1647 * Start the one second MII clock.
1648 */
1649 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1650
1651 /*
1652 * ...all done!
1653 */
1654 ifp->if_flags |= IFF_RUNNING;
1655 ifp->if_flags &= ~IFF_OACTIVE;
1656
1657 out:
1658 if (error)
1659 printf("%s: interface not running\n", device_xname(&sc->sc_dev));
1660 return (error);
1661 }
1662
1663 /*
1664 * stge_drain:
1665 *
1666 * Drain the receive queue.
1667 */
1668 static void
1669 stge_rxdrain(struct stge_softc *sc)
1670 {
1671 struct stge_descsoft *ds;
1672 int i;
1673
1674 for (i = 0; i < STGE_NRXDESC; i++) {
1675 ds = &sc->sc_rxsoft[i];
1676 if (ds->ds_mbuf != NULL) {
1677 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1678 ds->ds_mbuf->m_next = NULL;
1679 m_freem(ds->ds_mbuf);
1680 ds->ds_mbuf = NULL;
1681 }
1682 }
1683 }
1684
1685 /*
1686 * stge_stop: [ ifnet interface function ]
1687 *
1688 * Stop transmission on the interface.
1689 */
1690 static void
1691 stge_stop(struct ifnet *ifp, int disable)
1692 {
1693 struct stge_softc *sc = ifp->if_softc;
1694 struct stge_descsoft *ds;
1695 int i;
1696
1697 /*
1698 * Stop the one second clock.
1699 */
1700 callout_stop(&sc->sc_tick_ch);
1701
1702 /* Down the MII. */
1703 mii_down(&sc->sc_mii);
1704
1705 /*
1706 * Disable interrupts.
1707 */
1708 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1709
1710 /*
1711 * Stop receiver, transmitter, and stats update.
1712 */
1713 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1714 MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1715
1716 /*
1717 * Stop the transmit and receive DMA.
1718 */
1719 stge_dma_wait(sc);
1720 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1721 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1722 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1723 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1724
1725 /*
1726 * Release any queued transmit buffers.
1727 */
1728 for (i = 0; i < STGE_NTXDESC; i++) {
1729 ds = &sc->sc_txsoft[i];
1730 if (ds->ds_mbuf != NULL) {
1731 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1732 m_freem(ds->ds_mbuf);
1733 ds->ds_mbuf = NULL;
1734 }
1735 }
1736
1737 /*
1738 * Mark the interface down and cancel the watchdog timer.
1739 */
1740 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1741 ifp->if_timer = 0;
1742
1743 if (disable)
1744 stge_rxdrain(sc);
1745 }
1746
1747 static int
1748 stge_eeprom_wait(struct stge_softc *sc)
1749 {
1750 int i;
1751
1752 for (i = 0; i < STGE_TIMEOUT; i++) {
1753 delay(1000);
1754 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1755 EC_EepromBusy) == 0)
1756 return (0);
1757 }
1758 return (1);
1759 }
1760
1761 /*
1762 * stge_read_eeprom:
1763 *
1764 * Read data from the serial EEPROM.
1765 */
1766 static void
1767 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1768 {
1769
1770 if (stge_eeprom_wait(sc))
1771 printf("%s: EEPROM failed to come ready\n",
1772 device_xname(&sc->sc_dev));
1773
1774 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1775 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1776 if (stge_eeprom_wait(sc))
1777 printf("%s: EEPROM read timed out\n",
1778 device_xname(&sc->sc_dev));
1779 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1780 }
1781
1782 /*
1783 * stge_add_rxbuf:
1784 *
1785 * Add a receive buffer to the indicated descriptor.
1786 */
1787 static int
1788 stge_add_rxbuf(struct stge_softc *sc, int idx)
1789 {
1790 struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1791 struct mbuf *m;
1792 int error;
1793
1794 MGETHDR(m, M_DONTWAIT, MT_DATA);
1795 if (m == NULL)
1796 return (ENOBUFS);
1797
1798 MCLGET(m, M_DONTWAIT);
1799 if ((m->m_flags & M_EXT) == 0) {
1800 m_freem(m);
1801 return (ENOBUFS);
1802 }
1803
1804 m->m_data = m->m_ext.ext_buf + 2;
1805 m->m_len = MCLBYTES - 2;
1806
1807 if (ds->ds_mbuf != NULL)
1808 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1809
1810 ds->ds_mbuf = m;
1811
1812 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1813 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1814 if (error) {
1815 printf("%s: can't load rx DMA map %d, error = %d\n",
1816 device_xname(&sc->sc_dev), idx, error);
1817 panic("stge_add_rxbuf"); /* XXX */
1818 }
1819
1820 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1821 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1822
1823 STGE_INIT_RXDESC(sc, idx);
1824
1825 return (0);
1826 }
1827
1828 /*
1829 * stge_set_filter:
1830 *
1831 * Set up the receive filter.
1832 */
1833 static void
1834 stge_set_filter(struct stge_softc *sc)
1835 {
1836 struct ethercom *ec = &sc->sc_ethercom;
1837 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1838 struct ether_multi *enm;
1839 struct ether_multistep step;
1840 uint32_t crc;
1841 uint32_t mchash[2];
1842
1843 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1844 if (ifp->if_flags & IFF_BROADCAST)
1845 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1846
1847 /* XXX: ST1023 only works in promiscuous mode */
1848 if (sc->sc_stge1023)
1849 ifp->if_flags |= IFF_PROMISC;
1850
1851 if (ifp->if_flags & IFF_PROMISC) {
1852 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1853 goto allmulti;
1854 }
1855
1856 /*
1857 * Set up the multicast address filter by passing all multicast
1858 * addresses through a CRC generator, and then using the low-order
1859 * 6 bits as an index into the 64 bit multicast hash table. The
1860 * high order bits select the register, while the rest of the bits
1861 * select the bit within the register.
1862 */
1863
1864 memset(mchash, 0, sizeof(mchash));
1865
1866 ETHER_FIRST_MULTI(step, ec, enm);
1867 if (enm == NULL)
1868 goto done;
1869
1870 while (enm != NULL) {
1871 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1872 /*
1873 * We must listen to a range of multicast addresses.
1874 * For now, just accept all multicasts, rather than
1875 * trying to set only those filter bits needed to match
1876 * the range. (At this time, the only use of address
1877 * ranges is for IP multicast routing, for which the
1878 * range is big enough to require all bits set.)
1879 */
1880 goto allmulti;
1881 }
1882
1883 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1884
1885 /* Just want the 6 least significant bits. */
1886 crc &= 0x3f;
1887
1888 /* Set the corresponding bit in the hash table. */
1889 mchash[crc >> 5] |= 1 << (crc & 0x1f);
1890
1891 ETHER_NEXT_MULTI(step, enm);
1892 }
1893
1894 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1895
1896 ifp->if_flags &= ~IFF_ALLMULTI;
1897 goto done;
1898
1899 allmulti:
1900 ifp->if_flags |= IFF_ALLMULTI;
1901 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1902
1903 done:
1904 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1905 /*
1906 * Program the multicast hash table.
1907 */
1908 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1909 mchash[0]);
1910 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1911 mchash[1]);
1912 }
1913
1914 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1915 sc->sc_ReceiveMode);
1916 }
1917
1918 /*
1919 * stge_mii_readreg: [mii interface function]
1920 *
1921 * Read a PHY register on the MII of the TC9021.
1922 */
1923 static int
1924 stge_mii_readreg(device_t self, int phy, int reg)
1925 {
1926
1927 return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1928 }
1929
1930 /*
1931 * stge_mii_writereg: [mii interface function]
1932 *
1933 * Write a PHY register on the MII of the TC9021.
1934 */
1935 static void
1936 stge_mii_writereg(device_t self, int phy, int reg, int val)
1937 {
1938
1939 mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1940 }
1941
1942 /*
1943 * stge_mii_statchg: [mii interface function]
1944 *
1945 * Callback from MII layer when media changes.
1946 */
1947 static void
1948 stge_mii_statchg(device_t self)
1949 {
1950 struct stge_softc *sc = device_private(self);
1951
1952 if (sc->sc_mii.mii_media_active & IFM_FDX)
1953 sc->sc_MACCtrl |= MC_DuplexSelect;
1954 else
1955 sc->sc_MACCtrl &= ~MC_DuplexSelect;
1956
1957 /* XXX 802.1x flow-control? */
1958
1959 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1960 }
1961
1962 /*
1963 * sste_mii_bitbang_read: [mii bit-bang interface function]
1964 *
1965 * Read the MII serial port for the MII bit-bang module.
1966 */
1967 static uint32_t
1968 stge_mii_bitbang_read(device_t self)
1969 {
1970 struct stge_softc *sc = device_private(self);
1971
1972 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
1973 }
1974
1975 /*
1976 * stge_mii_bitbang_write: [mii big-bang interface function]
1977 *
1978 * Write the MII serial port for the MII bit-bang module.
1979 */
1980 static void
1981 stge_mii_bitbang_write(device_t self, uint32_t val)
1982 {
1983 struct stge_softc *sc = device_private(self);
1984
1985 bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
1986 val | sc->sc_PhyCtrl);
1987 }
1988