Home | History | Annotate | Line # | Download | only in pci
if_stge.c revision 1.46
      1 /*	$NetBSD: if_stge.c,v 1.46 2009/05/06 09:25:16 cegger Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Device driver for the Sundance Tech. TC9021 10/100/1000
     34  * Ethernet controller.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.46 2009/05/06 09:25:16 cegger Exp $");
     39 
     40 #include "bpfilter.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/callout.h>
     45 #include <sys/mbuf.h>
     46 #include <sys/malloc.h>
     47 #include <sys/kernel.h>
     48 #include <sys/socket.h>
     49 #include <sys/ioctl.h>
     50 #include <sys/errno.h>
     51 #include <sys/device.h>
     52 #include <sys/queue.h>
     53 
     54 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     55 
     56 #include <net/if.h>
     57 #include <net/if_dl.h>
     58 #include <net/if_media.h>
     59 #include <net/if_ether.h>
     60 
     61 #if NBPFILTER > 0
     62 #include <net/bpf.h>
     63 #endif
     64 
     65 #include <sys/bus.h>
     66 #include <sys/intr.h>
     67 
     68 #include <dev/mii/mii.h>
     69 #include <dev/mii/miivar.h>
     70 #include <dev/mii/mii_bitbang.h>
     71 
     72 #include <dev/pci/pcireg.h>
     73 #include <dev/pci/pcivar.h>
     74 #include <dev/pci/pcidevs.h>
     75 
     76 #include <dev/pci/if_stgereg.h>
     77 
     78 /* #define	STGE_CU_BUG			1 */
     79 #define	STGE_VLAN_UNTAG			1
     80 /* #define	STGE_VLAN_CFI		1 */
     81 
     82 /*
     83  * Transmit descriptor list size.
     84  */
     85 #define	STGE_NTXDESC		256
     86 #define	STGE_NTXDESC_MASK	(STGE_NTXDESC - 1)
     87 #define	STGE_NEXTTX(x)		(((x) + 1) & STGE_NTXDESC_MASK)
     88 
     89 /*
     90  * Receive descriptor list size.
     91  */
     92 #define	STGE_NRXDESC		256
     93 #define	STGE_NRXDESC_MASK	(STGE_NRXDESC - 1)
     94 #define	STGE_NEXTRX(x)		(((x) + 1) & STGE_NRXDESC_MASK)
     95 
     96 /*
     97  * Only interrupt every N frames.  Must be a power-of-two.
     98  */
     99 #define	STGE_TXINTR_SPACING	16
    100 #define	STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
    101 
    102 /*
    103  * Control structures are DMA'd to the TC9021 chip.  We allocate them in
    104  * a single clump that maps to a single DMA segment to make several things
    105  * easier.
    106  */
    107 struct stge_control_data {
    108 	/*
    109 	 * The transmit descriptors.
    110 	 */
    111 	struct stge_tfd scd_txdescs[STGE_NTXDESC];
    112 
    113 	/*
    114 	 * The receive descriptors.
    115 	 */
    116 	struct stge_rfd scd_rxdescs[STGE_NRXDESC];
    117 };
    118 
    119 #define	STGE_CDOFF(x)	offsetof(struct stge_control_data, x)
    120 #define	STGE_CDTXOFF(x)	STGE_CDOFF(scd_txdescs[(x)])
    121 #define	STGE_CDRXOFF(x)	STGE_CDOFF(scd_rxdescs[(x)])
    122 
    123 /*
    124  * Software state for transmit and receive jobs.
    125  */
    126 struct stge_descsoft {
    127 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
    128 	bus_dmamap_t ds_dmamap;		/* our DMA map */
    129 };
    130 
    131 /*
    132  * Software state per device.
    133  */
    134 struct stge_softc {
    135 	struct device sc_dev;		/* generic device information */
    136 	bus_space_tag_t sc_st;		/* bus space tag */
    137 	bus_space_handle_t sc_sh;	/* bus space handle */
    138 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    139 	struct ethercom sc_ethercom;	/* ethernet common data */
    140 	void *sc_sdhook;		/* shutdown hook */
    141 	int sc_rev;			/* silicon revision */
    142 
    143 	void *sc_ih;			/* interrupt cookie */
    144 
    145 	struct mii_data sc_mii;		/* MII/media information */
    146 
    147 	callout_t sc_tick_ch;		/* tick callout */
    148 
    149 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    150 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    151 
    152 	/*
    153 	 * Software state for transmit and receive descriptors.
    154 	 */
    155 	struct stge_descsoft sc_txsoft[STGE_NTXDESC];
    156 	struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
    157 
    158 	/*
    159 	 * Control data structures.
    160 	 */
    161 	struct stge_control_data *sc_control_data;
    162 #define	sc_txdescs	sc_control_data->scd_txdescs
    163 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    164 
    165 #ifdef STGE_EVENT_COUNTERS
    166 	/*
    167 	 * Event counters.
    168 	 */
    169 	struct evcnt sc_ev_txstall;	/* Tx stalled */
    170 	struct evcnt sc_ev_txdmaintr;	/* Tx DMA interrupts */
    171 	struct evcnt sc_ev_txindintr;	/* Tx Indicate interrupts */
    172 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    173 
    174 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
    175 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
    176 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
    177 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
    178 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
    179 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
    180 	struct evcnt sc_ev_txcopy;	/* Tx packets that we had to copy */
    181 
    182 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    183 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    184 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
    185 
    186 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    187 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    188 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    189 #endif /* STGE_EVENT_COUNTERS */
    190 
    191 	int	sc_txpending;		/* number of Tx requests pending */
    192 	int	sc_txdirty;		/* first dirty Tx descriptor */
    193 	int	sc_txlast;		/* last used Tx descriptor */
    194 
    195 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    196 	int	sc_rxdiscard;
    197 	int	sc_rxlen;
    198 	struct mbuf *sc_rxhead;
    199 	struct mbuf *sc_rxtail;
    200 	struct mbuf **sc_rxtailp;
    201 
    202 	int	sc_txthresh;		/* Tx threshold */
    203 	uint32_t sc_usefiber:1;		/* if we're fiber */
    204 	uint32_t sc_stge1023:1;		/* are we a 1023 */
    205 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
    206 	uint32_t sc_MACCtrl;		/* prototype MacCtrl register */
    207 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
    208 	uint16_t sc_ReceiveMode;	/* prototype ReceiveMode register */
    209 	uint8_t sc_PhyCtrl;		/* prototype PhyCtrl register */
    210 };
    211 
    212 #define	STGE_RXCHAIN_RESET(sc)						\
    213 do {									\
    214 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    215 	*(sc)->sc_rxtailp = NULL;					\
    216 	(sc)->sc_rxlen = 0;						\
    217 } while (/*CONSTCOND*/0)
    218 
    219 #define	STGE_RXCHAIN_LINK(sc, m)					\
    220 do {									\
    221 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    222 	(sc)->sc_rxtailp = &(m)->m_next;				\
    223 } while (/*CONSTCOND*/0)
    224 
    225 #ifdef STGE_EVENT_COUNTERS
    226 #define	STGE_EVCNT_INCR(ev)	(ev)->ev_count++
    227 #else
    228 #define	STGE_EVCNT_INCR(ev)	/* nothing */
    229 #endif
    230 
    231 #define	STGE_CDTXADDR(sc, x)	((sc)->sc_cddma + STGE_CDTXOFF((x)))
    232 #define	STGE_CDRXADDR(sc, x)	((sc)->sc_cddma + STGE_CDRXOFF((x)))
    233 
    234 #define	STGE_CDTXSYNC(sc, x, ops)					\
    235 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    236 	    STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
    237 
    238 #define	STGE_CDRXSYNC(sc, x, ops)					\
    239 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    240 	    STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
    241 
    242 #define	STGE_INIT_RXDESC(sc, x)						\
    243 do {									\
    244 	struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
    245 	struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)];		\
    246 									\
    247 	/*								\
    248 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    249 	 * so that the payload after the Ethernet header is aligned	\
    250 	 * to a 4-byte boundary.					\
    251 	 */								\
    252 	__rfd->rfd_frag.frag_word0 =					\
    253 	    htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
    254 	    FRAG_LEN(MCLBYTES - 2));					\
    255 	__rfd->rfd_next =						\
    256 	    htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x))));	\
    257 	__rfd->rfd_status = 0;						\
    258 	STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    259 } while (/*CONSTCOND*/0)
    260 
    261 #define STGE_TIMEOUT 1000
    262 
    263 static void	stge_start(struct ifnet *);
    264 static void	stge_watchdog(struct ifnet *);
    265 static int	stge_ioctl(struct ifnet *, u_long, void *);
    266 static int	stge_init(struct ifnet *);
    267 static void	stge_stop(struct ifnet *, int);
    268 
    269 static void	stge_shutdown(void *);
    270 
    271 static void	stge_reset(struct stge_softc *);
    272 static void	stge_rxdrain(struct stge_softc *);
    273 static int	stge_add_rxbuf(struct stge_softc *, int);
    274 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
    275 static void	stge_tick(void *);
    276 
    277 static void	stge_stats_update(struct stge_softc *);
    278 
    279 static void	stge_set_filter(struct stge_softc *);
    280 
    281 static int	stge_intr(void *);
    282 static void	stge_txintr(struct stge_softc *);
    283 static void	stge_rxintr(struct stge_softc *);
    284 
    285 static int	stge_mii_readreg(device_t, int, int);
    286 static void	stge_mii_writereg(device_t, int, int, int);
    287 static void	stge_mii_statchg(device_t);
    288 
    289 static int	stge_match(device_t, cfdata_t, void *);
    290 static void	stge_attach(device_t, device_t, void *);
    291 
    292 int	stge_copy_small = 0;
    293 
    294 CFATTACH_DECL(stge, sizeof(struct stge_softc),
    295     stge_match, stge_attach, NULL, NULL);
    296 
    297 static uint32_t stge_mii_bitbang_read(device_t);
    298 static void	stge_mii_bitbang_write(device_t, uint32_t);
    299 
    300 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
    301 	stge_mii_bitbang_read,
    302 	stge_mii_bitbang_write,
    303 	{
    304 		PC_MgmtData,		/* MII_BIT_MDO */
    305 		PC_MgmtData,		/* MII_BIT_MDI */
    306 		PC_MgmtClk,		/* MII_BIT_MDC */
    307 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
    308 		0,			/* MII_BIT_DIR_PHY_HOST */
    309 	}
    310 };
    311 
    312 /*
    313  * Devices supported by this driver.
    314  */
    315 static const struct stge_product {
    316 	pci_vendor_id_t		stge_vendor;
    317 	pci_product_id_t	stge_product;
    318 	const char		*stge_name;
    319 } stge_products[] = {
    320 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST1023,
    321 	  "Sundance ST-1023 Gigabit Ethernet" },
    322 
    323 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST2021,
    324 	  "Sundance ST-2021 Gigabit Ethernet" },
    325 
    326 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021,
    327 	  "Tamarack TC9021 Gigabit Ethernet" },
    328 
    329 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021_ALT,
    330 	  "Tamarack TC9021 Gigabit Ethernet" },
    331 
    332 	/*
    333 	 * The Sundance sample boards use the Sundance vendor ID,
    334 	 * but the Tamarack product ID.
    335 	 */
    336 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021,
    337 	  "Sundance TC9021 Gigabit Ethernet" },
    338 
    339 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021_ALT,
    340 	  "Sundance TC9021 Gigabit Ethernet" },
    341 
    342 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL4000,
    343 	  "D-Link DL-4000 Gigabit Ethernet" },
    344 
    345 	{ PCI_VENDOR_ANTARES,		PCI_PRODUCT_ANTARES_TC9021,
    346 	  "Antares Gigabit Ethernet" },
    347 
    348 	{ 0,				0,
    349 	  NULL },
    350 };
    351 
    352 static const struct stge_product *
    353 stge_lookup(const struct pci_attach_args *pa)
    354 {
    355 	const struct stge_product *sp;
    356 
    357 	for (sp = stge_products; sp->stge_name != NULL; sp++) {
    358 		if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
    359 		    PCI_PRODUCT(pa->pa_id) == sp->stge_product)
    360 			return (sp);
    361 	}
    362 	return (NULL);
    363 }
    364 
    365 static int
    366 stge_match(device_t parent, cfdata_t cf, void *aux)
    367 {
    368 	struct pci_attach_args *pa = aux;
    369 
    370 	if (stge_lookup(pa) != NULL)
    371 		return (1);
    372 
    373 	return (0);
    374 }
    375 
    376 static void
    377 stge_attach(device_t parent, device_t self, void *aux)
    378 {
    379 	struct stge_softc *sc = device_private(self);
    380 	struct pci_attach_args *pa = aux;
    381 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    382 	pci_chipset_tag_t pc = pa->pa_pc;
    383 	pci_intr_handle_t ih;
    384 	const char *intrstr = NULL;
    385 	bus_space_tag_t iot, memt;
    386 	bus_space_handle_t ioh, memh;
    387 	bus_dma_segment_t seg;
    388 	int ioh_valid, memh_valid;
    389 	int i, rseg, error;
    390 	const struct stge_product *sp;
    391 	uint8_t enaddr[ETHER_ADDR_LEN];
    392 
    393 	callout_init(&sc->sc_tick_ch, 0);
    394 
    395 	sp = stge_lookup(pa);
    396 	if (sp == NULL) {
    397 		printf("\n");
    398 		panic("ste_attach: impossible");
    399 	}
    400 
    401 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    402 
    403 	printf(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
    404 
    405 	/*
    406 	 * Map the device.
    407 	 */
    408 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
    409 	    PCI_MAPREG_TYPE_IO, 0,
    410 	    &iot, &ioh, NULL, NULL) == 0);
    411 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
    412 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    413 	    &memt, &memh, NULL, NULL) == 0);
    414 
    415 	if (memh_valid) {
    416 		sc->sc_st = memt;
    417 		sc->sc_sh = memh;
    418 	} else if (ioh_valid) {
    419 		sc->sc_st = iot;
    420 		sc->sc_sh = ioh;
    421 	} else {
    422 		aprint_error_dev(&sc->sc_dev, "unable to map device registers\n");
    423 		return;
    424 	}
    425 
    426 	sc->sc_dmat = pa->pa_dmat;
    427 
    428 	/* Enable bus mastering. */
    429 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    430 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    431 	    PCI_COMMAND_MASTER_ENABLE);
    432 
    433 	/* power up chip */
    434 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
    435 	    error != EOPNOTSUPP) {
    436 		aprint_error_dev(&sc->sc_dev, "cannot activate %d\n",
    437 		    error);
    438 		return;
    439 	}
    440 	/*
    441 	 * Map and establish our interrupt.
    442 	 */
    443 	if (pci_intr_map(pa, &ih)) {
    444 		aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
    445 		return;
    446 	}
    447 	intrstr = pci_intr_string(pc, ih);
    448 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
    449 	if (sc->sc_ih == NULL) {
    450 		aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
    451 		if (intrstr != NULL)
    452 			printf(" at %s", intrstr);
    453 		printf("\n");
    454 		return;
    455 	}
    456 	printf("%s: interrupting at %s\n", device_xname(&sc->sc_dev), intrstr);
    457 
    458 	/*
    459 	 * Allocate the control data structures, and create and load the
    460 	 * DMA map for it.
    461 	 */
    462 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    463 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    464 	    0)) != 0) {
    465 		aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n",
    466 		    error);
    467 		goto fail_0;
    468 	}
    469 
    470 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    471 	    sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
    472 	    BUS_DMA_COHERENT)) != 0) {
    473 		aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
    474 		    error);
    475 		goto fail_1;
    476 	}
    477 
    478 	if ((error = bus_dmamap_create(sc->sc_dmat,
    479 	    sizeof(struct stge_control_data), 1,
    480 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    481 		aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
    482 		    "error = %d\n", error);
    483 		goto fail_2;
    484 	}
    485 
    486 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    487 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
    488 	    0)) != 0) {
    489 		aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
    490 		    error);
    491 		goto fail_3;
    492 	}
    493 
    494 	/*
    495 	 * Create the transmit buffer DMA maps.  Note that rev B.3
    496 	 * and earlier seem to have a bug regarding multi-fragment
    497 	 * packets.  We need to limit the number of Tx segments on
    498 	 * such chips to 1.
    499 	 */
    500 	for (i = 0; i < STGE_NTXDESC; i++) {
    501 		if ((error = bus_dmamap_create(sc->sc_dmat,
    502 		    ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
    503 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
    504 			aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
    505 			    "error = %d\n", i, error);
    506 			goto fail_4;
    507 		}
    508 	}
    509 
    510 	/*
    511 	 * Create the receive buffer DMA maps.
    512 	 */
    513 	for (i = 0; i < STGE_NRXDESC; i++) {
    514 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    515 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
    516 			aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
    517 			    "error = %d\n", i, error);
    518 			goto fail_5;
    519 		}
    520 		sc->sc_rxsoft[i].ds_mbuf = NULL;
    521 	}
    522 
    523 	/*
    524 	 * Determine if we're copper or fiber.  It affects how we
    525 	 * reset the card.
    526 	 */
    527 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
    528 	    AC_PhyMedia)
    529 		sc->sc_usefiber = 1;
    530 	else
    531 		sc->sc_usefiber = 0;
    532 
    533 	/*
    534 	 * Reset the chip to a known state.
    535 	 */
    536 	stge_reset(sc);
    537 
    538 	/*
    539 	 * Reading the station address from the EEPROM doesn't seem
    540 	 * to work, at least on my sample boards.  Instead, since
    541 	 * the reset sequence does AutoInit, read it from the station
    542 	 * address registers. For Sundance 1023 you can only read it
    543 	 * from EEPROM.
    544 	 */
    545 	if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
    546 		enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    547 		    STGE_StationAddress0) & 0xff;
    548 		enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    549 		    STGE_StationAddress0) >> 8;
    550 		enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    551 		    STGE_StationAddress1) & 0xff;
    552 		enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    553 		    STGE_StationAddress1) >> 8;
    554 		enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    555 		    STGE_StationAddress2) & 0xff;
    556 		enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    557 		    STGE_StationAddress2) >> 8;
    558 		sc->sc_stge1023 = 0;
    559 	} else {
    560 		uint16_t myaddr[ETHER_ADDR_LEN / 2];
    561 		for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
    562 			stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
    563 			    &myaddr[i]);
    564 			myaddr[i] = le16toh(myaddr[i]);
    565 		}
    566 		(void)memcpy(enaddr, myaddr, sizeof(enaddr));
    567 		sc->sc_stge1023 = 1;
    568 	}
    569 
    570 	printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
    571 	    ether_sprintf(enaddr));
    572 
    573 	/*
    574 	 * Read some important bits from the PhyCtrl register.
    575 	 */
    576 	sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
    577 	    STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
    578 
    579 	/*
    580 	 * Initialize our media structures and probe the MII.
    581 	 */
    582 	sc->sc_mii.mii_ifp = ifp;
    583 	sc->sc_mii.mii_readreg = stge_mii_readreg;
    584 	sc->sc_mii.mii_writereg = stge_mii_writereg;
    585 	sc->sc_mii.mii_statchg = stge_mii_statchg;
    586 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
    587 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
    588 	    ether_mediastatus);
    589 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    590 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
    591 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    592 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    593 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    594 	} else
    595 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    596 
    597 	ifp = &sc->sc_ethercom.ec_if;
    598 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
    599 	ifp->if_softc = sc;
    600 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    601 	ifp->if_ioctl = stge_ioctl;
    602 	ifp->if_start = stge_start;
    603 	ifp->if_watchdog = stge_watchdog;
    604 	ifp->if_init = stge_init;
    605 	ifp->if_stop = stge_stop;
    606 	IFQ_SET_READY(&ifp->if_snd);
    607 
    608 	/*
    609 	 * The manual recommends disabling early transmit, so we
    610 	 * do.  It's disabled anyway, if using IP checksumming,
    611 	 * since the entire packet must be in the FIFO in order
    612 	 * for the chip to perform the checksum.
    613 	 */
    614 	sc->sc_txthresh = 0x0fff;
    615 
    616 	/*
    617 	 * Disable MWI if the PCI layer tells us to.
    618 	 */
    619 	sc->sc_DMACtrl = 0;
    620 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
    621 		sc->sc_DMACtrl |= DMAC_MWIDisable;
    622 
    623 	/*
    624 	 * We can support 802.1Q VLAN-sized frames and jumbo
    625 	 * Ethernet frames.
    626 	 *
    627 	 * XXX Figure out how to do hw-assisted VLAN tagging in
    628 	 * XXX a reasonable way on this chip.
    629 	 */
    630 	sc->sc_ethercom.ec_capabilities |=
    631 	    ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
    632 	    ETHERCAP_VLAN_HWTAGGING;
    633 
    634 	/*
    635 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
    636 	 */
    637 	sc->sc_ethercom.ec_if.if_capabilities |=
    638 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    639 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    640 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    641 
    642 	/*
    643 	 * Attach the interface.
    644 	 */
    645 	if_attach(ifp);
    646 	ether_ifattach(ifp, enaddr);
    647 
    648 #ifdef STGE_EVENT_COUNTERS
    649 	/*
    650 	 * Attach event counters.
    651 	 */
    652 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
    653 	    NULL, device_xname(&sc->sc_dev), "txstall");
    654 	evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
    655 	    NULL, device_xname(&sc->sc_dev), "txdmaintr");
    656 	evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
    657 	    NULL, device_xname(&sc->sc_dev), "txindintr");
    658 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    659 	    NULL, device_xname(&sc->sc_dev), "rxintr");
    660 
    661 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
    662 	    NULL, device_xname(&sc->sc_dev), "txseg1");
    663 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
    664 	    NULL, device_xname(&sc->sc_dev), "txseg2");
    665 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
    666 	    NULL, device_xname(&sc->sc_dev), "txseg3");
    667 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
    668 	    NULL, device_xname(&sc->sc_dev), "txseg4");
    669 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
    670 	    NULL, device_xname(&sc->sc_dev), "txseg5");
    671 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
    672 	    NULL, device_xname(&sc->sc_dev), "txsegmore");
    673 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
    674 	    NULL, device_xname(&sc->sc_dev), "txcopy");
    675 
    676 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    677 	    NULL, device_xname(&sc->sc_dev), "rxipsum");
    678 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
    679 	    NULL, device_xname(&sc->sc_dev), "rxtcpsum");
    680 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
    681 	    NULL, device_xname(&sc->sc_dev), "rxudpsum");
    682 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    683 	    NULL, device_xname(&sc->sc_dev), "txipsum");
    684 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
    685 	    NULL, device_xname(&sc->sc_dev), "txtcpsum");
    686 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
    687 	    NULL, device_xname(&sc->sc_dev), "txudpsum");
    688 #endif /* STGE_EVENT_COUNTERS */
    689 
    690 	/*
    691 	 * Make sure the interface is shutdown during reboot.
    692 	 */
    693 	sc->sc_sdhook = shutdownhook_establish(stge_shutdown, sc);
    694 	if (sc->sc_sdhook == NULL)
    695 		printf("%s: WARNING: unable to establish shutdown hook\n",
    696 		    device_xname(&sc->sc_dev));
    697 	return;
    698 
    699 	/*
    700 	 * Free any resources we've allocated during the failed attach
    701 	 * attempt.  Do this in reverse order and fall through.
    702 	 */
    703  fail_5:
    704 	for (i = 0; i < STGE_NRXDESC; i++) {
    705 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
    706 			bus_dmamap_destroy(sc->sc_dmat,
    707 			    sc->sc_rxsoft[i].ds_dmamap);
    708 	}
    709  fail_4:
    710 	for (i = 0; i < STGE_NTXDESC; i++) {
    711 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
    712 			bus_dmamap_destroy(sc->sc_dmat,
    713 			    sc->sc_txsoft[i].ds_dmamap);
    714 	}
    715 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    716  fail_3:
    717 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    718  fail_2:
    719 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    720 	    sizeof(struct stge_control_data));
    721  fail_1:
    722 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    723  fail_0:
    724 	return;
    725 }
    726 
    727 /*
    728  * stge_shutdown:
    729  *
    730  *	Make sure the interface is stopped at reboot time.
    731  */
    732 static void
    733 stge_shutdown(void *arg)
    734 {
    735 	struct stge_softc *sc = arg;
    736 
    737 	stge_stop(&sc->sc_ethercom.ec_if, 1);
    738 }
    739 
    740 static void
    741 stge_dma_wait(struct stge_softc *sc)
    742 {
    743 	int i;
    744 
    745 	for (i = 0; i < STGE_TIMEOUT; i++) {
    746 		delay(2);
    747 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
    748 		     DMAC_TxDMAInProg) == 0)
    749 			break;
    750 	}
    751 
    752 	if (i == STGE_TIMEOUT)
    753 		printf("%s: DMA wait timed out\n", device_xname(&sc->sc_dev));
    754 }
    755 
    756 /*
    757  * stge_start:		[ifnet interface function]
    758  *
    759  *	Start packet transmission on the interface.
    760  */
    761 static void
    762 stge_start(struct ifnet *ifp)
    763 {
    764 	struct stge_softc *sc = ifp->if_softc;
    765 	struct mbuf *m0;
    766 	struct stge_descsoft *ds;
    767 	struct stge_tfd *tfd;
    768 	bus_dmamap_t dmamap;
    769 	int error, firsttx, nexttx, opending, seg, totlen;
    770 	uint64_t csum_flags;
    771 
    772 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    773 		return;
    774 
    775 	/*
    776 	 * Remember the previous number of pending transmissions
    777 	 * and the first descriptor we will use.
    778 	 */
    779 	opending = sc->sc_txpending;
    780 	firsttx = STGE_NEXTTX(sc->sc_txlast);
    781 
    782 	/*
    783 	 * Loop through the send queue, setting up transmit descriptors
    784 	 * until we drain the queue, or use up all available transmit
    785 	 * descriptors.
    786 	 */
    787 	for (;;) {
    788 		struct m_tag *mtag;
    789 		uint64_t tfc;
    790 
    791 		/*
    792 		 * Grab a packet off the queue.
    793 		 */
    794 		IFQ_POLL(&ifp->if_snd, m0);
    795 		if (m0 == NULL)
    796 			break;
    797 
    798 		/*
    799 		 * Leave one unused descriptor at the end of the
    800 		 * list to prevent wrapping completely around.
    801 		 */
    802 		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
    803 			STGE_EVCNT_INCR(&sc->sc_ev_txstall);
    804 			break;
    805 		}
    806 
    807 		/*
    808 		 * See if we have any VLAN stuff.
    809 		 */
    810 		mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
    811 
    812 		/*
    813 		 * Get the last and next available transmit descriptor.
    814 		 */
    815 		nexttx = STGE_NEXTTX(sc->sc_txlast);
    816 		tfd = &sc->sc_txdescs[nexttx];
    817 		ds = &sc->sc_txsoft[nexttx];
    818 
    819 		dmamap = ds->ds_dmamap;
    820 
    821 		/*
    822 		 * Load the DMA map.  If this fails, the packet either
    823 		 * didn't fit in the alloted number of segments, or we
    824 		 * were short on resources.  For the too-many-segments
    825 		 * case, we simply report an error and drop the packet,
    826 		 * since we can't sanely copy a jumbo packet to a single
    827 		 * buffer.
    828 		 */
    829 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    830 		    BUS_DMA_NOWAIT);
    831 		if (error) {
    832 			if (error == EFBIG) {
    833 				printf("%s: Tx packet consumes too many "
    834 				    "DMA segments, dropping...\n",
    835 				    device_xname(&sc->sc_dev));
    836 				IFQ_DEQUEUE(&ifp->if_snd, m0);
    837 				m_freem(m0);
    838 				continue;
    839 			}
    840 			/*
    841 			 * Short on resources, just stop for now.
    842 			 */
    843 			break;
    844 		}
    845 
    846 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    847 
    848 		/*
    849 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    850 		 */
    851 
    852 		/* Sync the DMA map. */
    853 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    854 		    BUS_DMASYNC_PREWRITE);
    855 
    856 		/* Initialize the fragment list. */
    857 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
    858 			tfd->tfd_frags[seg].frag_word0 =
    859 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
    860 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
    861 			totlen += dmamap->dm_segs[seg].ds_len;
    862 		}
    863 
    864 #ifdef STGE_EVENT_COUNTERS
    865 		switch (dmamap->dm_nsegs) {
    866 		case 1:
    867 			STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
    868 			break;
    869 		case 2:
    870 			STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
    871 			break;
    872 		case 3:
    873 			STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
    874 			break;
    875 		case 4:
    876 			STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
    877 			break;
    878 		case 5:
    879 			STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
    880 			break;
    881 		default:
    882 			STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
    883 			break;
    884 		}
    885 #endif /* STGE_EVENT_COUNTERS */
    886 
    887 		/*
    888 		 * Initialize checksumming flags in the descriptor.
    889 		 * Byte-swap constants so the compiler can optimize.
    890 		 */
    891 		csum_flags = 0;
    892 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
    893 			STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
    894 			csum_flags |= TFD_IPChecksumEnable;
    895 		}
    896 
    897 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
    898 			STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
    899 			csum_flags |= TFD_TCPChecksumEnable;
    900 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
    901 			STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
    902 			csum_flags |= TFD_UDPChecksumEnable;
    903 		}
    904 
    905 		/*
    906 		 * Initialize the descriptor and give it to the chip.
    907 		 * Check to see if we have a VLAN tag to insert.
    908 		 */
    909 
    910 		tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
    911 		    TFD_FragCount(seg) | csum_flags |
    912 		    (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
    913 			TFD_TxDMAIndicate : 0);
    914 		if (mtag) {
    915 #if	0
    916 			struct ether_header *eh =
    917 			    mtod(m0, struct ether_header *);
    918 			u_int16_t etype = ntohs(eh->ether_type);
    919 			printf("%s: xmit (tag %d) etype %x\n",
    920 			   ifp->if_xname, *mtod(n, int *), etype);
    921 #endif
    922 			tfc |= TFD_VLANTagInsert |
    923 #ifdef	STGE_VLAN_CFI
    924 			    TFD_CFI |
    925 #endif
    926 			    TFD_VID(VLAN_TAG_VALUE(mtag));
    927 		}
    928 		tfd->tfd_control = htole64(tfc);
    929 
    930 		/* Sync the descriptor. */
    931 		STGE_CDTXSYNC(sc, nexttx,
    932 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    933 
    934 		/*
    935 		 * Kick the transmit DMA logic.
    936 		 */
    937 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
    938 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
    939 
    940 		/*
    941 		 * Store a pointer to the packet so we can free it later.
    942 		 */
    943 		ds->ds_mbuf = m0;
    944 
    945 		/* Advance the tx pointer. */
    946 		sc->sc_txpending++;
    947 		sc->sc_txlast = nexttx;
    948 
    949 #if NBPFILTER > 0
    950 		/*
    951 		 * Pass the packet to any BPF listeners.
    952 		 */
    953 		if (ifp->if_bpf)
    954 			bpf_mtap(ifp->if_bpf, m0);
    955 #endif /* NBPFILTER > 0 */
    956 	}
    957 
    958 	if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
    959 		/* No more slots left; notify upper layer. */
    960 		ifp->if_flags |= IFF_OACTIVE;
    961 	}
    962 
    963 	if (sc->sc_txpending != opending) {
    964 		/*
    965 		 * We enqueued packets.  If the transmitter was idle,
    966 		 * reset the txdirty pointer.
    967 		 */
    968 		if (opending == 0)
    969 			sc->sc_txdirty = firsttx;
    970 
    971 		/* Set a watchdog timer in case the chip flakes out. */
    972 		ifp->if_timer = 5;
    973 	}
    974 }
    975 
    976 /*
    977  * stge_watchdog:	[ifnet interface function]
    978  *
    979  *	Watchdog timer handler.
    980  */
    981 static void
    982 stge_watchdog(struct ifnet *ifp)
    983 {
    984 	struct stge_softc *sc = ifp->if_softc;
    985 
    986 	/*
    987 	 * Sweep up first, since we don't interrupt every frame.
    988 	 */
    989 	stge_txintr(sc);
    990 	if (sc->sc_txpending != 0) {
    991 		printf("%s: device timeout\n", device_xname(&sc->sc_dev));
    992 		ifp->if_oerrors++;
    993 
    994 		(void) stge_init(ifp);
    995 
    996 		/* Try to get more packets going. */
    997 		stge_start(ifp);
    998 	}
    999 }
   1000 
   1001 /*
   1002  * stge_ioctl:		[ifnet interface function]
   1003  *
   1004  *	Handle control requests from the operator.
   1005  */
   1006 static int
   1007 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1008 {
   1009 	struct stge_softc *sc = ifp->if_softc;
   1010 	int s, error;
   1011 
   1012 	s = splnet();
   1013 
   1014 	error = ether_ioctl(ifp, cmd, data);
   1015 	if (error == ENETRESET) {
   1016 		error = 0;
   1017 
   1018 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1019 			;
   1020 		else if (ifp->if_flags & IFF_RUNNING) {
   1021 			/*
   1022 			 * Multicast list has changed; set the hardware filter
   1023 			 * accordingly.
   1024 			 */
   1025 			stge_set_filter(sc);
   1026 		}
   1027 	}
   1028 
   1029 	/* Try to get more packets going. */
   1030 	stge_start(ifp);
   1031 
   1032 	splx(s);
   1033 	return (error);
   1034 }
   1035 
   1036 /*
   1037  * stge_intr:
   1038  *
   1039  *	Interrupt service routine.
   1040  */
   1041 static int
   1042 stge_intr(void *arg)
   1043 {
   1044 	struct stge_softc *sc = arg;
   1045 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1046 	uint32_t txstat;
   1047 	int wantinit;
   1048 	uint16_t isr;
   1049 
   1050 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
   1051 	     IS_InterruptStatus) == 0)
   1052 		return (0);
   1053 
   1054 	for (wantinit = 0; wantinit == 0;) {
   1055 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
   1056 		if ((isr & sc->sc_IntEnable) == 0)
   1057 			break;
   1058 
   1059 		/* Host interface errors. */
   1060 		if (isr & IS_HostError) {
   1061 			printf("%s: Host interface error\n",
   1062 			    device_xname(&sc->sc_dev));
   1063 			wantinit = 1;
   1064 			continue;
   1065 		}
   1066 
   1067 		/* Receive interrupts. */
   1068 		if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
   1069 			STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
   1070 			stge_rxintr(sc);
   1071 			if (isr & IS_RFDListEnd) {
   1072 				printf("%s: receive ring overflow\n",
   1073 				    device_xname(&sc->sc_dev));
   1074 				/*
   1075 				 * XXX Should try to recover from this
   1076 				 * XXX more gracefully.
   1077 				 */
   1078 				wantinit = 1;
   1079 			}
   1080 		}
   1081 
   1082 		/* Transmit interrupts. */
   1083 		if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
   1084 #ifdef STGE_EVENT_COUNTERS
   1085 			if (isr & IS_TxDMAComplete)
   1086 				STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
   1087 #endif
   1088 			stge_txintr(sc);
   1089 		}
   1090 
   1091 		/* Statistics overflow. */
   1092 		if (isr & IS_UpdateStats)
   1093 			stge_stats_update(sc);
   1094 
   1095 		/* Transmission errors. */
   1096 		if (isr & IS_TxComplete) {
   1097 			STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
   1098 			for (;;) {
   1099 				txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
   1100 				    STGE_TxStatus);
   1101 				if ((txstat & TS_TxComplete) == 0)
   1102 					break;
   1103 				if (txstat & TS_TxUnderrun) {
   1104 					sc->sc_txthresh++;
   1105 					if (sc->sc_txthresh > 0x0fff)
   1106 						sc->sc_txthresh = 0x0fff;
   1107 					printf("%s: transmit underrun, new "
   1108 					    "threshold: %d bytes\n",
   1109 					    device_xname(&sc->sc_dev),
   1110 					    sc->sc_txthresh << 5);
   1111 				}
   1112 				if (txstat & TS_MaxCollisions)
   1113 					printf("%s: excessive collisions\n",
   1114 					    device_xname(&sc->sc_dev));
   1115 			}
   1116 			wantinit = 1;
   1117 		}
   1118 
   1119 	}
   1120 
   1121 	if (wantinit)
   1122 		stge_init(ifp);
   1123 
   1124 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
   1125 	    sc->sc_IntEnable);
   1126 
   1127 	/* Try to get more packets going. */
   1128 	stge_start(ifp);
   1129 
   1130 	return (1);
   1131 }
   1132 
   1133 /*
   1134  * stge_txintr:
   1135  *
   1136  *	Helper; handle transmit interrupts.
   1137  */
   1138 static void
   1139 stge_txintr(struct stge_softc *sc)
   1140 {
   1141 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1142 	struct stge_descsoft *ds;
   1143 	uint64_t control;
   1144 	int i;
   1145 
   1146 	ifp->if_flags &= ~IFF_OACTIVE;
   1147 
   1148 	/*
   1149 	 * Go through our Tx list and free mbufs for those
   1150 	 * frames which have been transmitted.
   1151 	 */
   1152 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
   1153 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
   1154 		ds = &sc->sc_txsoft[i];
   1155 
   1156 		STGE_CDTXSYNC(sc, i,
   1157 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1158 
   1159 		control = le64toh(sc->sc_txdescs[i].tfd_control);
   1160 		if ((control & TFD_TFDDone) == 0)
   1161 			break;
   1162 
   1163 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
   1164 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1165 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1166 		m_freem(ds->ds_mbuf);
   1167 		ds->ds_mbuf = NULL;
   1168 	}
   1169 
   1170 	/* Update the dirty transmit buffer pointer. */
   1171 	sc->sc_txdirty = i;
   1172 
   1173 	/*
   1174 	 * If there are no more pending transmissions, cancel the watchdog
   1175 	 * timer.
   1176 	 */
   1177 	if (sc->sc_txpending == 0)
   1178 		ifp->if_timer = 0;
   1179 }
   1180 
   1181 /*
   1182  * stge_rxintr:
   1183  *
   1184  *	Helper; handle receive interrupts.
   1185  */
   1186 static void
   1187 stge_rxintr(struct stge_softc *sc)
   1188 {
   1189 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1190 	struct stge_descsoft *ds;
   1191 	struct mbuf *m, *tailm;
   1192 	uint64_t status;
   1193 	int i, len;
   1194 
   1195 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
   1196 		ds = &sc->sc_rxsoft[i];
   1197 
   1198 		STGE_CDRXSYNC(sc, i,
   1199 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1200 
   1201 		status = le64toh(sc->sc_rxdescs[i].rfd_status);
   1202 
   1203 		if ((status & RFD_RFDDone) == 0)
   1204 			break;
   1205 
   1206 		if (__predict_false(sc->sc_rxdiscard)) {
   1207 			STGE_INIT_RXDESC(sc, i);
   1208 			if (status & RFD_FrameEnd) {
   1209 				/* Reset our state. */
   1210 				sc->sc_rxdiscard = 0;
   1211 			}
   1212 			continue;
   1213 		}
   1214 
   1215 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1216 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1217 
   1218 		m = ds->ds_mbuf;
   1219 
   1220 		/*
   1221 		 * Add a new receive buffer to the ring.
   1222 		 */
   1223 		if (stge_add_rxbuf(sc, i) != 0) {
   1224 			/*
   1225 			 * Failed, throw away what we've done so
   1226 			 * far, and discard the rest of the packet.
   1227 			 */
   1228 			ifp->if_ierrors++;
   1229 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1230 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1231 			STGE_INIT_RXDESC(sc, i);
   1232 			if ((status & RFD_FrameEnd) == 0)
   1233 				sc->sc_rxdiscard = 1;
   1234 			if (sc->sc_rxhead != NULL)
   1235 				m_freem(sc->sc_rxhead);
   1236 			STGE_RXCHAIN_RESET(sc);
   1237 			continue;
   1238 		}
   1239 
   1240 #ifdef DIAGNOSTIC
   1241 		if (status & RFD_FrameStart) {
   1242 			KASSERT(sc->sc_rxhead == NULL);
   1243 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
   1244 		}
   1245 #endif
   1246 
   1247 		STGE_RXCHAIN_LINK(sc, m);
   1248 
   1249 		/*
   1250 		 * If this is not the end of the packet, keep
   1251 		 * looking.
   1252 		 */
   1253 		if ((status & RFD_FrameEnd) == 0) {
   1254 			sc->sc_rxlen += m->m_len;
   1255 			continue;
   1256 		}
   1257 
   1258 		/*
   1259 		 * Okay, we have the entire packet now...
   1260 		 */
   1261 		*sc->sc_rxtailp = NULL;
   1262 		m = sc->sc_rxhead;
   1263 		tailm = sc->sc_rxtail;
   1264 
   1265 		STGE_RXCHAIN_RESET(sc);
   1266 
   1267 		/*
   1268 		 * If the packet had an error, drop it.  Note we
   1269 		 * count the error later in the periodic stats update.
   1270 		 */
   1271 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
   1272 			      RFD_RxAlignmentError | RFD_RxFCSError |
   1273 			      RFD_RxLengthError)) {
   1274 			m_freem(m);
   1275 			continue;
   1276 		}
   1277 
   1278 		/*
   1279 		 * No errors.
   1280 		 *
   1281 		 * Note we have configured the chip to not include
   1282 		 * the CRC at the end of the packet.
   1283 		 */
   1284 		len = RFD_RxDMAFrameLen(status);
   1285 		tailm->m_len = len - sc->sc_rxlen;
   1286 
   1287 		/*
   1288 		 * If the packet is small enough to fit in a
   1289 		 * single header mbuf, allocate one and copy
   1290 		 * the data into it.  This greatly reduces
   1291 		 * memory consumption when we receive lots
   1292 		 * of small packets.
   1293 		 */
   1294 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
   1295 			struct mbuf *nm;
   1296 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1297 			if (nm == NULL) {
   1298 				ifp->if_ierrors++;
   1299 				m_freem(m);
   1300 				continue;
   1301 			}
   1302 			nm->m_data += 2;
   1303 			nm->m_pkthdr.len = nm->m_len = len;
   1304 			m_copydata(m, 0, len, mtod(nm, void *));
   1305 			m_freem(m);
   1306 			m = nm;
   1307 		}
   1308 
   1309 		/*
   1310 		 * Set the incoming checksum information for the packet.
   1311 		 */
   1312 		if (status & RFD_IPDetected) {
   1313 			STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1314 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1315 			if (status & RFD_IPError)
   1316 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1317 			if (status & RFD_TCPDetected) {
   1318 				STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   1319 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1320 				if (status & RFD_TCPError)
   1321 					m->m_pkthdr.csum_flags |=
   1322 					    M_CSUM_TCP_UDP_BAD;
   1323 			} else if (status & RFD_UDPDetected) {
   1324 				STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   1325 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1326 				if (status & RFD_UDPError)
   1327 					m->m_pkthdr.csum_flags |=
   1328 					    M_CSUM_TCP_UDP_BAD;
   1329 			}
   1330 		}
   1331 
   1332 		m->m_pkthdr.rcvif = ifp;
   1333 		m->m_pkthdr.len = len;
   1334 
   1335 #if NBPFILTER > 0
   1336 		/*
   1337 		 * Pass this up to any BPF listeners, but only
   1338 		 * pass if up the stack if it's for us.
   1339 		 */
   1340 		if (ifp->if_bpf)
   1341 			bpf_mtap(ifp->if_bpf, m);
   1342 #endif /* NBPFILTER > 0 */
   1343 #ifdef	STGE_VLAN_UNTAG
   1344 		/*
   1345 		 * Check for VLAN tagged packets
   1346 		 */
   1347 		if (status & RFD_VLANDetected)
   1348 			VLAN_INPUT_TAG(ifp, m, RFD_TCI(status), continue);
   1349 
   1350 #endif
   1351 #if	0
   1352 		if (status & RFD_VLANDetected) {
   1353 			struct ether_header *eh;
   1354 			u_int16_t etype;
   1355 
   1356 			eh = mtod(m, struct ether_header *);
   1357 			etype = ntohs(eh->ether_type);
   1358 			printf("%s: VLANtag detected (TCI %d) etype %x\n",
   1359 			    ifp->if_xname, (u_int16_t) RFD_TCI(status),
   1360 			    etype);
   1361 		}
   1362 #endif
   1363 		/* Pass it on. */
   1364 		(*ifp->if_input)(ifp, m);
   1365 	}
   1366 
   1367 	/* Update the receive pointer. */
   1368 	sc->sc_rxptr = i;
   1369 }
   1370 
   1371 /*
   1372  * stge_tick:
   1373  *
   1374  *	One second timer, used to tick the MII.
   1375  */
   1376 static void
   1377 stge_tick(void *arg)
   1378 {
   1379 	struct stge_softc *sc = arg;
   1380 	int s;
   1381 
   1382 	s = splnet();
   1383 	mii_tick(&sc->sc_mii);
   1384 	stge_stats_update(sc);
   1385 	splx(s);
   1386 
   1387 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
   1388 }
   1389 
   1390 /*
   1391  * stge_stats_update:
   1392  *
   1393  *	Read the TC9021 statistics counters.
   1394  */
   1395 static void
   1396 stge_stats_update(struct stge_softc *sc)
   1397 {
   1398 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1399 	bus_space_tag_t st = sc->sc_st;
   1400 	bus_space_handle_t sh = sc->sc_sh;
   1401 
   1402 	(void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
   1403 
   1404 	ifp->if_ipackets +=
   1405 	    bus_space_read_4(st, sh, STGE_FramesRcvdOk);
   1406 
   1407 	ifp->if_ierrors +=
   1408 	    (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
   1409 
   1410 	(void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
   1411 
   1412 	ifp->if_opackets +=
   1413 	    bus_space_read_4(st, sh, STGE_FramesXmtdOk);
   1414 
   1415 	ifp->if_collisions +=
   1416 	    bus_space_read_4(st, sh, STGE_LateCollisions) +
   1417 	    bus_space_read_4(st, sh, STGE_MultiColFrames) +
   1418 	    bus_space_read_4(st, sh, STGE_SingleColFrames);
   1419 
   1420 	ifp->if_oerrors +=
   1421 	    (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
   1422 	    (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
   1423 }
   1424 
   1425 /*
   1426  * stge_reset:
   1427  *
   1428  *	Perform a soft reset on the TC9021.
   1429  */
   1430 static void
   1431 stge_reset(struct stge_softc *sc)
   1432 {
   1433 	uint32_t ac;
   1434 	int i;
   1435 
   1436 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
   1437 
   1438 	/*
   1439 	 * Only assert RstOut if we're fiber.  We need GMII clocks
   1440 	 * to be present in order for the reset to complete on fiber
   1441 	 * cards.
   1442 	 */
   1443 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
   1444 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
   1445 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
   1446 	    (sc->sc_usefiber ? AC_RstOut : 0));
   1447 
   1448 	delay(50000);
   1449 
   1450 	for (i = 0; i < STGE_TIMEOUT; i++) {
   1451 		delay(5000);
   1452 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
   1453 		     AC_ResetBusy) == 0)
   1454 			break;
   1455 	}
   1456 
   1457 	if (i == STGE_TIMEOUT)
   1458 		printf("%s: reset failed to complete\n", device_xname(&sc->sc_dev));
   1459 
   1460 	delay(1000);
   1461 }
   1462 
   1463 /*
   1464  * stge_init:		[ ifnet interface function ]
   1465  *
   1466  *	Initialize the interface.  Must be called at splnet().
   1467  */
   1468 static int
   1469 stge_init(struct ifnet *ifp)
   1470 {
   1471 	struct stge_softc *sc = ifp->if_softc;
   1472 	bus_space_tag_t st = sc->sc_st;
   1473 	bus_space_handle_t sh = sc->sc_sh;
   1474 	struct stge_descsoft *ds;
   1475 	int i, error = 0;
   1476 
   1477 	/*
   1478 	 * Cancel any pending I/O.
   1479 	 */
   1480 	stge_stop(ifp, 0);
   1481 
   1482 	/*
   1483 	 * Reset the chip to a known state.
   1484 	 */
   1485 	stge_reset(sc);
   1486 
   1487 	/*
   1488 	 * Initialize the transmit descriptor ring.
   1489 	 */
   1490 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1491 	for (i = 0; i < STGE_NTXDESC; i++) {
   1492 		sc->sc_txdescs[i].tfd_next = htole64(
   1493 		    STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
   1494 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
   1495 	}
   1496 	sc->sc_txpending = 0;
   1497 	sc->sc_txdirty = 0;
   1498 	sc->sc_txlast = STGE_NTXDESC - 1;
   1499 
   1500 	/*
   1501 	 * Initialize the receive descriptor and receive job
   1502 	 * descriptor rings.
   1503 	 */
   1504 	for (i = 0; i < STGE_NRXDESC; i++) {
   1505 		ds = &sc->sc_rxsoft[i];
   1506 		if (ds->ds_mbuf == NULL) {
   1507 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
   1508 				printf("%s: unable to allocate or map rx "
   1509 				    "buffer %d, error = %d\n",
   1510 				    device_xname(&sc->sc_dev), i, error);
   1511 				/*
   1512 				 * XXX Should attempt to run with fewer receive
   1513 				 * XXX buffers instead of just failing.
   1514 				 */
   1515 				stge_rxdrain(sc);
   1516 				goto out;
   1517 			}
   1518 		} else
   1519 			STGE_INIT_RXDESC(sc, i);
   1520 	}
   1521 	sc->sc_rxptr = 0;
   1522 	sc->sc_rxdiscard = 0;
   1523 	STGE_RXCHAIN_RESET(sc);
   1524 
   1525 	/* Set the station address. */
   1526 	for (i = 0; i < 6; i++)
   1527 		bus_space_write_1(st, sh, STGE_StationAddress0 + i,
   1528 		    CLLADDR(ifp->if_sadl)[i]);
   1529 
   1530 	/*
   1531 	 * Set the statistics masks.  Disable all the RMON stats,
   1532 	 * and disable selected stats in the non-RMON stats registers.
   1533 	 */
   1534 	bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
   1535 	bus_space_write_4(st, sh, STGE_StatisticsMask,
   1536 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
   1537 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
   1538 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
   1539 	    (1U << 21));
   1540 
   1541 	/* Set up the receive filter. */
   1542 	stge_set_filter(sc);
   1543 
   1544 	/*
   1545 	 * Give the transmit and receive ring to the chip.
   1546 	 */
   1547 	bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
   1548 	bus_space_write_4(st, sh, STGE_TFDListPtrLo,
   1549 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
   1550 
   1551 	bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
   1552 	bus_space_write_4(st, sh, STGE_RFDListPtrLo,
   1553 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
   1554 
   1555 	/*
   1556 	 * Initialize the Tx auto-poll period.  It's OK to make this number
   1557 	 * large (255 is the max, but we use 127) -- we explicitly kick the
   1558 	 * transmit engine when there's actually a packet.
   1559 	 */
   1560 	bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
   1561 
   1562 	/* ..and the Rx auto-poll period. */
   1563 	bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
   1564 
   1565 	/* Initialize the Tx start threshold. */
   1566 	bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
   1567 
   1568 	/* RX DMA thresholds, from linux */
   1569 	bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
   1570 	bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
   1571 
   1572 	/*
   1573 	 * Initialize the Rx DMA interrupt control register.  We
   1574 	 * request an interrupt after every incoming packet, but
   1575 	 * defer it for 32us (64 * 512 ns).  When the number of
   1576 	 * interrupts pending reaches 8, we stop deferring the
   1577 	 * interrupt, and signal it immediately.
   1578 	 */
   1579 	bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
   1580 	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
   1581 
   1582 	/*
   1583 	 * Initialize the interrupt mask.
   1584 	 */
   1585 	sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
   1586 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
   1587 	bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
   1588 	bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
   1589 
   1590 	/*
   1591 	 * Configure the DMA engine.
   1592 	 * XXX Should auto-tune TxBurstLimit.
   1593 	 */
   1594 	bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
   1595 	    DMAC_TxBurstLimit(3));
   1596 
   1597 	/*
   1598 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
   1599 	 * FIFO, and send an un-PAUSE frame when the FIFO is totally
   1600 	 * empty again.
   1601 	 */
   1602 	bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
   1603 	bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
   1604 
   1605 	/*
   1606 	 * Set the maximum frame size.
   1607 	 */
   1608 	bus_space_write_2(st, sh, STGE_MaxFrameSize,
   1609 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
   1610 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
   1611 	     ETHER_VLAN_ENCAP_LEN : 0));
   1612 
   1613 	/*
   1614 	 * Initialize MacCtrl -- do it before setting the media,
   1615 	 * as setting the media will actually program the register.
   1616 	 *
   1617 	 * Note: We have to poke the IFS value before poking
   1618 	 * anything else.
   1619 	 */
   1620 	sc->sc_MACCtrl = MC_IFSSelect(0);
   1621 	bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
   1622 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
   1623 #ifdef	STGE_VLAN_UNTAG
   1624 	sc->sc_MACCtrl |= MC_AutoVLANuntagging;
   1625 #endif
   1626 
   1627 	if (sc->sc_rev >= 6) {		/* >= B.2 */
   1628 		/* Multi-frag frame bug work-around. */
   1629 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1630 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
   1631 
   1632 		/* Tx Poll Now bug work-around. */
   1633 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1634 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
   1635 		/* XXX ? from linux */
   1636 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1637 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
   1638 	}
   1639 
   1640 	/*
   1641 	 * Set the current media.
   1642 	 */
   1643 	if ((error = ether_mediachange(ifp)) != 0)
   1644 		goto out;
   1645 
   1646 	/*
   1647 	 * Start the one second MII clock.
   1648 	 */
   1649 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
   1650 
   1651 	/*
   1652 	 * ...all done!
   1653 	 */
   1654 	ifp->if_flags |= IFF_RUNNING;
   1655 	ifp->if_flags &= ~IFF_OACTIVE;
   1656 
   1657  out:
   1658 	if (error)
   1659 		printf("%s: interface not running\n", device_xname(&sc->sc_dev));
   1660 	return (error);
   1661 }
   1662 
   1663 /*
   1664  * stge_drain:
   1665  *
   1666  *	Drain the receive queue.
   1667  */
   1668 static void
   1669 stge_rxdrain(struct stge_softc *sc)
   1670 {
   1671 	struct stge_descsoft *ds;
   1672 	int i;
   1673 
   1674 	for (i = 0; i < STGE_NRXDESC; i++) {
   1675 		ds = &sc->sc_rxsoft[i];
   1676 		if (ds->ds_mbuf != NULL) {
   1677 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1678 			ds->ds_mbuf->m_next = NULL;
   1679 			m_freem(ds->ds_mbuf);
   1680 			ds->ds_mbuf = NULL;
   1681 		}
   1682 	}
   1683 }
   1684 
   1685 /*
   1686  * stge_stop:		[ ifnet interface function ]
   1687  *
   1688  *	Stop transmission on the interface.
   1689  */
   1690 static void
   1691 stge_stop(struct ifnet *ifp, int disable)
   1692 {
   1693 	struct stge_softc *sc = ifp->if_softc;
   1694 	struct stge_descsoft *ds;
   1695 	int i;
   1696 
   1697 	/*
   1698 	 * Stop the one second clock.
   1699 	 */
   1700 	callout_stop(&sc->sc_tick_ch);
   1701 
   1702 	/* Down the MII. */
   1703 	mii_down(&sc->sc_mii);
   1704 
   1705 	/*
   1706 	 * Disable interrupts.
   1707 	 */
   1708 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
   1709 
   1710 	/*
   1711 	 * Stop receiver, transmitter, and stats update.
   1712 	 */
   1713 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
   1714 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
   1715 
   1716 	/*
   1717 	 * Stop the transmit and receive DMA.
   1718 	 */
   1719 	stge_dma_wait(sc);
   1720 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
   1721 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
   1722 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
   1723 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
   1724 
   1725 	/*
   1726 	 * Release any queued transmit buffers.
   1727 	 */
   1728 	for (i = 0; i < STGE_NTXDESC; i++) {
   1729 		ds = &sc->sc_txsoft[i];
   1730 		if (ds->ds_mbuf != NULL) {
   1731 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1732 			m_freem(ds->ds_mbuf);
   1733 			ds->ds_mbuf = NULL;
   1734 		}
   1735 	}
   1736 
   1737 	/*
   1738 	 * Mark the interface down and cancel the watchdog timer.
   1739 	 */
   1740 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1741 	ifp->if_timer = 0;
   1742 
   1743 	if (disable)
   1744 		stge_rxdrain(sc);
   1745 }
   1746 
   1747 static int
   1748 stge_eeprom_wait(struct stge_softc *sc)
   1749 {
   1750 	int i;
   1751 
   1752 	for (i = 0; i < STGE_TIMEOUT; i++) {
   1753 		delay(1000);
   1754 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
   1755 		     EC_EepromBusy) == 0)
   1756 			return (0);
   1757 	}
   1758 	return (1);
   1759 }
   1760 
   1761 /*
   1762  * stge_read_eeprom:
   1763  *
   1764  *	Read data from the serial EEPROM.
   1765  */
   1766 static void
   1767 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
   1768 {
   1769 
   1770 	if (stge_eeprom_wait(sc))
   1771 		printf("%s: EEPROM failed to come ready\n",
   1772 		    device_xname(&sc->sc_dev));
   1773 
   1774 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
   1775 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
   1776 	if (stge_eeprom_wait(sc))
   1777 		printf("%s: EEPROM read timed out\n",
   1778 		    device_xname(&sc->sc_dev));
   1779 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
   1780 }
   1781 
   1782 /*
   1783  * stge_add_rxbuf:
   1784  *
   1785  *	Add a receive buffer to the indicated descriptor.
   1786  */
   1787 static int
   1788 stge_add_rxbuf(struct stge_softc *sc, int idx)
   1789 {
   1790 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
   1791 	struct mbuf *m;
   1792 	int error;
   1793 
   1794 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1795 	if (m == NULL)
   1796 		return (ENOBUFS);
   1797 
   1798 	MCLGET(m, M_DONTWAIT);
   1799 	if ((m->m_flags & M_EXT) == 0) {
   1800 		m_freem(m);
   1801 		return (ENOBUFS);
   1802 	}
   1803 
   1804 	m->m_data = m->m_ext.ext_buf + 2;
   1805 	m->m_len = MCLBYTES - 2;
   1806 
   1807 	if (ds->ds_mbuf != NULL)
   1808 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1809 
   1810 	ds->ds_mbuf = m;
   1811 
   1812 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
   1813 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1814 	if (error) {
   1815 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1816 		    device_xname(&sc->sc_dev), idx, error);
   1817 		panic("stge_add_rxbuf");	/* XXX */
   1818 	}
   1819 
   1820 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1821 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1822 
   1823 	STGE_INIT_RXDESC(sc, idx);
   1824 
   1825 	return (0);
   1826 }
   1827 
   1828 /*
   1829  * stge_set_filter:
   1830  *
   1831  *	Set up the receive filter.
   1832  */
   1833 static void
   1834 stge_set_filter(struct stge_softc *sc)
   1835 {
   1836 	struct ethercom *ec = &sc->sc_ethercom;
   1837 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1838 	struct ether_multi *enm;
   1839 	struct ether_multistep step;
   1840 	uint32_t crc;
   1841 	uint32_t mchash[2];
   1842 
   1843 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
   1844 	if (ifp->if_flags & IFF_BROADCAST)
   1845 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
   1846 
   1847 	/* XXX: ST1023 only works in promiscuous mode */
   1848 	if (sc->sc_stge1023)
   1849 		ifp->if_flags |= IFF_PROMISC;
   1850 
   1851 	if (ifp->if_flags & IFF_PROMISC) {
   1852 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
   1853 		goto allmulti;
   1854 	}
   1855 
   1856 	/*
   1857 	 * Set up the multicast address filter by passing all multicast
   1858 	 * addresses through a CRC generator, and then using the low-order
   1859 	 * 6 bits as an index into the 64 bit multicast hash table.  The
   1860 	 * high order bits select the register, while the rest of the bits
   1861 	 * select the bit within the register.
   1862 	 */
   1863 
   1864 	memset(mchash, 0, sizeof(mchash));
   1865 
   1866 	ETHER_FIRST_MULTI(step, ec, enm);
   1867 	if (enm == NULL)
   1868 		goto done;
   1869 
   1870 	while (enm != NULL) {
   1871 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1872 			/*
   1873 			 * We must listen to a range of multicast addresses.
   1874 			 * For now, just accept all multicasts, rather than
   1875 			 * trying to set only those filter bits needed to match
   1876 			 * the range.  (At this time, the only use of address
   1877 			 * ranges is for IP multicast routing, for which the
   1878 			 * range is big enough to require all bits set.)
   1879 			 */
   1880 			goto allmulti;
   1881 		}
   1882 
   1883 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1884 
   1885 		/* Just want the 6 least significant bits. */
   1886 		crc &= 0x3f;
   1887 
   1888 		/* Set the corresponding bit in the hash table. */
   1889 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
   1890 
   1891 		ETHER_NEXT_MULTI(step, enm);
   1892 	}
   1893 
   1894 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
   1895 
   1896 	ifp->if_flags &= ~IFF_ALLMULTI;
   1897 	goto done;
   1898 
   1899  allmulti:
   1900 	ifp->if_flags |= IFF_ALLMULTI;
   1901 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
   1902 
   1903  done:
   1904 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1905 		/*
   1906 		 * Program the multicast hash table.
   1907 		 */
   1908 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
   1909 		    mchash[0]);
   1910 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
   1911 		    mchash[1]);
   1912 	}
   1913 
   1914 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
   1915 	    sc->sc_ReceiveMode);
   1916 }
   1917 
   1918 /*
   1919  * stge_mii_readreg:	[mii interface function]
   1920  *
   1921  *	Read a PHY register on the MII of the TC9021.
   1922  */
   1923 static int
   1924 stge_mii_readreg(device_t self, int phy, int reg)
   1925 {
   1926 
   1927 	return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
   1928 }
   1929 
   1930 /*
   1931  * stge_mii_writereg:	[mii interface function]
   1932  *
   1933  *	Write a PHY register on the MII of the TC9021.
   1934  */
   1935 static void
   1936 stge_mii_writereg(device_t self, int phy, int reg, int val)
   1937 {
   1938 
   1939 	mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
   1940 }
   1941 
   1942 /*
   1943  * stge_mii_statchg:	[mii interface function]
   1944  *
   1945  *	Callback from MII layer when media changes.
   1946  */
   1947 static void
   1948 stge_mii_statchg(device_t self)
   1949 {
   1950 	struct stge_softc *sc = device_private(self);
   1951 
   1952 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   1953 		sc->sc_MACCtrl |= MC_DuplexSelect;
   1954 	else
   1955 		sc->sc_MACCtrl &= ~MC_DuplexSelect;
   1956 
   1957 	/* XXX 802.1x flow-control? */
   1958 
   1959 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
   1960 }
   1961 
   1962 /*
   1963  * sste_mii_bitbang_read: [mii bit-bang interface function]
   1964  *
   1965  *	Read the MII serial port for the MII bit-bang module.
   1966  */
   1967 static uint32_t
   1968 stge_mii_bitbang_read(device_t self)
   1969 {
   1970 	struct stge_softc *sc = device_private(self);
   1971 
   1972 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
   1973 }
   1974 
   1975 /*
   1976  * stge_mii_bitbang_write: [mii big-bang interface function]
   1977  *
   1978  *	Write the MII serial port for the MII bit-bang module.
   1979  */
   1980 static void
   1981 stge_mii_bitbang_write(device_t self, uint32_t val)
   1982 {
   1983 	struct stge_softc *sc = device_private(self);
   1984 
   1985 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
   1986 	    val | sc->sc_PhyCtrl);
   1987 }
   1988