if_stge.c revision 1.47 1 /* $NetBSD: if_stge.c,v 1.47 2009/05/17 02:08:35 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the Sundance Tech. TC9021 10/100/1000
34 * Ethernet controller.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.47 2009/05/17 02:08:35 tsutsui Exp $");
39
40 #include "bpfilter.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/ioctl.h>
50 #include <sys/errno.h>
51 #include <sys/device.h>
52 #include <sys/queue.h>
53
54 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
55
56 #include <net/if.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
60
61 #if NBPFILTER > 0
62 #include <net/bpf.h>
63 #endif
64
65 #include <sys/bus.h>
66 #include <sys/intr.h>
67
68 #include <dev/mii/mii.h>
69 #include <dev/mii/miivar.h>
70 #include <dev/mii/mii_bitbang.h>
71
72 #include <dev/pci/pcireg.h>
73 #include <dev/pci/pcivar.h>
74 #include <dev/pci/pcidevs.h>
75
76 #include <dev/pci/if_stgereg.h>
77
78 /* #define STGE_CU_BUG 1 */
79 #define STGE_VLAN_UNTAG 1
80 /* #define STGE_VLAN_CFI 1 */
81
82 /*
83 * Transmit descriptor list size.
84 */
85 #define STGE_NTXDESC 256
86 #define STGE_NTXDESC_MASK (STGE_NTXDESC - 1)
87 #define STGE_NEXTTX(x) (((x) + 1) & STGE_NTXDESC_MASK)
88
89 /*
90 * Receive descriptor list size.
91 */
92 #define STGE_NRXDESC 256
93 #define STGE_NRXDESC_MASK (STGE_NRXDESC - 1)
94 #define STGE_NEXTRX(x) (((x) + 1) & STGE_NRXDESC_MASK)
95
96 /*
97 * Only interrupt every N frames. Must be a power-of-two.
98 */
99 #define STGE_TXINTR_SPACING 16
100 #define STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
101
102 /*
103 * Control structures are DMA'd to the TC9021 chip. We allocate them in
104 * a single clump that maps to a single DMA segment to make several things
105 * easier.
106 */
107 struct stge_control_data {
108 /*
109 * The transmit descriptors.
110 */
111 struct stge_tfd scd_txdescs[STGE_NTXDESC];
112
113 /*
114 * The receive descriptors.
115 */
116 struct stge_rfd scd_rxdescs[STGE_NRXDESC];
117 };
118
119 #define STGE_CDOFF(x) offsetof(struct stge_control_data, x)
120 #define STGE_CDTXOFF(x) STGE_CDOFF(scd_txdescs[(x)])
121 #define STGE_CDRXOFF(x) STGE_CDOFF(scd_rxdescs[(x)])
122
123 /*
124 * Software state for transmit and receive jobs.
125 */
126 struct stge_descsoft {
127 struct mbuf *ds_mbuf; /* head of our mbuf chain */
128 bus_dmamap_t ds_dmamap; /* our DMA map */
129 };
130
131 /*
132 * Software state per device.
133 */
134 struct stge_softc {
135 device_t sc_dev; /* generic device information */
136 bus_space_tag_t sc_st; /* bus space tag */
137 bus_space_handle_t sc_sh; /* bus space handle */
138 bus_dma_tag_t sc_dmat; /* bus DMA tag */
139 struct ethercom sc_ethercom; /* ethernet common data */
140 void *sc_sdhook; /* shutdown hook */
141 int sc_rev; /* silicon revision */
142
143 void *sc_ih; /* interrupt cookie */
144
145 struct mii_data sc_mii; /* MII/media information */
146
147 callout_t sc_tick_ch; /* tick callout */
148
149 bus_dmamap_t sc_cddmamap; /* control data DMA map */
150 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
151
152 /*
153 * Software state for transmit and receive descriptors.
154 */
155 struct stge_descsoft sc_txsoft[STGE_NTXDESC];
156 struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
157
158 /*
159 * Control data structures.
160 */
161 struct stge_control_data *sc_control_data;
162 #define sc_txdescs sc_control_data->scd_txdescs
163 #define sc_rxdescs sc_control_data->scd_rxdescs
164
165 #ifdef STGE_EVENT_COUNTERS
166 /*
167 * Event counters.
168 */
169 struct evcnt sc_ev_txstall; /* Tx stalled */
170 struct evcnt sc_ev_txdmaintr; /* Tx DMA interrupts */
171 struct evcnt sc_ev_txindintr; /* Tx Indicate interrupts */
172 struct evcnt sc_ev_rxintr; /* Rx interrupts */
173
174 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
175 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
176 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
177 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
178 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
179 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
180 struct evcnt sc_ev_txcopy; /* Tx packets that we had to copy */
181
182 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
183 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
184 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-bound */
185
186 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
187 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
188 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
189 #endif /* STGE_EVENT_COUNTERS */
190
191 int sc_txpending; /* number of Tx requests pending */
192 int sc_txdirty; /* first dirty Tx descriptor */
193 int sc_txlast; /* last used Tx descriptor */
194
195 int sc_rxptr; /* next ready Rx descriptor/descsoft */
196 int sc_rxdiscard;
197 int sc_rxlen;
198 struct mbuf *sc_rxhead;
199 struct mbuf *sc_rxtail;
200 struct mbuf **sc_rxtailp;
201
202 int sc_txthresh; /* Tx threshold */
203 uint32_t sc_usefiber:1; /* if we're fiber */
204 uint32_t sc_stge1023:1; /* are we a 1023 */
205 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
206 uint32_t sc_MACCtrl; /* prototype MacCtrl register */
207 uint16_t sc_IntEnable; /* prototype IntEnable register */
208 uint16_t sc_ReceiveMode; /* prototype ReceiveMode register */
209 uint8_t sc_PhyCtrl; /* prototype PhyCtrl register */
210 };
211
212 #define STGE_RXCHAIN_RESET(sc) \
213 do { \
214 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
215 *(sc)->sc_rxtailp = NULL; \
216 (sc)->sc_rxlen = 0; \
217 } while (/*CONSTCOND*/0)
218
219 #define STGE_RXCHAIN_LINK(sc, m) \
220 do { \
221 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
222 (sc)->sc_rxtailp = &(m)->m_next; \
223 } while (/*CONSTCOND*/0)
224
225 #ifdef STGE_EVENT_COUNTERS
226 #define STGE_EVCNT_INCR(ev) (ev)->ev_count++
227 #else
228 #define STGE_EVCNT_INCR(ev) /* nothing */
229 #endif
230
231 #define STGE_CDTXADDR(sc, x) ((sc)->sc_cddma + STGE_CDTXOFF((x)))
232 #define STGE_CDRXADDR(sc, x) ((sc)->sc_cddma + STGE_CDRXOFF((x)))
233
234 #define STGE_CDTXSYNC(sc, x, ops) \
235 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
236 STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
237
238 #define STGE_CDRXSYNC(sc, x, ops) \
239 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
240 STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
241
242 #define STGE_INIT_RXDESC(sc, x) \
243 do { \
244 struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
245 struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
246 \
247 /* \
248 * Note: We scoot the packet forward 2 bytes in the buffer \
249 * so that the payload after the Ethernet header is aligned \
250 * to a 4-byte boundary. \
251 */ \
252 __rfd->rfd_frag.frag_word0 = \
253 htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
254 FRAG_LEN(MCLBYTES - 2)); \
255 __rfd->rfd_next = \
256 htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x)))); \
257 __rfd->rfd_status = 0; \
258 STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
259 } while (/*CONSTCOND*/0)
260
261 #define STGE_TIMEOUT 1000
262
263 static void stge_start(struct ifnet *);
264 static void stge_watchdog(struct ifnet *);
265 static int stge_ioctl(struct ifnet *, u_long, void *);
266 static int stge_init(struct ifnet *);
267 static void stge_stop(struct ifnet *, int);
268
269 static void stge_shutdown(void *);
270
271 static void stge_reset(struct stge_softc *);
272 static void stge_rxdrain(struct stge_softc *);
273 static int stge_add_rxbuf(struct stge_softc *, int);
274 static void stge_read_eeprom(struct stge_softc *, int, uint16_t *);
275 static void stge_tick(void *);
276
277 static void stge_stats_update(struct stge_softc *);
278
279 static void stge_set_filter(struct stge_softc *);
280
281 static int stge_intr(void *);
282 static void stge_txintr(struct stge_softc *);
283 static void stge_rxintr(struct stge_softc *);
284
285 static int stge_mii_readreg(device_t, int, int);
286 static void stge_mii_writereg(device_t, int, int, int);
287 static void stge_mii_statchg(device_t);
288
289 static int stge_match(device_t, cfdata_t, void *);
290 static void stge_attach(device_t, device_t, void *);
291
292 int stge_copy_small = 0;
293
294 CFATTACH_DECL_NEW(stge, sizeof(struct stge_softc),
295 stge_match, stge_attach, NULL, NULL);
296
297 static uint32_t stge_mii_bitbang_read(device_t);
298 static void stge_mii_bitbang_write(device_t, uint32_t);
299
300 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
301 stge_mii_bitbang_read,
302 stge_mii_bitbang_write,
303 {
304 PC_MgmtData, /* MII_BIT_MDO */
305 PC_MgmtData, /* MII_BIT_MDI */
306 PC_MgmtClk, /* MII_BIT_MDC */
307 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
308 0, /* MII_BIT_DIR_PHY_HOST */
309 }
310 };
311
312 /*
313 * Devices supported by this driver.
314 */
315 static const struct stge_product {
316 pci_vendor_id_t stge_vendor;
317 pci_product_id_t stge_product;
318 const char *stge_name;
319 } stge_products[] = {
320 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST1023,
321 "Sundance ST-1023 Gigabit Ethernet" },
322
323 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST2021,
324 "Sundance ST-2021 Gigabit Ethernet" },
325
326 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021,
327 "Tamarack TC9021 Gigabit Ethernet" },
328
329 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021_ALT,
330 "Tamarack TC9021 Gigabit Ethernet" },
331
332 /*
333 * The Sundance sample boards use the Sundance vendor ID,
334 * but the Tamarack product ID.
335 */
336 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021,
337 "Sundance TC9021 Gigabit Ethernet" },
338
339 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021_ALT,
340 "Sundance TC9021 Gigabit Ethernet" },
341
342 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL4000,
343 "D-Link DL-4000 Gigabit Ethernet" },
344
345 { PCI_VENDOR_ANTARES, PCI_PRODUCT_ANTARES_TC9021,
346 "Antares Gigabit Ethernet" },
347
348 { 0, 0,
349 NULL },
350 };
351
352 static const struct stge_product *
353 stge_lookup(const struct pci_attach_args *pa)
354 {
355 const struct stge_product *sp;
356
357 for (sp = stge_products; sp->stge_name != NULL; sp++) {
358 if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
359 PCI_PRODUCT(pa->pa_id) == sp->stge_product)
360 return (sp);
361 }
362 return (NULL);
363 }
364
365 static int
366 stge_match(device_t parent, cfdata_t cf, void *aux)
367 {
368 struct pci_attach_args *pa = aux;
369
370 if (stge_lookup(pa) != NULL)
371 return (1);
372
373 return (0);
374 }
375
376 static void
377 stge_attach(device_t parent, device_t self, void *aux)
378 {
379 struct stge_softc *sc = device_private(self);
380 struct pci_attach_args *pa = aux;
381 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
382 pci_chipset_tag_t pc = pa->pa_pc;
383 pci_intr_handle_t ih;
384 const char *intrstr = NULL;
385 bus_space_tag_t iot, memt;
386 bus_space_handle_t ioh, memh;
387 bus_dma_segment_t seg;
388 int ioh_valid, memh_valid;
389 int i, rseg, error;
390 const struct stge_product *sp;
391 uint8_t enaddr[ETHER_ADDR_LEN];
392
393 callout_init(&sc->sc_tick_ch, 0);
394
395 sp = stge_lookup(pa);
396 if (sp == NULL) {
397 printf("\n");
398 panic("ste_attach: impossible");
399 }
400
401 sc->sc_rev = PCI_REVISION(pa->pa_class);
402
403 aprint_normal(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
404
405 /*
406 * Map the device.
407 */
408 ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
409 PCI_MAPREG_TYPE_IO, 0,
410 &iot, &ioh, NULL, NULL) == 0);
411 memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
412 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
413 &memt, &memh, NULL, NULL) == 0);
414
415 if (memh_valid) {
416 sc->sc_st = memt;
417 sc->sc_sh = memh;
418 } else if (ioh_valid) {
419 sc->sc_st = iot;
420 sc->sc_sh = ioh;
421 } else {
422 aprint_error_dev(self, "unable to map device registers\n");
423 return;
424 }
425
426 sc->sc_dmat = pa->pa_dmat;
427
428 /* Enable bus mastering. */
429 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
430 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
431 PCI_COMMAND_MASTER_ENABLE);
432
433 /* power up chip */
434 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
435 error != EOPNOTSUPP) {
436 aprint_error_dev(self, "cannot activate %d\n",
437 error);
438 return;
439 }
440 /*
441 * Map and establish our interrupt.
442 */
443 if (pci_intr_map(pa, &ih)) {
444 aprint_error_dev(self, "unable to map interrupt\n");
445 return;
446 }
447 intrstr = pci_intr_string(pc, ih);
448 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
449 if (sc->sc_ih == NULL) {
450 aprint_error_dev(self, "unable to establish interrupt");
451 if (intrstr != NULL)
452 aprint_error(" at %s", intrstr);
453 aprint_error("\n");
454 return;
455 }
456 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
457
458 /*
459 * Allocate the control data structures, and create and load the
460 * DMA map for it.
461 */
462 if ((error = bus_dmamem_alloc(sc->sc_dmat,
463 sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
464 0)) != 0) {
465 aprint_error_dev(self,
466 "unable to allocate control data, error = %d\n",
467 error);
468 goto fail_0;
469 }
470
471 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
472 sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
473 BUS_DMA_COHERENT)) != 0) {
474 aprint_error_dev(self,
475 "unable to map control data, error = %d\n",
476 error);
477 goto fail_1;
478 }
479
480 if ((error = bus_dmamap_create(sc->sc_dmat,
481 sizeof(struct stge_control_data), 1,
482 sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
483 aprint_error_dev(self,
484 "unable to create control data DMA map, error = %d\n",
485 error);
486 goto fail_2;
487 }
488
489 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
490 sc->sc_control_data, sizeof(struct stge_control_data), NULL,
491 0)) != 0) {
492 aprint_error_dev(self,
493 "unable to load control data DMA map, error = %d\n",
494 error);
495 goto fail_3;
496 }
497
498 /*
499 * Create the transmit buffer DMA maps. Note that rev B.3
500 * and earlier seem to have a bug regarding multi-fragment
501 * packets. We need to limit the number of Tx segments on
502 * such chips to 1.
503 */
504 for (i = 0; i < STGE_NTXDESC; i++) {
505 if ((error = bus_dmamap_create(sc->sc_dmat,
506 ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
507 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
508 aprint_error_dev(self,
509 "unable to create tx DMA map %d, error = %d\n",
510 i, error);
511 goto fail_4;
512 }
513 }
514
515 /*
516 * Create the receive buffer DMA maps.
517 */
518 for (i = 0; i < STGE_NRXDESC; i++) {
519 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
520 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
521 aprint_error_dev(self,
522 "unable to create rx DMA map %d, error = %d\n",
523 i, error);
524 goto fail_5;
525 }
526 sc->sc_rxsoft[i].ds_mbuf = NULL;
527 }
528
529 /*
530 * Determine if we're copper or fiber. It affects how we
531 * reset the card.
532 */
533 if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
534 AC_PhyMedia)
535 sc->sc_usefiber = 1;
536 else
537 sc->sc_usefiber = 0;
538
539 /*
540 * Reset the chip to a known state.
541 */
542 stge_reset(sc);
543
544 /*
545 * Reading the station address from the EEPROM doesn't seem
546 * to work, at least on my sample boards. Instead, since
547 * the reset sequence does AutoInit, read it from the station
548 * address registers. For Sundance 1023 you can only read it
549 * from EEPROM.
550 */
551 if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
552 enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
553 STGE_StationAddress0) & 0xff;
554 enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
555 STGE_StationAddress0) >> 8;
556 enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
557 STGE_StationAddress1) & 0xff;
558 enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
559 STGE_StationAddress1) >> 8;
560 enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
561 STGE_StationAddress2) & 0xff;
562 enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
563 STGE_StationAddress2) >> 8;
564 sc->sc_stge1023 = 0;
565 } else {
566 uint16_t myaddr[ETHER_ADDR_LEN / 2];
567 for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
568 stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
569 &myaddr[i]);
570 myaddr[i] = le16toh(myaddr[i]);
571 }
572 (void)memcpy(enaddr, myaddr, sizeof(enaddr));
573 sc->sc_stge1023 = 1;
574 }
575
576 aprint_normal_dev(self, "Ethernet address %s\n",
577 ether_sprintf(enaddr));
578
579 /*
580 * Read some important bits from the PhyCtrl register.
581 */
582 sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
583 STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
584
585 /*
586 * Initialize our media structures and probe the MII.
587 */
588 sc->sc_mii.mii_ifp = ifp;
589 sc->sc_mii.mii_readreg = stge_mii_readreg;
590 sc->sc_mii.mii_writereg = stge_mii_writereg;
591 sc->sc_mii.mii_statchg = stge_mii_statchg;
592 sc->sc_ethercom.ec_mii = &sc->sc_mii;
593 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
594 ether_mediastatus);
595 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
596 MII_OFFSET_ANY, MIIF_DOPAUSE);
597 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
598 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
599 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
600 } else
601 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
602
603 ifp = &sc->sc_ethercom.ec_if;
604 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
605 ifp->if_softc = sc;
606 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
607 ifp->if_ioctl = stge_ioctl;
608 ifp->if_start = stge_start;
609 ifp->if_watchdog = stge_watchdog;
610 ifp->if_init = stge_init;
611 ifp->if_stop = stge_stop;
612 IFQ_SET_READY(&ifp->if_snd);
613
614 /*
615 * The manual recommends disabling early transmit, so we
616 * do. It's disabled anyway, if using IP checksumming,
617 * since the entire packet must be in the FIFO in order
618 * for the chip to perform the checksum.
619 */
620 sc->sc_txthresh = 0x0fff;
621
622 /*
623 * Disable MWI if the PCI layer tells us to.
624 */
625 sc->sc_DMACtrl = 0;
626 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
627 sc->sc_DMACtrl |= DMAC_MWIDisable;
628
629 /*
630 * We can support 802.1Q VLAN-sized frames and jumbo
631 * Ethernet frames.
632 *
633 * XXX Figure out how to do hw-assisted VLAN tagging in
634 * XXX a reasonable way on this chip.
635 */
636 sc->sc_ethercom.ec_capabilities |=
637 ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
638 ETHERCAP_VLAN_HWTAGGING;
639
640 /*
641 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
642 */
643 sc->sc_ethercom.ec_if.if_capabilities |=
644 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
645 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
646 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
647
648 /*
649 * Attach the interface.
650 */
651 if_attach(ifp);
652 ether_ifattach(ifp, enaddr);
653
654 #ifdef STGE_EVENT_COUNTERS
655 /*
656 * Attach event counters.
657 */
658 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
659 NULL, device_xname(self), "txstall");
660 evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
661 NULL, device_xname(self), "txdmaintr");
662 evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
663 NULL, device_xname(self), "txindintr");
664 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
665 NULL, device_xname(self), "rxintr");
666
667 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
668 NULL, device_xname(self), "txseg1");
669 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
670 NULL, device_xname(self), "txseg2");
671 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
672 NULL, device_xname(self), "txseg3");
673 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
674 NULL, device_xname(self), "txseg4");
675 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
676 NULL, device_xname(self), "txseg5");
677 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
678 NULL, device_xname(self), "txsegmore");
679 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
680 NULL, device_xname(self), "txcopy");
681
682 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
683 NULL, device_xname(self), "rxipsum");
684 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
685 NULL, device_xname(self), "rxtcpsum");
686 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
687 NULL, device_xname(self), "rxudpsum");
688 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
689 NULL, device_xname(self), "txipsum");
690 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
691 NULL, device_xname(self), "txtcpsum");
692 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
693 NULL, device_xname(self), "txudpsum");
694 #endif /* STGE_EVENT_COUNTERS */
695
696 /*
697 * Make sure the interface is shutdown during reboot.
698 */
699 sc->sc_sdhook = shutdownhook_establish(stge_shutdown, sc);
700 if (sc->sc_sdhook == NULL)
701 aprint_error_dev(self,
702 "WARNING: unable to establish shutdown hook\n");
703 return;
704
705 /*
706 * Free any resources we've allocated during the failed attach
707 * attempt. Do this in reverse order and fall through.
708 */
709 fail_5:
710 for (i = 0; i < STGE_NRXDESC; i++) {
711 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
712 bus_dmamap_destroy(sc->sc_dmat,
713 sc->sc_rxsoft[i].ds_dmamap);
714 }
715 fail_4:
716 for (i = 0; i < STGE_NTXDESC; i++) {
717 if (sc->sc_txsoft[i].ds_dmamap != NULL)
718 bus_dmamap_destroy(sc->sc_dmat,
719 sc->sc_txsoft[i].ds_dmamap);
720 }
721 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
722 fail_3:
723 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
724 fail_2:
725 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
726 sizeof(struct stge_control_data));
727 fail_1:
728 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
729 fail_0:
730 return;
731 }
732
733 /*
734 * stge_shutdown:
735 *
736 * Make sure the interface is stopped at reboot time.
737 */
738 static void
739 stge_shutdown(void *arg)
740 {
741 struct stge_softc *sc = arg;
742
743 stge_stop(&sc->sc_ethercom.ec_if, 1);
744 }
745
746 static void
747 stge_dma_wait(struct stge_softc *sc)
748 {
749 int i;
750
751 for (i = 0; i < STGE_TIMEOUT; i++) {
752 delay(2);
753 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
754 DMAC_TxDMAInProg) == 0)
755 break;
756 }
757
758 if (i == STGE_TIMEOUT)
759 printf("%s: DMA wait timed out\n", device_xname(sc->sc_dev));
760 }
761
762 /*
763 * stge_start: [ifnet interface function]
764 *
765 * Start packet transmission on the interface.
766 */
767 static void
768 stge_start(struct ifnet *ifp)
769 {
770 struct stge_softc *sc = ifp->if_softc;
771 struct mbuf *m0;
772 struct stge_descsoft *ds;
773 struct stge_tfd *tfd;
774 bus_dmamap_t dmamap;
775 int error, firsttx, nexttx, opending, seg, totlen;
776 uint64_t csum_flags;
777
778 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
779 return;
780
781 /*
782 * Remember the previous number of pending transmissions
783 * and the first descriptor we will use.
784 */
785 opending = sc->sc_txpending;
786 firsttx = STGE_NEXTTX(sc->sc_txlast);
787
788 /*
789 * Loop through the send queue, setting up transmit descriptors
790 * until we drain the queue, or use up all available transmit
791 * descriptors.
792 */
793 for (;;) {
794 struct m_tag *mtag;
795 uint64_t tfc;
796
797 /*
798 * Grab a packet off the queue.
799 */
800 IFQ_POLL(&ifp->if_snd, m0);
801 if (m0 == NULL)
802 break;
803
804 /*
805 * Leave one unused descriptor at the end of the
806 * list to prevent wrapping completely around.
807 */
808 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
809 STGE_EVCNT_INCR(&sc->sc_ev_txstall);
810 break;
811 }
812
813 /*
814 * See if we have any VLAN stuff.
815 */
816 mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
817
818 /*
819 * Get the last and next available transmit descriptor.
820 */
821 nexttx = STGE_NEXTTX(sc->sc_txlast);
822 tfd = &sc->sc_txdescs[nexttx];
823 ds = &sc->sc_txsoft[nexttx];
824
825 dmamap = ds->ds_dmamap;
826
827 /*
828 * Load the DMA map. If this fails, the packet either
829 * didn't fit in the alloted number of segments, or we
830 * were short on resources. For the too-many-segments
831 * case, we simply report an error and drop the packet,
832 * since we can't sanely copy a jumbo packet to a single
833 * buffer.
834 */
835 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
836 BUS_DMA_NOWAIT);
837 if (error) {
838 if (error == EFBIG) {
839 printf("%s: Tx packet consumes too many "
840 "DMA segments, dropping...\n",
841 device_xname(sc->sc_dev));
842 IFQ_DEQUEUE(&ifp->if_snd, m0);
843 m_freem(m0);
844 continue;
845 }
846 /*
847 * Short on resources, just stop for now.
848 */
849 break;
850 }
851
852 IFQ_DEQUEUE(&ifp->if_snd, m0);
853
854 /*
855 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
856 */
857
858 /* Sync the DMA map. */
859 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
860 BUS_DMASYNC_PREWRITE);
861
862 /* Initialize the fragment list. */
863 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
864 tfd->tfd_frags[seg].frag_word0 =
865 htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
866 FRAG_LEN(dmamap->dm_segs[seg].ds_len));
867 totlen += dmamap->dm_segs[seg].ds_len;
868 }
869
870 #ifdef STGE_EVENT_COUNTERS
871 switch (dmamap->dm_nsegs) {
872 case 1:
873 STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
874 break;
875 case 2:
876 STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
877 break;
878 case 3:
879 STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
880 break;
881 case 4:
882 STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
883 break;
884 case 5:
885 STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
886 break;
887 default:
888 STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
889 break;
890 }
891 #endif /* STGE_EVENT_COUNTERS */
892
893 /*
894 * Initialize checksumming flags in the descriptor.
895 * Byte-swap constants so the compiler can optimize.
896 */
897 csum_flags = 0;
898 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
899 STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
900 csum_flags |= TFD_IPChecksumEnable;
901 }
902
903 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
904 STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
905 csum_flags |= TFD_TCPChecksumEnable;
906 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
907 STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
908 csum_flags |= TFD_UDPChecksumEnable;
909 }
910
911 /*
912 * Initialize the descriptor and give it to the chip.
913 * Check to see if we have a VLAN tag to insert.
914 */
915
916 tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
917 TFD_FragCount(seg) | csum_flags |
918 (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
919 TFD_TxDMAIndicate : 0);
920 if (mtag) {
921 #if 0
922 struct ether_header *eh =
923 mtod(m0, struct ether_header *);
924 u_int16_t etype = ntohs(eh->ether_type);
925 printf("%s: xmit (tag %d) etype %x\n",
926 ifp->if_xname, *mtod(n, int *), etype);
927 #endif
928 tfc |= TFD_VLANTagInsert |
929 #ifdef STGE_VLAN_CFI
930 TFD_CFI |
931 #endif
932 TFD_VID(VLAN_TAG_VALUE(mtag));
933 }
934 tfd->tfd_control = htole64(tfc);
935
936 /* Sync the descriptor. */
937 STGE_CDTXSYNC(sc, nexttx,
938 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
939
940 /*
941 * Kick the transmit DMA logic.
942 */
943 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
944 sc->sc_DMACtrl | DMAC_TxDMAPollNow);
945
946 /*
947 * Store a pointer to the packet so we can free it later.
948 */
949 ds->ds_mbuf = m0;
950
951 /* Advance the tx pointer. */
952 sc->sc_txpending++;
953 sc->sc_txlast = nexttx;
954
955 #if NBPFILTER > 0
956 /*
957 * Pass the packet to any BPF listeners.
958 */
959 if (ifp->if_bpf)
960 bpf_mtap(ifp->if_bpf, m0);
961 #endif /* NBPFILTER > 0 */
962 }
963
964 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
965 /* No more slots left; notify upper layer. */
966 ifp->if_flags |= IFF_OACTIVE;
967 }
968
969 if (sc->sc_txpending != opending) {
970 /*
971 * We enqueued packets. If the transmitter was idle,
972 * reset the txdirty pointer.
973 */
974 if (opending == 0)
975 sc->sc_txdirty = firsttx;
976
977 /* Set a watchdog timer in case the chip flakes out. */
978 ifp->if_timer = 5;
979 }
980 }
981
982 /*
983 * stge_watchdog: [ifnet interface function]
984 *
985 * Watchdog timer handler.
986 */
987 static void
988 stge_watchdog(struct ifnet *ifp)
989 {
990 struct stge_softc *sc = ifp->if_softc;
991
992 /*
993 * Sweep up first, since we don't interrupt every frame.
994 */
995 stge_txintr(sc);
996 if (sc->sc_txpending != 0) {
997 printf("%s: device timeout\n", device_xname(sc->sc_dev));
998 ifp->if_oerrors++;
999
1000 (void) stge_init(ifp);
1001
1002 /* Try to get more packets going. */
1003 stge_start(ifp);
1004 }
1005 }
1006
1007 /*
1008 * stge_ioctl: [ifnet interface function]
1009 *
1010 * Handle control requests from the operator.
1011 */
1012 static int
1013 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1014 {
1015 struct stge_softc *sc = ifp->if_softc;
1016 int s, error;
1017
1018 s = splnet();
1019
1020 error = ether_ioctl(ifp, cmd, data);
1021 if (error == ENETRESET) {
1022 error = 0;
1023
1024 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1025 ;
1026 else if (ifp->if_flags & IFF_RUNNING) {
1027 /*
1028 * Multicast list has changed; set the hardware filter
1029 * accordingly.
1030 */
1031 stge_set_filter(sc);
1032 }
1033 }
1034
1035 /* Try to get more packets going. */
1036 stge_start(ifp);
1037
1038 splx(s);
1039 return (error);
1040 }
1041
1042 /*
1043 * stge_intr:
1044 *
1045 * Interrupt service routine.
1046 */
1047 static int
1048 stge_intr(void *arg)
1049 {
1050 struct stge_softc *sc = arg;
1051 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1052 uint32_t txstat;
1053 int wantinit;
1054 uint16_t isr;
1055
1056 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1057 IS_InterruptStatus) == 0)
1058 return (0);
1059
1060 for (wantinit = 0; wantinit == 0;) {
1061 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1062 if ((isr & sc->sc_IntEnable) == 0)
1063 break;
1064
1065 /* Host interface errors. */
1066 if (isr & IS_HostError) {
1067 printf("%s: Host interface error\n",
1068 device_xname(sc->sc_dev));
1069 wantinit = 1;
1070 continue;
1071 }
1072
1073 /* Receive interrupts. */
1074 if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
1075 STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1076 stge_rxintr(sc);
1077 if (isr & IS_RFDListEnd) {
1078 printf("%s: receive ring overflow\n",
1079 device_xname(sc->sc_dev));
1080 /*
1081 * XXX Should try to recover from this
1082 * XXX more gracefully.
1083 */
1084 wantinit = 1;
1085 }
1086 }
1087
1088 /* Transmit interrupts. */
1089 if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
1090 #ifdef STGE_EVENT_COUNTERS
1091 if (isr & IS_TxDMAComplete)
1092 STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1093 #endif
1094 stge_txintr(sc);
1095 }
1096
1097 /* Statistics overflow. */
1098 if (isr & IS_UpdateStats)
1099 stge_stats_update(sc);
1100
1101 /* Transmission errors. */
1102 if (isr & IS_TxComplete) {
1103 STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1104 for (;;) {
1105 txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1106 STGE_TxStatus);
1107 if ((txstat & TS_TxComplete) == 0)
1108 break;
1109 if (txstat & TS_TxUnderrun) {
1110 sc->sc_txthresh++;
1111 if (sc->sc_txthresh > 0x0fff)
1112 sc->sc_txthresh = 0x0fff;
1113 printf("%s: transmit underrun, new "
1114 "threshold: %d bytes\n",
1115 device_xname(sc->sc_dev),
1116 sc->sc_txthresh << 5);
1117 }
1118 if (txstat & TS_MaxCollisions)
1119 printf("%s: excessive collisions\n",
1120 device_xname(sc->sc_dev));
1121 }
1122 wantinit = 1;
1123 }
1124
1125 }
1126
1127 if (wantinit)
1128 stge_init(ifp);
1129
1130 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1131 sc->sc_IntEnable);
1132
1133 /* Try to get more packets going. */
1134 stge_start(ifp);
1135
1136 return (1);
1137 }
1138
1139 /*
1140 * stge_txintr:
1141 *
1142 * Helper; handle transmit interrupts.
1143 */
1144 static void
1145 stge_txintr(struct stge_softc *sc)
1146 {
1147 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1148 struct stge_descsoft *ds;
1149 uint64_t control;
1150 int i;
1151
1152 ifp->if_flags &= ~IFF_OACTIVE;
1153
1154 /*
1155 * Go through our Tx list and free mbufs for those
1156 * frames which have been transmitted.
1157 */
1158 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1159 i = STGE_NEXTTX(i), sc->sc_txpending--) {
1160 ds = &sc->sc_txsoft[i];
1161
1162 STGE_CDTXSYNC(sc, i,
1163 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1164
1165 control = le64toh(sc->sc_txdescs[i].tfd_control);
1166 if ((control & TFD_TFDDone) == 0)
1167 break;
1168
1169 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1170 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1171 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1172 m_freem(ds->ds_mbuf);
1173 ds->ds_mbuf = NULL;
1174 }
1175
1176 /* Update the dirty transmit buffer pointer. */
1177 sc->sc_txdirty = i;
1178
1179 /*
1180 * If there are no more pending transmissions, cancel the watchdog
1181 * timer.
1182 */
1183 if (sc->sc_txpending == 0)
1184 ifp->if_timer = 0;
1185 }
1186
1187 /*
1188 * stge_rxintr:
1189 *
1190 * Helper; handle receive interrupts.
1191 */
1192 static void
1193 stge_rxintr(struct stge_softc *sc)
1194 {
1195 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1196 struct stge_descsoft *ds;
1197 struct mbuf *m, *tailm;
1198 uint64_t status;
1199 int i, len;
1200
1201 for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1202 ds = &sc->sc_rxsoft[i];
1203
1204 STGE_CDRXSYNC(sc, i,
1205 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1206
1207 status = le64toh(sc->sc_rxdescs[i].rfd_status);
1208
1209 if ((status & RFD_RFDDone) == 0)
1210 break;
1211
1212 if (__predict_false(sc->sc_rxdiscard)) {
1213 STGE_INIT_RXDESC(sc, i);
1214 if (status & RFD_FrameEnd) {
1215 /* Reset our state. */
1216 sc->sc_rxdiscard = 0;
1217 }
1218 continue;
1219 }
1220
1221 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1222 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1223
1224 m = ds->ds_mbuf;
1225
1226 /*
1227 * Add a new receive buffer to the ring.
1228 */
1229 if (stge_add_rxbuf(sc, i) != 0) {
1230 /*
1231 * Failed, throw away what we've done so
1232 * far, and discard the rest of the packet.
1233 */
1234 ifp->if_ierrors++;
1235 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1236 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1237 STGE_INIT_RXDESC(sc, i);
1238 if ((status & RFD_FrameEnd) == 0)
1239 sc->sc_rxdiscard = 1;
1240 if (sc->sc_rxhead != NULL)
1241 m_freem(sc->sc_rxhead);
1242 STGE_RXCHAIN_RESET(sc);
1243 continue;
1244 }
1245
1246 #ifdef DIAGNOSTIC
1247 if (status & RFD_FrameStart) {
1248 KASSERT(sc->sc_rxhead == NULL);
1249 KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1250 }
1251 #endif
1252
1253 STGE_RXCHAIN_LINK(sc, m);
1254
1255 /*
1256 * If this is not the end of the packet, keep
1257 * looking.
1258 */
1259 if ((status & RFD_FrameEnd) == 0) {
1260 sc->sc_rxlen += m->m_len;
1261 continue;
1262 }
1263
1264 /*
1265 * Okay, we have the entire packet now...
1266 */
1267 *sc->sc_rxtailp = NULL;
1268 m = sc->sc_rxhead;
1269 tailm = sc->sc_rxtail;
1270
1271 STGE_RXCHAIN_RESET(sc);
1272
1273 /*
1274 * If the packet had an error, drop it. Note we
1275 * count the error later in the periodic stats update.
1276 */
1277 if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1278 RFD_RxAlignmentError | RFD_RxFCSError |
1279 RFD_RxLengthError)) {
1280 m_freem(m);
1281 continue;
1282 }
1283
1284 /*
1285 * No errors.
1286 *
1287 * Note we have configured the chip to not include
1288 * the CRC at the end of the packet.
1289 */
1290 len = RFD_RxDMAFrameLen(status);
1291 tailm->m_len = len - sc->sc_rxlen;
1292
1293 /*
1294 * If the packet is small enough to fit in a
1295 * single header mbuf, allocate one and copy
1296 * the data into it. This greatly reduces
1297 * memory consumption when we receive lots
1298 * of small packets.
1299 */
1300 if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1301 struct mbuf *nm;
1302 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1303 if (nm == NULL) {
1304 ifp->if_ierrors++;
1305 m_freem(m);
1306 continue;
1307 }
1308 nm->m_data += 2;
1309 nm->m_pkthdr.len = nm->m_len = len;
1310 m_copydata(m, 0, len, mtod(nm, void *));
1311 m_freem(m);
1312 m = nm;
1313 }
1314
1315 /*
1316 * Set the incoming checksum information for the packet.
1317 */
1318 if (status & RFD_IPDetected) {
1319 STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1320 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1321 if (status & RFD_IPError)
1322 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1323 if (status & RFD_TCPDetected) {
1324 STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1325 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1326 if (status & RFD_TCPError)
1327 m->m_pkthdr.csum_flags |=
1328 M_CSUM_TCP_UDP_BAD;
1329 } else if (status & RFD_UDPDetected) {
1330 STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1331 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1332 if (status & RFD_UDPError)
1333 m->m_pkthdr.csum_flags |=
1334 M_CSUM_TCP_UDP_BAD;
1335 }
1336 }
1337
1338 m->m_pkthdr.rcvif = ifp;
1339 m->m_pkthdr.len = len;
1340
1341 #if NBPFILTER > 0
1342 /*
1343 * Pass this up to any BPF listeners, but only
1344 * pass if up the stack if it's for us.
1345 */
1346 if (ifp->if_bpf)
1347 bpf_mtap(ifp->if_bpf, m);
1348 #endif /* NBPFILTER > 0 */
1349 #ifdef STGE_VLAN_UNTAG
1350 /*
1351 * Check for VLAN tagged packets
1352 */
1353 if (status & RFD_VLANDetected)
1354 VLAN_INPUT_TAG(ifp, m, RFD_TCI(status), continue);
1355
1356 #endif
1357 #if 0
1358 if (status & RFD_VLANDetected) {
1359 struct ether_header *eh;
1360 u_int16_t etype;
1361
1362 eh = mtod(m, struct ether_header *);
1363 etype = ntohs(eh->ether_type);
1364 printf("%s: VLANtag detected (TCI %d) etype %x\n",
1365 ifp->if_xname, (u_int16_t) RFD_TCI(status),
1366 etype);
1367 }
1368 #endif
1369 /* Pass it on. */
1370 (*ifp->if_input)(ifp, m);
1371 }
1372
1373 /* Update the receive pointer. */
1374 sc->sc_rxptr = i;
1375 }
1376
1377 /*
1378 * stge_tick:
1379 *
1380 * One second timer, used to tick the MII.
1381 */
1382 static void
1383 stge_tick(void *arg)
1384 {
1385 struct stge_softc *sc = arg;
1386 int s;
1387
1388 s = splnet();
1389 mii_tick(&sc->sc_mii);
1390 stge_stats_update(sc);
1391 splx(s);
1392
1393 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1394 }
1395
1396 /*
1397 * stge_stats_update:
1398 *
1399 * Read the TC9021 statistics counters.
1400 */
1401 static void
1402 stge_stats_update(struct stge_softc *sc)
1403 {
1404 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1405 bus_space_tag_t st = sc->sc_st;
1406 bus_space_handle_t sh = sc->sc_sh;
1407
1408 (void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1409
1410 ifp->if_ipackets +=
1411 bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1412
1413 ifp->if_ierrors +=
1414 (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1415
1416 (void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1417
1418 ifp->if_opackets +=
1419 bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1420
1421 ifp->if_collisions +=
1422 bus_space_read_4(st, sh, STGE_LateCollisions) +
1423 bus_space_read_4(st, sh, STGE_MultiColFrames) +
1424 bus_space_read_4(st, sh, STGE_SingleColFrames);
1425
1426 ifp->if_oerrors +=
1427 (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1428 (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1429 }
1430
1431 /*
1432 * stge_reset:
1433 *
1434 * Perform a soft reset on the TC9021.
1435 */
1436 static void
1437 stge_reset(struct stge_softc *sc)
1438 {
1439 uint32_t ac;
1440 int i;
1441
1442 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1443
1444 /*
1445 * Only assert RstOut if we're fiber. We need GMII clocks
1446 * to be present in order for the reset to complete on fiber
1447 * cards.
1448 */
1449 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1450 ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1451 AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1452 (sc->sc_usefiber ? AC_RstOut : 0));
1453
1454 delay(50000);
1455
1456 for (i = 0; i < STGE_TIMEOUT; i++) {
1457 delay(5000);
1458 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1459 AC_ResetBusy) == 0)
1460 break;
1461 }
1462
1463 if (i == STGE_TIMEOUT)
1464 printf("%s: reset failed to complete\n",
1465 device_xname(sc->sc_dev));
1466
1467 delay(1000);
1468 }
1469
1470 /*
1471 * stge_init: [ ifnet interface function ]
1472 *
1473 * Initialize the interface. Must be called at splnet().
1474 */
1475 static int
1476 stge_init(struct ifnet *ifp)
1477 {
1478 struct stge_softc *sc = ifp->if_softc;
1479 bus_space_tag_t st = sc->sc_st;
1480 bus_space_handle_t sh = sc->sc_sh;
1481 struct stge_descsoft *ds;
1482 int i, error = 0;
1483
1484 /*
1485 * Cancel any pending I/O.
1486 */
1487 stge_stop(ifp, 0);
1488
1489 /*
1490 * Reset the chip to a known state.
1491 */
1492 stge_reset(sc);
1493
1494 /*
1495 * Initialize the transmit descriptor ring.
1496 */
1497 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1498 for (i = 0; i < STGE_NTXDESC; i++) {
1499 sc->sc_txdescs[i].tfd_next = htole64(
1500 STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1501 sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1502 }
1503 sc->sc_txpending = 0;
1504 sc->sc_txdirty = 0;
1505 sc->sc_txlast = STGE_NTXDESC - 1;
1506
1507 /*
1508 * Initialize the receive descriptor and receive job
1509 * descriptor rings.
1510 */
1511 for (i = 0; i < STGE_NRXDESC; i++) {
1512 ds = &sc->sc_rxsoft[i];
1513 if (ds->ds_mbuf == NULL) {
1514 if ((error = stge_add_rxbuf(sc, i)) != 0) {
1515 printf("%s: unable to allocate or map rx "
1516 "buffer %d, error = %d\n",
1517 device_xname(sc->sc_dev), i, error);
1518 /*
1519 * XXX Should attempt to run with fewer receive
1520 * XXX buffers instead of just failing.
1521 */
1522 stge_rxdrain(sc);
1523 goto out;
1524 }
1525 } else
1526 STGE_INIT_RXDESC(sc, i);
1527 }
1528 sc->sc_rxptr = 0;
1529 sc->sc_rxdiscard = 0;
1530 STGE_RXCHAIN_RESET(sc);
1531
1532 /* Set the station address. */
1533 for (i = 0; i < 6; i++)
1534 bus_space_write_1(st, sh, STGE_StationAddress0 + i,
1535 CLLADDR(ifp->if_sadl)[i]);
1536
1537 /*
1538 * Set the statistics masks. Disable all the RMON stats,
1539 * and disable selected stats in the non-RMON stats registers.
1540 */
1541 bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1542 bus_space_write_4(st, sh, STGE_StatisticsMask,
1543 (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1544 (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1545 (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1546 (1U << 21));
1547
1548 /* Set up the receive filter. */
1549 stge_set_filter(sc);
1550
1551 /*
1552 * Give the transmit and receive ring to the chip.
1553 */
1554 bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1555 bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1556 STGE_CDTXADDR(sc, sc->sc_txdirty));
1557
1558 bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1559 bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1560 STGE_CDRXADDR(sc, sc->sc_rxptr));
1561
1562 /*
1563 * Initialize the Tx auto-poll period. It's OK to make this number
1564 * large (255 is the max, but we use 127) -- we explicitly kick the
1565 * transmit engine when there's actually a packet.
1566 */
1567 bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1568
1569 /* ..and the Rx auto-poll period. */
1570 bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1571
1572 /* Initialize the Tx start threshold. */
1573 bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1574
1575 /* RX DMA thresholds, from linux */
1576 bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
1577 bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
1578
1579 /*
1580 * Initialize the Rx DMA interrupt control register. We
1581 * request an interrupt after every incoming packet, but
1582 * defer it for 32us (64 * 512 ns). When the number of
1583 * interrupts pending reaches 8, we stop deferring the
1584 * interrupt, and signal it immediately.
1585 */
1586 bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1587 RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1588
1589 /*
1590 * Initialize the interrupt mask.
1591 */
1592 sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1593 IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1594 bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1595 bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1596
1597 /*
1598 * Configure the DMA engine.
1599 * XXX Should auto-tune TxBurstLimit.
1600 */
1601 bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1602 DMAC_TxBurstLimit(3));
1603
1604 /*
1605 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1606 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1607 * empty again.
1608 */
1609 bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1610 bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1611
1612 /*
1613 * Set the maximum frame size.
1614 */
1615 bus_space_write_2(st, sh, STGE_MaxFrameSize,
1616 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1617 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1618 ETHER_VLAN_ENCAP_LEN : 0));
1619
1620 /*
1621 * Initialize MacCtrl -- do it before setting the media,
1622 * as setting the media will actually program the register.
1623 *
1624 * Note: We have to poke the IFS value before poking
1625 * anything else.
1626 */
1627 sc->sc_MACCtrl = MC_IFSSelect(0);
1628 bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1629 sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1630 #ifdef STGE_VLAN_UNTAG
1631 sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1632 #endif
1633
1634 if (sc->sc_rev >= 6) { /* >= B.2 */
1635 /* Multi-frag frame bug work-around. */
1636 bus_space_write_2(st, sh, STGE_DebugCtrl,
1637 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1638
1639 /* Tx Poll Now bug work-around. */
1640 bus_space_write_2(st, sh, STGE_DebugCtrl,
1641 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1642 /* XXX ? from linux */
1643 bus_space_write_2(st, sh, STGE_DebugCtrl,
1644 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
1645 }
1646
1647 /*
1648 * Set the current media.
1649 */
1650 if ((error = ether_mediachange(ifp)) != 0)
1651 goto out;
1652
1653 /*
1654 * Start the one second MII clock.
1655 */
1656 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1657
1658 /*
1659 * ...all done!
1660 */
1661 ifp->if_flags |= IFF_RUNNING;
1662 ifp->if_flags &= ~IFF_OACTIVE;
1663
1664 out:
1665 if (error)
1666 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1667 return (error);
1668 }
1669
1670 /*
1671 * stge_drain:
1672 *
1673 * Drain the receive queue.
1674 */
1675 static void
1676 stge_rxdrain(struct stge_softc *sc)
1677 {
1678 struct stge_descsoft *ds;
1679 int i;
1680
1681 for (i = 0; i < STGE_NRXDESC; i++) {
1682 ds = &sc->sc_rxsoft[i];
1683 if (ds->ds_mbuf != NULL) {
1684 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1685 ds->ds_mbuf->m_next = NULL;
1686 m_freem(ds->ds_mbuf);
1687 ds->ds_mbuf = NULL;
1688 }
1689 }
1690 }
1691
1692 /*
1693 * stge_stop: [ ifnet interface function ]
1694 *
1695 * Stop transmission on the interface.
1696 */
1697 static void
1698 stge_stop(struct ifnet *ifp, int disable)
1699 {
1700 struct stge_softc *sc = ifp->if_softc;
1701 struct stge_descsoft *ds;
1702 int i;
1703
1704 /*
1705 * Stop the one second clock.
1706 */
1707 callout_stop(&sc->sc_tick_ch);
1708
1709 /* Down the MII. */
1710 mii_down(&sc->sc_mii);
1711
1712 /*
1713 * Disable interrupts.
1714 */
1715 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1716
1717 /*
1718 * Stop receiver, transmitter, and stats update.
1719 */
1720 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1721 MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1722
1723 /*
1724 * Stop the transmit and receive DMA.
1725 */
1726 stge_dma_wait(sc);
1727 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1728 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1729 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1730 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1731
1732 /*
1733 * Release any queued transmit buffers.
1734 */
1735 for (i = 0; i < STGE_NTXDESC; i++) {
1736 ds = &sc->sc_txsoft[i];
1737 if (ds->ds_mbuf != NULL) {
1738 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1739 m_freem(ds->ds_mbuf);
1740 ds->ds_mbuf = NULL;
1741 }
1742 }
1743
1744 /*
1745 * Mark the interface down and cancel the watchdog timer.
1746 */
1747 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1748 ifp->if_timer = 0;
1749
1750 if (disable)
1751 stge_rxdrain(sc);
1752 }
1753
1754 static int
1755 stge_eeprom_wait(struct stge_softc *sc)
1756 {
1757 int i;
1758
1759 for (i = 0; i < STGE_TIMEOUT; i++) {
1760 delay(1000);
1761 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1762 EC_EepromBusy) == 0)
1763 return (0);
1764 }
1765 return (1);
1766 }
1767
1768 /*
1769 * stge_read_eeprom:
1770 *
1771 * Read data from the serial EEPROM.
1772 */
1773 static void
1774 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1775 {
1776
1777 if (stge_eeprom_wait(sc))
1778 printf("%s: EEPROM failed to come ready\n",
1779 device_xname(sc->sc_dev));
1780
1781 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1782 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1783 if (stge_eeprom_wait(sc))
1784 printf("%s: EEPROM read timed out\n",
1785 device_xname(sc->sc_dev));
1786 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1787 }
1788
1789 /*
1790 * stge_add_rxbuf:
1791 *
1792 * Add a receive buffer to the indicated descriptor.
1793 */
1794 static int
1795 stge_add_rxbuf(struct stge_softc *sc, int idx)
1796 {
1797 struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1798 struct mbuf *m;
1799 int error;
1800
1801 MGETHDR(m, M_DONTWAIT, MT_DATA);
1802 if (m == NULL)
1803 return (ENOBUFS);
1804
1805 MCLGET(m, M_DONTWAIT);
1806 if ((m->m_flags & M_EXT) == 0) {
1807 m_freem(m);
1808 return (ENOBUFS);
1809 }
1810
1811 m->m_data = m->m_ext.ext_buf + 2;
1812 m->m_len = MCLBYTES - 2;
1813
1814 if (ds->ds_mbuf != NULL)
1815 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1816
1817 ds->ds_mbuf = m;
1818
1819 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1820 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1821 if (error) {
1822 printf("%s: can't load rx DMA map %d, error = %d\n",
1823 device_xname(sc->sc_dev), idx, error);
1824 panic("stge_add_rxbuf"); /* XXX */
1825 }
1826
1827 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1828 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1829
1830 STGE_INIT_RXDESC(sc, idx);
1831
1832 return (0);
1833 }
1834
1835 /*
1836 * stge_set_filter:
1837 *
1838 * Set up the receive filter.
1839 */
1840 static void
1841 stge_set_filter(struct stge_softc *sc)
1842 {
1843 struct ethercom *ec = &sc->sc_ethercom;
1844 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1845 struct ether_multi *enm;
1846 struct ether_multistep step;
1847 uint32_t crc;
1848 uint32_t mchash[2];
1849
1850 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1851 if (ifp->if_flags & IFF_BROADCAST)
1852 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1853
1854 /* XXX: ST1023 only works in promiscuous mode */
1855 if (sc->sc_stge1023)
1856 ifp->if_flags |= IFF_PROMISC;
1857
1858 if (ifp->if_flags & IFF_PROMISC) {
1859 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1860 goto allmulti;
1861 }
1862
1863 /*
1864 * Set up the multicast address filter by passing all multicast
1865 * addresses through a CRC generator, and then using the low-order
1866 * 6 bits as an index into the 64 bit multicast hash table. The
1867 * high order bits select the register, while the rest of the bits
1868 * select the bit within the register.
1869 */
1870
1871 memset(mchash, 0, sizeof(mchash));
1872
1873 ETHER_FIRST_MULTI(step, ec, enm);
1874 if (enm == NULL)
1875 goto done;
1876
1877 while (enm != NULL) {
1878 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1879 /*
1880 * We must listen to a range of multicast addresses.
1881 * For now, just accept all multicasts, rather than
1882 * trying to set only those filter bits needed to match
1883 * the range. (At this time, the only use of address
1884 * ranges is for IP multicast routing, for which the
1885 * range is big enough to require all bits set.)
1886 */
1887 goto allmulti;
1888 }
1889
1890 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1891
1892 /* Just want the 6 least significant bits. */
1893 crc &= 0x3f;
1894
1895 /* Set the corresponding bit in the hash table. */
1896 mchash[crc >> 5] |= 1 << (crc & 0x1f);
1897
1898 ETHER_NEXT_MULTI(step, enm);
1899 }
1900
1901 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1902
1903 ifp->if_flags &= ~IFF_ALLMULTI;
1904 goto done;
1905
1906 allmulti:
1907 ifp->if_flags |= IFF_ALLMULTI;
1908 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1909
1910 done:
1911 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1912 /*
1913 * Program the multicast hash table.
1914 */
1915 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1916 mchash[0]);
1917 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1918 mchash[1]);
1919 }
1920
1921 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1922 sc->sc_ReceiveMode);
1923 }
1924
1925 /*
1926 * stge_mii_readreg: [mii interface function]
1927 *
1928 * Read a PHY register on the MII of the TC9021.
1929 */
1930 static int
1931 stge_mii_readreg(device_t self, int phy, int reg)
1932 {
1933
1934 return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1935 }
1936
1937 /*
1938 * stge_mii_writereg: [mii interface function]
1939 *
1940 * Write a PHY register on the MII of the TC9021.
1941 */
1942 static void
1943 stge_mii_writereg(device_t self, int phy, int reg, int val)
1944 {
1945
1946 mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1947 }
1948
1949 /*
1950 * stge_mii_statchg: [mii interface function]
1951 *
1952 * Callback from MII layer when media changes.
1953 */
1954 static void
1955 stge_mii_statchg(device_t self)
1956 {
1957 struct stge_softc *sc = device_private(self);
1958
1959 if (sc->sc_mii.mii_media_active & IFM_FDX)
1960 sc->sc_MACCtrl |= MC_DuplexSelect;
1961 else
1962 sc->sc_MACCtrl &= ~MC_DuplexSelect;
1963
1964 /* XXX 802.1x flow-control? */
1965
1966 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1967 }
1968
1969 /*
1970 * sste_mii_bitbang_read: [mii bit-bang interface function]
1971 *
1972 * Read the MII serial port for the MII bit-bang module.
1973 */
1974 static uint32_t
1975 stge_mii_bitbang_read(device_t self)
1976 {
1977 struct stge_softc *sc = device_private(self);
1978
1979 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
1980 }
1981
1982 /*
1983 * stge_mii_bitbang_write: [mii big-bang interface function]
1984 *
1985 * Write the MII serial port for the MII bit-bang module.
1986 */
1987 static void
1988 stge_mii_bitbang_write(device_t self, uint32_t val)
1989 {
1990 struct stge_softc *sc = device_private(self);
1991
1992 bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
1993 val | sc->sc_PhyCtrl);
1994 }
1995