Home | History | Annotate | Line # | Download | only in pci
if_stge.c revision 1.47
      1 /*	$NetBSD: if_stge.c,v 1.47 2009/05/17 02:08:35 tsutsui Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Device driver for the Sundance Tech. TC9021 10/100/1000
     34  * Ethernet controller.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.47 2009/05/17 02:08:35 tsutsui Exp $");
     39 
     40 #include "bpfilter.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/callout.h>
     45 #include <sys/mbuf.h>
     46 #include <sys/malloc.h>
     47 #include <sys/kernel.h>
     48 #include <sys/socket.h>
     49 #include <sys/ioctl.h>
     50 #include <sys/errno.h>
     51 #include <sys/device.h>
     52 #include <sys/queue.h>
     53 
     54 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     55 
     56 #include <net/if.h>
     57 #include <net/if_dl.h>
     58 #include <net/if_media.h>
     59 #include <net/if_ether.h>
     60 
     61 #if NBPFILTER > 0
     62 #include <net/bpf.h>
     63 #endif
     64 
     65 #include <sys/bus.h>
     66 #include <sys/intr.h>
     67 
     68 #include <dev/mii/mii.h>
     69 #include <dev/mii/miivar.h>
     70 #include <dev/mii/mii_bitbang.h>
     71 
     72 #include <dev/pci/pcireg.h>
     73 #include <dev/pci/pcivar.h>
     74 #include <dev/pci/pcidevs.h>
     75 
     76 #include <dev/pci/if_stgereg.h>
     77 
     78 /* #define	STGE_CU_BUG			1 */
     79 #define	STGE_VLAN_UNTAG			1
     80 /* #define	STGE_VLAN_CFI		1 */
     81 
     82 /*
     83  * Transmit descriptor list size.
     84  */
     85 #define	STGE_NTXDESC		256
     86 #define	STGE_NTXDESC_MASK	(STGE_NTXDESC - 1)
     87 #define	STGE_NEXTTX(x)		(((x) + 1) & STGE_NTXDESC_MASK)
     88 
     89 /*
     90  * Receive descriptor list size.
     91  */
     92 #define	STGE_NRXDESC		256
     93 #define	STGE_NRXDESC_MASK	(STGE_NRXDESC - 1)
     94 #define	STGE_NEXTRX(x)		(((x) + 1) & STGE_NRXDESC_MASK)
     95 
     96 /*
     97  * Only interrupt every N frames.  Must be a power-of-two.
     98  */
     99 #define	STGE_TXINTR_SPACING	16
    100 #define	STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
    101 
    102 /*
    103  * Control structures are DMA'd to the TC9021 chip.  We allocate them in
    104  * a single clump that maps to a single DMA segment to make several things
    105  * easier.
    106  */
    107 struct stge_control_data {
    108 	/*
    109 	 * The transmit descriptors.
    110 	 */
    111 	struct stge_tfd scd_txdescs[STGE_NTXDESC];
    112 
    113 	/*
    114 	 * The receive descriptors.
    115 	 */
    116 	struct stge_rfd scd_rxdescs[STGE_NRXDESC];
    117 };
    118 
    119 #define	STGE_CDOFF(x)	offsetof(struct stge_control_data, x)
    120 #define	STGE_CDTXOFF(x)	STGE_CDOFF(scd_txdescs[(x)])
    121 #define	STGE_CDRXOFF(x)	STGE_CDOFF(scd_rxdescs[(x)])
    122 
    123 /*
    124  * Software state for transmit and receive jobs.
    125  */
    126 struct stge_descsoft {
    127 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
    128 	bus_dmamap_t ds_dmamap;		/* our DMA map */
    129 };
    130 
    131 /*
    132  * Software state per device.
    133  */
    134 struct stge_softc {
    135 	device_t sc_dev;		/* generic device information */
    136 	bus_space_tag_t sc_st;		/* bus space tag */
    137 	bus_space_handle_t sc_sh;	/* bus space handle */
    138 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    139 	struct ethercom sc_ethercom;	/* ethernet common data */
    140 	void *sc_sdhook;		/* shutdown hook */
    141 	int sc_rev;			/* silicon revision */
    142 
    143 	void *sc_ih;			/* interrupt cookie */
    144 
    145 	struct mii_data sc_mii;		/* MII/media information */
    146 
    147 	callout_t sc_tick_ch;		/* tick callout */
    148 
    149 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    150 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    151 
    152 	/*
    153 	 * Software state for transmit and receive descriptors.
    154 	 */
    155 	struct stge_descsoft sc_txsoft[STGE_NTXDESC];
    156 	struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
    157 
    158 	/*
    159 	 * Control data structures.
    160 	 */
    161 	struct stge_control_data *sc_control_data;
    162 #define	sc_txdescs	sc_control_data->scd_txdescs
    163 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    164 
    165 #ifdef STGE_EVENT_COUNTERS
    166 	/*
    167 	 * Event counters.
    168 	 */
    169 	struct evcnt sc_ev_txstall;	/* Tx stalled */
    170 	struct evcnt sc_ev_txdmaintr;	/* Tx DMA interrupts */
    171 	struct evcnt sc_ev_txindintr;	/* Tx Indicate interrupts */
    172 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    173 
    174 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
    175 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
    176 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
    177 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
    178 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
    179 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
    180 	struct evcnt sc_ev_txcopy;	/* Tx packets that we had to copy */
    181 
    182 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    183 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    184 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
    185 
    186 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    187 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    188 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    189 #endif /* STGE_EVENT_COUNTERS */
    190 
    191 	int	sc_txpending;		/* number of Tx requests pending */
    192 	int	sc_txdirty;		/* first dirty Tx descriptor */
    193 	int	sc_txlast;		/* last used Tx descriptor */
    194 
    195 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    196 	int	sc_rxdiscard;
    197 	int	sc_rxlen;
    198 	struct mbuf *sc_rxhead;
    199 	struct mbuf *sc_rxtail;
    200 	struct mbuf **sc_rxtailp;
    201 
    202 	int	sc_txthresh;		/* Tx threshold */
    203 	uint32_t sc_usefiber:1;		/* if we're fiber */
    204 	uint32_t sc_stge1023:1;		/* are we a 1023 */
    205 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
    206 	uint32_t sc_MACCtrl;		/* prototype MacCtrl register */
    207 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
    208 	uint16_t sc_ReceiveMode;	/* prototype ReceiveMode register */
    209 	uint8_t sc_PhyCtrl;		/* prototype PhyCtrl register */
    210 };
    211 
    212 #define	STGE_RXCHAIN_RESET(sc)						\
    213 do {									\
    214 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    215 	*(sc)->sc_rxtailp = NULL;					\
    216 	(sc)->sc_rxlen = 0;						\
    217 } while (/*CONSTCOND*/0)
    218 
    219 #define	STGE_RXCHAIN_LINK(sc, m)					\
    220 do {									\
    221 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    222 	(sc)->sc_rxtailp = &(m)->m_next;				\
    223 } while (/*CONSTCOND*/0)
    224 
    225 #ifdef STGE_EVENT_COUNTERS
    226 #define	STGE_EVCNT_INCR(ev)	(ev)->ev_count++
    227 #else
    228 #define	STGE_EVCNT_INCR(ev)	/* nothing */
    229 #endif
    230 
    231 #define	STGE_CDTXADDR(sc, x)	((sc)->sc_cddma + STGE_CDTXOFF((x)))
    232 #define	STGE_CDRXADDR(sc, x)	((sc)->sc_cddma + STGE_CDRXOFF((x)))
    233 
    234 #define	STGE_CDTXSYNC(sc, x, ops)					\
    235 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    236 	    STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
    237 
    238 #define	STGE_CDRXSYNC(sc, x, ops)					\
    239 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    240 	    STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
    241 
    242 #define	STGE_INIT_RXDESC(sc, x)						\
    243 do {									\
    244 	struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
    245 	struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)];		\
    246 									\
    247 	/*								\
    248 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    249 	 * so that the payload after the Ethernet header is aligned	\
    250 	 * to a 4-byte boundary.					\
    251 	 */								\
    252 	__rfd->rfd_frag.frag_word0 =					\
    253 	    htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
    254 	    FRAG_LEN(MCLBYTES - 2));					\
    255 	__rfd->rfd_next =						\
    256 	    htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x))));	\
    257 	__rfd->rfd_status = 0;						\
    258 	STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    259 } while (/*CONSTCOND*/0)
    260 
    261 #define STGE_TIMEOUT 1000
    262 
    263 static void	stge_start(struct ifnet *);
    264 static void	stge_watchdog(struct ifnet *);
    265 static int	stge_ioctl(struct ifnet *, u_long, void *);
    266 static int	stge_init(struct ifnet *);
    267 static void	stge_stop(struct ifnet *, int);
    268 
    269 static void	stge_shutdown(void *);
    270 
    271 static void	stge_reset(struct stge_softc *);
    272 static void	stge_rxdrain(struct stge_softc *);
    273 static int	stge_add_rxbuf(struct stge_softc *, int);
    274 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
    275 static void	stge_tick(void *);
    276 
    277 static void	stge_stats_update(struct stge_softc *);
    278 
    279 static void	stge_set_filter(struct stge_softc *);
    280 
    281 static int	stge_intr(void *);
    282 static void	stge_txintr(struct stge_softc *);
    283 static void	stge_rxintr(struct stge_softc *);
    284 
    285 static int	stge_mii_readreg(device_t, int, int);
    286 static void	stge_mii_writereg(device_t, int, int, int);
    287 static void	stge_mii_statchg(device_t);
    288 
    289 static int	stge_match(device_t, cfdata_t, void *);
    290 static void	stge_attach(device_t, device_t, void *);
    291 
    292 int	stge_copy_small = 0;
    293 
    294 CFATTACH_DECL_NEW(stge, sizeof(struct stge_softc),
    295     stge_match, stge_attach, NULL, NULL);
    296 
    297 static uint32_t stge_mii_bitbang_read(device_t);
    298 static void	stge_mii_bitbang_write(device_t, uint32_t);
    299 
    300 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
    301 	stge_mii_bitbang_read,
    302 	stge_mii_bitbang_write,
    303 	{
    304 		PC_MgmtData,		/* MII_BIT_MDO */
    305 		PC_MgmtData,		/* MII_BIT_MDI */
    306 		PC_MgmtClk,		/* MII_BIT_MDC */
    307 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
    308 		0,			/* MII_BIT_DIR_PHY_HOST */
    309 	}
    310 };
    311 
    312 /*
    313  * Devices supported by this driver.
    314  */
    315 static const struct stge_product {
    316 	pci_vendor_id_t		stge_vendor;
    317 	pci_product_id_t	stge_product;
    318 	const char		*stge_name;
    319 } stge_products[] = {
    320 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST1023,
    321 	  "Sundance ST-1023 Gigabit Ethernet" },
    322 
    323 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST2021,
    324 	  "Sundance ST-2021 Gigabit Ethernet" },
    325 
    326 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021,
    327 	  "Tamarack TC9021 Gigabit Ethernet" },
    328 
    329 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021_ALT,
    330 	  "Tamarack TC9021 Gigabit Ethernet" },
    331 
    332 	/*
    333 	 * The Sundance sample boards use the Sundance vendor ID,
    334 	 * but the Tamarack product ID.
    335 	 */
    336 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021,
    337 	  "Sundance TC9021 Gigabit Ethernet" },
    338 
    339 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021_ALT,
    340 	  "Sundance TC9021 Gigabit Ethernet" },
    341 
    342 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL4000,
    343 	  "D-Link DL-4000 Gigabit Ethernet" },
    344 
    345 	{ PCI_VENDOR_ANTARES,		PCI_PRODUCT_ANTARES_TC9021,
    346 	  "Antares Gigabit Ethernet" },
    347 
    348 	{ 0,				0,
    349 	  NULL },
    350 };
    351 
    352 static const struct stge_product *
    353 stge_lookup(const struct pci_attach_args *pa)
    354 {
    355 	const struct stge_product *sp;
    356 
    357 	for (sp = stge_products; sp->stge_name != NULL; sp++) {
    358 		if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
    359 		    PCI_PRODUCT(pa->pa_id) == sp->stge_product)
    360 			return (sp);
    361 	}
    362 	return (NULL);
    363 }
    364 
    365 static int
    366 stge_match(device_t parent, cfdata_t cf, void *aux)
    367 {
    368 	struct pci_attach_args *pa = aux;
    369 
    370 	if (stge_lookup(pa) != NULL)
    371 		return (1);
    372 
    373 	return (0);
    374 }
    375 
    376 static void
    377 stge_attach(device_t parent, device_t self, void *aux)
    378 {
    379 	struct stge_softc *sc = device_private(self);
    380 	struct pci_attach_args *pa = aux;
    381 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    382 	pci_chipset_tag_t pc = pa->pa_pc;
    383 	pci_intr_handle_t ih;
    384 	const char *intrstr = NULL;
    385 	bus_space_tag_t iot, memt;
    386 	bus_space_handle_t ioh, memh;
    387 	bus_dma_segment_t seg;
    388 	int ioh_valid, memh_valid;
    389 	int i, rseg, error;
    390 	const struct stge_product *sp;
    391 	uint8_t enaddr[ETHER_ADDR_LEN];
    392 
    393 	callout_init(&sc->sc_tick_ch, 0);
    394 
    395 	sp = stge_lookup(pa);
    396 	if (sp == NULL) {
    397 		printf("\n");
    398 		panic("ste_attach: impossible");
    399 	}
    400 
    401 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    402 
    403 	aprint_normal(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
    404 
    405 	/*
    406 	 * Map the device.
    407 	 */
    408 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
    409 	    PCI_MAPREG_TYPE_IO, 0,
    410 	    &iot, &ioh, NULL, NULL) == 0);
    411 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
    412 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    413 	    &memt, &memh, NULL, NULL) == 0);
    414 
    415 	if (memh_valid) {
    416 		sc->sc_st = memt;
    417 		sc->sc_sh = memh;
    418 	} else if (ioh_valid) {
    419 		sc->sc_st = iot;
    420 		sc->sc_sh = ioh;
    421 	} else {
    422 		aprint_error_dev(self, "unable to map device registers\n");
    423 		return;
    424 	}
    425 
    426 	sc->sc_dmat = pa->pa_dmat;
    427 
    428 	/* Enable bus mastering. */
    429 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    430 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    431 	    PCI_COMMAND_MASTER_ENABLE);
    432 
    433 	/* power up chip */
    434 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
    435 	    error != EOPNOTSUPP) {
    436 		aprint_error_dev(self, "cannot activate %d\n",
    437 		    error);
    438 		return;
    439 	}
    440 	/*
    441 	 * Map and establish our interrupt.
    442 	 */
    443 	if (pci_intr_map(pa, &ih)) {
    444 		aprint_error_dev(self, "unable to map interrupt\n");
    445 		return;
    446 	}
    447 	intrstr = pci_intr_string(pc, ih);
    448 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
    449 	if (sc->sc_ih == NULL) {
    450 		aprint_error_dev(self, "unable to establish interrupt");
    451 		if (intrstr != NULL)
    452 			aprint_error(" at %s", intrstr);
    453 		aprint_error("\n");
    454 		return;
    455 	}
    456 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    457 
    458 	/*
    459 	 * Allocate the control data structures, and create and load the
    460 	 * DMA map for it.
    461 	 */
    462 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    463 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    464 	    0)) != 0) {
    465 		aprint_error_dev(self,
    466 		    "unable to allocate control data, error = %d\n",
    467 		    error);
    468 		goto fail_0;
    469 	}
    470 
    471 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    472 	    sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
    473 	    BUS_DMA_COHERENT)) != 0) {
    474 		aprint_error_dev(self,
    475 		    "unable to map control data, error = %d\n",
    476 		    error);
    477 		goto fail_1;
    478 	}
    479 
    480 	if ((error = bus_dmamap_create(sc->sc_dmat,
    481 	    sizeof(struct stge_control_data), 1,
    482 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    483 		aprint_error_dev(self,
    484 		    "unable to create control data DMA map, error = %d\n",
    485 		    error);
    486 		goto fail_2;
    487 	}
    488 
    489 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    490 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
    491 	    0)) != 0) {
    492 		aprint_error_dev(self,
    493 		    "unable to load control data DMA map, error = %d\n",
    494 		    error);
    495 		goto fail_3;
    496 	}
    497 
    498 	/*
    499 	 * Create the transmit buffer DMA maps.  Note that rev B.3
    500 	 * and earlier seem to have a bug regarding multi-fragment
    501 	 * packets.  We need to limit the number of Tx segments on
    502 	 * such chips to 1.
    503 	 */
    504 	for (i = 0; i < STGE_NTXDESC; i++) {
    505 		if ((error = bus_dmamap_create(sc->sc_dmat,
    506 		    ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
    507 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
    508 			aprint_error_dev(self,
    509 			    "unable to create tx DMA map %d, error = %d\n",
    510 			    i, error);
    511 			goto fail_4;
    512 		}
    513 	}
    514 
    515 	/*
    516 	 * Create the receive buffer DMA maps.
    517 	 */
    518 	for (i = 0; i < STGE_NRXDESC; i++) {
    519 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    520 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
    521 			aprint_error_dev(self,
    522 			    "unable to create rx DMA map %d, error = %d\n",
    523 			    i, error);
    524 			goto fail_5;
    525 		}
    526 		sc->sc_rxsoft[i].ds_mbuf = NULL;
    527 	}
    528 
    529 	/*
    530 	 * Determine if we're copper or fiber.  It affects how we
    531 	 * reset the card.
    532 	 */
    533 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
    534 	    AC_PhyMedia)
    535 		sc->sc_usefiber = 1;
    536 	else
    537 		sc->sc_usefiber = 0;
    538 
    539 	/*
    540 	 * Reset the chip to a known state.
    541 	 */
    542 	stge_reset(sc);
    543 
    544 	/*
    545 	 * Reading the station address from the EEPROM doesn't seem
    546 	 * to work, at least on my sample boards.  Instead, since
    547 	 * the reset sequence does AutoInit, read it from the station
    548 	 * address registers. For Sundance 1023 you can only read it
    549 	 * from EEPROM.
    550 	 */
    551 	if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
    552 		enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    553 		    STGE_StationAddress0) & 0xff;
    554 		enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    555 		    STGE_StationAddress0) >> 8;
    556 		enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    557 		    STGE_StationAddress1) & 0xff;
    558 		enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    559 		    STGE_StationAddress1) >> 8;
    560 		enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    561 		    STGE_StationAddress2) & 0xff;
    562 		enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    563 		    STGE_StationAddress2) >> 8;
    564 		sc->sc_stge1023 = 0;
    565 	} else {
    566 		uint16_t myaddr[ETHER_ADDR_LEN / 2];
    567 		for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
    568 			stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
    569 			    &myaddr[i]);
    570 			myaddr[i] = le16toh(myaddr[i]);
    571 		}
    572 		(void)memcpy(enaddr, myaddr, sizeof(enaddr));
    573 		sc->sc_stge1023 = 1;
    574 	}
    575 
    576 	aprint_normal_dev(self, "Ethernet address %s\n",
    577 	    ether_sprintf(enaddr));
    578 
    579 	/*
    580 	 * Read some important bits from the PhyCtrl register.
    581 	 */
    582 	sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
    583 	    STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
    584 
    585 	/*
    586 	 * Initialize our media structures and probe the MII.
    587 	 */
    588 	sc->sc_mii.mii_ifp = ifp;
    589 	sc->sc_mii.mii_readreg = stge_mii_readreg;
    590 	sc->sc_mii.mii_writereg = stge_mii_writereg;
    591 	sc->sc_mii.mii_statchg = stge_mii_statchg;
    592 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
    593 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
    594 	    ether_mediastatus);
    595 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    596 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
    597 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    598 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    599 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    600 	} else
    601 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    602 
    603 	ifp = &sc->sc_ethercom.ec_if;
    604 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    605 	ifp->if_softc = sc;
    606 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    607 	ifp->if_ioctl = stge_ioctl;
    608 	ifp->if_start = stge_start;
    609 	ifp->if_watchdog = stge_watchdog;
    610 	ifp->if_init = stge_init;
    611 	ifp->if_stop = stge_stop;
    612 	IFQ_SET_READY(&ifp->if_snd);
    613 
    614 	/*
    615 	 * The manual recommends disabling early transmit, so we
    616 	 * do.  It's disabled anyway, if using IP checksumming,
    617 	 * since the entire packet must be in the FIFO in order
    618 	 * for the chip to perform the checksum.
    619 	 */
    620 	sc->sc_txthresh = 0x0fff;
    621 
    622 	/*
    623 	 * Disable MWI if the PCI layer tells us to.
    624 	 */
    625 	sc->sc_DMACtrl = 0;
    626 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
    627 		sc->sc_DMACtrl |= DMAC_MWIDisable;
    628 
    629 	/*
    630 	 * We can support 802.1Q VLAN-sized frames and jumbo
    631 	 * Ethernet frames.
    632 	 *
    633 	 * XXX Figure out how to do hw-assisted VLAN tagging in
    634 	 * XXX a reasonable way on this chip.
    635 	 */
    636 	sc->sc_ethercom.ec_capabilities |=
    637 	    ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
    638 	    ETHERCAP_VLAN_HWTAGGING;
    639 
    640 	/*
    641 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
    642 	 */
    643 	sc->sc_ethercom.ec_if.if_capabilities |=
    644 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    645 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    646 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    647 
    648 	/*
    649 	 * Attach the interface.
    650 	 */
    651 	if_attach(ifp);
    652 	ether_ifattach(ifp, enaddr);
    653 
    654 #ifdef STGE_EVENT_COUNTERS
    655 	/*
    656 	 * Attach event counters.
    657 	 */
    658 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
    659 	    NULL, device_xname(self), "txstall");
    660 	evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
    661 	    NULL, device_xname(self), "txdmaintr");
    662 	evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
    663 	    NULL, device_xname(self), "txindintr");
    664 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    665 	    NULL, device_xname(self), "rxintr");
    666 
    667 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
    668 	    NULL, device_xname(self), "txseg1");
    669 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
    670 	    NULL, device_xname(self), "txseg2");
    671 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
    672 	    NULL, device_xname(self), "txseg3");
    673 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
    674 	    NULL, device_xname(self), "txseg4");
    675 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
    676 	    NULL, device_xname(self), "txseg5");
    677 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
    678 	    NULL, device_xname(self), "txsegmore");
    679 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
    680 	    NULL, device_xname(self), "txcopy");
    681 
    682 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    683 	    NULL, device_xname(self), "rxipsum");
    684 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
    685 	    NULL, device_xname(self), "rxtcpsum");
    686 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
    687 	    NULL, device_xname(self), "rxudpsum");
    688 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    689 	    NULL, device_xname(self), "txipsum");
    690 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
    691 	    NULL, device_xname(self), "txtcpsum");
    692 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
    693 	    NULL, device_xname(self), "txudpsum");
    694 #endif /* STGE_EVENT_COUNTERS */
    695 
    696 	/*
    697 	 * Make sure the interface is shutdown during reboot.
    698 	 */
    699 	sc->sc_sdhook = shutdownhook_establish(stge_shutdown, sc);
    700 	if (sc->sc_sdhook == NULL)
    701 		aprint_error_dev(self,
    702 		    "WARNING: unable to establish shutdown hook\n");
    703 	return;
    704 
    705 	/*
    706 	 * Free any resources we've allocated during the failed attach
    707 	 * attempt.  Do this in reverse order and fall through.
    708 	 */
    709  fail_5:
    710 	for (i = 0; i < STGE_NRXDESC; i++) {
    711 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
    712 			bus_dmamap_destroy(sc->sc_dmat,
    713 			    sc->sc_rxsoft[i].ds_dmamap);
    714 	}
    715  fail_4:
    716 	for (i = 0; i < STGE_NTXDESC; i++) {
    717 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
    718 			bus_dmamap_destroy(sc->sc_dmat,
    719 			    sc->sc_txsoft[i].ds_dmamap);
    720 	}
    721 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    722  fail_3:
    723 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    724  fail_2:
    725 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    726 	    sizeof(struct stge_control_data));
    727  fail_1:
    728 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    729  fail_0:
    730 	return;
    731 }
    732 
    733 /*
    734  * stge_shutdown:
    735  *
    736  *	Make sure the interface is stopped at reboot time.
    737  */
    738 static void
    739 stge_shutdown(void *arg)
    740 {
    741 	struct stge_softc *sc = arg;
    742 
    743 	stge_stop(&sc->sc_ethercom.ec_if, 1);
    744 }
    745 
    746 static void
    747 stge_dma_wait(struct stge_softc *sc)
    748 {
    749 	int i;
    750 
    751 	for (i = 0; i < STGE_TIMEOUT; i++) {
    752 		delay(2);
    753 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
    754 		     DMAC_TxDMAInProg) == 0)
    755 			break;
    756 	}
    757 
    758 	if (i == STGE_TIMEOUT)
    759 		printf("%s: DMA wait timed out\n", device_xname(sc->sc_dev));
    760 }
    761 
    762 /*
    763  * stge_start:		[ifnet interface function]
    764  *
    765  *	Start packet transmission on the interface.
    766  */
    767 static void
    768 stge_start(struct ifnet *ifp)
    769 {
    770 	struct stge_softc *sc = ifp->if_softc;
    771 	struct mbuf *m0;
    772 	struct stge_descsoft *ds;
    773 	struct stge_tfd *tfd;
    774 	bus_dmamap_t dmamap;
    775 	int error, firsttx, nexttx, opending, seg, totlen;
    776 	uint64_t csum_flags;
    777 
    778 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    779 		return;
    780 
    781 	/*
    782 	 * Remember the previous number of pending transmissions
    783 	 * and the first descriptor we will use.
    784 	 */
    785 	opending = sc->sc_txpending;
    786 	firsttx = STGE_NEXTTX(sc->sc_txlast);
    787 
    788 	/*
    789 	 * Loop through the send queue, setting up transmit descriptors
    790 	 * until we drain the queue, or use up all available transmit
    791 	 * descriptors.
    792 	 */
    793 	for (;;) {
    794 		struct m_tag *mtag;
    795 		uint64_t tfc;
    796 
    797 		/*
    798 		 * Grab a packet off the queue.
    799 		 */
    800 		IFQ_POLL(&ifp->if_snd, m0);
    801 		if (m0 == NULL)
    802 			break;
    803 
    804 		/*
    805 		 * Leave one unused descriptor at the end of the
    806 		 * list to prevent wrapping completely around.
    807 		 */
    808 		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
    809 			STGE_EVCNT_INCR(&sc->sc_ev_txstall);
    810 			break;
    811 		}
    812 
    813 		/*
    814 		 * See if we have any VLAN stuff.
    815 		 */
    816 		mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
    817 
    818 		/*
    819 		 * Get the last and next available transmit descriptor.
    820 		 */
    821 		nexttx = STGE_NEXTTX(sc->sc_txlast);
    822 		tfd = &sc->sc_txdescs[nexttx];
    823 		ds = &sc->sc_txsoft[nexttx];
    824 
    825 		dmamap = ds->ds_dmamap;
    826 
    827 		/*
    828 		 * Load the DMA map.  If this fails, the packet either
    829 		 * didn't fit in the alloted number of segments, or we
    830 		 * were short on resources.  For the too-many-segments
    831 		 * case, we simply report an error and drop the packet,
    832 		 * since we can't sanely copy a jumbo packet to a single
    833 		 * buffer.
    834 		 */
    835 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    836 		    BUS_DMA_NOWAIT);
    837 		if (error) {
    838 			if (error == EFBIG) {
    839 				printf("%s: Tx packet consumes too many "
    840 				    "DMA segments, dropping...\n",
    841 				    device_xname(sc->sc_dev));
    842 				IFQ_DEQUEUE(&ifp->if_snd, m0);
    843 				m_freem(m0);
    844 				continue;
    845 			}
    846 			/*
    847 			 * Short on resources, just stop for now.
    848 			 */
    849 			break;
    850 		}
    851 
    852 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    853 
    854 		/*
    855 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    856 		 */
    857 
    858 		/* Sync the DMA map. */
    859 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    860 		    BUS_DMASYNC_PREWRITE);
    861 
    862 		/* Initialize the fragment list. */
    863 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
    864 			tfd->tfd_frags[seg].frag_word0 =
    865 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
    866 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
    867 			totlen += dmamap->dm_segs[seg].ds_len;
    868 		}
    869 
    870 #ifdef STGE_EVENT_COUNTERS
    871 		switch (dmamap->dm_nsegs) {
    872 		case 1:
    873 			STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
    874 			break;
    875 		case 2:
    876 			STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
    877 			break;
    878 		case 3:
    879 			STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
    880 			break;
    881 		case 4:
    882 			STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
    883 			break;
    884 		case 5:
    885 			STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
    886 			break;
    887 		default:
    888 			STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
    889 			break;
    890 		}
    891 #endif /* STGE_EVENT_COUNTERS */
    892 
    893 		/*
    894 		 * Initialize checksumming flags in the descriptor.
    895 		 * Byte-swap constants so the compiler can optimize.
    896 		 */
    897 		csum_flags = 0;
    898 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
    899 			STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
    900 			csum_flags |= TFD_IPChecksumEnable;
    901 		}
    902 
    903 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
    904 			STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
    905 			csum_flags |= TFD_TCPChecksumEnable;
    906 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
    907 			STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
    908 			csum_flags |= TFD_UDPChecksumEnable;
    909 		}
    910 
    911 		/*
    912 		 * Initialize the descriptor and give it to the chip.
    913 		 * Check to see if we have a VLAN tag to insert.
    914 		 */
    915 
    916 		tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
    917 		    TFD_FragCount(seg) | csum_flags |
    918 		    (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
    919 			TFD_TxDMAIndicate : 0);
    920 		if (mtag) {
    921 #if	0
    922 			struct ether_header *eh =
    923 			    mtod(m0, struct ether_header *);
    924 			u_int16_t etype = ntohs(eh->ether_type);
    925 			printf("%s: xmit (tag %d) etype %x\n",
    926 			   ifp->if_xname, *mtod(n, int *), etype);
    927 #endif
    928 			tfc |= TFD_VLANTagInsert |
    929 #ifdef	STGE_VLAN_CFI
    930 			    TFD_CFI |
    931 #endif
    932 			    TFD_VID(VLAN_TAG_VALUE(mtag));
    933 		}
    934 		tfd->tfd_control = htole64(tfc);
    935 
    936 		/* Sync the descriptor. */
    937 		STGE_CDTXSYNC(sc, nexttx,
    938 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    939 
    940 		/*
    941 		 * Kick the transmit DMA logic.
    942 		 */
    943 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
    944 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
    945 
    946 		/*
    947 		 * Store a pointer to the packet so we can free it later.
    948 		 */
    949 		ds->ds_mbuf = m0;
    950 
    951 		/* Advance the tx pointer. */
    952 		sc->sc_txpending++;
    953 		sc->sc_txlast = nexttx;
    954 
    955 #if NBPFILTER > 0
    956 		/*
    957 		 * Pass the packet to any BPF listeners.
    958 		 */
    959 		if (ifp->if_bpf)
    960 			bpf_mtap(ifp->if_bpf, m0);
    961 #endif /* NBPFILTER > 0 */
    962 	}
    963 
    964 	if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
    965 		/* No more slots left; notify upper layer. */
    966 		ifp->if_flags |= IFF_OACTIVE;
    967 	}
    968 
    969 	if (sc->sc_txpending != opending) {
    970 		/*
    971 		 * We enqueued packets.  If the transmitter was idle,
    972 		 * reset the txdirty pointer.
    973 		 */
    974 		if (opending == 0)
    975 			sc->sc_txdirty = firsttx;
    976 
    977 		/* Set a watchdog timer in case the chip flakes out. */
    978 		ifp->if_timer = 5;
    979 	}
    980 }
    981 
    982 /*
    983  * stge_watchdog:	[ifnet interface function]
    984  *
    985  *	Watchdog timer handler.
    986  */
    987 static void
    988 stge_watchdog(struct ifnet *ifp)
    989 {
    990 	struct stge_softc *sc = ifp->if_softc;
    991 
    992 	/*
    993 	 * Sweep up first, since we don't interrupt every frame.
    994 	 */
    995 	stge_txintr(sc);
    996 	if (sc->sc_txpending != 0) {
    997 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
    998 		ifp->if_oerrors++;
    999 
   1000 		(void) stge_init(ifp);
   1001 
   1002 		/* Try to get more packets going. */
   1003 		stge_start(ifp);
   1004 	}
   1005 }
   1006 
   1007 /*
   1008  * stge_ioctl:		[ifnet interface function]
   1009  *
   1010  *	Handle control requests from the operator.
   1011  */
   1012 static int
   1013 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1014 {
   1015 	struct stge_softc *sc = ifp->if_softc;
   1016 	int s, error;
   1017 
   1018 	s = splnet();
   1019 
   1020 	error = ether_ioctl(ifp, cmd, data);
   1021 	if (error == ENETRESET) {
   1022 		error = 0;
   1023 
   1024 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1025 			;
   1026 		else if (ifp->if_flags & IFF_RUNNING) {
   1027 			/*
   1028 			 * Multicast list has changed; set the hardware filter
   1029 			 * accordingly.
   1030 			 */
   1031 			stge_set_filter(sc);
   1032 		}
   1033 	}
   1034 
   1035 	/* Try to get more packets going. */
   1036 	stge_start(ifp);
   1037 
   1038 	splx(s);
   1039 	return (error);
   1040 }
   1041 
   1042 /*
   1043  * stge_intr:
   1044  *
   1045  *	Interrupt service routine.
   1046  */
   1047 static int
   1048 stge_intr(void *arg)
   1049 {
   1050 	struct stge_softc *sc = arg;
   1051 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1052 	uint32_t txstat;
   1053 	int wantinit;
   1054 	uint16_t isr;
   1055 
   1056 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
   1057 	     IS_InterruptStatus) == 0)
   1058 		return (0);
   1059 
   1060 	for (wantinit = 0; wantinit == 0;) {
   1061 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
   1062 		if ((isr & sc->sc_IntEnable) == 0)
   1063 			break;
   1064 
   1065 		/* Host interface errors. */
   1066 		if (isr & IS_HostError) {
   1067 			printf("%s: Host interface error\n",
   1068 			    device_xname(sc->sc_dev));
   1069 			wantinit = 1;
   1070 			continue;
   1071 		}
   1072 
   1073 		/* Receive interrupts. */
   1074 		if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
   1075 			STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
   1076 			stge_rxintr(sc);
   1077 			if (isr & IS_RFDListEnd) {
   1078 				printf("%s: receive ring overflow\n",
   1079 				    device_xname(sc->sc_dev));
   1080 				/*
   1081 				 * XXX Should try to recover from this
   1082 				 * XXX more gracefully.
   1083 				 */
   1084 				wantinit = 1;
   1085 			}
   1086 		}
   1087 
   1088 		/* Transmit interrupts. */
   1089 		if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
   1090 #ifdef STGE_EVENT_COUNTERS
   1091 			if (isr & IS_TxDMAComplete)
   1092 				STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
   1093 #endif
   1094 			stge_txintr(sc);
   1095 		}
   1096 
   1097 		/* Statistics overflow. */
   1098 		if (isr & IS_UpdateStats)
   1099 			stge_stats_update(sc);
   1100 
   1101 		/* Transmission errors. */
   1102 		if (isr & IS_TxComplete) {
   1103 			STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
   1104 			for (;;) {
   1105 				txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
   1106 				    STGE_TxStatus);
   1107 				if ((txstat & TS_TxComplete) == 0)
   1108 					break;
   1109 				if (txstat & TS_TxUnderrun) {
   1110 					sc->sc_txthresh++;
   1111 					if (sc->sc_txthresh > 0x0fff)
   1112 						sc->sc_txthresh = 0x0fff;
   1113 					printf("%s: transmit underrun, new "
   1114 					    "threshold: %d bytes\n",
   1115 					    device_xname(sc->sc_dev),
   1116 					    sc->sc_txthresh << 5);
   1117 				}
   1118 				if (txstat & TS_MaxCollisions)
   1119 					printf("%s: excessive collisions\n",
   1120 					    device_xname(sc->sc_dev));
   1121 			}
   1122 			wantinit = 1;
   1123 		}
   1124 
   1125 	}
   1126 
   1127 	if (wantinit)
   1128 		stge_init(ifp);
   1129 
   1130 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
   1131 	    sc->sc_IntEnable);
   1132 
   1133 	/* Try to get more packets going. */
   1134 	stge_start(ifp);
   1135 
   1136 	return (1);
   1137 }
   1138 
   1139 /*
   1140  * stge_txintr:
   1141  *
   1142  *	Helper; handle transmit interrupts.
   1143  */
   1144 static void
   1145 stge_txintr(struct stge_softc *sc)
   1146 {
   1147 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1148 	struct stge_descsoft *ds;
   1149 	uint64_t control;
   1150 	int i;
   1151 
   1152 	ifp->if_flags &= ~IFF_OACTIVE;
   1153 
   1154 	/*
   1155 	 * Go through our Tx list and free mbufs for those
   1156 	 * frames which have been transmitted.
   1157 	 */
   1158 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
   1159 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
   1160 		ds = &sc->sc_txsoft[i];
   1161 
   1162 		STGE_CDTXSYNC(sc, i,
   1163 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1164 
   1165 		control = le64toh(sc->sc_txdescs[i].tfd_control);
   1166 		if ((control & TFD_TFDDone) == 0)
   1167 			break;
   1168 
   1169 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
   1170 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1171 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1172 		m_freem(ds->ds_mbuf);
   1173 		ds->ds_mbuf = NULL;
   1174 	}
   1175 
   1176 	/* Update the dirty transmit buffer pointer. */
   1177 	sc->sc_txdirty = i;
   1178 
   1179 	/*
   1180 	 * If there are no more pending transmissions, cancel the watchdog
   1181 	 * timer.
   1182 	 */
   1183 	if (sc->sc_txpending == 0)
   1184 		ifp->if_timer = 0;
   1185 }
   1186 
   1187 /*
   1188  * stge_rxintr:
   1189  *
   1190  *	Helper; handle receive interrupts.
   1191  */
   1192 static void
   1193 stge_rxintr(struct stge_softc *sc)
   1194 {
   1195 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1196 	struct stge_descsoft *ds;
   1197 	struct mbuf *m, *tailm;
   1198 	uint64_t status;
   1199 	int i, len;
   1200 
   1201 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
   1202 		ds = &sc->sc_rxsoft[i];
   1203 
   1204 		STGE_CDRXSYNC(sc, i,
   1205 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1206 
   1207 		status = le64toh(sc->sc_rxdescs[i].rfd_status);
   1208 
   1209 		if ((status & RFD_RFDDone) == 0)
   1210 			break;
   1211 
   1212 		if (__predict_false(sc->sc_rxdiscard)) {
   1213 			STGE_INIT_RXDESC(sc, i);
   1214 			if (status & RFD_FrameEnd) {
   1215 				/* Reset our state. */
   1216 				sc->sc_rxdiscard = 0;
   1217 			}
   1218 			continue;
   1219 		}
   1220 
   1221 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1222 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1223 
   1224 		m = ds->ds_mbuf;
   1225 
   1226 		/*
   1227 		 * Add a new receive buffer to the ring.
   1228 		 */
   1229 		if (stge_add_rxbuf(sc, i) != 0) {
   1230 			/*
   1231 			 * Failed, throw away what we've done so
   1232 			 * far, and discard the rest of the packet.
   1233 			 */
   1234 			ifp->if_ierrors++;
   1235 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1236 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1237 			STGE_INIT_RXDESC(sc, i);
   1238 			if ((status & RFD_FrameEnd) == 0)
   1239 				sc->sc_rxdiscard = 1;
   1240 			if (sc->sc_rxhead != NULL)
   1241 				m_freem(sc->sc_rxhead);
   1242 			STGE_RXCHAIN_RESET(sc);
   1243 			continue;
   1244 		}
   1245 
   1246 #ifdef DIAGNOSTIC
   1247 		if (status & RFD_FrameStart) {
   1248 			KASSERT(sc->sc_rxhead == NULL);
   1249 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
   1250 		}
   1251 #endif
   1252 
   1253 		STGE_RXCHAIN_LINK(sc, m);
   1254 
   1255 		/*
   1256 		 * If this is not the end of the packet, keep
   1257 		 * looking.
   1258 		 */
   1259 		if ((status & RFD_FrameEnd) == 0) {
   1260 			sc->sc_rxlen += m->m_len;
   1261 			continue;
   1262 		}
   1263 
   1264 		/*
   1265 		 * Okay, we have the entire packet now...
   1266 		 */
   1267 		*sc->sc_rxtailp = NULL;
   1268 		m = sc->sc_rxhead;
   1269 		tailm = sc->sc_rxtail;
   1270 
   1271 		STGE_RXCHAIN_RESET(sc);
   1272 
   1273 		/*
   1274 		 * If the packet had an error, drop it.  Note we
   1275 		 * count the error later in the periodic stats update.
   1276 		 */
   1277 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
   1278 			      RFD_RxAlignmentError | RFD_RxFCSError |
   1279 			      RFD_RxLengthError)) {
   1280 			m_freem(m);
   1281 			continue;
   1282 		}
   1283 
   1284 		/*
   1285 		 * No errors.
   1286 		 *
   1287 		 * Note we have configured the chip to not include
   1288 		 * the CRC at the end of the packet.
   1289 		 */
   1290 		len = RFD_RxDMAFrameLen(status);
   1291 		tailm->m_len = len - sc->sc_rxlen;
   1292 
   1293 		/*
   1294 		 * If the packet is small enough to fit in a
   1295 		 * single header mbuf, allocate one and copy
   1296 		 * the data into it.  This greatly reduces
   1297 		 * memory consumption when we receive lots
   1298 		 * of small packets.
   1299 		 */
   1300 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
   1301 			struct mbuf *nm;
   1302 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1303 			if (nm == NULL) {
   1304 				ifp->if_ierrors++;
   1305 				m_freem(m);
   1306 				continue;
   1307 			}
   1308 			nm->m_data += 2;
   1309 			nm->m_pkthdr.len = nm->m_len = len;
   1310 			m_copydata(m, 0, len, mtod(nm, void *));
   1311 			m_freem(m);
   1312 			m = nm;
   1313 		}
   1314 
   1315 		/*
   1316 		 * Set the incoming checksum information for the packet.
   1317 		 */
   1318 		if (status & RFD_IPDetected) {
   1319 			STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1320 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1321 			if (status & RFD_IPError)
   1322 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1323 			if (status & RFD_TCPDetected) {
   1324 				STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   1325 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1326 				if (status & RFD_TCPError)
   1327 					m->m_pkthdr.csum_flags |=
   1328 					    M_CSUM_TCP_UDP_BAD;
   1329 			} else if (status & RFD_UDPDetected) {
   1330 				STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   1331 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1332 				if (status & RFD_UDPError)
   1333 					m->m_pkthdr.csum_flags |=
   1334 					    M_CSUM_TCP_UDP_BAD;
   1335 			}
   1336 		}
   1337 
   1338 		m->m_pkthdr.rcvif = ifp;
   1339 		m->m_pkthdr.len = len;
   1340 
   1341 #if NBPFILTER > 0
   1342 		/*
   1343 		 * Pass this up to any BPF listeners, but only
   1344 		 * pass if up the stack if it's for us.
   1345 		 */
   1346 		if (ifp->if_bpf)
   1347 			bpf_mtap(ifp->if_bpf, m);
   1348 #endif /* NBPFILTER > 0 */
   1349 #ifdef	STGE_VLAN_UNTAG
   1350 		/*
   1351 		 * Check for VLAN tagged packets
   1352 		 */
   1353 		if (status & RFD_VLANDetected)
   1354 			VLAN_INPUT_TAG(ifp, m, RFD_TCI(status), continue);
   1355 
   1356 #endif
   1357 #if	0
   1358 		if (status & RFD_VLANDetected) {
   1359 			struct ether_header *eh;
   1360 			u_int16_t etype;
   1361 
   1362 			eh = mtod(m, struct ether_header *);
   1363 			etype = ntohs(eh->ether_type);
   1364 			printf("%s: VLANtag detected (TCI %d) etype %x\n",
   1365 			    ifp->if_xname, (u_int16_t) RFD_TCI(status),
   1366 			    etype);
   1367 		}
   1368 #endif
   1369 		/* Pass it on. */
   1370 		(*ifp->if_input)(ifp, m);
   1371 	}
   1372 
   1373 	/* Update the receive pointer. */
   1374 	sc->sc_rxptr = i;
   1375 }
   1376 
   1377 /*
   1378  * stge_tick:
   1379  *
   1380  *	One second timer, used to tick the MII.
   1381  */
   1382 static void
   1383 stge_tick(void *arg)
   1384 {
   1385 	struct stge_softc *sc = arg;
   1386 	int s;
   1387 
   1388 	s = splnet();
   1389 	mii_tick(&sc->sc_mii);
   1390 	stge_stats_update(sc);
   1391 	splx(s);
   1392 
   1393 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
   1394 }
   1395 
   1396 /*
   1397  * stge_stats_update:
   1398  *
   1399  *	Read the TC9021 statistics counters.
   1400  */
   1401 static void
   1402 stge_stats_update(struct stge_softc *sc)
   1403 {
   1404 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1405 	bus_space_tag_t st = sc->sc_st;
   1406 	bus_space_handle_t sh = sc->sc_sh;
   1407 
   1408 	(void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
   1409 
   1410 	ifp->if_ipackets +=
   1411 	    bus_space_read_4(st, sh, STGE_FramesRcvdOk);
   1412 
   1413 	ifp->if_ierrors +=
   1414 	    (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
   1415 
   1416 	(void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
   1417 
   1418 	ifp->if_opackets +=
   1419 	    bus_space_read_4(st, sh, STGE_FramesXmtdOk);
   1420 
   1421 	ifp->if_collisions +=
   1422 	    bus_space_read_4(st, sh, STGE_LateCollisions) +
   1423 	    bus_space_read_4(st, sh, STGE_MultiColFrames) +
   1424 	    bus_space_read_4(st, sh, STGE_SingleColFrames);
   1425 
   1426 	ifp->if_oerrors +=
   1427 	    (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
   1428 	    (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
   1429 }
   1430 
   1431 /*
   1432  * stge_reset:
   1433  *
   1434  *	Perform a soft reset on the TC9021.
   1435  */
   1436 static void
   1437 stge_reset(struct stge_softc *sc)
   1438 {
   1439 	uint32_t ac;
   1440 	int i;
   1441 
   1442 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
   1443 
   1444 	/*
   1445 	 * Only assert RstOut if we're fiber.  We need GMII clocks
   1446 	 * to be present in order for the reset to complete on fiber
   1447 	 * cards.
   1448 	 */
   1449 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
   1450 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
   1451 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
   1452 	    (sc->sc_usefiber ? AC_RstOut : 0));
   1453 
   1454 	delay(50000);
   1455 
   1456 	for (i = 0; i < STGE_TIMEOUT; i++) {
   1457 		delay(5000);
   1458 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
   1459 		     AC_ResetBusy) == 0)
   1460 			break;
   1461 	}
   1462 
   1463 	if (i == STGE_TIMEOUT)
   1464 		printf("%s: reset failed to complete\n",
   1465 		    device_xname(sc->sc_dev));
   1466 
   1467 	delay(1000);
   1468 }
   1469 
   1470 /*
   1471  * stge_init:		[ ifnet interface function ]
   1472  *
   1473  *	Initialize the interface.  Must be called at splnet().
   1474  */
   1475 static int
   1476 stge_init(struct ifnet *ifp)
   1477 {
   1478 	struct stge_softc *sc = ifp->if_softc;
   1479 	bus_space_tag_t st = sc->sc_st;
   1480 	bus_space_handle_t sh = sc->sc_sh;
   1481 	struct stge_descsoft *ds;
   1482 	int i, error = 0;
   1483 
   1484 	/*
   1485 	 * Cancel any pending I/O.
   1486 	 */
   1487 	stge_stop(ifp, 0);
   1488 
   1489 	/*
   1490 	 * Reset the chip to a known state.
   1491 	 */
   1492 	stge_reset(sc);
   1493 
   1494 	/*
   1495 	 * Initialize the transmit descriptor ring.
   1496 	 */
   1497 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1498 	for (i = 0; i < STGE_NTXDESC; i++) {
   1499 		sc->sc_txdescs[i].tfd_next = htole64(
   1500 		    STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
   1501 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
   1502 	}
   1503 	sc->sc_txpending = 0;
   1504 	sc->sc_txdirty = 0;
   1505 	sc->sc_txlast = STGE_NTXDESC - 1;
   1506 
   1507 	/*
   1508 	 * Initialize the receive descriptor and receive job
   1509 	 * descriptor rings.
   1510 	 */
   1511 	for (i = 0; i < STGE_NRXDESC; i++) {
   1512 		ds = &sc->sc_rxsoft[i];
   1513 		if (ds->ds_mbuf == NULL) {
   1514 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
   1515 				printf("%s: unable to allocate or map rx "
   1516 				    "buffer %d, error = %d\n",
   1517 				    device_xname(sc->sc_dev), i, error);
   1518 				/*
   1519 				 * XXX Should attempt to run with fewer receive
   1520 				 * XXX buffers instead of just failing.
   1521 				 */
   1522 				stge_rxdrain(sc);
   1523 				goto out;
   1524 			}
   1525 		} else
   1526 			STGE_INIT_RXDESC(sc, i);
   1527 	}
   1528 	sc->sc_rxptr = 0;
   1529 	sc->sc_rxdiscard = 0;
   1530 	STGE_RXCHAIN_RESET(sc);
   1531 
   1532 	/* Set the station address. */
   1533 	for (i = 0; i < 6; i++)
   1534 		bus_space_write_1(st, sh, STGE_StationAddress0 + i,
   1535 		    CLLADDR(ifp->if_sadl)[i]);
   1536 
   1537 	/*
   1538 	 * Set the statistics masks.  Disable all the RMON stats,
   1539 	 * and disable selected stats in the non-RMON stats registers.
   1540 	 */
   1541 	bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
   1542 	bus_space_write_4(st, sh, STGE_StatisticsMask,
   1543 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
   1544 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
   1545 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
   1546 	    (1U << 21));
   1547 
   1548 	/* Set up the receive filter. */
   1549 	stge_set_filter(sc);
   1550 
   1551 	/*
   1552 	 * Give the transmit and receive ring to the chip.
   1553 	 */
   1554 	bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
   1555 	bus_space_write_4(st, sh, STGE_TFDListPtrLo,
   1556 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
   1557 
   1558 	bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
   1559 	bus_space_write_4(st, sh, STGE_RFDListPtrLo,
   1560 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
   1561 
   1562 	/*
   1563 	 * Initialize the Tx auto-poll period.  It's OK to make this number
   1564 	 * large (255 is the max, but we use 127) -- we explicitly kick the
   1565 	 * transmit engine when there's actually a packet.
   1566 	 */
   1567 	bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
   1568 
   1569 	/* ..and the Rx auto-poll period. */
   1570 	bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
   1571 
   1572 	/* Initialize the Tx start threshold. */
   1573 	bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
   1574 
   1575 	/* RX DMA thresholds, from linux */
   1576 	bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
   1577 	bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
   1578 
   1579 	/*
   1580 	 * Initialize the Rx DMA interrupt control register.  We
   1581 	 * request an interrupt after every incoming packet, but
   1582 	 * defer it for 32us (64 * 512 ns).  When the number of
   1583 	 * interrupts pending reaches 8, we stop deferring the
   1584 	 * interrupt, and signal it immediately.
   1585 	 */
   1586 	bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
   1587 	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
   1588 
   1589 	/*
   1590 	 * Initialize the interrupt mask.
   1591 	 */
   1592 	sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
   1593 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
   1594 	bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
   1595 	bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
   1596 
   1597 	/*
   1598 	 * Configure the DMA engine.
   1599 	 * XXX Should auto-tune TxBurstLimit.
   1600 	 */
   1601 	bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
   1602 	    DMAC_TxBurstLimit(3));
   1603 
   1604 	/*
   1605 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
   1606 	 * FIFO, and send an un-PAUSE frame when the FIFO is totally
   1607 	 * empty again.
   1608 	 */
   1609 	bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
   1610 	bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
   1611 
   1612 	/*
   1613 	 * Set the maximum frame size.
   1614 	 */
   1615 	bus_space_write_2(st, sh, STGE_MaxFrameSize,
   1616 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
   1617 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
   1618 	     ETHER_VLAN_ENCAP_LEN : 0));
   1619 
   1620 	/*
   1621 	 * Initialize MacCtrl -- do it before setting the media,
   1622 	 * as setting the media will actually program the register.
   1623 	 *
   1624 	 * Note: We have to poke the IFS value before poking
   1625 	 * anything else.
   1626 	 */
   1627 	sc->sc_MACCtrl = MC_IFSSelect(0);
   1628 	bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
   1629 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
   1630 #ifdef	STGE_VLAN_UNTAG
   1631 	sc->sc_MACCtrl |= MC_AutoVLANuntagging;
   1632 #endif
   1633 
   1634 	if (sc->sc_rev >= 6) {		/* >= B.2 */
   1635 		/* Multi-frag frame bug work-around. */
   1636 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1637 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
   1638 
   1639 		/* Tx Poll Now bug work-around. */
   1640 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1641 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
   1642 		/* XXX ? from linux */
   1643 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1644 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
   1645 	}
   1646 
   1647 	/*
   1648 	 * Set the current media.
   1649 	 */
   1650 	if ((error = ether_mediachange(ifp)) != 0)
   1651 		goto out;
   1652 
   1653 	/*
   1654 	 * Start the one second MII clock.
   1655 	 */
   1656 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
   1657 
   1658 	/*
   1659 	 * ...all done!
   1660 	 */
   1661 	ifp->if_flags |= IFF_RUNNING;
   1662 	ifp->if_flags &= ~IFF_OACTIVE;
   1663 
   1664  out:
   1665 	if (error)
   1666 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
   1667 	return (error);
   1668 }
   1669 
   1670 /*
   1671  * stge_drain:
   1672  *
   1673  *	Drain the receive queue.
   1674  */
   1675 static void
   1676 stge_rxdrain(struct stge_softc *sc)
   1677 {
   1678 	struct stge_descsoft *ds;
   1679 	int i;
   1680 
   1681 	for (i = 0; i < STGE_NRXDESC; i++) {
   1682 		ds = &sc->sc_rxsoft[i];
   1683 		if (ds->ds_mbuf != NULL) {
   1684 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1685 			ds->ds_mbuf->m_next = NULL;
   1686 			m_freem(ds->ds_mbuf);
   1687 			ds->ds_mbuf = NULL;
   1688 		}
   1689 	}
   1690 }
   1691 
   1692 /*
   1693  * stge_stop:		[ ifnet interface function ]
   1694  *
   1695  *	Stop transmission on the interface.
   1696  */
   1697 static void
   1698 stge_stop(struct ifnet *ifp, int disable)
   1699 {
   1700 	struct stge_softc *sc = ifp->if_softc;
   1701 	struct stge_descsoft *ds;
   1702 	int i;
   1703 
   1704 	/*
   1705 	 * Stop the one second clock.
   1706 	 */
   1707 	callout_stop(&sc->sc_tick_ch);
   1708 
   1709 	/* Down the MII. */
   1710 	mii_down(&sc->sc_mii);
   1711 
   1712 	/*
   1713 	 * Disable interrupts.
   1714 	 */
   1715 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
   1716 
   1717 	/*
   1718 	 * Stop receiver, transmitter, and stats update.
   1719 	 */
   1720 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
   1721 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
   1722 
   1723 	/*
   1724 	 * Stop the transmit and receive DMA.
   1725 	 */
   1726 	stge_dma_wait(sc);
   1727 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
   1728 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
   1729 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
   1730 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
   1731 
   1732 	/*
   1733 	 * Release any queued transmit buffers.
   1734 	 */
   1735 	for (i = 0; i < STGE_NTXDESC; i++) {
   1736 		ds = &sc->sc_txsoft[i];
   1737 		if (ds->ds_mbuf != NULL) {
   1738 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1739 			m_freem(ds->ds_mbuf);
   1740 			ds->ds_mbuf = NULL;
   1741 		}
   1742 	}
   1743 
   1744 	/*
   1745 	 * Mark the interface down and cancel the watchdog timer.
   1746 	 */
   1747 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1748 	ifp->if_timer = 0;
   1749 
   1750 	if (disable)
   1751 		stge_rxdrain(sc);
   1752 }
   1753 
   1754 static int
   1755 stge_eeprom_wait(struct stge_softc *sc)
   1756 {
   1757 	int i;
   1758 
   1759 	for (i = 0; i < STGE_TIMEOUT; i++) {
   1760 		delay(1000);
   1761 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
   1762 		     EC_EepromBusy) == 0)
   1763 			return (0);
   1764 	}
   1765 	return (1);
   1766 }
   1767 
   1768 /*
   1769  * stge_read_eeprom:
   1770  *
   1771  *	Read data from the serial EEPROM.
   1772  */
   1773 static void
   1774 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
   1775 {
   1776 
   1777 	if (stge_eeprom_wait(sc))
   1778 		printf("%s: EEPROM failed to come ready\n",
   1779 		    device_xname(sc->sc_dev));
   1780 
   1781 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
   1782 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
   1783 	if (stge_eeprom_wait(sc))
   1784 		printf("%s: EEPROM read timed out\n",
   1785 		    device_xname(sc->sc_dev));
   1786 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
   1787 }
   1788 
   1789 /*
   1790  * stge_add_rxbuf:
   1791  *
   1792  *	Add a receive buffer to the indicated descriptor.
   1793  */
   1794 static int
   1795 stge_add_rxbuf(struct stge_softc *sc, int idx)
   1796 {
   1797 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
   1798 	struct mbuf *m;
   1799 	int error;
   1800 
   1801 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1802 	if (m == NULL)
   1803 		return (ENOBUFS);
   1804 
   1805 	MCLGET(m, M_DONTWAIT);
   1806 	if ((m->m_flags & M_EXT) == 0) {
   1807 		m_freem(m);
   1808 		return (ENOBUFS);
   1809 	}
   1810 
   1811 	m->m_data = m->m_ext.ext_buf + 2;
   1812 	m->m_len = MCLBYTES - 2;
   1813 
   1814 	if (ds->ds_mbuf != NULL)
   1815 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1816 
   1817 	ds->ds_mbuf = m;
   1818 
   1819 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
   1820 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1821 	if (error) {
   1822 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1823 		    device_xname(sc->sc_dev), idx, error);
   1824 		panic("stge_add_rxbuf");	/* XXX */
   1825 	}
   1826 
   1827 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1828 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1829 
   1830 	STGE_INIT_RXDESC(sc, idx);
   1831 
   1832 	return (0);
   1833 }
   1834 
   1835 /*
   1836  * stge_set_filter:
   1837  *
   1838  *	Set up the receive filter.
   1839  */
   1840 static void
   1841 stge_set_filter(struct stge_softc *sc)
   1842 {
   1843 	struct ethercom *ec = &sc->sc_ethercom;
   1844 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1845 	struct ether_multi *enm;
   1846 	struct ether_multistep step;
   1847 	uint32_t crc;
   1848 	uint32_t mchash[2];
   1849 
   1850 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
   1851 	if (ifp->if_flags & IFF_BROADCAST)
   1852 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
   1853 
   1854 	/* XXX: ST1023 only works in promiscuous mode */
   1855 	if (sc->sc_stge1023)
   1856 		ifp->if_flags |= IFF_PROMISC;
   1857 
   1858 	if (ifp->if_flags & IFF_PROMISC) {
   1859 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
   1860 		goto allmulti;
   1861 	}
   1862 
   1863 	/*
   1864 	 * Set up the multicast address filter by passing all multicast
   1865 	 * addresses through a CRC generator, and then using the low-order
   1866 	 * 6 bits as an index into the 64 bit multicast hash table.  The
   1867 	 * high order bits select the register, while the rest of the bits
   1868 	 * select the bit within the register.
   1869 	 */
   1870 
   1871 	memset(mchash, 0, sizeof(mchash));
   1872 
   1873 	ETHER_FIRST_MULTI(step, ec, enm);
   1874 	if (enm == NULL)
   1875 		goto done;
   1876 
   1877 	while (enm != NULL) {
   1878 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1879 			/*
   1880 			 * We must listen to a range of multicast addresses.
   1881 			 * For now, just accept all multicasts, rather than
   1882 			 * trying to set only those filter bits needed to match
   1883 			 * the range.  (At this time, the only use of address
   1884 			 * ranges is for IP multicast routing, for which the
   1885 			 * range is big enough to require all bits set.)
   1886 			 */
   1887 			goto allmulti;
   1888 		}
   1889 
   1890 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1891 
   1892 		/* Just want the 6 least significant bits. */
   1893 		crc &= 0x3f;
   1894 
   1895 		/* Set the corresponding bit in the hash table. */
   1896 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
   1897 
   1898 		ETHER_NEXT_MULTI(step, enm);
   1899 	}
   1900 
   1901 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
   1902 
   1903 	ifp->if_flags &= ~IFF_ALLMULTI;
   1904 	goto done;
   1905 
   1906  allmulti:
   1907 	ifp->if_flags |= IFF_ALLMULTI;
   1908 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
   1909 
   1910  done:
   1911 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1912 		/*
   1913 		 * Program the multicast hash table.
   1914 		 */
   1915 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
   1916 		    mchash[0]);
   1917 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
   1918 		    mchash[1]);
   1919 	}
   1920 
   1921 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
   1922 	    sc->sc_ReceiveMode);
   1923 }
   1924 
   1925 /*
   1926  * stge_mii_readreg:	[mii interface function]
   1927  *
   1928  *	Read a PHY register on the MII of the TC9021.
   1929  */
   1930 static int
   1931 stge_mii_readreg(device_t self, int phy, int reg)
   1932 {
   1933 
   1934 	return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
   1935 }
   1936 
   1937 /*
   1938  * stge_mii_writereg:	[mii interface function]
   1939  *
   1940  *	Write a PHY register on the MII of the TC9021.
   1941  */
   1942 static void
   1943 stge_mii_writereg(device_t self, int phy, int reg, int val)
   1944 {
   1945 
   1946 	mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
   1947 }
   1948 
   1949 /*
   1950  * stge_mii_statchg:	[mii interface function]
   1951  *
   1952  *	Callback from MII layer when media changes.
   1953  */
   1954 static void
   1955 stge_mii_statchg(device_t self)
   1956 {
   1957 	struct stge_softc *sc = device_private(self);
   1958 
   1959 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   1960 		sc->sc_MACCtrl |= MC_DuplexSelect;
   1961 	else
   1962 		sc->sc_MACCtrl &= ~MC_DuplexSelect;
   1963 
   1964 	/* XXX 802.1x flow-control? */
   1965 
   1966 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
   1967 }
   1968 
   1969 /*
   1970  * sste_mii_bitbang_read: [mii bit-bang interface function]
   1971  *
   1972  *	Read the MII serial port for the MII bit-bang module.
   1973  */
   1974 static uint32_t
   1975 stge_mii_bitbang_read(device_t self)
   1976 {
   1977 	struct stge_softc *sc = device_private(self);
   1978 
   1979 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
   1980 }
   1981 
   1982 /*
   1983  * stge_mii_bitbang_write: [mii big-bang interface function]
   1984  *
   1985  *	Write the MII serial port for the MII bit-bang module.
   1986  */
   1987 static void
   1988 stge_mii_bitbang_write(device_t self, uint32_t val)
   1989 {
   1990 	struct stge_softc *sc = device_private(self);
   1991 
   1992 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
   1993 	    val | sc->sc_PhyCtrl);
   1994 }
   1995