Home | History | Annotate | Line # | Download | only in pci
if_stge.c revision 1.48
      1 /*	$NetBSD: if_stge.c,v 1.48 2009/09/14 12:02:48 tsutsui Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Device driver for the Sundance Tech. TC9021 10/100/1000
     34  * Ethernet controller.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.48 2009/09/14 12:02:48 tsutsui Exp $");
     39 
     40 #include "bpfilter.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/callout.h>
     45 #include <sys/mbuf.h>
     46 #include <sys/malloc.h>
     47 #include <sys/kernel.h>
     48 #include <sys/socket.h>
     49 #include <sys/ioctl.h>
     50 #include <sys/errno.h>
     51 #include <sys/device.h>
     52 #include <sys/queue.h>
     53 
     54 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     55 
     56 #include <net/if.h>
     57 #include <net/if_dl.h>
     58 #include <net/if_media.h>
     59 #include <net/if_ether.h>
     60 
     61 #if NBPFILTER > 0
     62 #include <net/bpf.h>
     63 #endif
     64 
     65 #include <sys/bus.h>
     66 #include <sys/intr.h>
     67 
     68 #include <dev/mii/mii.h>
     69 #include <dev/mii/miivar.h>
     70 #include <dev/mii/mii_bitbang.h>
     71 
     72 #include <dev/pci/pcireg.h>
     73 #include <dev/pci/pcivar.h>
     74 #include <dev/pci/pcidevs.h>
     75 
     76 #include <dev/pci/if_stgereg.h>
     77 
     78 /* #define	STGE_CU_BUG			1 */
     79 #define	STGE_VLAN_UNTAG			1
     80 /* #define	STGE_VLAN_CFI		1 */
     81 
     82 /*
     83  * Transmit descriptor list size.
     84  */
     85 #define	STGE_NTXDESC		256
     86 #define	STGE_NTXDESC_MASK	(STGE_NTXDESC - 1)
     87 #define	STGE_NEXTTX(x)		(((x) + 1) & STGE_NTXDESC_MASK)
     88 
     89 /*
     90  * Receive descriptor list size.
     91  */
     92 #define	STGE_NRXDESC		256
     93 #define	STGE_NRXDESC_MASK	(STGE_NRXDESC - 1)
     94 #define	STGE_NEXTRX(x)		(((x) + 1) & STGE_NRXDESC_MASK)
     95 
     96 /*
     97  * Only interrupt every N frames.  Must be a power-of-two.
     98  */
     99 #define	STGE_TXINTR_SPACING	16
    100 #define	STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
    101 
    102 /*
    103  * Control structures are DMA'd to the TC9021 chip.  We allocate them in
    104  * a single clump that maps to a single DMA segment to make several things
    105  * easier.
    106  */
    107 struct stge_control_data {
    108 	/*
    109 	 * The transmit descriptors.
    110 	 */
    111 	struct stge_tfd scd_txdescs[STGE_NTXDESC];
    112 
    113 	/*
    114 	 * The receive descriptors.
    115 	 */
    116 	struct stge_rfd scd_rxdescs[STGE_NRXDESC];
    117 };
    118 
    119 #define	STGE_CDOFF(x)	offsetof(struct stge_control_data, x)
    120 #define	STGE_CDTXOFF(x)	STGE_CDOFF(scd_txdescs[(x)])
    121 #define	STGE_CDRXOFF(x)	STGE_CDOFF(scd_rxdescs[(x)])
    122 
    123 /*
    124  * Software state for transmit and receive jobs.
    125  */
    126 struct stge_descsoft {
    127 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
    128 	bus_dmamap_t ds_dmamap;		/* our DMA map */
    129 };
    130 
    131 /*
    132  * Software state per device.
    133  */
    134 struct stge_softc {
    135 	device_t sc_dev;		/* generic device information */
    136 	bus_space_tag_t sc_st;		/* bus space tag */
    137 	bus_space_handle_t sc_sh;	/* bus space handle */
    138 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    139 	struct ethercom sc_ethercom;	/* ethernet common data */
    140 	int sc_rev;			/* silicon revision */
    141 
    142 	void *sc_ih;			/* interrupt cookie */
    143 
    144 	struct mii_data sc_mii;		/* MII/media information */
    145 
    146 	callout_t sc_tick_ch;		/* tick callout */
    147 
    148 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    149 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    150 
    151 	/*
    152 	 * Software state for transmit and receive descriptors.
    153 	 */
    154 	struct stge_descsoft sc_txsoft[STGE_NTXDESC];
    155 	struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
    156 
    157 	/*
    158 	 * Control data structures.
    159 	 */
    160 	struct stge_control_data *sc_control_data;
    161 #define	sc_txdescs	sc_control_data->scd_txdescs
    162 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    163 
    164 #ifdef STGE_EVENT_COUNTERS
    165 	/*
    166 	 * Event counters.
    167 	 */
    168 	struct evcnt sc_ev_txstall;	/* Tx stalled */
    169 	struct evcnt sc_ev_txdmaintr;	/* Tx DMA interrupts */
    170 	struct evcnt sc_ev_txindintr;	/* Tx Indicate interrupts */
    171 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    172 
    173 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
    174 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
    175 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
    176 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
    177 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
    178 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
    179 	struct evcnt sc_ev_txcopy;	/* Tx packets that we had to copy */
    180 
    181 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    182 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    183 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
    184 
    185 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    186 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    187 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    188 #endif /* STGE_EVENT_COUNTERS */
    189 
    190 	int	sc_txpending;		/* number of Tx requests pending */
    191 	int	sc_txdirty;		/* first dirty Tx descriptor */
    192 	int	sc_txlast;		/* last used Tx descriptor */
    193 
    194 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    195 	int	sc_rxdiscard;
    196 	int	sc_rxlen;
    197 	struct mbuf *sc_rxhead;
    198 	struct mbuf *sc_rxtail;
    199 	struct mbuf **sc_rxtailp;
    200 
    201 	int	sc_txthresh;		/* Tx threshold */
    202 	uint32_t sc_usefiber:1;		/* if we're fiber */
    203 	uint32_t sc_stge1023:1;		/* are we a 1023 */
    204 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
    205 	uint32_t sc_MACCtrl;		/* prototype MacCtrl register */
    206 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
    207 	uint16_t sc_ReceiveMode;	/* prototype ReceiveMode register */
    208 	uint8_t sc_PhyCtrl;		/* prototype PhyCtrl register */
    209 };
    210 
    211 #define	STGE_RXCHAIN_RESET(sc)						\
    212 do {									\
    213 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    214 	*(sc)->sc_rxtailp = NULL;					\
    215 	(sc)->sc_rxlen = 0;						\
    216 } while (/*CONSTCOND*/0)
    217 
    218 #define	STGE_RXCHAIN_LINK(sc, m)					\
    219 do {									\
    220 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    221 	(sc)->sc_rxtailp = &(m)->m_next;				\
    222 } while (/*CONSTCOND*/0)
    223 
    224 #ifdef STGE_EVENT_COUNTERS
    225 #define	STGE_EVCNT_INCR(ev)	(ev)->ev_count++
    226 #else
    227 #define	STGE_EVCNT_INCR(ev)	/* nothing */
    228 #endif
    229 
    230 #define	STGE_CDTXADDR(sc, x)	((sc)->sc_cddma + STGE_CDTXOFF((x)))
    231 #define	STGE_CDRXADDR(sc, x)	((sc)->sc_cddma + STGE_CDRXOFF((x)))
    232 
    233 #define	STGE_CDTXSYNC(sc, x, ops)					\
    234 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    235 	    STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
    236 
    237 #define	STGE_CDRXSYNC(sc, x, ops)					\
    238 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    239 	    STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
    240 
    241 #define	STGE_INIT_RXDESC(sc, x)						\
    242 do {									\
    243 	struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
    244 	struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)];		\
    245 									\
    246 	/*								\
    247 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    248 	 * so that the payload after the Ethernet header is aligned	\
    249 	 * to a 4-byte boundary.					\
    250 	 */								\
    251 	__rfd->rfd_frag.frag_word0 =					\
    252 	    htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
    253 	    FRAG_LEN(MCLBYTES - 2));					\
    254 	__rfd->rfd_next =						\
    255 	    htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x))));	\
    256 	__rfd->rfd_status = 0;						\
    257 	STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    258 } while (/*CONSTCOND*/0)
    259 
    260 #define STGE_TIMEOUT 1000
    261 
    262 static void	stge_start(struct ifnet *);
    263 static void	stge_watchdog(struct ifnet *);
    264 static int	stge_ioctl(struct ifnet *, u_long, void *);
    265 static int	stge_init(struct ifnet *);
    266 static void	stge_stop(struct ifnet *, int);
    267 
    268 static bool	stge_shutdown(device_t, int);
    269 
    270 static void	stge_reset(struct stge_softc *);
    271 static void	stge_rxdrain(struct stge_softc *);
    272 static int	stge_add_rxbuf(struct stge_softc *, int);
    273 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
    274 static void	stge_tick(void *);
    275 
    276 static void	stge_stats_update(struct stge_softc *);
    277 
    278 static void	stge_set_filter(struct stge_softc *);
    279 
    280 static int	stge_intr(void *);
    281 static void	stge_txintr(struct stge_softc *);
    282 static void	stge_rxintr(struct stge_softc *);
    283 
    284 static int	stge_mii_readreg(device_t, int, int);
    285 static void	stge_mii_writereg(device_t, int, int, int);
    286 static void	stge_mii_statchg(device_t);
    287 
    288 static int	stge_match(device_t, cfdata_t, void *);
    289 static void	stge_attach(device_t, device_t, void *);
    290 
    291 int	stge_copy_small = 0;
    292 
    293 CFATTACH_DECL_NEW(stge, sizeof(struct stge_softc),
    294     stge_match, stge_attach, NULL, NULL);
    295 
    296 static uint32_t stge_mii_bitbang_read(device_t);
    297 static void	stge_mii_bitbang_write(device_t, uint32_t);
    298 
    299 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
    300 	stge_mii_bitbang_read,
    301 	stge_mii_bitbang_write,
    302 	{
    303 		PC_MgmtData,		/* MII_BIT_MDO */
    304 		PC_MgmtData,		/* MII_BIT_MDI */
    305 		PC_MgmtClk,		/* MII_BIT_MDC */
    306 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
    307 		0,			/* MII_BIT_DIR_PHY_HOST */
    308 	}
    309 };
    310 
    311 /*
    312  * Devices supported by this driver.
    313  */
    314 static const struct stge_product {
    315 	pci_vendor_id_t		stge_vendor;
    316 	pci_product_id_t	stge_product;
    317 	const char		*stge_name;
    318 } stge_products[] = {
    319 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST1023,
    320 	  "Sundance ST-1023 Gigabit Ethernet" },
    321 
    322 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST2021,
    323 	  "Sundance ST-2021 Gigabit Ethernet" },
    324 
    325 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021,
    326 	  "Tamarack TC9021 Gigabit Ethernet" },
    327 
    328 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021_ALT,
    329 	  "Tamarack TC9021 Gigabit Ethernet" },
    330 
    331 	/*
    332 	 * The Sundance sample boards use the Sundance vendor ID,
    333 	 * but the Tamarack product ID.
    334 	 */
    335 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021,
    336 	  "Sundance TC9021 Gigabit Ethernet" },
    337 
    338 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021_ALT,
    339 	  "Sundance TC9021 Gigabit Ethernet" },
    340 
    341 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL4000,
    342 	  "D-Link DL-4000 Gigabit Ethernet" },
    343 
    344 	{ PCI_VENDOR_ANTARES,		PCI_PRODUCT_ANTARES_TC9021,
    345 	  "Antares Gigabit Ethernet" },
    346 
    347 	{ 0,				0,
    348 	  NULL },
    349 };
    350 
    351 static const struct stge_product *
    352 stge_lookup(const struct pci_attach_args *pa)
    353 {
    354 	const struct stge_product *sp;
    355 
    356 	for (sp = stge_products; sp->stge_name != NULL; sp++) {
    357 		if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
    358 		    PCI_PRODUCT(pa->pa_id) == sp->stge_product)
    359 			return (sp);
    360 	}
    361 	return (NULL);
    362 }
    363 
    364 static int
    365 stge_match(device_t parent, cfdata_t cf, void *aux)
    366 {
    367 	struct pci_attach_args *pa = aux;
    368 
    369 	if (stge_lookup(pa) != NULL)
    370 		return (1);
    371 
    372 	return (0);
    373 }
    374 
    375 static void
    376 stge_attach(device_t parent, device_t self, void *aux)
    377 {
    378 	struct stge_softc *sc = device_private(self);
    379 	struct pci_attach_args *pa = aux;
    380 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    381 	pci_chipset_tag_t pc = pa->pa_pc;
    382 	pci_intr_handle_t ih;
    383 	const char *intrstr = NULL;
    384 	bus_space_tag_t iot, memt;
    385 	bus_space_handle_t ioh, memh;
    386 	bus_dma_segment_t seg;
    387 	int ioh_valid, memh_valid;
    388 	int i, rseg, error;
    389 	const struct stge_product *sp;
    390 	uint8_t enaddr[ETHER_ADDR_LEN];
    391 
    392 	callout_init(&sc->sc_tick_ch, 0);
    393 
    394 	sp = stge_lookup(pa);
    395 	if (sp == NULL) {
    396 		printf("\n");
    397 		panic("ste_attach: impossible");
    398 	}
    399 
    400 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    401 
    402 	aprint_normal(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
    403 
    404 	/*
    405 	 * Map the device.
    406 	 */
    407 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
    408 	    PCI_MAPREG_TYPE_IO, 0,
    409 	    &iot, &ioh, NULL, NULL) == 0);
    410 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
    411 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    412 	    &memt, &memh, NULL, NULL) == 0);
    413 
    414 	if (memh_valid) {
    415 		sc->sc_st = memt;
    416 		sc->sc_sh = memh;
    417 	} else if (ioh_valid) {
    418 		sc->sc_st = iot;
    419 		sc->sc_sh = ioh;
    420 	} else {
    421 		aprint_error_dev(self, "unable to map device registers\n");
    422 		return;
    423 	}
    424 
    425 	sc->sc_dmat = pa->pa_dmat;
    426 
    427 	/* Enable bus mastering. */
    428 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    429 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    430 	    PCI_COMMAND_MASTER_ENABLE);
    431 
    432 	/* power up chip */
    433 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
    434 	    error != EOPNOTSUPP) {
    435 		aprint_error_dev(self, "cannot activate %d\n",
    436 		    error);
    437 		return;
    438 	}
    439 	/*
    440 	 * Map and establish our interrupt.
    441 	 */
    442 	if (pci_intr_map(pa, &ih)) {
    443 		aprint_error_dev(self, "unable to map interrupt\n");
    444 		return;
    445 	}
    446 	intrstr = pci_intr_string(pc, ih);
    447 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
    448 	if (sc->sc_ih == NULL) {
    449 		aprint_error_dev(self, "unable to establish interrupt");
    450 		if (intrstr != NULL)
    451 			aprint_error(" at %s", intrstr);
    452 		aprint_error("\n");
    453 		return;
    454 	}
    455 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    456 
    457 	/*
    458 	 * Allocate the control data structures, and create and load the
    459 	 * DMA map for it.
    460 	 */
    461 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    462 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    463 	    0)) != 0) {
    464 		aprint_error_dev(self,
    465 		    "unable to allocate control data, error = %d\n",
    466 		    error);
    467 		goto fail_0;
    468 	}
    469 
    470 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    471 	    sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
    472 	    BUS_DMA_COHERENT)) != 0) {
    473 		aprint_error_dev(self,
    474 		    "unable to map control data, error = %d\n",
    475 		    error);
    476 		goto fail_1;
    477 	}
    478 
    479 	if ((error = bus_dmamap_create(sc->sc_dmat,
    480 	    sizeof(struct stge_control_data), 1,
    481 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    482 		aprint_error_dev(self,
    483 		    "unable to create control data DMA map, error = %d\n",
    484 		    error);
    485 		goto fail_2;
    486 	}
    487 
    488 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    489 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
    490 	    0)) != 0) {
    491 		aprint_error_dev(self,
    492 		    "unable to load control data DMA map, error = %d\n",
    493 		    error);
    494 		goto fail_3;
    495 	}
    496 
    497 	/*
    498 	 * Create the transmit buffer DMA maps.  Note that rev B.3
    499 	 * and earlier seem to have a bug regarding multi-fragment
    500 	 * packets.  We need to limit the number of Tx segments on
    501 	 * such chips to 1.
    502 	 */
    503 	for (i = 0; i < STGE_NTXDESC; i++) {
    504 		if ((error = bus_dmamap_create(sc->sc_dmat,
    505 		    ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
    506 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
    507 			aprint_error_dev(self,
    508 			    "unable to create tx DMA map %d, error = %d\n",
    509 			    i, error);
    510 			goto fail_4;
    511 		}
    512 	}
    513 
    514 	/*
    515 	 * Create the receive buffer DMA maps.
    516 	 */
    517 	for (i = 0; i < STGE_NRXDESC; i++) {
    518 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    519 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
    520 			aprint_error_dev(self,
    521 			    "unable to create rx DMA map %d, error = %d\n",
    522 			    i, error);
    523 			goto fail_5;
    524 		}
    525 		sc->sc_rxsoft[i].ds_mbuf = NULL;
    526 	}
    527 
    528 	/*
    529 	 * Determine if we're copper or fiber.  It affects how we
    530 	 * reset the card.
    531 	 */
    532 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
    533 	    AC_PhyMedia)
    534 		sc->sc_usefiber = 1;
    535 	else
    536 		sc->sc_usefiber = 0;
    537 
    538 	/*
    539 	 * Reset the chip to a known state.
    540 	 */
    541 	stge_reset(sc);
    542 
    543 	/*
    544 	 * Reading the station address from the EEPROM doesn't seem
    545 	 * to work, at least on my sample boards.  Instead, since
    546 	 * the reset sequence does AutoInit, read it from the station
    547 	 * address registers. For Sundance 1023 you can only read it
    548 	 * from EEPROM.
    549 	 */
    550 	if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
    551 		enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    552 		    STGE_StationAddress0) & 0xff;
    553 		enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    554 		    STGE_StationAddress0) >> 8;
    555 		enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    556 		    STGE_StationAddress1) & 0xff;
    557 		enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    558 		    STGE_StationAddress1) >> 8;
    559 		enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    560 		    STGE_StationAddress2) & 0xff;
    561 		enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    562 		    STGE_StationAddress2) >> 8;
    563 		sc->sc_stge1023 = 0;
    564 	} else {
    565 		uint16_t myaddr[ETHER_ADDR_LEN / 2];
    566 		for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
    567 			stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
    568 			    &myaddr[i]);
    569 			myaddr[i] = le16toh(myaddr[i]);
    570 		}
    571 		(void)memcpy(enaddr, myaddr, sizeof(enaddr));
    572 		sc->sc_stge1023 = 1;
    573 	}
    574 
    575 	aprint_normal_dev(self, "Ethernet address %s\n",
    576 	    ether_sprintf(enaddr));
    577 
    578 	/*
    579 	 * Read some important bits from the PhyCtrl register.
    580 	 */
    581 	sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
    582 	    STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
    583 
    584 	/*
    585 	 * Initialize our media structures and probe the MII.
    586 	 */
    587 	sc->sc_mii.mii_ifp = ifp;
    588 	sc->sc_mii.mii_readreg = stge_mii_readreg;
    589 	sc->sc_mii.mii_writereg = stge_mii_writereg;
    590 	sc->sc_mii.mii_statchg = stge_mii_statchg;
    591 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
    592 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
    593 	    ether_mediastatus);
    594 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    595 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
    596 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    597 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    598 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    599 	} else
    600 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    601 
    602 	ifp = &sc->sc_ethercom.ec_if;
    603 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    604 	ifp->if_softc = sc;
    605 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    606 	ifp->if_ioctl = stge_ioctl;
    607 	ifp->if_start = stge_start;
    608 	ifp->if_watchdog = stge_watchdog;
    609 	ifp->if_init = stge_init;
    610 	ifp->if_stop = stge_stop;
    611 	IFQ_SET_READY(&ifp->if_snd);
    612 
    613 	/*
    614 	 * The manual recommends disabling early transmit, so we
    615 	 * do.  It's disabled anyway, if using IP checksumming,
    616 	 * since the entire packet must be in the FIFO in order
    617 	 * for the chip to perform the checksum.
    618 	 */
    619 	sc->sc_txthresh = 0x0fff;
    620 
    621 	/*
    622 	 * Disable MWI if the PCI layer tells us to.
    623 	 */
    624 	sc->sc_DMACtrl = 0;
    625 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
    626 		sc->sc_DMACtrl |= DMAC_MWIDisable;
    627 
    628 	/*
    629 	 * We can support 802.1Q VLAN-sized frames and jumbo
    630 	 * Ethernet frames.
    631 	 *
    632 	 * XXX Figure out how to do hw-assisted VLAN tagging in
    633 	 * XXX a reasonable way on this chip.
    634 	 */
    635 	sc->sc_ethercom.ec_capabilities |=
    636 	    ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
    637 	    ETHERCAP_VLAN_HWTAGGING;
    638 
    639 	/*
    640 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
    641 	 */
    642 	sc->sc_ethercom.ec_if.if_capabilities |=
    643 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    644 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    645 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    646 
    647 	/*
    648 	 * Attach the interface.
    649 	 */
    650 	if_attach(ifp);
    651 	ether_ifattach(ifp, enaddr);
    652 
    653 #ifdef STGE_EVENT_COUNTERS
    654 	/*
    655 	 * Attach event counters.
    656 	 */
    657 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
    658 	    NULL, device_xname(self), "txstall");
    659 	evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
    660 	    NULL, device_xname(self), "txdmaintr");
    661 	evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
    662 	    NULL, device_xname(self), "txindintr");
    663 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    664 	    NULL, device_xname(self), "rxintr");
    665 
    666 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
    667 	    NULL, device_xname(self), "txseg1");
    668 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
    669 	    NULL, device_xname(self), "txseg2");
    670 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
    671 	    NULL, device_xname(self), "txseg3");
    672 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
    673 	    NULL, device_xname(self), "txseg4");
    674 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
    675 	    NULL, device_xname(self), "txseg5");
    676 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
    677 	    NULL, device_xname(self), "txsegmore");
    678 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
    679 	    NULL, device_xname(self), "txcopy");
    680 
    681 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    682 	    NULL, device_xname(self), "rxipsum");
    683 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
    684 	    NULL, device_xname(self), "rxtcpsum");
    685 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
    686 	    NULL, device_xname(self), "rxudpsum");
    687 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    688 	    NULL, device_xname(self), "txipsum");
    689 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
    690 	    NULL, device_xname(self), "txtcpsum");
    691 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
    692 	    NULL, device_xname(self), "txudpsum");
    693 #endif /* STGE_EVENT_COUNTERS */
    694 
    695 	/*
    696 	 * Make sure the interface is shutdown during reboot.
    697 	 */
    698 	if (pmf_device_register1(self, NULL, NULL, stge_shutdown))
    699 		pmf_class_network_register(self, ifp);
    700 	else
    701 		aprint_error_dev(self, "couldn't establish power handler\n");
    702 
    703 	return;
    704 
    705 	/*
    706 	 * Free any resources we've allocated during the failed attach
    707 	 * attempt.  Do this in reverse order and fall through.
    708 	 */
    709  fail_5:
    710 	for (i = 0; i < STGE_NRXDESC; i++) {
    711 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
    712 			bus_dmamap_destroy(sc->sc_dmat,
    713 			    sc->sc_rxsoft[i].ds_dmamap);
    714 	}
    715  fail_4:
    716 	for (i = 0; i < STGE_NTXDESC; i++) {
    717 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
    718 			bus_dmamap_destroy(sc->sc_dmat,
    719 			    sc->sc_txsoft[i].ds_dmamap);
    720 	}
    721 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    722  fail_3:
    723 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    724  fail_2:
    725 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    726 	    sizeof(struct stge_control_data));
    727  fail_1:
    728 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    729  fail_0:
    730 	return;
    731 }
    732 
    733 /*
    734  * stge_shutdown:
    735  *
    736  *	Make sure the interface is stopped at reboot time.
    737  */
    738 static bool
    739 stge_shutdown(device_t self, int howto)
    740 {
    741 	struct stge_softc *sc = device_private(self);
    742 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    743 
    744 	stge_stop(ifp, 1);
    745 
    746 	return true;
    747 }
    748 
    749 static void
    750 stge_dma_wait(struct stge_softc *sc)
    751 {
    752 	int i;
    753 
    754 	for (i = 0; i < STGE_TIMEOUT; i++) {
    755 		delay(2);
    756 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
    757 		     DMAC_TxDMAInProg) == 0)
    758 			break;
    759 	}
    760 
    761 	if (i == STGE_TIMEOUT)
    762 		printf("%s: DMA wait timed out\n", device_xname(sc->sc_dev));
    763 }
    764 
    765 /*
    766  * stge_start:		[ifnet interface function]
    767  *
    768  *	Start packet transmission on the interface.
    769  */
    770 static void
    771 stge_start(struct ifnet *ifp)
    772 {
    773 	struct stge_softc *sc = ifp->if_softc;
    774 	struct mbuf *m0;
    775 	struct stge_descsoft *ds;
    776 	struct stge_tfd *tfd;
    777 	bus_dmamap_t dmamap;
    778 	int error, firsttx, nexttx, opending, seg, totlen;
    779 	uint64_t csum_flags;
    780 
    781 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    782 		return;
    783 
    784 	/*
    785 	 * Remember the previous number of pending transmissions
    786 	 * and the first descriptor we will use.
    787 	 */
    788 	opending = sc->sc_txpending;
    789 	firsttx = STGE_NEXTTX(sc->sc_txlast);
    790 
    791 	/*
    792 	 * Loop through the send queue, setting up transmit descriptors
    793 	 * until we drain the queue, or use up all available transmit
    794 	 * descriptors.
    795 	 */
    796 	for (;;) {
    797 		struct m_tag *mtag;
    798 		uint64_t tfc;
    799 
    800 		/*
    801 		 * Grab a packet off the queue.
    802 		 */
    803 		IFQ_POLL(&ifp->if_snd, m0);
    804 		if (m0 == NULL)
    805 			break;
    806 
    807 		/*
    808 		 * Leave one unused descriptor at the end of the
    809 		 * list to prevent wrapping completely around.
    810 		 */
    811 		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
    812 			STGE_EVCNT_INCR(&sc->sc_ev_txstall);
    813 			break;
    814 		}
    815 
    816 		/*
    817 		 * See if we have any VLAN stuff.
    818 		 */
    819 		mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
    820 
    821 		/*
    822 		 * Get the last and next available transmit descriptor.
    823 		 */
    824 		nexttx = STGE_NEXTTX(sc->sc_txlast);
    825 		tfd = &sc->sc_txdescs[nexttx];
    826 		ds = &sc->sc_txsoft[nexttx];
    827 
    828 		dmamap = ds->ds_dmamap;
    829 
    830 		/*
    831 		 * Load the DMA map.  If this fails, the packet either
    832 		 * didn't fit in the alloted number of segments, or we
    833 		 * were short on resources.  For the too-many-segments
    834 		 * case, we simply report an error and drop the packet,
    835 		 * since we can't sanely copy a jumbo packet to a single
    836 		 * buffer.
    837 		 */
    838 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    839 		    BUS_DMA_NOWAIT);
    840 		if (error) {
    841 			if (error == EFBIG) {
    842 				printf("%s: Tx packet consumes too many "
    843 				    "DMA segments, dropping...\n",
    844 				    device_xname(sc->sc_dev));
    845 				IFQ_DEQUEUE(&ifp->if_snd, m0);
    846 				m_freem(m0);
    847 				continue;
    848 			}
    849 			/*
    850 			 * Short on resources, just stop for now.
    851 			 */
    852 			break;
    853 		}
    854 
    855 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    856 
    857 		/*
    858 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    859 		 */
    860 
    861 		/* Sync the DMA map. */
    862 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    863 		    BUS_DMASYNC_PREWRITE);
    864 
    865 		/* Initialize the fragment list. */
    866 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
    867 			tfd->tfd_frags[seg].frag_word0 =
    868 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
    869 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
    870 			totlen += dmamap->dm_segs[seg].ds_len;
    871 		}
    872 
    873 #ifdef STGE_EVENT_COUNTERS
    874 		switch (dmamap->dm_nsegs) {
    875 		case 1:
    876 			STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
    877 			break;
    878 		case 2:
    879 			STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
    880 			break;
    881 		case 3:
    882 			STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
    883 			break;
    884 		case 4:
    885 			STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
    886 			break;
    887 		case 5:
    888 			STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
    889 			break;
    890 		default:
    891 			STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
    892 			break;
    893 		}
    894 #endif /* STGE_EVENT_COUNTERS */
    895 
    896 		/*
    897 		 * Initialize checksumming flags in the descriptor.
    898 		 * Byte-swap constants so the compiler can optimize.
    899 		 */
    900 		csum_flags = 0;
    901 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
    902 			STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
    903 			csum_flags |= TFD_IPChecksumEnable;
    904 		}
    905 
    906 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
    907 			STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
    908 			csum_flags |= TFD_TCPChecksumEnable;
    909 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
    910 			STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
    911 			csum_flags |= TFD_UDPChecksumEnable;
    912 		}
    913 
    914 		/*
    915 		 * Initialize the descriptor and give it to the chip.
    916 		 * Check to see if we have a VLAN tag to insert.
    917 		 */
    918 
    919 		tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
    920 		    TFD_FragCount(seg) | csum_flags |
    921 		    (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
    922 			TFD_TxDMAIndicate : 0);
    923 		if (mtag) {
    924 #if	0
    925 			struct ether_header *eh =
    926 			    mtod(m0, struct ether_header *);
    927 			u_int16_t etype = ntohs(eh->ether_type);
    928 			printf("%s: xmit (tag %d) etype %x\n",
    929 			   ifp->if_xname, *mtod(n, int *), etype);
    930 #endif
    931 			tfc |= TFD_VLANTagInsert |
    932 #ifdef	STGE_VLAN_CFI
    933 			    TFD_CFI |
    934 #endif
    935 			    TFD_VID(VLAN_TAG_VALUE(mtag));
    936 		}
    937 		tfd->tfd_control = htole64(tfc);
    938 
    939 		/* Sync the descriptor. */
    940 		STGE_CDTXSYNC(sc, nexttx,
    941 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    942 
    943 		/*
    944 		 * Kick the transmit DMA logic.
    945 		 */
    946 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
    947 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
    948 
    949 		/*
    950 		 * Store a pointer to the packet so we can free it later.
    951 		 */
    952 		ds->ds_mbuf = m0;
    953 
    954 		/* Advance the tx pointer. */
    955 		sc->sc_txpending++;
    956 		sc->sc_txlast = nexttx;
    957 
    958 #if NBPFILTER > 0
    959 		/*
    960 		 * Pass the packet to any BPF listeners.
    961 		 */
    962 		if (ifp->if_bpf)
    963 			bpf_mtap(ifp->if_bpf, m0);
    964 #endif /* NBPFILTER > 0 */
    965 	}
    966 
    967 	if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
    968 		/* No more slots left; notify upper layer. */
    969 		ifp->if_flags |= IFF_OACTIVE;
    970 	}
    971 
    972 	if (sc->sc_txpending != opending) {
    973 		/*
    974 		 * We enqueued packets.  If the transmitter was idle,
    975 		 * reset the txdirty pointer.
    976 		 */
    977 		if (opending == 0)
    978 			sc->sc_txdirty = firsttx;
    979 
    980 		/* Set a watchdog timer in case the chip flakes out. */
    981 		ifp->if_timer = 5;
    982 	}
    983 }
    984 
    985 /*
    986  * stge_watchdog:	[ifnet interface function]
    987  *
    988  *	Watchdog timer handler.
    989  */
    990 static void
    991 stge_watchdog(struct ifnet *ifp)
    992 {
    993 	struct stge_softc *sc = ifp->if_softc;
    994 
    995 	/*
    996 	 * Sweep up first, since we don't interrupt every frame.
    997 	 */
    998 	stge_txintr(sc);
    999 	if (sc->sc_txpending != 0) {
   1000 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
   1001 		ifp->if_oerrors++;
   1002 
   1003 		(void) stge_init(ifp);
   1004 
   1005 		/* Try to get more packets going. */
   1006 		stge_start(ifp);
   1007 	}
   1008 }
   1009 
   1010 /*
   1011  * stge_ioctl:		[ifnet interface function]
   1012  *
   1013  *	Handle control requests from the operator.
   1014  */
   1015 static int
   1016 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1017 {
   1018 	struct stge_softc *sc = ifp->if_softc;
   1019 	int s, error;
   1020 
   1021 	s = splnet();
   1022 
   1023 	error = ether_ioctl(ifp, cmd, data);
   1024 	if (error == ENETRESET) {
   1025 		error = 0;
   1026 
   1027 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1028 			;
   1029 		else if (ifp->if_flags & IFF_RUNNING) {
   1030 			/*
   1031 			 * Multicast list has changed; set the hardware filter
   1032 			 * accordingly.
   1033 			 */
   1034 			stge_set_filter(sc);
   1035 		}
   1036 	}
   1037 
   1038 	/* Try to get more packets going. */
   1039 	stge_start(ifp);
   1040 
   1041 	splx(s);
   1042 	return (error);
   1043 }
   1044 
   1045 /*
   1046  * stge_intr:
   1047  *
   1048  *	Interrupt service routine.
   1049  */
   1050 static int
   1051 stge_intr(void *arg)
   1052 {
   1053 	struct stge_softc *sc = arg;
   1054 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1055 	uint32_t txstat;
   1056 	int wantinit;
   1057 	uint16_t isr;
   1058 
   1059 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
   1060 	     IS_InterruptStatus) == 0)
   1061 		return (0);
   1062 
   1063 	for (wantinit = 0; wantinit == 0;) {
   1064 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
   1065 		if ((isr & sc->sc_IntEnable) == 0)
   1066 			break;
   1067 
   1068 		/* Host interface errors. */
   1069 		if (isr & IS_HostError) {
   1070 			printf("%s: Host interface error\n",
   1071 			    device_xname(sc->sc_dev));
   1072 			wantinit = 1;
   1073 			continue;
   1074 		}
   1075 
   1076 		/* Receive interrupts. */
   1077 		if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
   1078 			STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
   1079 			stge_rxintr(sc);
   1080 			if (isr & IS_RFDListEnd) {
   1081 				printf("%s: receive ring overflow\n",
   1082 				    device_xname(sc->sc_dev));
   1083 				/*
   1084 				 * XXX Should try to recover from this
   1085 				 * XXX more gracefully.
   1086 				 */
   1087 				wantinit = 1;
   1088 			}
   1089 		}
   1090 
   1091 		/* Transmit interrupts. */
   1092 		if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
   1093 #ifdef STGE_EVENT_COUNTERS
   1094 			if (isr & IS_TxDMAComplete)
   1095 				STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
   1096 #endif
   1097 			stge_txintr(sc);
   1098 		}
   1099 
   1100 		/* Statistics overflow. */
   1101 		if (isr & IS_UpdateStats)
   1102 			stge_stats_update(sc);
   1103 
   1104 		/* Transmission errors. */
   1105 		if (isr & IS_TxComplete) {
   1106 			STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
   1107 			for (;;) {
   1108 				txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
   1109 				    STGE_TxStatus);
   1110 				if ((txstat & TS_TxComplete) == 0)
   1111 					break;
   1112 				if (txstat & TS_TxUnderrun) {
   1113 					sc->sc_txthresh++;
   1114 					if (sc->sc_txthresh > 0x0fff)
   1115 						sc->sc_txthresh = 0x0fff;
   1116 					printf("%s: transmit underrun, new "
   1117 					    "threshold: %d bytes\n",
   1118 					    device_xname(sc->sc_dev),
   1119 					    sc->sc_txthresh << 5);
   1120 				}
   1121 				if (txstat & TS_MaxCollisions)
   1122 					printf("%s: excessive collisions\n",
   1123 					    device_xname(sc->sc_dev));
   1124 			}
   1125 			wantinit = 1;
   1126 		}
   1127 
   1128 	}
   1129 
   1130 	if (wantinit)
   1131 		stge_init(ifp);
   1132 
   1133 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
   1134 	    sc->sc_IntEnable);
   1135 
   1136 	/* Try to get more packets going. */
   1137 	stge_start(ifp);
   1138 
   1139 	return (1);
   1140 }
   1141 
   1142 /*
   1143  * stge_txintr:
   1144  *
   1145  *	Helper; handle transmit interrupts.
   1146  */
   1147 static void
   1148 stge_txintr(struct stge_softc *sc)
   1149 {
   1150 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1151 	struct stge_descsoft *ds;
   1152 	uint64_t control;
   1153 	int i;
   1154 
   1155 	ifp->if_flags &= ~IFF_OACTIVE;
   1156 
   1157 	/*
   1158 	 * Go through our Tx list and free mbufs for those
   1159 	 * frames which have been transmitted.
   1160 	 */
   1161 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
   1162 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
   1163 		ds = &sc->sc_txsoft[i];
   1164 
   1165 		STGE_CDTXSYNC(sc, i,
   1166 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1167 
   1168 		control = le64toh(sc->sc_txdescs[i].tfd_control);
   1169 		if ((control & TFD_TFDDone) == 0)
   1170 			break;
   1171 
   1172 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
   1173 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1174 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1175 		m_freem(ds->ds_mbuf);
   1176 		ds->ds_mbuf = NULL;
   1177 	}
   1178 
   1179 	/* Update the dirty transmit buffer pointer. */
   1180 	sc->sc_txdirty = i;
   1181 
   1182 	/*
   1183 	 * If there are no more pending transmissions, cancel the watchdog
   1184 	 * timer.
   1185 	 */
   1186 	if (sc->sc_txpending == 0)
   1187 		ifp->if_timer = 0;
   1188 }
   1189 
   1190 /*
   1191  * stge_rxintr:
   1192  *
   1193  *	Helper; handle receive interrupts.
   1194  */
   1195 static void
   1196 stge_rxintr(struct stge_softc *sc)
   1197 {
   1198 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1199 	struct stge_descsoft *ds;
   1200 	struct mbuf *m, *tailm;
   1201 	uint64_t status;
   1202 	int i, len;
   1203 
   1204 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
   1205 		ds = &sc->sc_rxsoft[i];
   1206 
   1207 		STGE_CDRXSYNC(sc, i,
   1208 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1209 
   1210 		status = le64toh(sc->sc_rxdescs[i].rfd_status);
   1211 
   1212 		if ((status & RFD_RFDDone) == 0)
   1213 			break;
   1214 
   1215 		if (__predict_false(sc->sc_rxdiscard)) {
   1216 			STGE_INIT_RXDESC(sc, i);
   1217 			if (status & RFD_FrameEnd) {
   1218 				/* Reset our state. */
   1219 				sc->sc_rxdiscard = 0;
   1220 			}
   1221 			continue;
   1222 		}
   1223 
   1224 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1225 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1226 
   1227 		m = ds->ds_mbuf;
   1228 
   1229 		/*
   1230 		 * Add a new receive buffer to the ring.
   1231 		 */
   1232 		if (stge_add_rxbuf(sc, i) != 0) {
   1233 			/*
   1234 			 * Failed, throw away what we've done so
   1235 			 * far, and discard the rest of the packet.
   1236 			 */
   1237 			ifp->if_ierrors++;
   1238 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1239 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1240 			STGE_INIT_RXDESC(sc, i);
   1241 			if ((status & RFD_FrameEnd) == 0)
   1242 				sc->sc_rxdiscard = 1;
   1243 			if (sc->sc_rxhead != NULL)
   1244 				m_freem(sc->sc_rxhead);
   1245 			STGE_RXCHAIN_RESET(sc);
   1246 			continue;
   1247 		}
   1248 
   1249 #ifdef DIAGNOSTIC
   1250 		if (status & RFD_FrameStart) {
   1251 			KASSERT(sc->sc_rxhead == NULL);
   1252 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
   1253 		}
   1254 #endif
   1255 
   1256 		STGE_RXCHAIN_LINK(sc, m);
   1257 
   1258 		/*
   1259 		 * If this is not the end of the packet, keep
   1260 		 * looking.
   1261 		 */
   1262 		if ((status & RFD_FrameEnd) == 0) {
   1263 			sc->sc_rxlen += m->m_len;
   1264 			continue;
   1265 		}
   1266 
   1267 		/*
   1268 		 * Okay, we have the entire packet now...
   1269 		 */
   1270 		*sc->sc_rxtailp = NULL;
   1271 		m = sc->sc_rxhead;
   1272 		tailm = sc->sc_rxtail;
   1273 
   1274 		STGE_RXCHAIN_RESET(sc);
   1275 
   1276 		/*
   1277 		 * If the packet had an error, drop it.  Note we
   1278 		 * count the error later in the periodic stats update.
   1279 		 */
   1280 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
   1281 			      RFD_RxAlignmentError | RFD_RxFCSError |
   1282 			      RFD_RxLengthError)) {
   1283 			m_freem(m);
   1284 			continue;
   1285 		}
   1286 
   1287 		/*
   1288 		 * No errors.
   1289 		 *
   1290 		 * Note we have configured the chip to not include
   1291 		 * the CRC at the end of the packet.
   1292 		 */
   1293 		len = RFD_RxDMAFrameLen(status);
   1294 		tailm->m_len = len - sc->sc_rxlen;
   1295 
   1296 		/*
   1297 		 * If the packet is small enough to fit in a
   1298 		 * single header mbuf, allocate one and copy
   1299 		 * the data into it.  This greatly reduces
   1300 		 * memory consumption when we receive lots
   1301 		 * of small packets.
   1302 		 */
   1303 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
   1304 			struct mbuf *nm;
   1305 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1306 			if (nm == NULL) {
   1307 				ifp->if_ierrors++;
   1308 				m_freem(m);
   1309 				continue;
   1310 			}
   1311 			nm->m_data += 2;
   1312 			nm->m_pkthdr.len = nm->m_len = len;
   1313 			m_copydata(m, 0, len, mtod(nm, void *));
   1314 			m_freem(m);
   1315 			m = nm;
   1316 		}
   1317 
   1318 		/*
   1319 		 * Set the incoming checksum information for the packet.
   1320 		 */
   1321 		if (status & RFD_IPDetected) {
   1322 			STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1323 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1324 			if (status & RFD_IPError)
   1325 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1326 			if (status & RFD_TCPDetected) {
   1327 				STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   1328 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1329 				if (status & RFD_TCPError)
   1330 					m->m_pkthdr.csum_flags |=
   1331 					    M_CSUM_TCP_UDP_BAD;
   1332 			} else if (status & RFD_UDPDetected) {
   1333 				STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   1334 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1335 				if (status & RFD_UDPError)
   1336 					m->m_pkthdr.csum_flags |=
   1337 					    M_CSUM_TCP_UDP_BAD;
   1338 			}
   1339 		}
   1340 
   1341 		m->m_pkthdr.rcvif = ifp;
   1342 		m->m_pkthdr.len = len;
   1343 
   1344 #if NBPFILTER > 0
   1345 		/*
   1346 		 * Pass this up to any BPF listeners, but only
   1347 		 * pass if up the stack if it's for us.
   1348 		 */
   1349 		if (ifp->if_bpf)
   1350 			bpf_mtap(ifp->if_bpf, m);
   1351 #endif /* NBPFILTER > 0 */
   1352 #ifdef	STGE_VLAN_UNTAG
   1353 		/*
   1354 		 * Check for VLAN tagged packets
   1355 		 */
   1356 		if (status & RFD_VLANDetected)
   1357 			VLAN_INPUT_TAG(ifp, m, RFD_TCI(status), continue);
   1358 
   1359 #endif
   1360 #if	0
   1361 		if (status & RFD_VLANDetected) {
   1362 			struct ether_header *eh;
   1363 			u_int16_t etype;
   1364 
   1365 			eh = mtod(m, struct ether_header *);
   1366 			etype = ntohs(eh->ether_type);
   1367 			printf("%s: VLANtag detected (TCI %d) etype %x\n",
   1368 			    ifp->if_xname, (u_int16_t) RFD_TCI(status),
   1369 			    etype);
   1370 		}
   1371 #endif
   1372 		/* Pass it on. */
   1373 		(*ifp->if_input)(ifp, m);
   1374 	}
   1375 
   1376 	/* Update the receive pointer. */
   1377 	sc->sc_rxptr = i;
   1378 }
   1379 
   1380 /*
   1381  * stge_tick:
   1382  *
   1383  *	One second timer, used to tick the MII.
   1384  */
   1385 static void
   1386 stge_tick(void *arg)
   1387 {
   1388 	struct stge_softc *sc = arg;
   1389 	int s;
   1390 
   1391 	s = splnet();
   1392 	mii_tick(&sc->sc_mii);
   1393 	stge_stats_update(sc);
   1394 	splx(s);
   1395 
   1396 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
   1397 }
   1398 
   1399 /*
   1400  * stge_stats_update:
   1401  *
   1402  *	Read the TC9021 statistics counters.
   1403  */
   1404 static void
   1405 stge_stats_update(struct stge_softc *sc)
   1406 {
   1407 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1408 	bus_space_tag_t st = sc->sc_st;
   1409 	bus_space_handle_t sh = sc->sc_sh;
   1410 
   1411 	(void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
   1412 
   1413 	ifp->if_ipackets +=
   1414 	    bus_space_read_4(st, sh, STGE_FramesRcvdOk);
   1415 
   1416 	ifp->if_ierrors +=
   1417 	    (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
   1418 
   1419 	(void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
   1420 
   1421 	ifp->if_opackets +=
   1422 	    bus_space_read_4(st, sh, STGE_FramesXmtdOk);
   1423 
   1424 	ifp->if_collisions +=
   1425 	    bus_space_read_4(st, sh, STGE_LateCollisions) +
   1426 	    bus_space_read_4(st, sh, STGE_MultiColFrames) +
   1427 	    bus_space_read_4(st, sh, STGE_SingleColFrames);
   1428 
   1429 	ifp->if_oerrors +=
   1430 	    (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
   1431 	    (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
   1432 }
   1433 
   1434 /*
   1435  * stge_reset:
   1436  *
   1437  *	Perform a soft reset on the TC9021.
   1438  */
   1439 static void
   1440 stge_reset(struct stge_softc *sc)
   1441 {
   1442 	uint32_t ac;
   1443 	int i;
   1444 
   1445 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
   1446 
   1447 	/*
   1448 	 * Only assert RstOut if we're fiber.  We need GMII clocks
   1449 	 * to be present in order for the reset to complete on fiber
   1450 	 * cards.
   1451 	 */
   1452 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
   1453 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
   1454 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
   1455 	    (sc->sc_usefiber ? AC_RstOut : 0));
   1456 
   1457 	delay(50000);
   1458 
   1459 	for (i = 0; i < STGE_TIMEOUT; i++) {
   1460 		delay(5000);
   1461 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
   1462 		     AC_ResetBusy) == 0)
   1463 			break;
   1464 	}
   1465 
   1466 	if (i == STGE_TIMEOUT)
   1467 		printf("%s: reset failed to complete\n",
   1468 		    device_xname(sc->sc_dev));
   1469 
   1470 	delay(1000);
   1471 }
   1472 
   1473 /*
   1474  * stge_init:		[ ifnet interface function ]
   1475  *
   1476  *	Initialize the interface.  Must be called at splnet().
   1477  */
   1478 static int
   1479 stge_init(struct ifnet *ifp)
   1480 {
   1481 	struct stge_softc *sc = ifp->if_softc;
   1482 	bus_space_tag_t st = sc->sc_st;
   1483 	bus_space_handle_t sh = sc->sc_sh;
   1484 	struct stge_descsoft *ds;
   1485 	int i, error = 0;
   1486 
   1487 	/*
   1488 	 * Cancel any pending I/O.
   1489 	 */
   1490 	stge_stop(ifp, 0);
   1491 
   1492 	/*
   1493 	 * Reset the chip to a known state.
   1494 	 */
   1495 	stge_reset(sc);
   1496 
   1497 	/*
   1498 	 * Initialize the transmit descriptor ring.
   1499 	 */
   1500 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1501 	for (i = 0; i < STGE_NTXDESC; i++) {
   1502 		sc->sc_txdescs[i].tfd_next = htole64(
   1503 		    STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
   1504 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
   1505 	}
   1506 	sc->sc_txpending = 0;
   1507 	sc->sc_txdirty = 0;
   1508 	sc->sc_txlast = STGE_NTXDESC - 1;
   1509 
   1510 	/*
   1511 	 * Initialize the receive descriptor and receive job
   1512 	 * descriptor rings.
   1513 	 */
   1514 	for (i = 0; i < STGE_NRXDESC; i++) {
   1515 		ds = &sc->sc_rxsoft[i];
   1516 		if (ds->ds_mbuf == NULL) {
   1517 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
   1518 				printf("%s: unable to allocate or map rx "
   1519 				    "buffer %d, error = %d\n",
   1520 				    device_xname(sc->sc_dev), i, error);
   1521 				/*
   1522 				 * XXX Should attempt to run with fewer receive
   1523 				 * XXX buffers instead of just failing.
   1524 				 */
   1525 				stge_rxdrain(sc);
   1526 				goto out;
   1527 			}
   1528 		} else
   1529 			STGE_INIT_RXDESC(sc, i);
   1530 	}
   1531 	sc->sc_rxptr = 0;
   1532 	sc->sc_rxdiscard = 0;
   1533 	STGE_RXCHAIN_RESET(sc);
   1534 
   1535 	/* Set the station address. */
   1536 	for (i = 0; i < 6; i++)
   1537 		bus_space_write_1(st, sh, STGE_StationAddress0 + i,
   1538 		    CLLADDR(ifp->if_sadl)[i]);
   1539 
   1540 	/*
   1541 	 * Set the statistics masks.  Disable all the RMON stats,
   1542 	 * and disable selected stats in the non-RMON stats registers.
   1543 	 */
   1544 	bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
   1545 	bus_space_write_4(st, sh, STGE_StatisticsMask,
   1546 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
   1547 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
   1548 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
   1549 	    (1U << 21));
   1550 
   1551 	/* Set up the receive filter. */
   1552 	stge_set_filter(sc);
   1553 
   1554 	/*
   1555 	 * Give the transmit and receive ring to the chip.
   1556 	 */
   1557 	bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
   1558 	bus_space_write_4(st, sh, STGE_TFDListPtrLo,
   1559 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
   1560 
   1561 	bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
   1562 	bus_space_write_4(st, sh, STGE_RFDListPtrLo,
   1563 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
   1564 
   1565 	/*
   1566 	 * Initialize the Tx auto-poll period.  It's OK to make this number
   1567 	 * large (255 is the max, but we use 127) -- we explicitly kick the
   1568 	 * transmit engine when there's actually a packet.
   1569 	 */
   1570 	bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
   1571 
   1572 	/* ..and the Rx auto-poll period. */
   1573 	bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
   1574 
   1575 	/* Initialize the Tx start threshold. */
   1576 	bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
   1577 
   1578 	/* RX DMA thresholds, from linux */
   1579 	bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
   1580 	bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
   1581 
   1582 	/*
   1583 	 * Initialize the Rx DMA interrupt control register.  We
   1584 	 * request an interrupt after every incoming packet, but
   1585 	 * defer it for 32us (64 * 512 ns).  When the number of
   1586 	 * interrupts pending reaches 8, we stop deferring the
   1587 	 * interrupt, and signal it immediately.
   1588 	 */
   1589 	bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
   1590 	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
   1591 
   1592 	/*
   1593 	 * Initialize the interrupt mask.
   1594 	 */
   1595 	sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
   1596 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
   1597 	bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
   1598 	bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
   1599 
   1600 	/*
   1601 	 * Configure the DMA engine.
   1602 	 * XXX Should auto-tune TxBurstLimit.
   1603 	 */
   1604 	bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
   1605 	    DMAC_TxBurstLimit(3));
   1606 
   1607 	/*
   1608 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
   1609 	 * FIFO, and send an un-PAUSE frame when the FIFO is totally
   1610 	 * empty again.
   1611 	 */
   1612 	bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
   1613 	bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
   1614 
   1615 	/*
   1616 	 * Set the maximum frame size.
   1617 	 */
   1618 	bus_space_write_2(st, sh, STGE_MaxFrameSize,
   1619 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
   1620 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
   1621 	     ETHER_VLAN_ENCAP_LEN : 0));
   1622 
   1623 	/*
   1624 	 * Initialize MacCtrl -- do it before setting the media,
   1625 	 * as setting the media will actually program the register.
   1626 	 *
   1627 	 * Note: We have to poke the IFS value before poking
   1628 	 * anything else.
   1629 	 */
   1630 	sc->sc_MACCtrl = MC_IFSSelect(0);
   1631 	bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
   1632 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
   1633 #ifdef	STGE_VLAN_UNTAG
   1634 	sc->sc_MACCtrl |= MC_AutoVLANuntagging;
   1635 #endif
   1636 
   1637 	if (sc->sc_rev >= 6) {		/* >= B.2 */
   1638 		/* Multi-frag frame bug work-around. */
   1639 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1640 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
   1641 
   1642 		/* Tx Poll Now bug work-around. */
   1643 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1644 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
   1645 		/* XXX ? from linux */
   1646 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1647 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
   1648 	}
   1649 
   1650 	/*
   1651 	 * Set the current media.
   1652 	 */
   1653 	if ((error = ether_mediachange(ifp)) != 0)
   1654 		goto out;
   1655 
   1656 	/*
   1657 	 * Start the one second MII clock.
   1658 	 */
   1659 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
   1660 
   1661 	/*
   1662 	 * ...all done!
   1663 	 */
   1664 	ifp->if_flags |= IFF_RUNNING;
   1665 	ifp->if_flags &= ~IFF_OACTIVE;
   1666 
   1667  out:
   1668 	if (error)
   1669 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
   1670 	return (error);
   1671 }
   1672 
   1673 /*
   1674  * stge_drain:
   1675  *
   1676  *	Drain the receive queue.
   1677  */
   1678 static void
   1679 stge_rxdrain(struct stge_softc *sc)
   1680 {
   1681 	struct stge_descsoft *ds;
   1682 	int i;
   1683 
   1684 	for (i = 0; i < STGE_NRXDESC; i++) {
   1685 		ds = &sc->sc_rxsoft[i];
   1686 		if (ds->ds_mbuf != NULL) {
   1687 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1688 			ds->ds_mbuf->m_next = NULL;
   1689 			m_freem(ds->ds_mbuf);
   1690 			ds->ds_mbuf = NULL;
   1691 		}
   1692 	}
   1693 }
   1694 
   1695 /*
   1696  * stge_stop:		[ ifnet interface function ]
   1697  *
   1698  *	Stop transmission on the interface.
   1699  */
   1700 static void
   1701 stge_stop(struct ifnet *ifp, int disable)
   1702 {
   1703 	struct stge_softc *sc = ifp->if_softc;
   1704 	struct stge_descsoft *ds;
   1705 	int i;
   1706 
   1707 	/*
   1708 	 * Stop the one second clock.
   1709 	 */
   1710 	callout_stop(&sc->sc_tick_ch);
   1711 
   1712 	/* Down the MII. */
   1713 	mii_down(&sc->sc_mii);
   1714 
   1715 	/*
   1716 	 * Disable interrupts.
   1717 	 */
   1718 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
   1719 
   1720 	/*
   1721 	 * Stop receiver, transmitter, and stats update.
   1722 	 */
   1723 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
   1724 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
   1725 
   1726 	/*
   1727 	 * Stop the transmit and receive DMA.
   1728 	 */
   1729 	stge_dma_wait(sc);
   1730 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
   1731 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
   1732 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
   1733 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
   1734 
   1735 	/*
   1736 	 * Release any queued transmit buffers.
   1737 	 */
   1738 	for (i = 0; i < STGE_NTXDESC; i++) {
   1739 		ds = &sc->sc_txsoft[i];
   1740 		if (ds->ds_mbuf != NULL) {
   1741 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1742 			m_freem(ds->ds_mbuf);
   1743 			ds->ds_mbuf = NULL;
   1744 		}
   1745 	}
   1746 
   1747 	/*
   1748 	 * Mark the interface down and cancel the watchdog timer.
   1749 	 */
   1750 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1751 	ifp->if_timer = 0;
   1752 
   1753 	if (disable)
   1754 		stge_rxdrain(sc);
   1755 }
   1756 
   1757 static int
   1758 stge_eeprom_wait(struct stge_softc *sc)
   1759 {
   1760 	int i;
   1761 
   1762 	for (i = 0; i < STGE_TIMEOUT; i++) {
   1763 		delay(1000);
   1764 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
   1765 		     EC_EepromBusy) == 0)
   1766 			return (0);
   1767 	}
   1768 	return (1);
   1769 }
   1770 
   1771 /*
   1772  * stge_read_eeprom:
   1773  *
   1774  *	Read data from the serial EEPROM.
   1775  */
   1776 static void
   1777 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
   1778 {
   1779 
   1780 	if (stge_eeprom_wait(sc))
   1781 		printf("%s: EEPROM failed to come ready\n",
   1782 		    device_xname(sc->sc_dev));
   1783 
   1784 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
   1785 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
   1786 	if (stge_eeprom_wait(sc))
   1787 		printf("%s: EEPROM read timed out\n",
   1788 		    device_xname(sc->sc_dev));
   1789 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
   1790 }
   1791 
   1792 /*
   1793  * stge_add_rxbuf:
   1794  *
   1795  *	Add a receive buffer to the indicated descriptor.
   1796  */
   1797 static int
   1798 stge_add_rxbuf(struct stge_softc *sc, int idx)
   1799 {
   1800 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
   1801 	struct mbuf *m;
   1802 	int error;
   1803 
   1804 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1805 	if (m == NULL)
   1806 		return (ENOBUFS);
   1807 
   1808 	MCLGET(m, M_DONTWAIT);
   1809 	if ((m->m_flags & M_EXT) == 0) {
   1810 		m_freem(m);
   1811 		return (ENOBUFS);
   1812 	}
   1813 
   1814 	m->m_data = m->m_ext.ext_buf + 2;
   1815 	m->m_len = MCLBYTES - 2;
   1816 
   1817 	if (ds->ds_mbuf != NULL)
   1818 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1819 
   1820 	ds->ds_mbuf = m;
   1821 
   1822 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
   1823 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1824 	if (error) {
   1825 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1826 		    device_xname(sc->sc_dev), idx, error);
   1827 		panic("stge_add_rxbuf");	/* XXX */
   1828 	}
   1829 
   1830 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1831 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1832 
   1833 	STGE_INIT_RXDESC(sc, idx);
   1834 
   1835 	return (0);
   1836 }
   1837 
   1838 /*
   1839  * stge_set_filter:
   1840  *
   1841  *	Set up the receive filter.
   1842  */
   1843 static void
   1844 stge_set_filter(struct stge_softc *sc)
   1845 {
   1846 	struct ethercom *ec = &sc->sc_ethercom;
   1847 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1848 	struct ether_multi *enm;
   1849 	struct ether_multistep step;
   1850 	uint32_t crc;
   1851 	uint32_t mchash[2];
   1852 
   1853 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
   1854 	if (ifp->if_flags & IFF_BROADCAST)
   1855 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
   1856 
   1857 	/* XXX: ST1023 only works in promiscuous mode */
   1858 	if (sc->sc_stge1023)
   1859 		ifp->if_flags |= IFF_PROMISC;
   1860 
   1861 	if (ifp->if_flags & IFF_PROMISC) {
   1862 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
   1863 		goto allmulti;
   1864 	}
   1865 
   1866 	/*
   1867 	 * Set up the multicast address filter by passing all multicast
   1868 	 * addresses through a CRC generator, and then using the low-order
   1869 	 * 6 bits as an index into the 64 bit multicast hash table.  The
   1870 	 * high order bits select the register, while the rest of the bits
   1871 	 * select the bit within the register.
   1872 	 */
   1873 
   1874 	memset(mchash, 0, sizeof(mchash));
   1875 
   1876 	ETHER_FIRST_MULTI(step, ec, enm);
   1877 	if (enm == NULL)
   1878 		goto done;
   1879 
   1880 	while (enm != NULL) {
   1881 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1882 			/*
   1883 			 * We must listen to a range of multicast addresses.
   1884 			 * For now, just accept all multicasts, rather than
   1885 			 * trying to set only those filter bits needed to match
   1886 			 * the range.  (At this time, the only use of address
   1887 			 * ranges is for IP multicast routing, for which the
   1888 			 * range is big enough to require all bits set.)
   1889 			 */
   1890 			goto allmulti;
   1891 		}
   1892 
   1893 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1894 
   1895 		/* Just want the 6 least significant bits. */
   1896 		crc &= 0x3f;
   1897 
   1898 		/* Set the corresponding bit in the hash table. */
   1899 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
   1900 
   1901 		ETHER_NEXT_MULTI(step, enm);
   1902 	}
   1903 
   1904 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
   1905 
   1906 	ifp->if_flags &= ~IFF_ALLMULTI;
   1907 	goto done;
   1908 
   1909  allmulti:
   1910 	ifp->if_flags |= IFF_ALLMULTI;
   1911 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
   1912 
   1913  done:
   1914 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1915 		/*
   1916 		 * Program the multicast hash table.
   1917 		 */
   1918 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
   1919 		    mchash[0]);
   1920 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
   1921 		    mchash[1]);
   1922 	}
   1923 
   1924 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
   1925 	    sc->sc_ReceiveMode);
   1926 }
   1927 
   1928 /*
   1929  * stge_mii_readreg:	[mii interface function]
   1930  *
   1931  *	Read a PHY register on the MII of the TC9021.
   1932  */
   1933 static int
   1934 stge_mii_readreg(device_t self, int phy, int reg)
   1935 {
   1936 
   1937 	return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
   1938 }
   1939 
   1940 /*
   1941  * stge_mii_writereg:	[mii interface function]
   1942  *
   1943  *	Write a PHY register on the MII of the TC9021.
   1944  */
   1945 static void
   1946 stge_mii_writereg(device_t self, int phy, int reg, int val)
   1947 {
   1948 
   1949 	mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
   1950 }
   1951 
   1952 /*
   1953  * stge_mii_statchg:	[mii interface function]
   1954  *
   1955  *	Callback from MII layer when media changes.
   1956  */
   1957 static void
   1958 stge_mii_statchg(device_t self)
   1959 {
   1960 	struct stge_softc *sc = device_private(self);
   1961 
   1962 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   1963 		sc->sc_MACCtrl |= MC_DuplexSelect;
   1964 	else
   1965 		sc->sc_MACCtrl &= ~MC_DuplexSelect;
   1966 
   1967 	/* XXX 802.1x flow-control? */
   1968 
   1969 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
   1970 }
   1971 
   1972 /*
   1973  * sste_mii_bitbang_read: [mii bit-bang interface function]
   1974  *
   1975  *	Read the MII serial port for the MII bit-bang module.
   1976  */
   1977 static uint32_t
   1978 stge_mii_bitbang_read(device_t self)
   1979 {
   1980 	struct stge_softc *sc = device_private(self);
   1981 
   1982 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
   1983 }
   1984 
   1985 /*
   1986  * stge_mii_bitbang_write: [mii big-bang interface function]
   1987  *
   1988  *	Write the MII serial port for the MII bit-bang module.
   1989  */
   1990 static void
   1991 stge_mii_bitbang_write(device_t self, uint32_t val)
   1992 {
   1993 	struct stge_softc *sc = device_private(self);
   1994 
   1995 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
   1996 	    val | sc->sc_PhyCtrl);
   1997 }
   1998