if_stge.c revision 1.48 1 /* $NetBSD: if_stge.c,v 1.48 2009/09/14 12:02:48 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the Sundance Tech. TC9021 10/100/1000
34 * Ethernet controller.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.48 2009/09/14 12:02:48 tsutsui Exp $");
39
40 #include "bpfilter.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/ioctl.h>
50 #include <sys/errno.h>
51 #include <sys/device.h>
52 #include <sys/queue.h>
53
54 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
55
56 #include <net/if.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
60
61 #if NBPFILTER > 0
62 #include <net/bpf.h>
63 #endif
64
65 #include <sys/bus.h>
66 #include <sys/intr.h>
67
68 #include <dev/mii/mii.h>
69 #include <dev/mii/miivar.h>
70 #include <dev/mii/mii_bitbang.h>
71
72 #include <dev/pci/pcireg.h>
73 #include <dev/pci/pcivar.h>
74 #include <dev/pci/pcidevs.h>
75
76 #include <dev/pci/if_stgereg.h>
77
78 /* #define STGE_CU_BUG 1 */
79 #define STGE_VLAN_UNTAG 1
80 /* #define STGE_VLAN_CFI 1 */
81
82 /*
83 * Transmit descriptor list size.
84 */
85 #define STGE_NTXDESC 256
86 #define STGE_NTXDESC_MASK (STGE_NTXDESC - 1)
87 #define STGE_NEXTTX(x) (((x) + 1) & STGE_NTXDESC_MASK)
88
89 /*
90 * Receive descriptor list size.
91 */
92 #define STGE_NRXDESC 256
93 #define STGE_NRXDESC_MASK (STGE_NRXDESC - 1)
94 #define STGE_NEXTRX(x) (((x) + 1) & STGE_NRXDESC_MASK)
95
96 /*
97 * Only interrupt every N frames. Must be a power-of-two.
98 */
99 #define STGE_TXINTR_SPACING 16
100 #define STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
101
102 /*
103 * Control structures are DMA'd to the TC9021 chip. We allocate them in
104 * a single clump that maps to a single DMA segment to make several things
105 * easier.
106 */
107 struct stge_control_data {
108 /*
109 * The transmit descriptors.
110 */
111 struct stge_tfd scd_txdescs[STGE_NTXDESC];
112
113 /*
114 * The receive descriptors.
115 */
116 struct stge_rfd scd_rxdescs[STGE_NRXDESC];
117 };
118
119 #define STGE_CDOFF(x) offsetof(struct stge_control_data, x)
120 #define STGE_CDTXOFF(x) STGE_CDOFF(scd_txdescs[(x)])
121 #define STGE_CDRXOFF(x) STGE_CDOFF(scd_rxdescs[(x)])
122
123 /*
124 * Software state for transmit and receive jobs.
125 */
126 struct stge_descsoft {
127 struct mbuf *ds_mbuf; /* head of our mbuf chain */
128 bus_dmamap_t ds_dmamap; /* our DMA map */
129 };
130
131 /*
132 * Software state per device.
133 */
134 struct stge_softc {
135 device_t sc_dev; /* generic device information */
136 bus_space_tag_t sc_st; /* bus space tag */
137 bus_space_handle_t sc_sh; /* bus space handle */
138 bus_dma_tag_t sc_dmat; /* bus DMA tag */
139 struct ethercom sc_ethercom; /* ethernet common data */
140 int sc_rev; /* silicon revision */
141
142 void *sc_ih; /* interrupt cookie */
143
144 struct mii_data sc_mii; /* MII/media information */
145
146 callout_t sc_tick_ch; /* tick callout */
147
148 bus_dmamap_t sc_cddmamap; /* control data DMA map */
149 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
150
151 /*
152 * Software state for transmit and receive descriptors.
153 */
154 struct stge_descsoft sc_txsoft[STGE_NTXDESC];
155 struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
156
157 /*
158 * Control data structures.
159 */
160 struct stge_control_data *sc_control_data;
161 #define sc_txdescs sc_control_data->scd_txdescs
162 #define sc_rxdescs sc_control_data->scd_rxdescs
163
164 #ifdef STGE_EVENT_COUNTERS
165 /*
166 * Event counters.
167 */
168 struct evcnt sc_ev_txstall; /* Tx stalled */
169 struct evcnt sc_ev_txdmaintr; /* Tx DMA interrupts */
170 struct evcnt sc_ev_txindintr; /* Tx Indicate interrupts */
171 struct evcnt sc_ev_rxintr; /* Rx interrupts */
172
173 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
174 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
175 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
176 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
177 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
178 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
179 struct evcnt sc_ev_txcopy; /* Tx packets that we had to copy */
180
181 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
182 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
183 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-bound */
184
185 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
186 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
187 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
188 #endif /* STGE_EVENT_COUNTERS */
189
190 int sc_txpending; /* number of Tx requests pending */
191 int sc_txdirty; /* first dirty Tx descriptor */
192 int sc_txlast; /* last used Tx descriptor */
193
194 int sc_rxptr; /* next ready Rx descriptor/descsoft */
195 int sc_rxdiscard;
196 int sc_rxlen;
197 struct mbuf *sc_rxhead;
198 struct mbuf *sc_rxtail;
199 struct mbuf **sc_rxtailp;
200
201 int sc_txthresh; /* Tx threshold */
202 uint32_t sc_usefiber:1; /* if we're fiber */
203 uint32_t sc_stge1023:1; /* are we a 1023 */
204 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
205 uint32_t sc_MACCtrl; /* prototype MacCtrl register */
206 uint16_t sc_IntEnable; /* prototype IntEnable register */
207 uint16_t sc_ReceiveMode; /* prototype ReceiveMode register */
208 uint8_t sc_PhyCtrl; /* prototype PhyCtrl register */
209 };
210
211 #define STGE_RXCHAIN_RESET(sc) \
212 do { \
213 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
214 *(sc)->sc_rxtailp = NULL; \
215 (sc)->sc_rxlen = 0; \
216 } while (/*CONSTCOND*/0)
217
218 #define STGE_RXCHAIN_LINK(sc, m) \
219 do { \
220 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
221 (sc)->sc_rxtailp = &(m)->m_next; \
222 } while (/*CONSTCOND*/0)
223
224 #ifdef STGE_EVENT_COUNTERS
225 #define STGE_EVCNT_INCR(ev) (ev)->ev_count++
226 #else
227 #define STGE_EVCNT_INCR(ev) /* nothing */
228 #endif
229
230 #define STGE_CDTXADDR(sc, x) ((sc)->sc_cddma + STGE_CDTXOFF((x)))
231 #define STGE_CDRXADDR(sc, x) ((sc)->sc_cddma + STGE_CDRXOFF((x)))
232
233 #define STGE_CDTXSYNC(sc, x, ops) \
234 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
235 STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
236
237 #define STGE_CDRXSYNC(sc, x, ops) \
238 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
239 STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
240
241 #define STGE_INIT_RXDESC(sc, x) \
242 do { \
243 struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
244 struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
245 \
246 /* \
247 * Note: We scoot the packet forward 2 bytes in the buffer \
248 * so that the payload after the Ethernet header is aligned \
249 * to a 4-byte boundary. \
250 */ \
251 __rfd->rfd_frag.frag_word0 = \
252 htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
253 FRAG_LEN(MCLBYTES - 2)); \
254 __rfd->rfd_next = \
255 htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x)))); \
256 __rfd->rfd_status = 0; \
257 STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
258 } while (/*CONSTCOND*/0)
259
260 #define STGE_TIMEOUT 1000
261
262 static void stge_start(struct ifnet *);
263 static void stge_watchdog(struct ifnet *);
264 static int stge_ioctl(struct ifnet *, u_long, void *);
265 static int stge_init(struct ifnet *);
266 static void stge_stop(struct ifnet *, int);
267
268 static bool stge_shutdown(device_t, int);
269
270 static void stge_reset(struct stge_softc *);
271 static void stge_rxdrain(struct stge_softc *);
272 static int stge_add_rxbuf(struct stge_softc *, int);
273 static void stge_read_eeprom(struct stge_softc *, int, uint16_t *);
274 static void stge_tick(void *);
275
276 static void stge_stats_update(struct stge_softc *);
277
278 static void stge_set_filter(struct stge_softc *);
279
280 static int stge_intr(void *);
281 static void stge_txintr(struct stge_softc *);
282 static void stge_rxintr(struct stge_softc *);
283
284 static int stge_mii_readreg(device_t, int, int);
285 static void stge_mii_writereg(device_t, int, int, int);
286 static void stge_mii_statchg(device_t);
287
288 static int stge_match(device_t, cfdata_t, void *);
289 static void stge_attach(device_t, device_t, void *);
290
291 int stge_copy_small = 0;
292
293 CFATTACH_DECL_NEW(stge, sizeof(struct stge_softc),
294 stge_match, stge_attach, NULL, NULL);
295
296 static uint32_t stge_mii_bitbang_read(device_t);
297 static void stge_mii_bitbang_write(device_t, uint32_t);
298
299 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
300 stge_mii_bitbang_read,
301 stge_mii_bitbang_write,
302 {
303 PC_MgmtData, /* MII_BIT_MDO */
304 PC_MgmtData, /* MII_BIT_MDI */
305 PC_MgmtClk, /* MII_BIT_MDC */
306 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
307 0, /* MII_BIT_DIR_PHY_HOST */
308 }
309 };
310
311 /*
312 * Devices supported by this driver.
313 */
314 static const struct stge_product {
315 pci_vendor_id_t stge_vendor;
316 pci_product_id_t stge_product;
317 const char *stge_name;
318 } stge_products[] = {
319 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST1023,
320 "Sundance ST-1023 Gigabit Ethernet" },
321
322 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST2021,
323 "Sundance ST-2021 Gigabit Ethernet" },
324
325 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021,
326 "Tamarack TC9021 Gigabit Ethernet" },
327
328 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021_ALT,
329 "Tamarack TC9021 Gigabit Ethernet" },
330
331 /*
332 * The Sundance sample boards use the Sundance vendor ID,
333 * but the Tamarack product ID.
334 */
335 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021,
336 "Sundance TC9021 Gigabit Ethernet" },
337
338 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021_ALT,
339 "Sundance TC9021 Gigabit Ethernet" },
340
341 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL4000,
342 "D-Link DL-4000 Gigabit Ethernet" },
343
344 { PCI_VENDOR_ANTARES, PCI_PRODUCT_ANTARES_TC9021,
345 "Antares Gigabit Ethernet" },
346
347 { 0, 0,
348 NULL },
349 };
350
351 static const struct stge_product *
352 stge_lookup(const struct pci_attach_args *pa)
353 {
354 const struct stge_product *sp;
355
356 for (sp = stge_products; sp->stge_name != NULL; sp++) {
357 if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
358 PCI_PRODUCT(pa->pa_id) == sp->stge_product)
359 return (sp);
360 }
361 return (NULL);
362 }
363
364 static int
365 stge_match(device_t parent, cfdata_t cf, void *aux)
366 {
367 struct pci_attach_args *pa = aux;
368
369 if (stge_lookup(pa) != NULL)
370 return (1);
371
372 return (0);
373 }
374
375 static void
376 stge_attach(device_t parent, device_t self, void *aux)
377 {
378 struct stge_softc *sc = device_private(self);
379 struct pci_attach_args *pa = aux;
380 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
381 pci_chipset_tag_t pc = pa->pa_pc;
382 pci_intr_handle_t ih;
383 const char *intrstr = NULL;
384 bus_space_tag_t iot, memt;
385 bus_space_handle_t ioh, memh;
386 bus_dma_segment_t seg;
387 int ioh_valid, memh_valid;
388 int i, rseg, error;
389 const struct stge_product *sp;
390 uint8_t enaddr[ETHER_ADDR_LEN];
391
392 callout_init(&sc->sc_tick_ch, 0);
393
394 sp = stge_lookup(pa);
395 if (sp == NULL) {
396 printf("\n");
397 panic("ste_attach: impossible");
398 }
399
400 sc->sc_rev = PCI_REVISION(pa->pa_class);
401
402 aprint_normal(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
403
404 /*
405 * Map the device.
406 */
407 ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
408 PCI_MAPREG_TYPE_IO, 0,
409 &iot, &ioh, NULL, NULL) == 0);
410 memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
411 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
412 &memt, &memh, NULL, NULL) == 0);
413
414 if (memh_valid) {
415 sc->sc_st = memt;
416 sc->sc_sh = memh;
417 } else if (ioh_valid) {
418 sc->sc_st = iot;
419 sc->sc_sh = ioh;
420 } else {
421 aprint_error_dev(self, "unable to map device registers\n");
422 return;
423 }
424
425 sc->sc_dmat = pa->pa_dmat;
426
427 /* Enable bus mastering. */
428 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
429 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
430 PCI_COMMAND_MASTER_ENABLE);
431
432 /* power up chip */
433 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
434 error != EOPNOTSUPP) {
435 aprint_error_dev(self, "cannot activate %d\n",
436 error);
437 return;
438 }
439 /*
440 * Map and establish our interrupt.
441 */
442 if (pci_intr_map(pa, &ih)) {
443 aprint_error_dev(self, "unable to map interrupt\n");
444 return;
445 }
446 intrstr = pci_intr_string(pc, ih);
447 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
448 if (sc->sc_ih == NULL) {
449 aprint_error_dev(self, "unable to establish interrupt");
450 if (intrstr != NULL)
451 aprint_error(" at %s", intrstr);
452 aprint_error("\n");
453 return;
454 }
455 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
456
457 /*
458 * Allocate the control data structures, and create and load the
459 * DMA map for it.
460 */
461 if ((error = bus_dmamem_alloc(sc->sc_dmat,
462 sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
463 0)) != 0) {
464 aprint_error_dev(self,
465 "unable to allocate control data, error = %d\n",
466 error);
467 goto fail_0;
468 }
469
470 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
471 sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
472 BUS_DMA_COHERENT)) != 0) {
473 aprint_error_dev(self,
474 "unable to map control data, error = %d\n",
475 error);
476 goto fail_1;
477 }
478
479 if ((error = bus_dmamap_create(sc->sc_dmat,
480 sizeof(struct stge_control_data), 1,
481 sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
482 aprint_error_dev(self,
483 "unable to create control data DMA map, error = %d\n",
484 error);
485 goto fail_2;
486 }
487
488 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
489 sc->sc_control_data, sizeof(struct stge_control_data), NULL,
490 0)) != 0) {
491 aprint_error_dev(self,
492 "unable to load control data DMA map, error = %d\n",
493 error);
494 goto fail_3;
495 }
496
497 /*
498 * Create the transmit buffer DMA maps. Note that rev B.3
499 * and earlier seem to have a bug regarding multi-fragment
500 * packets. We need to limit the number of Tx segments on
501 * such chips to 1.
502 */
503 for (i = 0; i < STGE_NTXDESC; i++) {
504 if ((error = bus_dmamap_create(sc->sc_dmat,
505 ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
506 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
507 aprint_error_dev(self,
508 "unable to create tx DMA map %d, error = %d\n",
509 i, error);
510 goto fail_4;
511 }
512 }
513
514 /*
515 * Create the receive buffer DMA maps.
516 */
517 for (i = 0; i < STGE_NRXDESC; i++) {
518 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
519 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
520 aprint_error_dev(self,
521 "unable to create rx DMA map %d, error = %d\n",
522 i, error);
523 goto fail_5;
524 }
525 sc->sc_rxsoft[i].ds_mbuf = NULL;
526 }
527
528 /*
529 * Determine if we're copper or fiber. It affects how we
530 * reset the card.
531 */
532 if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
533 AC_PhyMedia)
534 sc->sc_usefiber = 1;
535 else
536 sc->sc_usefiber = 0;
537
538 /*
539 * Reset the chip to a known state.
540 */
541 stge_reset(sc);
542
543 /*
544 * Reading the station address from the EEPROM doesn't seem
545 * to work, at least on my sample boards. Instead, since
546 * the reset sequence does AutoInit, read it from the station
547 * address registers. For Sundance 1023 you can only read it
548 * from EEPROM.
549 */
550 if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
551 enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
552 STGE_StationAddress0) & 0xff;
553 enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
554 STGE_StationAddress0) >> 8;
555 enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
556 STGE_StationAddress1) & 0xff;
557 enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
558 STGE_StationAddress1) >> 8;
559 enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
560 STGE_StationAddress2) & 0xff;
561 enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
562 STGE_StationAddress2) >> 8;
563 sc->sc_stge1023 = 0;
564 } else {
565 uint16_t myaddr[ETHER_ADDR_LEN / 2];
566 for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
567 stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
568 &myaddr[i]);
569 myaddr[i] = le16toh(myaddr[i]);
570 }
571 (void)memcpy(enaddr, myaddr, sizeof(enaddr));
572 sc->sc_stge1023 = 1;
573 }
574
575 aprint_normal_dev(self, "Ethernet address %s\n",
576 ether_sprintf(enaddr));
577
578 /*
579 * Read some important bits from the PhyCtrl register.
580 */
581 sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
582 STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
583
584 /*
585 * Initialize our media structures and probe the MII.
586 */
587 sc->sc_mii.mii_ifp = ifp;
588 sc->sc_mii.mii_readreg = stge_mii_readreg;
589 sc->sc_mii.mii_writereg = stge_mii_writereg;
590 sc->sc_mii.mii_statchg = stge_mii_statchg;
591 sc->sc_ethercom.ec_mii = &sc->sc_mii;
592 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
593 ether_mediastatus);
594 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
595 MII_OFFSET_ANY, MIIF_DOPAUSE);
596 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
597 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
598 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
599 } else
600 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
601
602 ifp = &sc->sc_ethercom.ec_if;
603 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
604 ifp->if_softc = sc;
605 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
606 ifp->if_ioctl = stge_ioctl;
607 ifp->if_start = stge_start;
608 ifp->if_watchdog = stge_watchdog;
609 ifp->if_init = stge_init;
610 ifp->if_stop = stge_stop;
611 IFQ_SET_READY(&ifp->if_snd);
612
613 /*
614 * The manual recommends disabling early transmit, so we
615 * do. It's disabled anyway, if using IP checksumming,
616 * since the entire packet must be in the FIFO in order
617 * for the chip to perform the checksum.
618 */
619 sc->sc_txthresh = 0x0fff;
620
621 /*
622 * Disable MWI if the PCI layer tells us to.
623 */
624 sc->sc_DMACtrl = 0;
625 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
626 sc->sc_DMACtrl |= DMAC_MWIDisable;
627
628 /*
629 * We can support 802.1Q VLAN-sized frames and jumbo
630 * Ethernet frames.
631 *
632 * XXX Figure out how to do hw-assisted VLAN tagging in
633 * XXX a reasonable way on this chip.
634 */
635 sc->sc_ethercom.ec_capabilities |=
636 ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
637 ETHERCAP_VLAN_HWTAGGING;
638
639 /*
640 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
641 */
642 sc->sc_ethercom.ec_if.if_capabilities |=
643 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
644 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
645 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
646
647 /*
648 * Attach the interface.
649 */
650 if_attach(ifp);
651 ether_ifattach(ifp, enaddr);
652
653 #ifdef STGE_EVENT_COUNTERS
654 /*
655 * Attach event counters.
656 */
657 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
658 NULL, device_xname(self), "txstall");
659 evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
660 NULL, device_xname(self), "txdmaintr");
661 evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
662 NULL, device_xname(self), "txindintr");
663 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
664 NULL, device_xname(self), "rxintr");
665
666 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
667 NULL, device_xname(self), "txseg1");
668 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
669 NULL, device_xname(self), "txseg2");
670 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
671 NULL, device_xname(self), "txseg3");
672 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
673 NULL, device_xname(self), "txseg4");
674 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
675 NULL, device_xname(self), "txseg5");
676 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
677 NULL, device_xname(self), "txsegmore");
678 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
679 NULL, device_xname(self), "txcopy");
680
681 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
682 NULL, device_xname(self), "rxipsum");
683 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
684 NULL, device_xname(self), "rxtcpsum");
685 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
686 NULL, device_xname(self), "rxudpsum");
687 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
688 NULL, device_xname(self), "txipsum");
689 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
690 NULL, device_xname(self), "txtcpsum");
691 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
692 NULL, device_xname(self), "txudpsum");
693 #endif /* STGE_EVENT_COUNTERS */
694
695 /*
696 * Make sure the interface is shutdown during reboot.
697 */
698 if (pmf_device_register1(self, NULL, NULL, stge_shutdown))
699 pmf_class_network_register(self, ifp);
700 else
701 aprint_error_dev(self, "couldn't establish power handler\n");
702
703 return;
704
705 /*
706 * Free any resources we've allocated during the failed attach
707 * attempt. Do this in reverse order and fall through.
708 */
709 fail_5:
710 for (i = 0; i < STGE_NRXDESC; i++) {
711 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
712 bus_dmamap_destroy(sc->sc_dmat,
713 sc->sc_rxsoft[i].ds_dmamap);
714 }
715 fail_4:
716 for (i = 0; i < STGE_NTXDESC; i++) {
717 if (sc->sc_txsoft[i].ds_dmamap != NULL)
718 bus_dmamap_destroy(sc->sc_dmat,
719 sc->sc_txsoft[i].ds_dmamap);
720 }
721 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
722 fail_3:
723 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
724 fail_2:
725 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
726 sizeof(struct stge_control_data));
727 fail_1:
728 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
729 fail_0:
730 return;
731 }
732
733 /*
734 * stge_shutdown:
735 *
736 * Make sure the interface is stopped at reboot time.
737 */
738 static bool
739 stge_shutdown(device_t self, int howto)
740 {
741 struct stge_softc *sc = device_private(self);
742 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
743
744 stge_stop(ifp, 1);
745
746 return true;
747 }
748
749 static void
750 stge_dma_wait(struct stge_softc *sc)
751 {
752 int i;
753
754 for (i = 0; i < STGE_TIMEOUT; i++) {
755 delay(2);
756 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
757 DMAC_TxDMAInProg) == 0)
758 break;
759 }
760
761 if (i == STGE_TIMEOUT)
762 printf("%s: DMA wait timed out\n", device_xname(sc->sc_dev));
763 }
764
765 /*
766 * stge_start: [ifnet interface function]
767 *
768 * Start packet transmission on the interface.
769 */
770 static void
771 stge_start(struct ifnet *ifp)
772 {
773 struct stge_softc *sc = ifp->if_softc;
774 struct mbuf *m0;
775 struct stge_descsoft *ds;
776 struct stge_tfd *tfd;
777 bus_dmamap_t dmamap;
778 int error, firsttx, nexttx, opending, seg, totlen;
779 uint64_t csum_flags;
780
781 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
782 return;
783
784 /*
785 * Remember the previous number of pending transmissions
786 * and the first descriptor we will use.
787 */
788 opending = sc->sc_txpending;
789 firsttx = STGE_NEXTTX(sc->sc_txlast);
790
791 /*
792 * Loop through the send queue, setting up transmit descriptors
793 * until we drain the queue, or use up all available transmit
794 * descriptors.
795 */
796 for (;;) {
797 struct m_tag *mtag;
798 uint64_t tfc;
799
800 /*
801 * Grab a packet off the queue.
802 */
803 IFQ_POLL(&ifp->if_snd, m0);
804 if (m0 == NULL)
805 break;
806
807 /*
808 * Leave one unused descriptor at the end of the
809 * list to prevent wrapping completely around.
810 */
811 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
812 STGE_EVCNT_INCR(&sc->sc_ev_txstall);
813 break;
814 }
815
816 /*
817 * See if we have any VLAN stuff.
818 */
819 mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
820
821 /*
822 * Get the last and next available transmit descriptor.
823 */
824 nexttx = STGE_NEXTTX(sc->sc_txlast);
825 tfd = &sc->sc_txdescs[nexttx];
826 ds = &sc->sc_txsoft[nexttx];
827
828 dmamap = ds->ds_dmamap;
829
830 /*
831 * Load the DMA map. If this fails, the packet either
832 * didn't fit in the alloted number of segments, or we
833 * were short on resources. For the too-many-segments
834 * case, we simply report an error and drop the packet,
835 * since we can't sanely copy a jumbo packet to a single
836 * buffer.
837 */
838 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
839 BUS_DMA_NOWAIT);
840 if (error) {
841 if (error == EFBIG) {
842 printf("%s: Tx packet consumes too many "
843 "DMA segments, dropping...\n",
844 device_xname(sc->sc_dev));
845 IFQ_DEQUEUE(&ifp->if_snd, m0);
846 m_freem(m0);
847 continue;
848 }
849 /*
850 * Short on resources, just stop for now.
851 */
852 break;
853 }
854
855 IFQ_DEQUEUE(&ifp->if_snd, m0);
856
857 /*
858 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
859 */
860
861 /* Sync the DMA map. */
862 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
863 BUS_DMASYNC_PREWRITE);
864
865 /* Initialize the fragment list. */
866 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
867 tfd->tfd_frags[seg].frag_word0 =
868 htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
869 FRAG_LEN(dmamap->dm_segs[seg].ds_len));
870 totlen += dmamap->dm_segs[seg].ds_len;
871 }
872
873 #ifdef STGE_EVENT_COUNTERS
874 switch (dmamap->dm_nsegs) {
875 case 1:
876 STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
877 break;
878 case 2:
879 STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
880 break;
881 case 3:
882 STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
883 break;
884 case 4:
885 STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
886 break;
887 case 5:
888 STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
889 break;
890 default:
891 STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
892 break;
893 }
894 #endif /* STGE_EVENT_COUNTERS */
895
896 /*
897 * Initialize checksumming flags in the descriptor.
898 * Byte-swap constants so the compiler can optimize.
899 */
900 csum_flags = 0;
901 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
902 STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
903 csum_flags |= TFD_IPChecksumEnable;
904 }
905
906 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
907 STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
908 csum_flags |= TFD_TCPChecksumEnable;
909 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
910 STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
911 csum_flags |= TFD_UDPChecksumEnable;
912 }
913
914 /*
915 * Initialize the descriptor and give it to the chip.
916 * Check to see if we have a VLAN tag to insert.
917 */
918
919 tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
920 TFD_FragCount(seg) | csum_flags |
921 (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
922 TFD_TxDMAIndicate : 0);
923 if (mtag) {
924 #if 0
925 struct ether_header *eh =
926 mtod(m0, struct ether_header *);
927 u_int16_t etype = ntohs(eh->ether_type);
928 printf("%s: xmit (tag %d) etype %x\n",
929 ifp->if_xname, *mtod(n, int *), etype);
930 #endif
931 tfc |= TFD_VLANTagInsert |
932 #ifdef STGE_VLAN_CFI
933 TFD_CFI |
934 #endif
935 TFD_VID(VLAN_TAG_VALUE(mtag));
936 }
937 tfd->tfd_control = htole64(tfc);
938
939 /* Sync the descriptor. */
940 STGE_CDTXSYNC(sc, nexttx,
941 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
942
943 /*
944 * Kick the transmit DMA logic.
945 */
946 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
947 sc->sc_DMACtrl | DMAC_TxDMAPollNow);
948
949 /*
950 * Store a pointer to the packet so we can free it later.
951 */
952 ds->ds_mbuf = m0;
953
954 /* Advance the tx pointer. */
955 sc->sc_txpending++;
956 sc->sc_txlast = nexttx;
957
958 #if NBPFILTER > 0
959 /*
960 * Pass the packet to any BPF listeners.
961 */
962 if (ifp->if_bpf)
963 bpf_mtap(ifp->if_bpf, m0);
964 #endif /* NBPFILTER > 0 */
965 }
966
967 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
968 /* No more slots left; notify upper layer. */
969 ifp->if_flags |= IFF_OACTIVE;
970 }
971
972 if (sc->sc_txpending != opending) {
973 /*
974 * We enqueued packets. If the transmitter was idle,
975 * reset the txdirty pointer.
976 */
977 if (opending == 0)
978 sc->sc_txdirty = firsttx;
979
980 /* Set a watchdog timer in case the chip flakes out. */
981 ifp->if_timer = 5;
982 }
983 }
984
985 /*
986 * stge_watchdog: [ifnet interface function]
987 *
988 * Watchdog timer handler.
989 */
990 static void
991 stge_watchdog(struct ifnet *ifp)
992 {
993 struct stge_softc *sc = ifp->if_softc;
994
995 /*
996 * Sweep up first, since we don't interrupt every frame.
997 */
998 stge_txintr(sc);
999 if (sc->sc_txpending != 0) {
1000 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1001 ifp->if_oerrors++;
1002
1003 (void) stge_init(ifp);
1004
1005 /* Try to get more packets going. */
1006 stge_start(ifp);
1007 }
1008 }
1009
1010 /*
1011 * stge_ioctl: [ifnet interface function]
1012 *
1013 * Handle control requests from the operator.
1014 */
1015 static int
1016 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1017 {
1018 struct stge_softc *sc = ifp->if_softc;
1019 int s, error;
1020
1021 s = splnet();
1022
1023 error = ether_ioctl(ifp, cmd, data);
1024 if (error == ENETRESET) {
1025 error = 0;
1026
1027 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1028 ;
1029 else if (ifp->if_flags & IFF_RUNNING) {
1030 /*
1031 * Multicast list has changed; set the hardware filter
1032 * accordingly.
1033 */
1034 stge_set_filter(sc);
1035 }
1036 }
1037
1038 /* Try to get more packets going. */
1039 stge_start(ifp);
1040
1041 splx(s);
1042 return (error);
1043 }
1044
1045 /*
1046 * stge_intr:
1047 *
1048 * Interrupt service routine.
1049 */
1050 static int
1051 stge_intr(void *arg)
1052 {
1053 struct stge_softc *sc = arg;
1054 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1055 uint32_t txstat;
1056 int wantinit;
1057 uint16_t isr;
1058
1059 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1060 IS_InterruptStatus) == 0)
1061 return (0);
1062
1063 for (wantinit = 0; wantinit == 0;) {
1064 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1065 if ((isr & sc->sc_IntEnable) == 0)
1066 break;
1067
1068 /* Host interface errors. */
1069 if (isr & IS_HostError) {
1070 printf("%s: Host interface error\n",
1071 device_xname(sc->sc_dev));
1072 wantinit = 1;
1073 continue;
1074 }
1075
1076 /* Receive interrupts. */
1077 if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
1078 STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1079 stge_rxintr(sc);
1080 if (isr & IS_RFDListEnd) {
1081 printf("%s: receive ring overflow\n",
1082 device_xname(sc->sc_dev));
1083 /*
1084 * XXX Should try to recover from this
1085 * XXX more gracefully.
1086 */
1087 wantinit = 1;
1088 }
1089 }
1090
1091 /* Transmit interrupts. */
1092 if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
1093 #ifdef STGE_EVENT_COUNTERS
1094 if (isr & IS_TxDMAComplete)
1095 STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1096 #endif
1097 stge_txintr(sc);
1098 }
1099
1100 /* Statistics overflow. */
1101 if (isr & IS_UpdateStats)
1102 stge_stats_update(sc);
1103
1104 /* Transmission errors. */
1105 if (isr & IS_TxComplete) {
1106 STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1107 for (;;) {
1108 txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1109 STGE_TxStatus);
1110 if ((txstat & TS_TxComplete) == 0)
1111 break;
1112 if (txstat & TS_TxUnderrun) {
1113 sc->sc_txthresh++;
1114 if (sc->sc_txthresh > 0x0fff)
1115 sc->sc_txthresh = 0x0fff;
1116 printf("%s: transmit underrun, new "
1117 "threshold: %d bytes\n",
1118 device_xname(sc->sc_dev),
1119 sc->sc_txthresh << 5);
1120 }
1121 if (txstat & TS_MaxCollisions)
1122 printf("%s: excessive collisions\n",
1123 device_xname(sc->sc_dev));
1124 }
1125 wantinit = 1;
1126 }
1127
1128 }
1129
1130 if (wantinit)
1131 stge_init(ifp);
1132
1133 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1134 sc->sc_IntEnable);
1135
1136 /* Try to get more packets going. */
1137 stge_start(ifp);
1138
1139 return (1);
1140 }
1141
1142 /*
1143 * stge_txintr:
1144 *
1145 * Helper; handle transmit interrupts.
1146 */
1147 static void
1148 stge_txintr(struct stge_softc *sc)
1149 {
1150 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1151 struct stge_descsoft *ds;
1152 uint64_t control;
1153 int i;
1154
1155 ifp->if_flags &= ~IFF_OACTIVE;
1156
1157 /*
1158 * Go through our Tx list and free mbufs for those
1159 * frames which have been transmitted.
1160 */
1161 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1162 i = STGE_NEXTTX(i), sc->sc_txpending--) {
1163 ds = &sc->sc_txsoft[i];
1164
1165 STGE_CDTXSYNC(sc, i,
1166 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1167
1168 control = le64toh(sc->sc_txdescs[i].tfd_control);
1169 if ((control & TFD_TFDDone) == 0)
1170 break;
1171
1172 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1173 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1174 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1175 m_freem(ds->ds_mbuf);
1176 ds->ds_mbuf = NULL;
1177 }
1178
1179 /* Update the dirty transmit buffer pointer. */
1180 sc->sc_txdirty = i;
1181
1182 /*
1183 * If there are no more pending transmissions, cancel the watchdog
1184 * timer.
1185 */
1186 if (sc->sc_txpending == 0)
1187 ifp->if_timer = 0;
1188 }
1189
1190 /*
1191 * stge_rxintr:
1192 *
1193 * Helper; handle receive interrupts.
1194 */
1195 static void
1196 stge_rxintr(struct stge_softc *sc)
1197 {
1198 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1199 struct stge_descsoft *ds;
1200 struct mbuf *m, *tailm;
1201 uint64_t status;
1202 int i, len;
1203
1204 for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1205 ds = &sc->sc_rxsoft[i];
1206
1207 STGE_CDRXSYNC(sc, i,
1208 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1209
1210 status = le64toh(sc->sc_rxdescs[i].rfd_status);
1211
1212 if ((status & RFD_RFDDone) == 0)
1213 break;
1214
1215 if (__predict_false(sc->sc_rxdiscard)) {
1216 STGE_INIT_RXDESC(sc, i);
1217 if (status & RFD_FrameEnd) {
1218 /* Reset our state. */
1219 sc->sc_rxdiscard = 0;
1220 }
1221 continue;
1222 }
1223
1224 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1225 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1226
1227 m = ds->ds_mbuf;
1228
1229 /*
1230 * Add a new receive buffer to the ring.
1231 */
1232 if (stge_add_rxbuf(sc, i) != 0) {
1233 /*
1234 * Failed, throw away what we've done so
1235 * far, and discard the rest of the packet.
1236 */
1237 ifp->if_ierrors++;
1238 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1239 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1240 STGE_INIT_RXDESC(sc, i);
1241 if ((status & RFD_FrameEnd) == 0)
1242 sc->sc_rxdiscard = 1;
1243 if (sc->sc_rxhead != NULL)
1244 m_freem(sc->sc_rxhead);
1245 STGE_RXCHAIN_RESET(sc);
1246 continue;
1247 }
1248
1249 #ifdef DIAGNOSTIC
1250 if (status & RFD_FrameStart) {
1251 KASSERT(sc->sc_rxhead == NULL);
1252 KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1253 }
1254 #endif
1255
1256 STGE_RXCHAIN_LINK(sc, m);
1257
1258 /*
1259 * If this is not the end of the packet, keep
1260 * looking.
1261 */
1262 if ((status & RFD_FrameEnd) == 0) {
1263 sc->sc_rxlen += m->m_len;
1264 continue;
1265 }
1266
1267 /*
1268 * Okay, we have the entire packet now...
1269 */
1270 *sc->sc_rxtailp = NULL;
1271 m = sc->sc_rxhead;
1272 tailm = sc->sc_rxtail;
1273
1274 STGE_RXCHAIN_RESET(sc);
1275
1276 /*
1277 * If the packet had an error, drop it. Note we
1278 * count the error later in the periodic stats update.
1279 */
1280 if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1281 RFD_RxAlignmentError | RFD_RxFCSError |
1282 RFD_RxLengthError)) {
1283 m_freem(m);
1284 continue;
1285 }
1286
1287 /*
1288 * No errors.
1289 *
1290 * Note we have configured the chip to not include
1291 * the CRC at the end of the packet.
1292 */
1293 len = RFD_RxDMAFrameLen(status);
1294 tailm->m_len = len - sc->sc_rxlen;
1295
1296 /*
1297 * If the packet is small enough to fit in a
1298 * single header mbuf, allocate one and copy
1299 * the data into it. This greatly reduces
1300 * memory consumption when we receive lots
1301 * of small packets.
1302 */
1303 if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1304 struct mbuf *nm;
1305 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1306 if (nm == NULL) {
1307 ifp->if_ierrors++;
1308 m_freem(m);
1309 continue;
1310 }
1311 nm->m_data += 2;
1312 nm->m_pkthdr.len = nm->m_len = len;
1313 m_copydata(m, 0, len, mtod(nm, void *));
1314 m_freem(m);
1315 m = nm;
1316 }
1317
1318 /*
1319 * Set the incoming checksum information for the packet.
1320 */
1321 if (status & RFD_IPDetected) {
1322 STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1323 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1324 if (status & RFD_IPError)
1325 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1326 if (status & RFD_TCPDetected) {
1327 STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1328 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1329 if (status & RFD_TCPError)
1330 m->m_pkthdr.csum_flags |=
1331 M_CSUM_TCP_UDP_BAD;
1332 } else if (status & RFD_UDPDetected) {
1333 STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1334 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1335 if (status & RFD_UDPError)
1336 m->m_pkthdr.csum_flags |=
1337 M_CSUM_TCP_UDP_BAD;
1338 }
1339 }
1340
1341 m->m_pkthdr.rcvif = ifp;
1342 m->m_pkthdr.len = len;
1343
1344 #if NBPFILTER > 0
1345 /*
1346 * Pass this up to any BPF listeners, but only
1347 * pass if up the stack if it's for us.
1348 */
1349 if (ifp->if_bpf)
1350 bpf_mtap(ifp->if_bpf, m);
1351 #endif /* NBPFILTER > 0 */
1352 #ifdef STGE_VLAN_UNTAG
1353 /*
1354 * Check for VLAN tagged packets
1355 */
1356 if (status & RFD_VLANDetected)
1357 VLAN_INPUT_TAG(ifp, m, RFD_TCI(status), continue);
1358
1359 #endif
1360 #if 0
1361 if (status & RFD_VLANDetected) {
1362 struct ether_header *eh;
1363 u_int16_t etype;
1364
1365 eh = mtod(m, struct ether_header *);
1366 etype = ntohs(eh->ether_type);
1367 printf("%s: VLANtag detected (TCI %d) etype %x\n",
1368 ifp->if_xname, (u_int16_t) RFD_TCI(status),
1369 etype);
1370 }
1371 #endif
1372 /* Pass it on. */
1373 (*ifp->if_input)(ifp, m);
1374 }
1375
1376 /* Update the receive pointer. */
1377 sc->sc_rxptr = i;
1378 }
1379
1380 /*
1381 * stge_tick:
1382 *
1383 * One second timer, used to tick the MII.
1384 */
1385 static void
1386 stge_tick(void *arg)
1387 {
1388 struct stge_softc *sc = arg;
1389 int s;
1390
1391 s = splnet();
1392 mii_tick(&sc->sc_mii);
1393 stge_stats_update(sc);
1394 splx(s);
1395
1396 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1397 }
1398
1399 /*
1400 * stge_stats_update:
1401 *
1402 * Read the TC9021 statistics counters.
1403 */
1404 static void
1405 stge_stats_update(struct stge_softc *sc)
1406 {
1407 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1408 bus_space_tag_t st = sc->sc_st;
1409 bus_space_handle_t sh = sc->sc_sh;
1410
1411 (void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1412
1413 ifp->if_ipackets +=
1414 bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1415
1416 ifp->if_ierrors +=
1417 (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1418
1419 (void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1420
1421 ifp->if_opackets +=
1422 bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1423
1424 ifp->if_collisions +=
1425 bus_space_read_4(st, sh, STGE_LateCollisions) +
1426 bus_space_read_4(st, sh, STGE_MultiColFrames) +
1427 bus_space_read_4(st, sh, STGE_SingleColFrames);
1428
1429 ifp->if_oerrors +=
1430 (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1431 (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1432 }
1433
1434 /*
1435 * stge_reset:
1436 *
1437 * Perform a soft reset on the TC9021.
1438 */
1439 static void
1440 stge_reset(struct stge_softc *sc)
1441 {
1442 uint32_t ac;
1443 int i;
1444
1445 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1446
1447 /*
1448 * Only assert RstOut if we're fiber. We need GMII clocks
1449 * to be present in order for the reset to complete on fiber
1450 * cards.
1451 */
1452 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1453 ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1454 AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1455 (sc->sc_usefiber ? AC_RstOut : 0));
1456
1457 delay(50000);
1458
1459 for (i = 0; i < STGE_TIMEOUT; i++) {
1460 delay(5000);
1461 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1462 AC_ResetBusy) == 0)
1463 break;
1464 }
1465
1466 if (i == STGE_TIMEOUT)
1467 printf("%s: reset failed to complete\n",
1468 device_xname(sc->sc_dev));
1469
1470 delay(1000);
1471 }
1472
1473 /*
1474 * stge_init: [ ifnet interface function ]
1475 *
1476 * Initialize the interface. Must be called at splnet().
1477 */
1478 static int
1479 stge_init(struct ifnet *ifp)
1480 {
1481 struct stge_softc *sc = ifp->if_softc;
1482 bus_space_tag_t st = sc->sc_st;
1483 bus_space_handle_t sh = sc->sc_sh;
1484 struct stge_descsoft *ds;
1485 int i, error = 0;
1486
1487 /*
1488 * Cancel any pending I/O.
1489 */
1490 stge_stop(ifp, 0);
1491
1492 /*
1493 * Reset the chip to a known state.
1494 */
1495 stge_reset(sc);
1496
1497 /*
1498 * Initialize the transmit descriptor ring.
1499 */
1500 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1501 for (i = 0; i < STGE_NTXDESC; i++) {
1502 sc->sc_txdescs[i].tfd_next = htole64(
1503 STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1504 sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1505 }
1506 sc->sc_txpending = 0;
1507 sc->sc_txdirty = 0;
1508 sc->sc_txlast = STGE_NTXDESC - 1;
1509
1510 /*
1511 * Initialize the receive descriptor and receive job
1512 * descriptor rings.
1513 */
1514 for (i = 0; i < STGE_NRXDESC; i++) {
1515 ds = &sc->sc_rxsoft[i];
1516 if (ds->ds_mbuf == NULL) {
1517 if ((error = stge_add_rxbuf(sc, i)) != 0) {
1518 printf("%s: unable to allocate or map rx "
1519 "buffer %d, error = %d\n",
1520 device_xname(sc->sc_dev), i, error);
1521 /*
1522 * XXX Should attempt to run with fewer receive
1523 * XXX buffers instead of just failing.
1524 */
1525 stge_rxdrain(sc);
1526 goto out;
1527 }
1528 } else
1529 STGE_INIT_RXDESC(sc, i);
1530 }
1531 sc->sc_rxptr = 0;
1532 sc->sc_rxdiscard = 0;
1533 STGE_RXCHAIN_RESET(sc);
1534
1535 /* Set the station address. */
1536 for (i = 0; i < 6; i++)
1537 bus_space_write_1(st, sh, STGE_StationAddress0 + i,
1538 CLLADDR(ifp->if_sadl)[i]);
1539
1540 /*
1541 * Set the statistics masks. Disable all the RMON stats,
1542 * and disable selected stats in the non-RMON stats registers.
1543 */
1544 bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1545 bus_space_write_4(st, sh, STGE_StatisticsMask,
1546 (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1547 (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1548 (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1549 (1U << 21));
1550
1551 /* Set up the receive filter. */
1552 stge_set_filter(sc);
1553
1554 /*
1555 * Give the transmit and receive ring to the chip.
1556 */
1557 bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1558 bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1559 STGE_CDTXADDR(sc, sc->sc_txdirty));
1560
1561 bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1562 bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1563 STGE_CDRXADDR(sc, sc->sc_rxptr));
1564
1565 /*
1566 * Initialize the Tx auto-poll period. It's OK to make this number
1567 * large (255 is the max, but we use 127) -- we explicitly kick the
1568 * transmit engine when there's actually a packet.
1569 */
1570 bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1571
1572 /* ..and the Rx auto-poll period. */
1573 bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1574
1575 /* Initialize the Tx start threshold. */
1576 bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1577
1578 /* RX DMA thresholds, from linux */
1579 bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
1580 bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
1581
1582 /*
1583 * Initialize the Rx DMA interrupt control register. We
1584 * request an interrupt after every incoming packet, but
1585 * defer it for 32us (64 * 512 ns). When the number of
1586 * interrupts pending reaches 8, we stop deferring the
1587 * interrupt, and signal it immediately.
1588 */
1589 bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1590 RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1591
1592 /*
1593 * Initialize the interrupt mask.
1594 */
1595 sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1596 IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1597 bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1598 bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1599
1600 /*
1601 * Configure the DMA engine.
1602 * XXX Should auto-tune TxBurstLimit.
1603 */
1604 bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1605 DMAC_TxBurstLimit(3));
1606
1607 /*
1608 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1609 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1610 * empty again.
1611 */
1612 bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1613 bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1614
1615 /*
1616 * Set the maximum frame size.
1617 */
1618 bus_space_write_2(st, sh, STGE_MaxFrameSize,
1619 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1620 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1621 ETHER_VLAN_ENCAP_LEN : 0));
1622
1623 /*
1624 * Initialize MacCtrl -- do it before setting the media,
1625 * as setting the media will actually program the register.
1626 *
1627 * Note: We have to poke the IFS value before poking
1628 * anything else.
1629 */
1630 sc->sc_MACCtrl = MC_IFSSelect(0);
1631 bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1632 sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1633 #ifdef STGE_VLAN_UNTAG
1634 sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1635 #endif
1636
1637 if (sc->sc_rev >= 6) { /* >= B.2 */
1638 /* Multi-frag frame bug work-around. */
1639 bus_space_write_2(st, sh, STGE_DebugCtrl,
1640 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1641
1642 /* Tx Poll Now bug work-around. */
1643 bus_space_write_2(st, sh, STGE_DebugCtrl,
1644 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1645 /* XXX ? from linux */
1646 bus_space_write_2(st, sh, STGE_DebugCtrl,
1647 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
1648 }
1649
1650 /*
1651 * Set the current media.
1652 */
1653 if ((error = ether_mediachange(ifp)) != 0)
1654 goto out;
1655
1656 /*
1657 * Start the one second MII clock.
1658 */
1659 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1660
1661 /*
1662 * ...all done!
1663 */
1664 ifp->if_flags |= IFF_RUNNING;
1665 ifp->if_flags &= ~IFF_OACTIVE;
1666
1667 out:
1668 if (error)
1669 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1670 return (error);
1671 }
1672
1673 /*
1674 * stge_drain:
1675 *
1676 * Drain the receive queue.
1677 */
1678 static void
1679 stge_rxdrain(struct stge_softc *sc)
1680 {
1681 struct stge_descsoft *ds;
1682 int i;
1683
1684 for (i = 0; i < STGE_NRXDESC; i++) {
1685 ds = &sc->sc_rxsoft[i];
1686 if (ds->ds_mbuf != NULL) {
1687 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1688 ds->ds_mbuf->m_next = NULL;
1689 m_freem(ds->ds_mbuf);
1690 ds->ds_mbuf = NULL;
1691 }
1692 }
1693 }
1694
1695 /*
1696 * stge_stop: [ ifnet interface function ]
1697 *
1698 * Stop transmission on the interface.
1699 */
1700 static void
1701 stge_stop(struct ifnet *ifp, int disable)
1702 {
1703 struct stge_softc *sc = ifp->if_softc;
1704 struct stge_descsoft *ds;
1705 int i;
1706
1707 /*
1708 * Stop the one second clock.
1709 */
1710 callout_stop(&sc->sc_tick_ch);
1711
1712 /* Down the MII. */
1713 mii_down(&sc->sc_mii);
1714
1715 /*
1716 * Disable interrupts.
1717 */
1718 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1719
1720 /*
1721 * Stop receiver, transmitter, and stats update.
1722 */
1723 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1724 MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1725
1726 /*
1727 * Stop the transmit and receive DMA.
1728 */
1729 stge_dma_wait(sc);
1730 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1731 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1732 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1733 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1734
1735 /*
1736 * Release any queued transmit buffers.
1737 */
1738 for (i = 0; i < STGE_NTXDESC; i++) {
1739 ds = &sc->sc_txsoft[i];
1740 if (ds->ds_mbuf != NULL) {
1741 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1742 m_freem(ds->ds_mbuf);
1743 ds->ds_mbuf = NULL;
1744 }
1745 }
1746
1747 /*
1748 * Mark the interface down and cancel the watchdog timer.
1749 */
1750 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1751 ifp->if_timer = 0;
1752
1753 if (disable)
1754 stge_rxdrain(sc);
1755 }
1756
1757 static int
1758 stge_eeprom_wait(struct stge_softc *sc)
1759 {
1760 int i;
1761
1762 for (i = 0; i < STGE_TIMEOUT; i++) {
1763 delay(1000);
1764 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1765 EC_EepromBusy) == 0)
1766 return (0);
1767 }
1768 return (1);
1769 }
1770
1771 /*
1772 * stge_read_eeprom:
1773 *
1774 * Read data from the serial EEPROM.
1775 */
1776 static void
1777 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1778 {
1779
1780 if (stge_eeprom_wait(sc))
1781 printf("%s: EEPROM failed to come ready\n",
1782 device_xname(sc->sc_dev));
1783
1784 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1785 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1786 if (stge_eeprom_wait(sc))
1787 printf("%s: EEPROM read timed out\n",
1788 device_xname(sc->sc_dev));
1789 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1790 }
1791
1792 /*
1793 * stge_add_rxbuf:
1794 *
1795 * Add a receive buffer to the indicated descriptor.
1796 */
1797 static int
1798 stge_add_rxbuf(struct stge_softc *sc, int idx)
1799 {
1800 struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1801 struct mbuf *m;
1802 int error;
1803
1804 MGETHDR(m, M_DONTWAIT, MT_DATA);
1805 if (m == NULL)
1806 return (ENOBUFS);
1807
1808 MCLGET(m, M_DONTWAIT);
1809 if ((m->m_flags & M_EXT) == 0) {
1810 m_freem(m);
1811 return (ENOBUFS);
1812 }
1813
1814 m->m_data = m->m_ext.ext_buf + 2;
1815 m->m_len = MCLBYTES - 2;
1816
1817 if (ds->ds_mbuf != NULL)
1818 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1819
1820 ds->ds_mbuf = m;
1821
1822 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1823 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1824 if (error) {
1825 printf("%s: can't load rx DMA map %d, error = %d\n",
1826 device_xname(sc->sc_dev), idx, error);
1827 panic("stge_add_rxbuf"); /* XXX */
1828 }
1829
1830 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1831 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1832
1833 STGE_INIT_RXDESC(sc, idx);
1834
1835 return (0);
1836 }
1837
1838 /*
1839 * stge_set_filter:
1840 *
1841 * Set up the receive filter.
1842 */
1843 static void
1844 stge_set_filter(struct stge_softc *sc)
1845 {
1846 struct ethercom *ec = &sc->sc_ethercom;
1847 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1848 struct ether_multi *enm;
1849 struct ether_multistep step;
1850 uint32_t crc;
1851 uint32_t mchash[2];
1852
1853 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1854 if (ifp->if_flags & IFF_BROADCAST)
1855 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1856
1857 /* XXX: ST1023 only works in promiscuous mode */
1858 if (sc->sc_stge1023)
1859 ifp->if_flags |= IFF_PROMISC;
1860
1861 if (ifp->if_flags & IFF_PROMISC) {
1862 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1863 goto allmulti;
1864 }
1865
1866 /*
1867 * Set up the multicast address filter by passing all multicast
1868 * addresses through a CRC generator, and then using the low-order
1869 * 6 bits as an index into the 64 bit multicast hash table. The
1870 * high order bits select the register, while the rest of the bits
1871 * select the bit within the register.
1872 */
1873
1874 memset(mchash, 0, sizeof(mchash));
1875
1876 ETHER_FIRST_MULTI(step, ec, enm);
1877 if (enm == NULL)
1878 goto done;
1879
1880 while (enm != NULL) {
1881 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1882 /*
1883 * We must listen to a range of multicast addresses.
1884 * For now, just accept all multicasts, rather than
1885 * trying to set only those filter bits needed to match
1886 * the range. (At this time, the only use of address
1887 * ranges is for IP multicast routing, for which the
1888 * range is big enough to require all bits set.)
1889 */
1890 goto allmulti;
1891 }
1892
1893 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1894
1895 /* Just want the 6 least significant bits. */
1896 crc &= 0x3f;
1897
1898 /* Set the corresponding bit in the hash table. */
1899 mchash[crc >> 5] |= 1 << (crc & 0x1f);
1900
1901 ETHER_NEXT_MULTI(step, enm);
1902 }
1903
1904 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1905
1906 ifp->if_flags &= ~IFF_ALLMULTI;
1907 goto done;
1908
1909 allmulti:
1910 ifp->if_flags |= IFF_ALLMULTI;
1911 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1912
1913 done:
1914 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1915 /*
1916 * Program the multicast hash table.
1917 */
1918 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1919 mchash[0]);
1920 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1921 mchash[1]);
1922 }
1923
1924 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1925 sc->sc_ReceiveMode);
1926 }
1927
1928 /*
1929 * stge_mii_readreg: [mii interface function]
1930 *
1931 * Read a PHY register on the MII of the TC9021.
1932 */
1933 static int
1934 stge_mii_readreg(device_t self, int phy, int reg)
1935 {
1936
1937 return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1938 }
1939
1940 /*
1941 * stge_mii_writereg: [mii interface function]
1942 *
1943 * Write a PHY register on the MII of the TC9021.
1944 */
1945 static void
1946 stge_mii_writereg(device_t self, int phy, int reg, int val)
1947 {
1948
1949 mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1950 }
1951
1952 /*
1953 * stge_mii_statchg: [mii interface function]
1954 *
1955 * Callback from MII layer when media changes.
1956 */
1957 static void
1958 stge_mii_statchg(device_t self)
1959 {
1960 struct stge_softc *sc = device_private(self);
1961
1962 if (sc->sc_mii.mii_media_active & IFM_FDX)
1963 sc->sc_MACCtrl |= MC_DuplexSelect;
1964 else
1965 sc->sc_MACCtrl &= ~MC_DuplexSelect;
1966
1967 /* XXX 802.1x flow-control? */
1968
1969 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1970 }
1971
1972 /*
1973 * sste_mii_bitbang_read: [mii bit-bang interface function]
1974 *
1975 * Read the MII serial port for the MII bit-bang module.
1976 */
1977 static uint32_t
1978 stge_mii_bitbang_read(device_t self)
1979 {
1980 struct stge_softc *sc = device_private(self);
1981
1982 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
1983 }
1984
1985 /*
1986 * stge_mii_bitbang_write: [mii big-bang interface function]
1987 *
1988 * Write the MII serial port for the MII bit-bang module.
1989 */
1990 static void
1991 stge_mii_bitbang_write(device_t self, uint32_t val)
1992 {
1993 struct stge_softc *sc = device_private(self);
1994
1995 bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
1996 val | sc->sc_PhyCtrl);
1997 }
1998