if_stge.c revision 1.49 1 /* $NetBSD: if_stge.c,v 1.49 2010/01/19 22:07:01 pooka Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the Sundance Tech. TC9021 10/100/1000
34 * Ethernet controller.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.49 2010/01/19 22:07:01 pooka Exp $");
39
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 #include <sys/queue.h>
52
53 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
54
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_media.h>
58 #include <net/if_ether.h>
59
60 #include <net/bpf.h>
61
62 #include <sys/bus.h>
63 #include <sys/intr.h>
64
65 #include <dev/mii/mii.h>
66 #include <dev/mii/miivar.h>
67 #include <dev/mii/mii_bitbang.h>
68
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 #include <dev/pci/pcidevs.h>
72
73 #include <dev/pci/if_stgereg.h>
74
75 /* #define STGE_CU_BUG 1 */
76 #define STGE_VLAN_UNTAG 1
77 /* #define STGE_VLAN_CFI 1 */
78
79 /*
80 * Transmit descriptor list size.
81 */
82 #define STGE_NTXDESC 256
83 #define STGE_NTXDESC_MASK (STGE_NTXDESC - 1)
84 #define STGE_NEXTTX(x) (((x) + 1) & STGE_NTXDESC_MASK)
85
86 /*
87 * Receive descriptor list size.
88 */
89 #define STGE_NRXDESC 256
90 #define STGE_NRXDESC_MASK (STGE_NRXDESC - 1)
91 #define STGE_NEXTRX(x) (((x) + 1) & STGE_NRXDESC_MASK)
92
93 /*
94 * Only interrupt every N frames. Must be a power-of-two.
95 */
96 #define STGE_TXINTR_SPACING 16
97 #define STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
98
99 /*
100 * Control structures are DMA'd to the TC9021 chip. We allocate them in
101 * a single clump that maps to a single DMA segment to make several things
102 * easier.
103 */
104 struct stge_control_data {
105 /*
106 * The transmit descriptors.
107 */
108 struct stge_tfd scd_txdescs[STGE_NTXDESC];
109
110 /*
111 * The receive descriptors.
112 */
113 struct stge_rfd scd_rxdescs[STGE_NRXDESC];
114 };
115
116 #define STGE_CDOFF(x) offsetof(struct stge_control_data, x)
117 #define STGE_CDTXOFF(x) STGE_CDOFF(scd_txdescs[(x)])
118 #define STGE_CDRXOFF(x) STGE_CDOFF(scd_rxdescs[(x)])
119
120 /*
121 * Software state for transmit and receive jobs.
122 */
123 struct stge_descsoft {
124 struct mbuf *ds_mbuf; /* head of our mbuf chain */
125 bus_dmamap_t ds_dmamap; /* our DMA map */
126 };
127
128 /*
129 * Software state per device.
130 */
131 struct stge_softc {
132 device_t sc_dev; /* generic device information */
133 bus_space_tag_t sc_st; /* bus space tag */
134 bus_space_handle_t sc_sh; /* bus space handle */
135 bus_dma_tag_t sc_dmat; /* bus DMA tag */
136 struct ethercom sc_ethercom; /* ethernet common data */
137 int sc_rev; /* silicon revision */
138
139 void *sc_ih; /* interrupt cookie */
140
141 struct mii_data sc_mii; /* MII/media information */
142
143 callout_t sc_tick_ch; /* tick callout */
144
145 bus_dmamap_t sc_cddmamap; /* control data DMA map */
146 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
147
148 /*
149 * Software state for transmit and receive descriptors.
150 */
151 struct stge_descsoft sc_txsoft[STGE_NTXDESC];
152 struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
153
154 /*
155 * Control data structures.
156 */
157 struct stge_control_data *sc_control_data;
158 #define sc_txdescs sc_control_data->scd_txdescs
159 #define sc_rxdescs sc_control_data->scd_rxdescs
160
161 #ifdef STGE_EVENT_COUNTERS
162 /*
163 * Event counters.
164 */
165 struct evcnt sc_ev_txstall; /* Tx stalled */
166 struct evcnt sc_ev_txdmaintr; /* Tx DMA interrupts */
167 struct evcnt sc_ev_txindintr; /* Tx Indicate interrupts */
168 struct evcnt sc_ev_rxintr; /* Rx interrupts */
169
170 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
171 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
172 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
173 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
174 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
175 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
176 struct evcnt sc_ev_txcopy; /* Tx packets that we had to copy */
177
178 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
179 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
180 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-bound */
181
182 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
183 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
184 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
185 #endif /* STGE_EVENT_COUNTERS */
186
187 int sc_txpending; /* number of Tx requests pending */
188 int sc_txdirty; /* first dirty Tx descriptor */
189 int sc_txlast; /* last used Tx descriptor */
190
191 int sc_rxptr; /* next ready Rx descriptor/descsoft */
192 int sc_rxdiscard;
193 int sc_rxlen;
194 struct mbuf *sc_rxhead;
195 struct mbuf *sc_rxtail;
196 struct mbuf **sc_rxtailp;
197
198 int sc_txthresh; /* Tx threshold */
199 uint32_t sc_usefiber:1; /* if we're fiber */
200 uint32_t sc_stge1023:1; /* are we a 1023 */
201 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
202 uint32_t sc_MACCtrl; /* prototype MacCtrl register */
203 uint16_t sc_IntEnable; /* prototype IntEnable register */
204 uint16_t sc_ReceiveMode; /* prototype ReceiveMode register */
205 uint8_t sc_PhyCtrl; /* prototype PhyCtrl register */
206 };
207
208 #define STGE_RXCHAIN_RESET(sc) \
209 do { \
210 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
211 *(sc)->sc_rxtailp = NULL; \
212 (sc)->sc_rxlen = 0; \
213 } while (/*CONSTCOND*/0)
214
215 #define STGE_RXCHAIN_LINK(sc, m) \
216 do { \
217 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
218 (sc)->sc_rxtailp = &(m)->m_next; \
219 } while (/*CONSTCOND*/0)
220
221 #ifdef STGE_EVENT_COUNTERS
222 #define STGE_EVCNT_INCR(ev) (ev)->ev_count++
223 #else
224 #define STGE_EVCNT_INCR(ev) /* nothing */
225 #endif
226
227 #define STGE_CDTXADDR(sc, x) ((sc)->sc_cddma + STGE_CDTXOFF((x)))
228 #define STGE_CDRXADDR(sc, x) ((sc)->sc_cddma + STGE_CDRXOFF((x)))
229
230 #define STGE_CDTXSYNC(sc, x, ops) \
231 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
232 STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
233
234 #define STGE_CDRXSYNC(sc, x, ops) \
235 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
236 STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
237
238 #define STGE_INIT_RXDESC(sc, x) \
239 do { \
240 struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
241 struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
242 \
243 /* \
244 * Note: We scoot the packet forward 2 bytes in the buffer \
245 * so that the payload after the Ethernet header is aligned \
246 * to a 4-byte boundary. \
247 */ \
248 __rfd->rfd_frag.frag_word0 = \
249 htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
250 FRAG_LEN(MCLBYTES - 2)); \
251 __rfd->rfd_next = \
252 htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x)))); \
253 __rfd->rfd_status = 0; \
254 STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
255 } while (/*CONSTCOND*/0)
256
257 #define STGE_TIMEOUT 1000
258
259 static void stge_start(struct ifnet *);
260 static void stge_watchdog(struct ifnet *);
261 static int stge_ioctl(struct ifnet *, u_long, void *);
262 static int stge_init(struct ifnet *);
263 static void stge_stop(struct ifnet *, int);
264
265 static bool stge_shutdown(device_t, int);
266
267 static void stge_reset(struct stge_softc *);
268 static void stge_rxdrain(struct stge_softc *);
269 static int stge_add_rxbuf(struct stge_softc *, int);
270 static void stge_read_eeprom(struct stge_softc *, int, uint16_t *);
271 static void stge_tick(void *);
272
273 static void stge_stats_update(struct stge_softc *);
274
275 static void stge_set_filter(struct stge_softc *);
276
277 static int stge_intr(void *);
278 static void stge_txintr(struct stge_softc *);
279 static void stge_rxintr(struct stge_softc *);
280
281 static int stge_mii_readreg(device_t, int, int);
282 static void stge_mii_writereg(device_t, int, int, int);
283 static void stge_mii_statchg(device_t);
284
285 static int stge_match(device_t, cfdata_t, void *);
286 static void stge_attach(device_t, device_t, void *);
287
288 int stge_copy_small = 0;
289
290 CFATTACH_DECL_NEW(stge, sizeof(struct stge_softc),
291 stge_match, stge_attach, NULL, NULL);
292
293 static uint32_t stge_mii_bitbang_read(device_t);
294 static void stge_mii_bitbang_write(device_t, uint32_t);
295
296 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
297 stge_mii_bitbang_read,
298 stge_mii_bitbang_write,
299 {
300 PC_MgmtData, /* MII_BIT_MDO */
301 PC_MgmtData, /* MII_BIT_MDI */
302 PC_MgmtClk, /* MII_BIT_MDC */
303 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
304 0, /* MII_BIT_DIR_PHY_HOST */
305 }
306 };
307
308 /*
309 * Devices supported by this driver.
310 */
311 static const struct stge_product {
312 pci_vendor_id_t stge_vendor;
313 pci_product_id_t stge_product;
314 const char *stge_name;
315 } stge_products[] = {
316 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST1023,
317 "Sundance ST-1023 Gigabit Ethernet" },
318
319 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST2021,
320 "Sundance ST-2021 Gigabit Ethernet" },
321
322 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021,
323 "Tamarack TC9021 Gigabit Ethernet" },
324
325 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021_ALT,
326 "Tamarack TC9021 Gigabit Ethernet" },
327
328 /*
329 * The Sundance sample boards use the Sundance vendor ID,
330 * but the Tamarack product ID.
331 */
332 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021,
333 "Sundance TC9021 Gigabit Ethernet" },
334
335 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021_ALT,
336 "Sundance TC9021 Gigabit Ethernet" },
337
338 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL4000,
339 "D-Link DL-4000 Gigabit Ethernet" },
340
341 { PCI_VENDOR_ANTARES, PCI_PRODUCT_ANTARES_TC9021,
342 "Antares Gigabit Ethernet" },
343
344 { 0, 0,
345 NULL },
346 };
347
348 static const struct stge_product *
349 stge_lookup(const struct pci_attach_args *pa)
350 {
351 const struct stge_product *sp;
352
353 for (sp = stge_products; sp->stge_name != NULL; sp++) {
354 if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
355 PCI_PRODUCT(pa->pa_id) == sp->stge_product)
356 return (sp);
357 }
358 return (NULL);
359 }
360
361 static int
362 stge_match(device_t parent, cfdata_t cf, void *aux)
363 {
364 struct pci_attach_args *pa = aux;
365
366 if (stge_lookup(pa) != NULL)
367 return (1);
368
369 return (0);
370 }
371
372 static void
373 stge_attach(device_t parent, device_t self, void *aux)
374 {
375 struct stge_softc *sc = device_private(self);
376 struct pci_attach_args *pa = aux;
377 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
378 pci_chipset_tag_t pc = pa->pa_pc;
379 pci_intr_handle_t ih;
380 const char *intrstr = NULL;
381 bus_space_tag_t iot, memt;
382 bus_space_handle_t ioh, memh;
383 bus_dma_segment_t seg;
384 int ioh_valid, memh_valid;
385 int i, rseg, error;
386 const struct stge_product *sp;
387 uint8_t enaddr[ETHER_ADDR_LEN];
388
389 callout_init(&sc->sc_tick_ch, 0);
390
391 sp = stge_lookup(pa);
392 if (sp == NULL) {
393 printf("\n");
394 panic("ste_attach: impossible");
395 }
396
397 sc->sc_rev = PCI_REVISION(pa->pa_class);
398
399 aprint_normal(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
400
401 /*
402 * Map the device.
403 */
404 ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
405 PCI_MAPREG_TYPE_IO, 0,
406 &iot, &ioh, NULL, NULL) == 0);
407 memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
408 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
409 &memt, &memh, NULL, NULL) == 0);
410
411 if (memh_valid) {
412 sc->sc_st = memt;
413 sc->sc_sh = memh;
414 } else if (ioh_valid) {
415 sc->sc_st = iot;
416 sc->sc_sh = ioh;
417 } else {
418 aprint_error_dev(self, "unable to map device registers\n");
419 return;
420 }
421
422 sc->sc_dmat = pa->pa_dmat;
423
424 /* Enable bus mastering. */
425 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
426 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
427 PCI_COMMAND_MASTER_ENABLE);
428
429 /* power up chip */
430 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
431 error != EOPNOTSUPP) {
432 aprint_error_dev(self, "cannot activate %d\n",
433 error);
434 return;
435 }
436 /*
437 * Map and establish our interrupt.
438 */
439 if (pci_intr_map(pa, &ih)) {
440 aprint_error_dev(self, "unable to map interrupt\n");
441 return;
442 }
443 intrstr = pci_intr_string(pc, ih);
444 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
445 if (sc->sc_ih == NULL) {
446 aprint_error_dev(self, "unable to establish interrupt");
447 if (intrstr != NULL)
448 aprint_error(" at %s", intrstr);
449 aprint_error("\n");
450 return;
451 }
452 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
453
454 /*
455 * Allocate the control data structures, and create and load the
456 * DMA map for it.
457 */
458 if ((error = bus_dmamem_alloc(sc->sc_dmat,
459 sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
460 0)) != 0) {
461 aprint_error_dev(self,
462 "unable to allocate control data, error = %d\n",
463 error);
464 goto fail_0;
465 }
466
467 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
468 sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
469 BUS_DMA_COHERENT)) != 0) {
470 aprint_error_dev(self,
471 "unable to map control data, error = %d\n",
472 error);
473 goto fail_1;
474 }
475
476 if ((error = bus_dmamap_create(sc->sc_dmat,
477 sizeof(struct stge_control_data), 1,
478 sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
479 aprint_error_dev(self,
480 "unable to create control data DMA map, error = %d\n",
481 error);
482 goto fail_2;
483 }
484
485 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
486 sc->sc_control_data, sizeof(struct stge_control_data), NULL,
487 0)) != 0) {
488 aprint_error_dev(self,
489 "unable to load control data DMA map, error = %d\n",
490 error);
491 goto fail_3;
492 }
493
494 /*
495 * Create the transmit buffer DMA maps. Note that rev B.3
496 * and earlier seem to have a bug regarding multi-fragment
497 * packets. We need to limit the number of Tx segments on
498 * such chips to 1.
499 */
500 for (i = 0; i < STGE_NTXDESC; i++) {
501 if ((error = bus_dmamap_create(sc->sc_dmat,
502 ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
503 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
504 aprint_error_dev(self,
505 "unable to create tx DMA map %d, error = %d\n",
506 i, error);
507 goto fail_4;
508 }
509 }
510
511 /*
512 * Create the receive buffer DMA maps.
513 */
514 for (i = 0; i < STGE_NRXDESC; i++) {
515 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
516 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
517 aprint_error_dev(self,
518 "unable to create rx DMA map %d, error = %d\n",
519 i, error);
520 goto fail_5;
521 }
522 sc->sc_rxsoft[i].ds_mbuf = NULL;
523 }
524
525 /*
526 * Determine if we're copper or fiber. It affects how we
527 * reset the card.
528 */
529 if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
530 AC_PhyMedia)
531 sc->sc_usefiber = 1;
532 else
533 sc->sc_usefiber = 0;
534
535 /*
536 * Reset the chip to a known state.
537 */
538 stge_reset(sc);
539
540 /*
541 * Reading the station address from the EEPROM doesn't seem
542 * to work, at least on my sample boards. Instead, since
543 * the reset sequence does AutoInit, read it from the station
544 * address registers. For Sundance 1023 you can only read it
545 * from EEPROM.
546 */
547 if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
548 enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
549 STGE_StationAddress0) & 0xff;
550 enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
551 STGE_StationAddress0) >> 8;
552 enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
553 STGE_StationAddress1) & 0xff;
554 enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
555 STGE_StationAddress1) >> 8;
556 enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
557 STGE_StationAddress2) & 0xff;
558 enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
559 STGE_StationAddress2) >> 8;
560 sc->sc_stge1023 = 0;
561 } else {
562 uint16_t myaddr[ETHER_ADDR_LEN / 2];
563 for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
564 stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
565 &myaddr[i]);
566 myaddr[i] = le16toh(myaddr[i]);
567 }
568 (void)memcpy(enaddr, myaddr, sizeof(enaddr));
569 sc->sc_stge1023 = 1;
570 }
571
572 aprint_normal_dev(self, "Ethernet address %s\n",
573 ether_sprintf(enaddr));
574
575 /*
576 * Read some important bits from the PhyCtrl register.
577 */
578 sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
579 STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
580
581 /*
582 * Initialize our media structures and probe the MII.
583 */
584 sc->sc_mii.mii_ifp = ifp;
585 sc->sc_mii.mii_readreg = stge_mii_readreg;
586 sc->sc_mii.mii_writereg = stge_mii_writereg;
587 sc->sc_mii.mii_statchg = stge_mii_statchg;
588 sc->sc_ethercom.ec_mii = &sc->sc_mii;
589 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
590 ether_mediastatus);
591 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
592 MII_OFFSET_ANY, MIIF_DOPAUSE);
593 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
594 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
595 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
596 } else
597 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
598
599 ifp = &sc->sc_ethercom.ec_if;
600 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
601 ifp->if_softc = sc;
602 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
603 ifp->if_ioctl = stge_ioctl;
604 ifp->if_start = stge_start;
605 ifp->if_watchdog = stge_watchdog;
606 ifp->if_init = stge_init;
607 ifp->if_stop = stge_stop;
608 IFQ_SET_READY(&ifp->if_snd);
609
610 /*
611 * The manual recommends disabling early transmit, so we
612 * do. It's disabled anyway, if using IP checksumming,
613 * since the entire packet must be in the FIFO in order
614 * for the chip to perform the checksum.
615 */
616 sc->sc_txthresh = 0x0fff;
617
618 /*
619 * Disable MWI if the PCI layer tells us to.
620 */
621 sc->sc_DMACtrl = 0;
622 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
623 sc->sc_DMACtrl |= DMAC_MWIDisable;
624
625 /*
626 * We can support 802.1Q VLAN-sized frames and jumbo
627 * Ethernet frames.
628 *
629 * XXX Figure out how to do hw-assisted VLAN tagging in
630 * XXX a reasonable way on this chip.
631 */
632 sc->sc_ethercom.ec_capabilities |=
633 ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
634 ETHERCAP_VLAN_HWTAGGING;
635
636 /*
637 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
638 */
639 sc->sc_ethercom.ec_if.if_capabilities |=
640 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
641 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
642 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
643
644 /*
645 * Attach the interface.
646 */
647 if_attach(ifp);
648 ether_ifattach(ifp, enaddr);
649
650 #ifdef STGE_EVENT_COUNTERS
651 /*
652 * Attach event counters.
653 */
654 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
655 NULL, device_xname(self), "txstall");
656 evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
657 NULL, device_xname(self), "txdmaintr");
658 evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
659 NULL, device_xname(self), "txindintr");
660 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
661 NULL, device_xname(self), "rxintr");
662
663 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
664 NULL, device_xname(self), "txseg1");
665 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
666 NULL, device_xname(self), "txseg2");
667 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
668 NULL, device_xname(self), "txseg3");
669 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
670 NULL, device_xname(self), "txseg4");
671 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
672 NULL, device_xname(self), "txseg5");
673 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
674 NULL, device_xname(self), "txsegmore");
675 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
676 NULL, device_xname(self), "txcopy");
677
678 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
679 NULL, device_xname(self), "rxipsum");
680 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
681 NULL, device_xname(self), "rxtcpsum");
682 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
683 NULL, device_xname(self), "rxudpsum");
684 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
685 NULL, device_xname(self), "txipsum");
686 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
687 NULL, device_xname(self), "txtcpsum");
688 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
689 NULL, device_xname(self), "txudpsum");
690 #endif /* STGE_EVENT_COUNTERS */
691
692 /*
693 * Make sure the interface is shutdown during reboot.
694 */
695 if (pmf_device_register1(self, NULL, NULL, stge_shutdown))
696 pmf_class_network_register(self, ifp);
697 else
698 aprint_error_dev(self, "couldn't establish power handler\n");
699
700 return;
701
702 /*
703 * Free any resources we've allocated during the failed attach
704 * attempt. Do this in reverse order and fall through.
705 */
706 fail_5:
707 for (i = 0; i < STGE_NRXDESC; i++) {
708 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
709 bus_dmamap_destroy(sc->sc_dmat,
710 sc->sc_rxsoft[i].ds_dmamap);
711 }
712 fail_4:
713 for (i = 0; i < STGE_NTXDESC; i++) {
714 if (sc->sc_txsoft[i].ds_dmamap != NULL)
715 bus_dmamap_destroy(sc->sc_dmat,
716 sc->sc_txsoft[i].ds_dmamap);
717 }
718 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
719 fail_3:
720 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
721 fail_2:
722 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
723 sizeof(struct stge_control_data));
724 fail_1:
725 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
726 fail_0:
727 return;
728 }
729
730 /*
731 * stge_shutdown:
732 *
733 * Make sure the interface is stopped at reboot time.
734 */
735 static bool
736 stge_shutdown(device_t self, int howto)
737 {
738 struct stge_softc *sc = device_private(self);
739 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
740
741 stge_stop(ifp, 1);
742
743 return true;
744 }
745
746 static void
747 stge_dma_wait(struct stge_softc *sc)
748 {
749 int i;
750
751 for (i = 0; i < STGE_TIMEOUT; i++) {
752 delay(2);
753 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
754 DMAC_TxDMAInProg) == 0)
755 break;
756 }
757
758 if (i == STGE_TIMEOUT)
759 printf("%s: DMA wait timed out\n", device_xname(sc->sc_dev));
760 }
761
762 /*
763 * stge_start: [ifnet interface function]
764 *
765 * Start packet transmission on the interface.
766 */
767 static void
768 stge_start(struct ifnet *ifp)
769 {
770 struct stge_softc *sc = ifp->if_softc;
771 struct mbuf *m0;
772 struct stge_descsoft *ds;
773 struct stge_tfd *tfd;
774 bus_dmamap_t dmamap;
775 int error, firsttx, nexttx, opending, seg, totlen;
776 uint64_t csum_flags;
777
778 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
779 return;
780
781 /*
782 * Remember the previous number of pending transmissions
783 * and the first descriptor we will use.
784 */
785 opending = sc->sc_txpending;
786 firsttx = STGE_NEXTTX(sc->sc_txlast);
787
788 /*
789 * Loop through the send queue, setting up transmit descriptors
790 * until we drain the queue, or use up all available transmit
791 * descriptors.
792 */
793 for (;;) {
794 struct m_tag *mtag;
795 uint64_t tfc;
796
797 /*
798 * Grab a packet off the queue.
799 */
800 IFQ_POLL(&ifp->if_snd, m0);
801 if (m0 == NULL)
802 break;
803
804 /*
805 * Leave one unused descriptor at the end of the
806 * list to prevent wrapping completely around.
807 */
808 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
809 STGE_EVCNT_INCR(&sc->sc_ev_txstall);
810 break;
811 }
812
813 /*
814 * See if we have any VLAN stuff.
815 */
816 mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
817
818 /*
819 * Get the last and next available transmit descriptor.
820 */
821 nexttx = STGE_NEXTTX(sc->sc_txlast);
822 tfd = &sc->sc_txdescs[nexttx];
823 ds = &sc->sc_txsoft[nexttx];
824
825 dmamap = ds->ds_dmamap;
826
827 /*
828 * Load the DMA map. If this fails, the packet either
829 * didn't fit in the alloted number of segments, or we
830 * were short on resources. For the too-many-segments
831 * case, we simply report an error and drop the packet,
832 * since we can't sanely copy a jumbo packet to a single
833 * buffer.
834 */
835 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
836 BUS_DMA_NOWAIT);
837 if (error) {
838 if (error == EFBIG) {
839 printf("%s: Tx packet consumes too many "
840 "DMA segments, dropping...\n",
841 device_xname(sc->sc_dev));
842 IFQ_DEQUEUE(&ifp->if_snd, m0);
843 m_freem(m0);
844 continue;
845 }
846 /*
847 * Short on resources, just stop for now.
848 */
849 break;
850 }
851
852 IFQ_DEQUEUE(&ifp->if_snd, m0);
853
854 /*
855 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
856 */
857
858 /* Sync the DMA map. */
859 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
860 BUS_DMASYNC_PREWRITE);
861
862 /* Initialize the fragment list. */
863 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
864 tfd->tfd_frags[seg].frag_word0 =
865 htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
866 FRAG_LEN(dmamap->dm_segs[seg].ds_len));
867 totlen += dmamap->dm_segs[seg].ds_len;
868 }
869
870 #ifdef STGE_EVENT_COUNTERS
871 switch (dmamap->dm_nsegs) {
872 case 1:
873 STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
874 break;
875 case 2:
876 STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
877 break;
878 case 3:
879 STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
880 break;
881 case 4:
882 STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
883 break;
884 case 5:
885 STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
886 break;
887 default:
888 STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
889 break;
890 }
891 #endif /* STGE_EVENT_COUNTERS */
892
893 /*
894 * Initialize checksumming flags in the descriptor.
895 * Byte-swap constants so the compiler can optimize.
896 */
897 csum_flags = 0;
898 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
899 STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
900 csum_flags |= TFD_IPChecksumEnable;
901 }
902
903 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
904 STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
905 csum_flags |= TFD_TCPChecksumEnable;
906 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
907 STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
908 csum_flags |= TFD_UDPChecksumEnable;
909 }
910
911 /*
912 * Initialize the descriptor and give it to the chip.
913 * Check to see if we have a VLAN tag to insert.
914 */
915
916 tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
917 TFD_FragCount(seg) | csum_flags |
918 (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
919 TFD_TxDMAIndicate : 0);
920 if (mtag) {
921 #if 0
922 struct ether_header *eh =
923 mtod(m0, struct ether_header *);
924 u_int16_t etype = ntohs(eh->ether_type);
925 printf("%s: xmit (tag %d) etype %x\n",
926 ifp->if_xname, *mtod(n, int *), etype);
927 #endif
928 tfc |= TFD_VLANTagInsert |
929 #ifdef STGE_VLAN_CFI
930 TFD_CFI |
931 #endif
932 TFD_VID(VLAN_TAG_VALUE(mtag));
933 }
934 tfd->tfd_control = htole64(tfc);
935
936 /* Sync the descriptor. */
937 STGE_CDTXSYNC(sc, nexttx,
938 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
939
940 /*
941 * Kick the transmit DMA logic.
942 */
943 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
944 sc->sc_DMACtrl | DMAC_TxDMAPollNow);
945
946 /*
947 * Store a pointer to the packet so we can free it later.
948 */
949 ds->ds_mbuf = m0;
950
951 /* Advance the tx pointer. */
952 sc->sc_txpending++;
953 sc->sc_txlast = nexttx;
954
955 /*
956 * Pass the packet to any BPF listeners.
957 */
958 if (ifp->if_bpf)
959 bpf_ops->bpf_mtap(ifp->if_bpf, m0);
960 }
961
962 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
963 /* No more slots left; notify upper layer. */
964 ifp->if_flags |= IFF_OACTIVE;
965 }
966
967 if (sc->sc_txpending != opending) {
968 /*
969 * We enqueued packets. If the transmitter was idle,
970 * reset the txdirty pointer.
971 */
972 if (opending == 0)
973 sc->sc_txdirty = firsttx;
974
975 /* Set a watchdog timer in case the chip flakes out. */
976 ifp->if_timer = 5;
977 }
978 }
979
980 /*
981 * stge_watchdog: [ifnet interface function]
982 *
983 * Watchdog timer handler.
984 */
985 static void
986 stge_watchdog(struct ifnet *ifp)
987 {
988 struct stge_softc *sc = ifp->if_softc;
989
990 /*
991 * Sweep up first, since we don't interrupt every frame.
992 */
993 stge_txintr(sc);
994 if (sc->sc_txpending != 0) {
995 printf("%s: device timeout\n", device_xname(sc->sc_dev));
996 ifp->if_oerrors++;
997
998 (void) stge_init(ifp);
999
1000 /* Try to get more packets going. */
1001 stge_start(ifp);
1002 }
1003 }
1004
1005 /*
1006 * stge_ioctl: [ifnet interface function]
1007 *
1008 * Handle control requests from the operator.
1009 */
1010 static int
1011 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1012 {
1013 struct stge_softc *sc = ifp->if_softc;
1014 int s, error;
1015
1016 s = splnet();
1017
1018 error = ether_ioctl(ifp, cmd, data);
1019 if (error == ENETRESET) {
1020 error = 0;
1021
1022 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1023 ;
1024 else if (ifp->if_flags & IFF_RUNNING) {
1025 /*
1026 * Multicast list has changed; set the hardware filter
1027 * accordingly.
1028 */
1029 stge_set_filter(sc);
1030 }
1031 }
1032
1033 /* Try to get more packets going. */
1034 stge_start(ifp);
1035
1036 splx(s);
1037 return (error);
1038 }
1039
1040 /*
1041 * stge_intr:
1042 *
1043 * Interrupt service routine.
1044 */
1045 static int
1046 stge_intr(void *arg)
1047 {
1048 struct stge_softc *sc = arg;
1049 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1050 uint32_t txstat;
1051 int wantinit;
1052 uint16_t isr;
1053
1054 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1055 IS_InterruptStatus) == 0)
1056 return (0);
1057
1058 for (wantinit = 0; wantinit == 0;) {
1059 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1060 if ((isr & sc->sc_IntEnable) == 0)
1061 break;
1062
1063 /* Host interface errors. */
1064 if (isr & IS_HostError) {
1065 printf("%s: Host interface error\n",
1066 device_xname(sc->sc_dev));
1067 wantinit = 1;
1068 continue;
1069 }
1070
1071 /* Receive interrupts. */
1072 if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
1073 STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1074 stge_rxintr(sc);
1075 if (isr & IS_RFDListEnd) {
1076 printf("%s: receive ring overflow\n",
1077 device_xname(sc->sc_dev));
1078 /*
1079 * XXX Should try to recover from this
1080 * XXX more gracefully.
1081 */
1082 wantinit = 1;
1083 }
1084 }
1085
1086 /* Transmit interrupts. */
1087 if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
1088 #ifdef STGE_EVENT_COUNTERS
1089 if (isr & IS_TxDMAComplete)
1090 STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1091 #endif
1092 stge_txintr(sc);
1093 }
1094
1095 /* Statistics overflow. */
1096 if (isr & IS_UpdateStats)
1097 stge_stats_update(sc);
1098
1099 /* Transmission errors. */
1100 if (isr & IS_TxComplete) {
1101 STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1102 for (;;) {
1103 txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1104 STGE_TxStatus);
1105 if ((txstat & TS_TxComplete) == 0)
1106 break;
1107 if (txstat & TS_TxUnderrun) {
1108 sc->sc_txthresh++;
1109 if (sc->sc_txthresh > 0x0fff)
1110 sc->sc_txthresh = 0x0fff;
1111 printf("%s: transmit underrun, new "
1112 "threshold: %d bytes\n",
1113 device_xname(sc->sc_dev),
1114 sc->sc_txthresh << 5);
1115 }
1116 if (txstat & TS_MaxCollisions)
1117 printf("%s: excessive collisions\n",
1118 device_xname(sc->sc_dev));
1119 }
1120 wantinit = 1;
1121 }
1122
1123 }
1124
1125 if (wantinit)
1126 stge_init(ifp);
1127
1128 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1129 sc->sc_IntEnable);
1130
1131 /* Try to get more packets going. */
1132 stge_start(ifp);
1133
1134 return (1);
1135 }
1136
1137 /*
1138 * stge_txintr:
1139 *
1140 * Helper; handle transmit interrupts.
1141 */
1142 static void
1143 stge_txintr(struct stge_softc *sc)
1144 {
1145 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1146 struct stge_descsoft *ds;
1147 uint64_t control;
1148 int i;
1149
1150 ifp->if_flags &= ~IFF_OACTIVE;
1151
1152 /*
1153 * Go through our Tx list and free mbufs for those
1154 * frames which have been transmitted.
1155 */
1156 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1157 i = STGE_NEXTTX(i), sc->sc_txpending--) {
1158 ds = &sc->sc_txsoft[i];
1159
1160 STGE_CDTXSYNC(sc, i,
1161 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1162
1163 control = le64toh(sc->sc_txdescs[i].tfd_control);
1164 if ((control & TFD_TFDDone) == 0)
1165 break;
1166
1167 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1168 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1169 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1170 m_freem(ds->ds_mbuf);
1171 ds->ds_mbuf = NULL;
1172 }
1173
1174 /* Update the dirty transmit buffer pointer. */
1175 sc->sc_txdirty = i;
1176
1177 /*
1178 * If there are no more pending transmissions, cancel the watchdog
1179 * timer.
1180 */
1181 if (sc->sc_txpending == 0)
1182 ifp->if_timer = 0;
1183 }
1184
1185 /*
1186 * stge_rxintr:
1187 *
1188 * Helper; handle receive interrupts.
1189 */
1190 static void
1191 stge_rxintr(struct stge_softc *sc)
1192 {
1193 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1194 struct stge_descsoft *ds;
1195 struct mbuf *m, *tailm;
1196 uint64_t status;
1197 int i, len;
1198
1199 for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1200 ds = &sc->sc_rxsoft[i];
1201
1202 STGE_CDRXSYNC(sc, i,
1203 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1204
1205 status = le64toh(sc->sc_rxdescs[i].rfd_status);
1206
1207 if ((status & RFD_RFDDone) == 0)
1208 break;
1209
1210 if (__predict_false(sc->sc_rxdiscard)) {
1211 STGE_INIT_RXDESC(sc, i);
1212 if (status & RFD_FrameEnd) {
1213 /* Reset our state. */
1214 sc->sc_rxdiscard = 0;
1215 }
1216 continue;
1217 }
1218
1219 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1220 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1221
1222 m = ds->ds_mbuf;
1223
1224 /*
1225 * Add a new receive buffer to the ring.
1226 */
1227 if (stge_add_rxbuf(sc, i) != 0) {
1228 /*
1229 * Failed, throw away what we've done so
1230 * far, and discard the rest of the packet.
1231 */
1232 ifp->if_ierrors++;
1233 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1234 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1235 STGE_INIT_RXDESC(sc, i);
1236 if ((status & RFD_FrameEnd) == 0)
1237 sc->sc_rxdiscard = 1;
1238 if (sc->sc_rxhead != NULL)
1239 m_freem(sc->sc_rxhead);
1240 STGE_RXCHAIN_RESET(sc);
1241 continue;
1242 }
1243
1244 #ifdef DIAGNOSTIC
1245 if (status & RFD_FrameStart) {
1246 KASSERT(sc->sc_rxhead == NULL);
1247 KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1248 }
1249 #endif
1250
1251 STGE_RXCHAIN_LINK(sc, m);
1252
1253 /*
1254 * If this is not the end of the packet, keep
1255 * looking.
1256 */
1257 if ((status & RFD_FrameEnd) == 0) {
1258 sc->sc_rxlen += m->m_len;
1259 continue;
1260 }
1261
1262 /*
1263 * Okay, we have the entire packet now...
1264 */
1265 *sc->sc_rxtailp = NULL;
1266 m = sc->sc_rxhead;
1267 tailm = sc->sc_rxtail;
1268
1269 STGE_RXCHAIN_RESET(sc);
1270
1271 /*
1272 * If the packet had an error, drop it. Note we
1273 * count the error later in the periodic stats update.
1274 */
1275 if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1276 RFD_RxAlignmentError | RFD_RxFCSError |
1277 RFD_RxLengthError)) {
1278 m_freem(m);
1279 continue;
1280 }
1281
1282 /*
1283 * No errors.
1284 *
1285 * Note we have configured the chip to not include
1286 * the CRC at the end of the packet.
1287 */
1288 len = RFD_RxDMAFrameLen(status);
1289 tailm->m_len = len - sc->sc_rxlen;
1290
1291 /*
1292 * If the packet is small enough to fit in a
1293 * single header mbuf, allocate one and copy
1294 * the data into it. This greatly reduces
1295 * memory consumption when we receive lots
1296 * of small packets.
1297 */
1298 if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1299 struct mbuf *nm;
1300 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1301 if (nm == NULL) {
1302 ifp->if_ierrors++;
1303 m_freem(m);
1304 continue;
1305 }
1306 nm->m_data += 2;
1307 nm->m_pkthdr.len = nm->m_len = len;
1308 m_copydata(m, 0, len, mtod(nm, void *));
1309 m_freem(m);
1310 m = nm;
1311 }
1312
1313 /*
1314 * Set the incoming checksum information for the packet.
1315 */
1316 if (status & RFD_IPDetected) {
1317 STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1318 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1319 if (status & RFD_IPError)
1320 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1321 if (status & RFD_TCPDetected) {
1322 STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1323 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1324 if (status & RFD_TCPError)
1325 m->m_pkthdr.csum_flags |=
1326 M_CSUM_TCP_UDP_BAD;
1327 } else if (status & RFD_UDPDetected) {
1328 STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1329 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1330 if (status & RFD_UDPError)
1331 m->m_pkthdr.csum_flags |=
1332 M_CSUM_TCP_UDP_BAD;
1333 }
1334 }
1335
1336 m->m_pkthdr.rcvif = ifp;
1337 m->m_pkthdr.len = len;
1338
1339 /*
1340 * Pass this up to any BPF listeners, but only
1341 * pass if up the stack if it's for us.
1342 */
1343 if (ifp->if_bpf)
1344 bpf_ops->bpf_mtap(ifp->if_bpf, m);
1345 #ifdef STGE_VLAN_UNTAG
1346 /*
1347 * Check for VLAN tagged packets
1348 */
1349 if (status & RFD_VLANDetected)
1350 VLAN_INPUT_TAG(ifp, m, RFD_TCI(status), continue);
1351
1352 #endif
1353 #if 0
1354 if (status & RFD_VLANDetected) {
1355 struct ether_header *eh;
1356 u_int16_t etype;
1357
1358 eh = mtod(m, struct ether_header *);
1359 etype = ntohs(eh->ether_type);
1360 printf("%s: VLANtag detected (TCI %d) etype %x\n",
1361 ifp->if_xname, (u_int16_t) RFD_TCI(status),
1362 etype);
1363 }
1364 #endif
1365 /* Pass it on. */
1366 (*ifp->if_input)(ifp, m);
1367 }
1368
1369 /* Update the receive pointer. */
1370 sc->sc_rxptr = i;
1371 }
1372
1373 /*
1374 * stge_tick:
1375 *
1376 * One second timer, used to tick the MII.
1377 */
1378 static void
1379 stge_tick(void *arg)
1380 {
1381 struct stge_softc *sc = arg;
1382 int s;
1383
1384 s = splnet();
1385 mii_tick(&sc->sc_mii);
1386 stge_stats_update(sc);
1387 splx(s);
1388
1389 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1390 }
1391
1392 /*
1393 * stge_stats_update:
1394 *
1395 * Read the TC9021 statistics counters.
1396 */
1397 static void
1398 stge_stats_update(struct stge_softc *sc)
1399 {
1400 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1401 bus_space_tag_t st = sc->sc_st;
1402 bus_space_handle_t sh = sc->sc_sh;
1403
1404 (void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1405
1406 ifp->if_ipackets +=
1407 bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1408
1409 ifp->if_ierrors +=
1410 (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1411
1412 (void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1413
1414 ifp->if_opackets +=
1415 bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1416
1417 ifp->if_collisions +=
1418 bus_space_read_4(st, sh, STGE_LateCollisions) +
1419 bus_space_read_4(st, sh, STGE_MultiColFrames) +
1420 bus_space_read_4(st, sh, STGE_SingleColFrames);
1421
1422 ifp->if_oerrors +=
1423 (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1424 (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1425 }
1426
1427 /*
1428 * stge_reset:
1429 *
1430 * Perform a soft reset on the TC9021.
1431 */
1432 static void
1433 stge_reset(struct stge_softc *sc)
1434 {
1435 uint32_t ac;
1436 int i;
1437
1438 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1439
1440 /*
1441 * Only assert RstOut if we're fiber. We need GMII clocks
1442 * to be present in order for the reset to complete on fiber
1443 * cards.
1444 */
1445 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1446 ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1447 AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1448 (sc->sc_usefiber ? AC_RstOut : 0));
1449
1450 delay(50000);
1451
1452 for (i = 0; i < STGE_TIMEOUT; i++) {
1453 delay(5000);
1454 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1455 AC_ResetBusy) == 0)
1456 break;
1457 }
1458
1459 if (i == STGE_TIMEOUT)
1460 printf("%s: reset failed to complete\n",
1461 device_xname(sc->sc_dev));
1462
1463 delay(1000);
1464 }
1465
1466 /*
1467 * stge_init: [ ifnet interface function ]
1468 *
1469 * Initialize the interface. Must be called at splnet().
1470 */
1471 static int
1472 stge_init(struct ifnet *ifp)
1473 {
1474 struct stge_softc *sc = ifp->if_softc;
1475 bus_space_tag_t st = sc->sc_st;
1476 bus_space_handle_t sh = sc->sc_sh;
1477 struct stge_descsoft *ds;
1478 int i, error = 0;
1479
1480 /*
1481 * Cancel any pending I/O.
1482 */
1483 stge_stop(ifp, 0);
1484
1485 /*
1486 * Reset the chip to a known state.
1487 */
1488 stge_reset(sc);
1489
1490 /*
1491 * Initialize the transmit descriptor ring.
1492 */
1493 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1494 for (i = 0; i < STGE_NTXDESC; i++) {
1495 sc->sc_txdescs[i].tfd_next = htole64(
1496 STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1497 sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1498 }
1499 sc->sc_txpending = 0;
1500 sc->sc_txdirty = 0;
1501 sc->sc_txlast = STGE_NTXDESC - 1;
1502
1503 /*
1504 * Initialize the receive descriptor and receive job
1505 * descriptor rings.
1506 */
1507 for (i = 0; i < STGE_NRXDESC; i++) {
1508 ds = &sc->sc_rxsoft[i];
1509 if (ds->ds_mbuf == NULL) {
1510 if ((error = stge_add_rxbuf(sc, i)) != 0) {
1511 printf("%s: unable to allocate or map rx "
1512 "buffer %d, error = %d\n",
1513 device_xname(sc->sc_dev), i, error);
1514 /*
1515 * XXX Should attempt to run with fewer receive
1516 * XXX buffers instead of just failing.
1517 */
1518 stge_rxdrain(sc);
1519 goto out;
1520 }
1521 } else
1522 STGE_INIT_RXDESC(sc, i);
1523 }
1524 sc->sc_rxptr = 0;
1525 sc->sc_rxdiscard = 0;
1526 STGE_RXCHAIN_RESET(sc);
1527
1528 /* Set the station address. */
1529 for (i = 0; i < 6; i++)
1530 bus_space_write_1(st, sh, STGE_StationAddress0 + i,
1531 CLLADDR(ifp->if_sadl)[i]);
1532
1533 /*
1534 * Set the statistics masks. Disable all the RMON stats,
1535 * and disable selected stats in the non-RMON stats registers.
1536 */
1537 bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1538 bus_space_write_4(st, sh, STGE_StatisticsMask,
1539 (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1540 (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1541 (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1542 (1U << 21));
1543
1544 /* Set up the receive filter. */
1545 stge_set_filter(sc);
1546
1547 /*
1548 * Give the transmit and receive ring to the chip.
1549 */
1550 bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1551 bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1552 STGE_CDTXADDR(sc, sc->sc_txdirty));
1553
1554 bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1555 bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1556 STGE_CDRXADDR(sc, sc->sc_rxptr));
1557
1558 /*
1559 * Initialize the Tx auto-poll period. It's OK to make this number
1560 * large (255 is the max, but we use 127) -- we explicitly kick the
1561 * transmit engine when there's actually a packet.
1562 */
1563 bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1564
1565 /* ..and the Rx auto-poll period. */
1566 bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1567
1568 /* Initialize the Tx start threshold. */
1569 bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1570
1571 /* RX DMA thresholds, from linux */
1572 bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
1573 bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
1574
1575 /*
1576 * Initialize the Rx DMA interrupt control register. We
1577 * request an interrupt after every incoming packet, but
1578 * defer it for 32us (64 * 512 ns). When the number of
1579 * interrupts pending reaches 8, we stop deferring the
1580 * interrupt, and signal it immediately.
1581 */
1582 bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1583 RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1584
1585 /*
1586 * Initialize the interrupt mask.
1587 */
1588 sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1589 IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1590 bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1591 bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1592
1593 /*
1594 * Configure the DMA engine.
1595 * XXX Should auto-tune TxBurstLimit.
1596 */
1597 bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1598 DMAC_TxBurstLimit(3));
1599
1600 /*
1601 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1602 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1603 * empty again.
1604 */
1605 bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1606 bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1607
1608 /*
1609 * Set the maximum frame size.
1610 */
1611 bus_space_write_2(st, sh, STGE_MaxFrameSize,
1612 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1613 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1614 ETHER_VLAN_ENCAP_LEN : 0));
1615
1616 /*
1617 * Initialize MacCtrl -- do it before setting the media,
1618 * as setting the media will actually program the register.
1619 *
1620 * Note: We have to poke the IFS value before poking
1621 * anything else.
1622 */
1623 sc->sc_MACCtrl = MC_IFSSelect(0);
1624 bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1625 sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1626 #ifdef STGE_VLAN_UNTAG
1627 sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1628 #endif
1629
1630 if (sc->sc_rev >= 6) { /* >= B.2 */
1631 /* Multi-frag frame bug work-around. */
1632 bus_space_write_2(st, sh, STGE_DebugCtrl,
1633 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1634
1635 /* Tx Poll Now bug work-around. */
1636 bus_space_write_2(st, sh, STGE_DebugCtrl,
1637 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1638 /* XXX ? from linux */
1639 bus_space_write_2(st, sh, STGE_DebugCtrl,
1640 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
1641 }
1642
1643 /*
1644 * Set the current media.
1645 */
1646 if ((error = ether_mediachange(ifp)) != 0)
1647 goto out;
1648
1649 /*
1650 * Start the one second MII clock.
1651 */
1652 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1653
1654 /*
1655 * ...all done!
1656 */
1657 ifp->if_flags |= IFF_RUNNING;
1658 ifp->if_flags &= ~IFF_OACTIVE;
1659
1660 out:
1661 if (error)
1662 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1663 return (error);
1664 }
1665
1666 /*
1667 * stge_drain:
1668 *
1669 * Drain the receive queue.
1670 */
1671 static void
1672 stge_rxdrain(struct stge_softc *sc)
1673 {
1674 struct stge_descsoft *ds;
1675 int i;
1676
1677 for (i = 0; i < STGE_NRXDESC; i++) {
1678 ds = &sc->sc_rxsoft[i];
1679 if (ds->ds_mbuf != NULL) {
1680 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1681 ds->ds_mbuf->m_next = NULL;
1682 m_freem(ds->ds_mbuf);
1683 ds->ds_mbuf = NULL;
1684 }
1685 }
1686 }
1687
1688 /*
1689 * stge_stop: [ ifnet interface function ]
1690 *
1691 * Stop transmission on the interface.
1692 */
1693 static void
1694 stge_stop(struct ifnet *ifp, int disable)
1695 {
1696 struct stge_softc *sc = ifp->if_softc;
1697 struct stge_descsoft *ds;
1698 int i;
1699
1700 /*
1701 * Stop the one second clock.
1702 */
1703 callout_stop(&sc->sc_tick_ch);
1704
1705 /* Down the MII. */
1706 mii_down(&sc->sc_mii);
1707
1708 /*
1709 * Disable interrupts.
1710 */
1711 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1712
1713 /*
1714 * Stop receiver, transmitter, and stats update.
1715 */
1716 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1717 MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1718
1719 /*
1720 * Stop the transmit and receive DMA.
1721 */
1722 stge_dma_wait(sc);
1723 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1724 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1725 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1726 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1727
1728 /*
1729 * Release any queued transmit buffers.
1730 */
1731 for (i = 0; i < STGE_NTXDESC; i++) {
1732 ds = &sc->sc_txsoft[i];
1733 if (ds->ds_mbuf != NULL) {
1734 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1735 m_freem(ds->ds_mbuf);
1736 ds->ds_mbuf = NULL;
1737 }
1738 }
1739
1740 /*
1741 * Mark the interface down and cancel the watchdog timer.
1742 */
1743 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1744 ifp->if_timer = 0;
1745
1746 if (disable)
1747 stge_rxdrain(sc);
1748 }
1749
1750 static int
1751 stge_eeprom_wait(struct stge_softc *sc)
1752 {
1753 int i;
1754
1755 for (i = 0; i < STGE_TIMEOUT; i++) {
1756 delay(1000);
1757 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1758 EC_EepromBusy) == 0)
1759 return (0);
1760 }
1761 return (1);
1762 }
1763
1764 /*
1765 * stge_read_eeprom:
1766 *
1767 * Read data from the serial EEPROM.
1768 */
1769 static void
1770 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1771 {
1772
1773 if (stge_eeprom_wait(sc))
1774 printf("%s: EEPROM failed to come ready\n",
1775 device_xname(sc->sc_dev));
1776
1777 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1778 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1779 if (stge_eeprom_wait(sc))
1780 printf("%s: EEPROM read timed out\n",
1781 device_xname(sc->sc_dev));
1782 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1783 }
1784
1785 /*
1786 * stge_add_rxbuf:
1787 *
1788 * Add a receive buffer to the indicated descriptor.
1789 */
1790 static int
1791 stge_add_rxbuf(struct stge_softc *sc, int idx)
1792 {
1793 struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1794 struct mbuf *m;
1795 int error;
1796
1797 MGETHDR(m, M_DONTWAIT, MT_DATA);
1798 if (m == NULL)
1799 return (ENOBUFS);
1800
1801 MCLGET(m, M_DONTWAIT);
1802 if ((m->m_flags & M_EXT) == 0) {
1803 m_freem(m);
1804 return (ENOBUFS);
1805 }
1806
1807 m->m_data = m->m_ext.ext_buf + 2;
1808 m->m_len = MCLBYTES - 2;
1809
1810 if (ds->ds_mbuf != NULL)
1811 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1812
1813 ds->ds_mbuf = m;
1814
1815 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1816 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1817 if (error) {
1818 printf("%s: can't load rx DMA map %d, error = %d\n",
1819 device_xname(sc->sc_dev), idx, error);
1820 panic("stge_add_rxbuf"); /* XXX */
1821 }
1822
1823 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1824 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1825
1826 STGE_INIT_RXDESC(sc, idx);
1827
1828 return (0);
1829 }
1830
1831 /*
1832 * stge_set_filter:
1833 *
1834 * Set up the receive filter.
1835 */
1836 static void
1837 stge_set_filter(struct stge_softc *sc)
1838 {
1839 struct ethercom *ec = &sc->sc_ethercom;
1840 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1841 struct ether_multi *enm;
1842 struct ether_multistep step;
1843 uint32_t crc;
1844 uint32_t mchash[2];
1845
1846 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1847 if (ifp->if_flags & IFF_BROADCAST)
1848 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1849
1850 /* XXX: ST1023 only works in promiscuous mode */
1851 if (sc->sc_stge1023)
1852 ifp->if_flags |= IFF_PROMISC;
1853
1854 if (ifp->if_flags & IFF_PROMISC) {
1855 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1856 goto allmulti;
1857 }
1858
1859 /*
1860 * Set up the multicast address filter by passing all multicast
1861 * addresses through a CRC generator, and then using the low-order
1862 * 6 bits as an index into the 64 bit multicast hash table. The
1863 * high order bits select the register, while the rest of the bits
1864 * select the bit within the register.
1865 */
1866
1867 memset(mchash, 0, sizeof(mchash));
1868
1869 ETHER_FIRST_MULTI(step, ec, enm);
1870 if (enm == NULL)
1871 goto done;
1872
1873 while (enm != NULL) {
1874 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1875 /*
1876 * We must listen to a range of multicast addresses.
1877 * For now, just accept all multicasts, rather than
1878 * trying to set only those filter bits needed to match
1879 * the range. (At this time, the only use of address
1880 * ranges is for IP multicast routing, for which the
1881 * range is big enough to require all bits set.)
1882 */
1883 goto allmulti;
1884 }
1885
1886 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1887
1888 /* Just want the 6 least significant bits. */
1889 crc &= 0x3f;
1890
1891 /* Set the corresponding bit in the hash table. */
1892 mchash[crc >> 5] |= 1 << (crc & 0x1f);
1893
1894 ETHER_NEXT_MULTI(step, enm);
1895 }
1896
1897 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1898
1899 ifp->if_flags &= ~IFF_ALLMULTI;
1900 goto done;
1901
1902 allmulti:
1903 ifp->if_flags |= IFF_ALLMULTI;
1904 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1905
1906 done:
1907 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1908 /*
1909 * Program the multicast hash table.
1910 */
1911 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1912 mchash[0]);
1913 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1914 mchash[1]);
1915 }
1916
1917 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1918 sc->sc_ReceiveMode);
1919 }
1920
1921 /*
1922 * stge_mii_readreg: [mii interface function]
1923 *
1924 * Read a PHY register on the MII of the TC9021.
1925 */
1926 static int
1927 stge_mii_readreg(device_t self, int phy, int reg)
1928 {
1929
1930 return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1931 }
1932
1933 /*
1934 * stge_mii_writereg: [mii interface function]
1935 *
1936 * Write a PHY register on the MII of the TC9021.
1937 */
1938 static void
1939 stge_mii_writereg(device_t self, int phy, int reg, int val)
1940 {
1941
1942 mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1943 }
1944
1945 /*
1946 * stge_mii_statchg: [mii interface function]
1947 *
1948 * Callback from MII layer when media changes.
1949 */
1950 static void
1951 stge_mii_statchg(device_t self)
1952 {
1953 struct stge_softc *sc = device_private(self);
1954
1955 if (sc->sc_mii.mii_media_active & IFM_FDX)
1956 sc->sc_MACCtrl |= MC_DuplexSelect;
1957 else
1958 sc->sc_MACCtrl &= ~MC_DuplexSelect;
1959
1960 /* XXX 802.1x flow-control? */
1961
1962 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1963 }
1964
1965 /*
1966 * sste_mii_bitbang_read: [mii bit-bang interface function]
1967 *
1968 * Read the MII serial port for the MII bit-bang module.
1969 */
1970 static uint32_t
1971 stge_mii_bitbang_read(device_t self)
1972 {
1973 struct stge_softc *sc = device_private(self);
1974
1975 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
1976 }
1977
1978 /*
1979 * stge_mii_bitbang_write: [mii big-bang interface function]
1980 *
1981 * Write the MII serial port for the MII bit-bang module.
1982 */
1983 static void
1984 stge_mii_bitbang_write(device_t self, uint32_t val)
1985 {
1986 struct stge_softc *sc = device_private(self);
1987
1988 bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
1989 val | sc->sc_PhyCtrl);
1990 }
1991