Home | History | Annotate | Line # | Download | only in pci
if_stge.c revision 1.49.4.2
      1 /*	$NetBSD: if_stge.c,v 1.49.4.2 2011/03/05 20:53:44 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Device driver for the Sundance Tech. TC9021 10/100/1000
     34  * Ethernet controller.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.49.4.2 2011/03/05 20:53:44 rmind Exp $");
     39 
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/callout.h>
     44 #include <sys/mbuf.h>
     45 #include <sys/malloc.h>
     46 #include <sys/kernel.h>
     47 #include <sys/socket.h>
     48 #include <sys/ioctl.h>
     49 #include <sys/errno.h>
     50 #include <sys/device.h>
     51 #include <sys/queue.h>
     52 
     53 #include <net/if.h>
     54 #include <net/if_dl.h>
     55 #include <net/if_media.h>
     56 #include <net/if_ether.h>
     57 
     58 #include <net/bpf.h>
     59 
     60 #include <sys/bus.h>
     61 #include <sys/intr.h>
     62 
     63 #include <dev/mii/mii.h>
     64 #include <dev/mii/miivar.h>
     65 #include <dev/mii/mii_bitbang.h>
     66 
     67 #include <dev/pci/pcireg.h>
     68 #include <dev/pci/pcivar.h>
     69 #include <dev/pci/pcidevs.h>
     70 
     71 #include <dev/pci/if_stgereg.h>
     72 
     73 /* #define	STGE_CU_BUG			1 */
     74 #define	STGE_VLAN_UNTAG			1
     75 /* #define	STGE_VLAN_CFI		1 */
     76 
     77 /*
     78  * Transmit descriptor list size.
     79  */
     80 #define	STGE_NTXDESC		256
     81 #define	STGE_NTXDESC_MASK	(STGE_NTXDESC - 1)
     82 #define	STGE_NEXTTX(x)		(((x) + 1) & STGE_NTXDESC_MASK)
     83 
     84 /*
     85  * Receive descriptor list size.
     86  */
     87 #define	STGE_NRXDESC		256
     88 #define	STGE_NRXDESC_MASK	(STGE_NRXDESC - 1)
     89 #define	STGE_NEXTRX(x)		(((x) + 1) & STGE_NRXDESC_MASK)
     90 
     91 /*
     92  * Only interrupt every N frames.  Must be a power-of-two.
     93  */
     94 #define	STGE_TXINTR_SPACING	16
     95 #define	STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
     96 
     97 /*
     98  * Control structures are DMA'd to the TC9021 chip.  We allocate them in
     99  * a single clump that maps to a single DMA segment to make several things
    100  * easier.
    101  */
    102 struct stge_control_data {
    103 	/*
    104 	 * The transmit descriptors.
    105 	 */
    106 	struct stge_tfd scd_txdescs[STGE_NTXDESC];
    107 
    108 	/*
    109 	 * The receive descriptors.
    110 	 */
    111 	struct stge_rfd scd_rxdescs[STGE_NRXDESC];
    112 };
    113 
    114 #define	STGE_CDOFF(x)	offsetof(struct stge_control_data, x)
    115 #define	STGE_CDTXOFF(x)	STGE_CDOFF(scd_txdescs[(x)])
    116 #define	STGE_CDRXOFF(x)	STGE_CDOFF(scd_rxdescs[(x)])
    117 
    118 /*
    119  * Software state for transmit and receive jobs.
    120  */
    121 struct stge_descsoft {
    122 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
    123 	bus_dmamap_t ds_dmamap;		/* our DMA map */
    124 };
    125 
    126 /*
    127  * Software state per device.
    128  */
    129 struct stge_softc {
    130 	device_t sc_dev;		/* generic device information */
    131 	bus_space_tag_t sc_st;		/* bus space tag */
    132 	bus_space_handle_t sc_sh;	/* bus space handle */
    133 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    134 	struct ethercom sc_ethercom;	/* ethernet common data */
    135 	int sc_rev;			/* silicon revision */
    136 
    137 	void *sc_ih;			/* interrupt cookie */
    138 
    139 	struct mii_data sc_mii;		/* MII/media information */
    140 
    141 	callout_t sc_tick_ch;		/* tick callout */
    142 
    143 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    144 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    145 
    146 	/*
    147 	 * Software state for transmit and receive descriptors.
    148 	 */
    149 	struct stge_descsoft sc_txsoft[STGE_NTXDESC];
    150 	struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
    151 
    152 	/*
    153 	 * Control data structures.
    154 	 */
    155 	struct stge_control_data *sc_control_data;
    156 #define	sc_txdescs	sc_control_data->scd_txdescs
    157 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    158 
    159 #ifdef STGE_EVENT_COUNTERS
    160 	/*
    161 	 * Event counters.
    162 	 */
    163 	struct evcnt sc_ev_txstall;	/* Tx stalled */
    164 	struct evcnt sc_ev_txdmaintr;	/* Tx DMA interrupts */
    165 	struct evcnt sc_ev_txindintr;	/* Tx Indicate interrupts */
    166 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    167 
    168 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
    169 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
    170 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
    171 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
    172 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
    173 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
    174 	struct evcnt sc_ev_txcopy;	/* Tx packets that we had to copy */
    175 
    176 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    177 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    178 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
    179 
    180 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    181 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    182 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    183 #endif /* STGE_EVENT_COUNTERS */
    184 
    185 	int	sc_txpending;		/* number of Tx requests pending */
    186 	int	sc_txdirty;		/* first dirty Tx descriptor */
    187 	int	sc_txlast;		/* last used Tx descriptor */
    188 
    189 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    190 	int	sc_rxdiscard;
    191 	int	sc_rxlen;
    192 	struct mbuf *sc_rxhead;
    193 	struct mbuf *sc_rxtail;
    194 	struct mbuf **sc_rxtailp;
    195 
    196 	int	sc_txthresh;		/* Tx threshold */
    197 	uint32_t sc_usefiber:1;		/* if we're fiber */
    198 	uint32_t sc_stge1023:1;		/* are we a 1023 */
    199 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
    200 	uint32_t sc_MACCtrl;		/* prototype MacCtrl register */
    201 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
    202 	uint16_t sc_ReceiveMode;	/* prototype ReceiveMode register */
    203 	uint8_t sc_PhyCtrl;		/* prototype PhyCtrl register */
    204 };
    205 
    206 #define	STGE_RXCHAIN_RESET(sc)						\
    207 do {									\
    208 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    209 	*(sc)->sc_rxtailp = NULL;					\
    210 	(sc)->sc_rxlen = 0;						\
    211 } while (/*CONSTCOND*/0)
    212 
    213 #define	STGE_RXCHAIN_LINK(sc, m)					\
    214 do {									\
    215 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    216 	(sc)->sc_rxtailp = &(m)->m_next;				\
    217 } while (/*CONSTCOND*/0)
    218 
    219 #ifdef STGE_EVENT_COUNTERS
    220 #define	STGE_EVCNT_INCR(ev)	(ev)->ev_count++
    221 #else
    222 #define	STGE_EVCNT_INCR(ev)	/* nothing */
    223 #endif
    224 
    225 #define	STGE_CDTXADDR(sc, x)	((sc)->sc_cddma + STGE_CDTXOFF((x)))
    226 #define	STGE_CDRXADDR(sc, x)	((sc)->sc_cddma + STGE_CDRXOFF((x)))
    227 
    228 #define	STGE_CDTXSYNC(sc, x, ops)					\
    229 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    230 	    STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
    231 
    232 #define	STGE_CDRXSYNC(sc, x, ops)					\
    233 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    234 	    STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
    235 
    236 #define	STGE_INIT_RXDESC(sc, x)						\
    237 do {									\
    238 	struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
    239 	struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)];		\
    240 									\
    241 	/*								\
    242 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    243 	 * so that the payload after the Ethernet header is aligned	\
    244 	 * to a 4-byte boundary.					\
    245 	 */								\
    246 	__rfd->rfd_frag.frag_word0 =					\
    247 	    htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
    248 	    FRAG_LEN(MCLBYTES - 2));					\
    249 	__rfd->rfd_next =						\
    250 	    htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x))));	\
    251 	__rfd->rfd_status = 0;						\
    252 	STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    253 } while (/*CONSTCOND*/0)
    254 
    255 #define STGE_TIMEOUT 1000
    256 
    257 static void	stge_start(struct ifnet *);
    258 static void	stge_watchdog(struct ifnet *);
    259 static int	stge_ioctl(struct ifnet *, u_long, void *);
    260 static int	stge_init(struct ifnet *);
    261 static void	stge_stop(struct ifnet *, int);
    262 
    263 static bool	stge_shutdown(device_t, int);
    264 
    265 static void	stge_reset(struct stge_softc *);
    266 static void	stge_rxdrain(struct stge_softc *);
    267 static int	stge_add_rxbuf(struct stge_softc *, int);
    268 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
    269 static void	stge_tick(void *);
    270 
    271 static void	stge_stats_update(struct stge_softc *);
    272 
    273 static void	stge_set_filter(struct stge_softc *);
    274 
    275 static int	stge_intr(void *);
    276 static void	stge_txintr(struct stge_softc *);
    277 static void	stge_rxintr(struct stge_softc *);
    278 
    279 static int	stge_mii_readreg(device_t, int, int);
    280 static void	stge_mii_writereg(device_t, int, int, int);
    281 static void	stge_mii_statchg(device_t);
    282 
    283 static int	stge_match(device_t, cfdata_t, void *);
    284 static void	stge_attach(device_t, device_t, void *);
    285 
    286 int	stge_copy_small = 0;
    287 
    288 CFATTACH_DECL_NEW(stge, sizeof(struct stge_softc),
    289     stge_match, stge_attach, NULL, NULL);
    290 
    291 static uint32_t stge_mii_bitbang_read(device_t);
    292 static void	stge_mii_bitbang_write(device_t, uint32_t);
    293 
    294 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
    295 	stge_mii_bitbang_read,
    296 	stge_mii_bitbang_write,
    297 	{
    298 		PC_MgmtData,		/* MII_BIT_MDO */
    299 		PC_MgmtData,		/* MII_BIT_MDI */
    300 		PC_MgmtClk,		/* MII_BIT_MDC */
    301 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
    302 		0,			/* MII_BIT_DIR_PHY_HOST */
    303 	}
    304 };
    305 
    306 /*
    307  * Devices supported by this driver.
    308  */
    309 static const struct stge_product {
    310 	pci_vendor_id_t		stge_vendor;
    311 	pci_product_id_t	stge_product;
    312 	const char		*stge_name;
    313 } stge_products[] = {
    314 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST1023,
    315 	  "Sundance ST-1023 Gigabit Ethernet" },
    316 
    317 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST2021,
    318 	  "Sundance ST-2021 Gigabit Ethernet" },
    319 
    320 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021,
    321 	  "Tamarack TC9021 Gigabit Ethernet" },
    322 
    323 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021_ALT,
    324 	  "Tamarack TC9021 Gigabit Ethernet" },
    325 
    326 	/*
    327 	 * The Sundance sample boards use the Sundance vendor ID,
    328 	 * but the Tamarack product ID.
    329 	 */
    330 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021,
    331 	  "Sundance TC9021 Gigabit Ethernet" },
    332 
    333 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021_ALT,
    334 	  "Sundance TC9021 Gigabit Ethernet" },
    335 
    336 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL4000,
    337 	  "D-Link DL-4000 Gigabit Ethernet" },
    338 
    339 	{ PCI_VENDOR_ANTARES,		PCI_PRODUCT_ANTARES_TC9021,
    340 	  "Antares Gigabit Ethernet" },
    341 
    342 	{ 0,				0,
    343 	  NULL },
    344 };
    345 
    346 static const struct stge_product *
    347 stge_lookup(const struct pci_attach_args *pa)
    348 {
    349 	const struct stge_product *sp;
    350 
    351 	for (sp = stge_products; sp->stge_name != NULL; sp++) {
    352 		if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
    353 		    PCI_PRODUCT(pa->pa_id) == sp->stge_product)
    354 			return (sp);
    355 	}
    356 	return (NULL);
    357 }
    358 
    359 static int
    360 stge_match(device_t parent, cfdata_t cf, void *aux)
    361 {
    362 	struct pci_attach_args *pa = aux;
    363 
    364 	if (stge_lookup(pa) != NULL)
    365 		return (1);
    366 
    367 	return (0);
    368 }
    369 
    370 static void
    371 stge_attach(device_t parent, device_t self, void *aux)
    372 {
    373 	struct stge_softc *sc = device_private(self);
    374 	struct pci_attach_args *pa = aux;
    375 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    376 	pci_chipset_tag_t pc = pa->pa_pc;
    377 	pci_intr_handle_t ih;
    378 	const char *intrstr = NULL;
    379 	bus_space_tag_t iot, memt;
    380 	bus_space_handle_t ioh, memh;
    381 	bus_dma_segment_t seg;
    382 	int ioh_valid, memh_valid;
    383 	int i, rseg, error;
    384 	const struct stge_product *sp;
    385 	uint8_t enaddr[ETHER_ADDR_LEN];
    386 
    387 	callout_init(&sc->sc_tick_ch, 0);
    388 
    389 	sp = stge_lookup(pa);
    390 	if (sp == NULL) {
    391 		printf("\n");
    392 		panic("ste_attach: impossible");
    393 	}
    394 
    395 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    396 
    397 	aprint_normal(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
    398 
    399 	/*
    400 	 * Map the device.
    401 	 */
    402 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
    403 	    PCI_MAPREG_TYPE_IO, 0,
    404 	    &iot, &ioh, NULL, NULL) == 0);
    405 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
    406 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    407 	    &memt, &memh, NULL, NULL) == 0);
    408 
    409 	if (memh_valid) {
    410 		sc->sc_st = memt;
    411 		sc->sc_sh = memh;
    412 	} else if (ioh_valid) {
    413 		sc->sc_st = iot;
    414 		sc->sc_sh = ioh;
    415 	} else {
    416 		aprint_error_dev(self, "unable to map device registers\n");
    417 		return;
    418 	}
    419 
    420 	sc->sc_dmat = pa->pa_dmat;
    421 
    422 	/* Enable bus mastering. */
    423 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    424 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    425 	    PCI_COMMAND_MASTER_ENABLE);
    426 
    427 	/* power up chip */
    428 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
    429 	    error != EOPNOTSUPP) {
    430 		aprint_error_dev(self, "cannot activate %d\n",
    431 		    error);
    432 		return;
    433 	}
    434 	/*
    435 	 * Map and establish our interrupt.
    436 	 */
    437 	if (pci_intr_map(pa, &ih)) {
    438 		aprint_error_dev(self, "unable to map interrupt\n");
    439 		return;
    440 	}
    441 	intrstr = pci_intr_string(pc, ih);
    442 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
    443 	if (sc->sc_ih == NULL) {
    444 		aprint_error_dev(self, "unable to establish interrupt");
    445 		if (intrstr != NULL)
    446 			aprint_error(" at %s", intrstr);
    447 		aprint_error("\n");
    448 		return;
    449 	}
    450 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    451 
    452 	/*
    453 	 * Allocate the control data structures, and create and load the
    454 	 * DMA map for it.
    455 	 */
    456 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    457 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    458 	    0)) != 0) {
    459 		aprint_error_dev(self,
    460 		    "unable to allocate control data, error = %d\n",
    461 		    error);
    462 		goto fail_0;
    463 	}
    464 
    465 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    466 	    sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
    467 	    BUS_DMA_COHERENT)) != 0) {
    468 		aprint_error_dev(self,
    469 		    "unable to map control data, error = %d\n",
    470 		    error);
    471 		goto fail_1;
    472 	}
    473 
    474 	if ((error = bus_dmamap_create(sc->sc_dmat,
    475 	    sizeof(struct stge_control_data), 1,
    476 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    477 		aprint_error_dev(self,
    478 		    "unable to create control data DMA map, error = %d\n",
    479 		    error);
    480 		goto fail_2;
    481 	}
    482 
    483 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    484 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
    485 	    0)) != 0) {
    486 		aprint_error_dev(self,
    487 		    "unable to load control data DMA map, error = %d\n",
    488 		    error);
    489 		goto fail_3;
    490 	}
    491 
    492 	/*
    493 	 * Create the transmit buffer DMA maps.  Note that rev B.3
    494 	 * and earlier seem to have a bug regarding multi-fragment
    495 	 * packets.  We need to limit the number of Tx segments on
    496 	 * such chips to 1.
    497 	 */
    498 	for (i = 0; i < STGE_NTXDESC; i++) {
    499 		if ((error = bus_dmamap_create(sc->sc_dmat,
    500 		    ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
    501 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
    502 			aprint_error_dev(self,
    503 			    "unable to create tx DMA map %d, error = %d\n",
    504 			    i, error);
    505 			goto fail_4;
    506 		}
    507 	}
    508 
    509 	/*
    510 	 * Create the receive buffer DMA maps.
    511 	 */
    512 	for (i = 0; i < STGE_NRXDESC; i++) {
    513 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    514 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
    515 			aprint_error_dev(self,
    516 			    "unable to create rx DMA map %d, error = %d\n",
    517 			    i, error);
    518 			goto fail_5;
    519 		}
    520 		sc->sc_rxsoft[i].ds_mbuf = NULL;
    521 	}
    522 
    523 	/*
    524 	 * Determine if we're copper or fiber.  It affects how we
    525 	 * reset the card.
    526 	 */
    527 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
    528 	    AC_PhyMedia)
    529 		sc->sc_usefiber = 1;
    530 	else
    531 		sc->sc_usefiber = 0;
    532 
    533 	/*
    534 	 * Reset the chip to a known state.
    535 	 */
    536 	stge_reset(sc);
    537 
    538 	/*
    539 	 * Reading the station address from the EEPROM doesn't seem
    540 	 * to work, at least on my sample boards.  Instead, since
    541 	 * the reset sequence does AutoInit, read it from the station
    542 	 * address registers. For Sundance 1023 you can only read it
    543 	 * from EEPROM.
    544 	 */
    545 	if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
    546 		enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    547 		    STGE_StationAddress0) & 0xff;
    548 		enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    549 		    STGE_StationAddress0) >> 8;
    550 		enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    551 		    STGE_StationAddress1) & 0xff;
    552 		enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    553 		    STGE_StationAddress1) >> 8;
    554 		enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    555 		    STGE_StationAddress2) & 0xff;
    556 		enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    557 		    STGE_StationAddress2) >> 8;
    558 		sc->sc_stge1023 = 0;
    559 	} else {
    560 		uint16_t myaddr[ETHER_ADDR_LEN / 2];
    561 		for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
    562 			stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
    563 			    &myaddr[i]);
    564 			myaddr[i] = le16toh(myaddr[i]);
    565 		}
    566 		(void)memcpy(enaddr, myaddr, sizeof(enaddr));
    567 		sc->sc_stge1023 = 1;
    568 	}
    569 
    570 	aprint_normal_dev(self, "Ethernet address %s\n",
    571 	    ether_sprintf(enaddr));
    572 
    573 	/*
    574 	 * Read some important bits from the PhyCtrl register.
    575 	 */
    576 	sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
    577 	    STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
    578 
    579 	/*
    580 	 * Initialize our media structures and probe the MII.
    581 	 */
    582 	sc->sc_mii.mii_ifp = ifp;
    583 	sc->sc_mii.mii_readreg = stge_mii_readreg;
    584 	sc->sc_mii.mii_writereg = stge_mii_writereg;
    585 	sc->sc_mii.mii_statchg = stge_mii_statchg;
    586 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
    587 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
    588 	    ether_mediastatus);
    589 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    590 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
    591 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    592 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    593 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    594 	} else
    595 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    596 
    597 	ifp = &sc->sc_ethercom.ec_if;
    598 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    599 	ifp->if_softc = sc;
    600 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    601 	ifp->if_ioctl = stge_ioctl;
    602 	ifp->if_start = stge_start;
    603 	ifp->if_watchdog = stge_watchdog;
    604 	ifp->if_init = stge_init;
    605 	ifp->if_stop = stge_stop;
    606 	IFQ_SET_READY(&ifp->if_snd);
    607 
    608 	/*
    609 	 * The manual recommends disabling early transmit, so we
    610 	 * do.  It's disabled anyway, if using IP checksumming,
    611 	 * since the entire packet must be in the FIFO in order
    612 	 * for the chip to perform the checksum.
    613 	 */
    614 	sc->sc_txthresh = 0x0fff;
    615 
    616 	/*
    617 	 * Disable MWI if the PCI layer tells us to.
    618 	 */
    619 	sc->sc_DMACtrl = 0;
    620 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
    621 		sc->sc_DMACtrl |= DMAC_MWIDisable;
    622 
    623 	/*
    624 	 * We can support 802.1Q VLAN-sized frames and jumbo
    625 	 * Ethernet frames.
    626 	 *
    627 	 * XXX Figure out how to do hw-assisted VLAN tagging in
    628 	 * XXX a reasonable way on this chip.
    629 	 */
    630 	sc->sc_ethercom.ec_capabilities |=
    631 	    ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
    632 	    ETHERCAP_VLAN_HWTAGGING;
    633 
    634 	/*
    635 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
    636 	 */
    637 	sc->sc_ethercom.ec_if.if_capabilities |=
    638 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    639 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    640 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    641 
    642 	/*
    643 	 * Attach the interface.
    644 	 */
    645 	if_attach(ifp);
    646 	ether_ifattach(ifp, enaddr);
    647 
    648 #ifdef STGE_EVENT_COUNTERS
    649 	/*
    650 	 * Attach event counters.
    651 	 */
    652 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
    653 	    NULL, device_xname(self), "txstall");
    654 	evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
    655 	    NULL, device_xname(self), "txdmaintr");
    656 	evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
    657 	    NULL, device_xname(self), "txindintr");
    658 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    659 	    NULL, device_xname(self), "rxintr");
    660 
    661 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
    662 	    NULL, device_xname(self), "txseg1");
    663 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
    664 	    NULL, device_xname(self), "txseg2");
    665 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
    666 	    NULL, device_xname(self), "txseg3");
    667 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
    668 	    NULL, device_xname(self), "txseg4");
    669 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
    670 	    NULL, device_xname(self), "txseg5");
    671 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
    672 	    NULL, device_xname(self), "txsegmore");
    673 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
    674 	    NULL, device_xname(self), "txcopy");
    675 
    676 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    677 	    NULL, device_xname(self), "rxipsum");
    678 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
    679 	    NULL, device_xname(self), "rxtcpsum");
    680 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
    681 	    NULL, device_xname(self), "rxudpsum");
    682 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    683 	    NULL, device_xname(self), "txipsum");
    684 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
    685 	    NULL, device_xname(self), "txtcpsum");
    686 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
    687 	    NULL, device_xname(self), "txudpsum");
    688 #endif /* STGE_EVENT_COUNTERS */
    689 
    690 	/*
    691 	 * Make sure the interface is shutdown during reboot.
    692 	 */
    693 	if (pmf_device_register1(self, NULL, NULL, stge_shutdown))
    694 		pmf_class_network_register(self, ifp);
    695 	else
    696 		aprint_error_dev(self, "couldn't establish power handler\n");
    697 
    698 	return;
    699 
    700 	/*
    701 	 * Free any resources we've allocated during the failed attach
    702 	 * attempt.  Do this in reverse order and fall through.
    703 	 */
    704  fail_5:
    705 	for (i = 0; i < STGE_NRXDESC; i++) {
    706 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
    707 			bus_dmamap_destroy(sc->sc_dmat,
    708 			    sc->sc_rxsoft[i].ds_dmamap);
    709 	}
    710  fail_4:
    711 	for (i = 0; i < STGE_NTXDESC; i++) {
    712 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
    713 			bus_dmamap_destroy(sc->sc_dmat,
    714 			    sc->sc_txsoft[i].ds_dmamap);
    715 	}
    716 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    717  fail_3:
    718 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    719  fail_2:
    720 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    721 	    sizeof(struct stge_control_data));
    722  fail_1:
    723 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    724  fail_0:
    725 	return;
    726 }
    727 
    728 /*
    729  * stge_shutdown:
    730  *
    731  *	Make sure the interface is stopped at reboot time.
    732  */
    733 static bool
    734 stge_shutdown(device_t self, int howto)
    735 {
    736 	struct stge_softc *sc = device_private(self);
    737 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    738 
    739 	stge_stop(ifp, 1);
    740 
    741 	return true;
    742 }
    743 
    744 static void
    745 stge_dma_wait(struct stge_softc *sc)
    746 {
    747 	int i;
    748 
    749 	for (i = 0; i < STGE_TIMEOUT; i++) {
    750 		delay(2);
    751 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
    752 		     DMAC_TxDMAInProg) == 0)
    753 			break;
    754 	}
    755 
    756 	if (i == STGE_TIMEOUT)
    757 		printf("%s: DMA wait timed out\n", device_xname(sc->sc_dev));
    758 }
    759 
    760 /*
    761  * stge_start:		[ifnet interface function]
    762  *
    763  *	Start packet transmission on the interface.
    764  */
    765 static void
    766 stge_start(struct ifnet *ifp)
    767 {
    768 	struct stge_softc *sc = ifp->if_softc;
    769 	struct mbuf *m0;
    770 	struct stge_descsoft *ds;
    771 	struct stge_tfd *tfd;
    772 	bus_dmamap_t dmamap;
    773 	int error, firsttx, nexttx, opending, seg, totlen;
    774 	uint64_t csum_flags;
    775 
    776 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    777 		return;
    778 
    779 	/*
    780 	 * Remember the previous number of pending transmissions
    781 	 * and the first descriptor we will use.
    782 	 */
    783 	opending = sc->sc_txpending;
    784 	firsttx = STGE_NEXTTX(sc->sc_txlast);
    785 
    786 	/*
    787 	 * Loop through the send queue, setting up transmit descriptors
    788 	 * until we drain the queue, or use up all available transmit
    789 	 * descriptors.
    790 	 */
    791 	for (;;) {
    792 		struct m_tag *mtag;
    793 		uint64_t tfc;
    794 
    795 		/*
    796 		 * Grab a packet off the queue.
    797 		 */
    798 		IFQ_POLL(&ifp->if_snd, m0);
    799 		if (m0 == NULL)
    800 			break;
    801 
    802 		/*
    803 		 * Leave one unused descriptor at the end of the
    804 		 * list to prevent wrapping completely around.
    805 		 */
    806 		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
    807 			STGE_EVCNT_INCR(&sc->sc_ev_txstall);
    808 			break;
    809 		}
    810 
    811 		/*
    812 		 * See if we have any VLAN stuff.
    813 		 */
    814 		mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
    815 
    816 		/*
    817 		 * Get the last and next available transmit descriptor.
    818 		 */
    819 		nexttx = STGE_NEXTTX(sc->sc_txlast);
    820 		tfd = &sc->sc_txdescs[nexttx];
    821 		ds = &sc->sc_txsoft[nexttx];
    822 
    823 		dmamap = ds->ds_dmamap;
    824 
    825 		/*
    826 		 * Load the DMA map.  If this fails, the packet either
    827 		 * didn't fit in the alloted number of segments, or we
    828 		 * were short on resources.  For the too-many-segments
    829 		 * case, we simply report an error and drop the packet,
    830 		 * since we can't sanely copy a jumbo packet to a single
    831 		 * buffer.
    832 		 */
    833 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    834 		    BUS_DMA_NOWAIT);
    835 		if (error) {
    836 			if (error == EFBIG) {
    837 				printf("%s: Tx packet consumes too many "
    838 				    "DMA segments, dropping...\n",
    839 				    device_xname(sc->sc_dev));
    840 				IFQ_DEQUEUE(&ifp->if_snd, m0);
    841 				m_freem(m0);
    842 				continue;
    843 			}
    844 			/*
    845 			 * Short on resources, just stop for now.
    846 			 */
    847 			break;
    848 		}
    849 
    850 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    851 
    852 		/*
    853 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    854 		 */
    855 
    856 		/* Sync the DMA map. */
    857 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    858 		    BUS_DMASYNC_PREWRITE);
    859 
    860 		/* Initialize the fragment list. */
    861 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
    862 			tfd->tfd_frags[seg].frag_word0 =
    863 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
    864 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
    865 			totlen += dmamap->dm_segs[seg].ds_len;
    866 		}
    867 
    868 #ifdef STGE_EVENT_COUNTERS
    869 		switch (dmamap->dm_nsegs) {
    870 		case 1:
    871 			STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
    872 			break;
    873 		case 2:
    874 			STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
    875 			break;
    876 		case 3:
    877 			STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
    878 			break;
    879 		case 4:
    880 			STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
    881 			break;
    882 		case 5:
    883 			STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
    884 			break;
    885 		default:
    886 			STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
    887 			break;
    888 		}
    889 #endif /* STGE_EVENT_COUNTERS */
    890 
    891 		/*
    892 		 * Initialize checksumming flags in the descriptor.
    893 		 * Byte-swap constants so the compiler can optimize.
    894 		 */
    895 		csum_flags = 0;
    896 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
    897 			STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
    898 			csum_flags |= TFD_IPChecksumEnable;
    899 		}
    900 
    901 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
    902 			STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
    903 			csum_flags |= TFD_TCPChecksumEnable;
    904 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
    905 			STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
    906 			csum_flags |= TFD_UDPChecksumEnable;
    907 		}
    908 
    909 		/*
    910 		 * Initialize the descriptor and give it to the chip.
    911 		 * Check to see if we have a VLAN tag to insert.
    912 		 */
    913 
    914 		tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
    915 		    TFD_FragCount(seg) | csum_flags |
    916 		    (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
    917 			TFD_TxDMAIndicate : 0);
    918 		if (mtag) {
    919 #if	0
    920 			struct ether_header *eh =
    921 			    mtod(m0, struct ether_header *);
    922 			u_int16_t etype = ntohs(eh->ether_type);
    923 			printf("%s: xmit (tag %d) etype %x\n",
    924 			   ifp->if_xname, *mtod(n, int *), etype);
    925 #endif
    926 			tfc |= TFD_VLANTagInsert |
    927 #ifdef	STGE_VLAN_CFI
    928 			    TFD_CFI |
    929 #endif
    930 			    TFD_VID(VLAN_TAG_VALUE(mtag));
    931 		}
    932 		tfd->tfd_control = htole64(tfc);
    933 
    934 		/* Sync the descriptor. */
    935 		STGE_CDTXSYNC(sc, nexttx,
    936 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    937 
    938 		/*
    939 		 * Kick the transmit DMA logic.
    940 		 */
    941 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
    942 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
    943 
    944 		/*
    945 		 * Store a pointer to the packet so we can free it later.
    946 		 */
    947 		ds->ds_mbuf = m0;
    948 
    949 		/* Advance the tx pointer. */
    950 		sc->sc_txpending++;
    951 		sc->sc_txlast = nexttx;
    952 
    953 		/*
    954 		 * Pass the packet to any BPF listeners.
    955 		 */
    956 		bpf_mtap(ifp, m0);
    957 	}
    958 
    959 	if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
    960 		/* No more slots left; notify upper layer. */
    961 		ifp->if_flags |= IFF_OACTIVE;
    962 	}
    963 
    964 	if (sc->sc_txpending != opending) {
    965 		/*
    966 		 * We enqueued packets.  If the transmitter was idle,
    967 		 * reset the txdirty pointer.
    968 		 */
    969 		if (opending == 0)
    970 			sc->sc_txdirty = firsttx;
    971 
    972 		/* Set a watchdog timer in case the chip flakes out. */
    973 		ifp->if_timer = 5;
    974 	}
    975 }
    976 
    977 /*
    978  * stge_watchdog:	[ifnet interface function]
    979  *
    980  *	Watchdog timer handler.
    981  */
    982 static void
    983 stge_watchdog(struct ifnet *ifp)
    984 {
    985 	struct stge_softc *sc = ifp->if_softc;
    986 
    987 	/*
    988 	 * Sweep up first, since we don't interrupt every frame.
    989 	 */
    990 	stge_txintr(sc);
    991 	if (sc->sc_txpending != 0) {
    992 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
    993 		ifp->if_oerrors++;
    994 
    995 		(void) stge_init(ifp);
    996 
    997 		/* Try to get more packets going. */
    998 		stge_start(ifp);
    999 	}
   1000 }
   1001 
   1002 /*
   1003  * stge_ioctl:		[ifnet interface function]
   1004  *
   1005  *	Handle control requests from the operator.
   1006  */
   1007 static int
   1008 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1009 {
   1010 	struct stge_softc *sc = ifp->if_softc;
   1011 	int s, error;
   1012 
   1013 	s = splnet();
   1014 
   1015 	error = ether_ioctl(ifp, cmd, data);
   1016 	if (error == ENETRESET) {
   1017 		error = 0;
   1018 
   1019 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1020 			;
   1021 		else if (ifp->if_flags & IFF_RUNNING) {
   1022 			/*
   1023 			 * Multicast list has changed; set the hardware filter
   1024 			 * accordingly.
   1025 			 */
   1026 			stge_set_filter(sc);
   1027 		}
   1028 	}
   1029 
   1030 	/* Try to get more packets going. */
   1031 	stge_start(ifp);
   1032 
   1033 	splx(s);
   1034 	return (error);
   1035 }
   1036 
   1037 /*
   1038  * stge_intr:
   1039  *
   1040  *	Interrupt service routine.
   1041  */
   1042 static int
   1043 stge_intr(void *arg)
   1044 {
   1045 	struct stge_softc *sc = arg;
   1046 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1047 	uint32_t txstat;
   1048 	int wantinit;
   1049 	uint16_t isr;
   1050 
   1051 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
   1052 	     IS_InterruptStatus) == 0)
   1053 		return (0);
   1054 
   1055 	for (wantinit = 0; wantinit == 0;) {
   1056 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
   1057 		if ((isr & sc->sc_IntEnable) == 0)
   1058 			break;
   1059 
   1060 		/* Host interface errors. */
   1061 		if (isr & IS_HostError) {
   1062 			printf("%s: Host interface error\n",
   1063 			    device_xname(sc->sc_dev));
   1064 			wantinit = 1;
   1065 			continue;
   1066 		}
   1067 
   1068 		/* Receive interrupts. */
   1069 		if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
   1070 			STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
   1071 			stge_rxintr(sc);
   1072 			if (isr & IS_RFDListEnd) {
   1073 				printf("%s: receive ring overflow\n",
   1074 				    device_xname(sc->sc_dev));
   1075 				/*
   1076 				 * XXX Should try to recover from this
   1077 				 * XXX more gracefully.
   1078 				 */
   1079 				wantinit = 1;
   1080 			}
   1081 		}
   1082 
   1083 		/* Transmit interrupts. */
   1084 		if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
   1085 #ifdef STGE_EVENT_COUNTERS
   1086 			if (isr & IS_TxDMAComplete)
   1087 				STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
   1088 #endif
   1089 			stge_txintr(sc);
   1090 		}
   1091 
   1092 		/* Statistics overflow. */
   1093 		if (isr & IS_UpdateStats)
   1094 			stge_stats_update(sc);
   1095 
   1096 		/* Transmission errors. */
   1097 		if (isr & IS_TxComplete) {
   1098 			STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
   1099 			for (;;) {
   1100 				txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
   1101 				    STGE_TxStatus);
   1102 				if ((txstat & TS_TxComplete) == 0)
   1103 					break;
   1104 				if (txstat & TS_TxUnderrun) {
   1105 					sc->sc_txthresh++;
   1106 					if (sc->sc_txthresh > 0x0fff)
   1107 						sc->sc_txthresh = 0x0fff;
   1108 					printf("%s: transmit underrun, new "
   1109 					    "threshold: %d bytes\n",
   1110 					    device_xname(sc->sc_dev),
   1111 					    sc->sc_txthresh << 5);
   1112 				}
   1113 				if (txstat & TS_MaxCollisions)
   1114 					printf("%s: excessive collisions\n",
   1115 					    device_xname(sc->sc_dev));
   1116 			}
   1117 			wantinit = 1;
   1118 		}
   1119 
   1120 	}
   1121 
   1122 	if (wantinit)
   1123 		stge_init(ifp);
   1124 
   1125 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
   1126 	    sc->sc_IntEnable);
   1127 
   1128 	/* Try to get more packets going. */
   1129 	stge_start(ifp);
   1130 
   1131 	return (1);
   1132 }
   1133 
   1134 /*
   1135  * stge_txintr:
   1136  *
   1137  *	Helper; handle transmit interrupts.
   1138  */
   1139 static void
   1140 stge_txintr(struct stge_softc *sc)
   1141 {
   1142 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1143 	struct stge_descsoft *ds;
   1144 	uint64_t control;
   1145 	int i;
   1146 
   1147 	ifp->if_flags &= ~IFF_OACTIVE;
   1148 
   1149 	/*
   1150 	 * Go through our Tx list and free mbufs for those
   1151 	 * frames which have been transmitted.
   1152 	 */
   1153 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
   1154 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
   1155 		ds = &sc->sc_txsoft[i];
   1156 
   1157 		STGE_CDTXSYNC(sc, i,
   1158 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1159 
   1160 		control = le64toh(sc->sc_txdescs[i].tfd_control);
   1161 		if ((control & TFD_TFDDone) == 0)
   1162 			break;
   1163 
   1164 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
   1165 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1166 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1167 		m_freem(ds->ds_mbuf);
   1168 		ds->ds_mbuf = NULL;
   1169 	}
   1170 
   1171 	/* Update the dirty transmit buffer pointer. */
   1172 	sc->sc_txdirty = i;
   1173 
   1174 	/*
   1175 	 * If there are no more pending transmissions, cancel the watchdog
   1176 	 * timer.
   1177 	 */
   1178 	if (sc->sc_txpending == 0)
   1179 		ifp->if_timer = 0;
   1180 }
   1181 
   1182 /*
   1183  * stge_rxintr:
   1184  *
   1185  *	Helper; handle receive interrupts.
   1186  */
   1187 static void
   1188 stge_rxintr(struct stge_softc *sc)
   1189 {
   1190 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1191 	struct stge_descsoft *ds;
   1192 	struct mbuf *m, *tailm;
   1193 	uint64_t status;
   1194 	int i, len;
   1195 
   1196 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
   1197 		ds = &sc->sc_rxsoft[i];
   1198 
   1199 		STGE_CDRXSYNC(sc, i,
   1200 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1201 
   1202 		status = le64toh(sc->sc_rxdescs[i].rfd_status);
   1203 
   1204 		if ((status & RFD_RFDDone) == 0)
   1205 			break;
   1206 
   1207 		if (__predict_false(sc->sc_rxdiscard)) {
   1208 			STGE_INIT_RXDESC(sc, i);
   1209 			if (status & RFD_FrameEnd) {
   1210 				/* Reset our state. */
   1211 				sc->sc_rxdiscard = 0;
   1212 			}
   1213 			continue;
   1214 		}
   1215 
   1216 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1217 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1218 
   1219 		m = ds->ds_mbuf;
   1220 
   1221 		/*
   1222 		 * Add a new receive buffer to the ring.
   1223 		 */
   1224 		if (stge_add_rxbuf(sc, i) != 0) {
   1225 			/*
   1226 			 * Failed, throw away what we've done so
   1227 			 * far, and discard the rest of the packet.
   1228 			 */
   1229 			ifp->if_ierrors++;
   1230 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1231 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1232 			STGE_INIT_RXDESC(sc, i);
   1233 			if ((status & RFD_FrameEnd) == 0)
   1234 				sc->sc_rxdiscard = 1;
   1235 			if (sc->sc_rxhead != NULL)
   1236 				m_freem(sc->sc_rxhead);
   1237 			STGE_RXCHAIN_RESET(sc);
   1238 			continue;
   1239 		}
   1240 
   1241 #ifdef DIAGNOSTIC
   1242 		if (status & RFD_FrameStart) {
   1243 			KASSERT(sc->sc_rxhead == NULL);
   1244 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
   1245 		}
   1246 #endif
   1247 
   1248 		STGE_RXCHAIN_LINK(sc, m);
   1249 
   1250 		/*
   1251 		 * If this is not the end of the packet, keep
   1252 		 * looking.
   1253 		 */
   1254 		if ((status & RFD_FrameEnd) == 0) {
   1255 			sc->sc_rxlen += m->m_len;
   1256 			continue;
   1257 		}
   1258 
   1259 		/*
   1260 		 * Okay, we have the entire packet now...
   1261 		 */
   1262 		*sc->sc_rxtailp = NULL;
   1263 		m = sc->sc_rxhead;
   1264 		tailm = sc->sc_rxtail;
   1265 
   1266 		STGE_RXCHAIN_RESET(sc);
   1267 
   1268 		/*
   1269 		 * If the packet had an error, drop it.  Note we
   1270 		 * count the error later in the periodic stats update.
   1271 		 */
   1272 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
   1273 			      RFD_RxAlignmentError | RFD_RxFCSError |
   1274 			      RFD_RxLengthError)) {
   1275 			m_freem(m);
   1276 			continue;
   1277 		}
   1278 
   1279 		/*
   1280 		 * No errors.
   1281 		 *
   1282 		 * Note we have configured the chip to not include
   1283 		 * the CRC at the end of the packet.
   1284 		 */
   1285 		len = RFD_RxDMAFrameLen(status);
   1286 		tailm->m_len = len - sc->sc_rxlen;
   1287 
   1288 		/*
   1289 		 * If the packet is small enough to fit in a
   1290 		 * single header mbuf, allocate one and copy
   1291 		 * the data into it.  This greatly reduces
   1292 		 * memory consumption when we receive lots
   1293 		 * of small packets.
   1294 		 */
   1295 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
   1296 			struct mbuf *nm;
   1297 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1298 			if (nm == NULL) {
   1299 				ifp->if_ierrors++;
   1300 				m_freem(m);
   1301 				continue;
   1302 			}
   1303 			nm->m_data += 2;
   1304 			nm->m_pkthdr.len = nm->m_len = len;
   1305 			m_copydata(m, 0, len, mtod(nm, void *));
   1306 			m_freem(m);
   1307 			m = nm;
   1308 		}
   1309 
   1310 		/*
   1311 		 * Set the incoming checksum information for the packet.
   1312 		 */
   1313 		if (status & RFD_IPDetected) {
   1314 			STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1315 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1316 			if (status & RFD_IPError)
   1317 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1318 			if (status & RFD_TCPDetected) {
   1319 				STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   1320 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1321 				if (status & RFD_TCPError)
   1322 					m->m_pkthdr.csum_flags |=
   1323 					    M_CSUM_TCP_UDP_BAD;
   1324 			} else if (status & RFD_UDPDetected) {
   1325 				STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   1326 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1327 				if (status & RFD_UDPError)
   1328 					m->m_pkthdr.csum_flags |=
   1329 					    M_CSUM_TCP_UDP_BAD;
   1330 			}
   1331 		}
   1332 
   1333 		m->m_pkthdr.rcvif = ifp;
   1334 		m->m_pkthdr.len = len;
   1335 
   1336 		/*
   1337 		 * Pass this up to any BPF listeners, but only
   1338 		 * pass if up the stack if it's for us.
   1339 		 */
   1340 		bpf_mtap(ifp, m);
   1341 #ifdef	STGE_VLAN_UNTAG
   1342 		/*
   1343 		 * Check for VLAN tagged packets
   1344 		 */
   1345 		if (status & RFD_VLANDetected)
   1346 			VLAN_INPUT_TAG(ifp, m, RFD_TCI(status), continue);
   1347 
   1348 #endif
   1349 #if	0
   1350 		if (status & RFD_VLANDetected) {
   1351 			struct ether_header *eh;
   1352 			u_int16_t etype;
   1353 
   1354 			eh = mtod(m, struct ether_header *);
   1355 			etype = ntohs(eh->ether_type);
   1356 			printf("%s: VLANtag detected (TCI %d) etype %x\n",
   1357 			    ifp->if_xname, (u_int16_t) RFD_TCI(status),
   1358 			    etype);
   1359 		}
   1360 #endif
   1361 		/* Pass it on. */
   1362 		(*ifp->if_input)(ifp, m);
   1363 	}
   1364 
   1365 	/* Update the receive pointer. */
   1366 	sc->sc_rxptr = i;
   1367 }
   1368 
   1369 /*
   1370  * stge_tick:
   1371  *
   1372  *	One second timer, used to tick the MII.
   1373  */
   1374 static void
   1375 stge_tick(void *arg)
   1376 {
   1377 	struct stge_softc *sc = arg;
   1378 	int s;
   1379 
   1380 	s = splnet();
   1381 	mii_tick(&sc->sc_mii);
   1382 	stge_stats_update(sc);
   1383 	splx(s);
   1384 
   1385 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
   1386 }
   1387 
   1388 /*
   1389  * stge_stats_update:
   1390  *
   1391  *	Read the TC9021 statistics counters.
   1392  */
   1393 static void
   1394 stge_stats_update(struct stge_softc *sc)
   1395 {
   1396 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1397 	bus_space_tag_t st = sc->sc_st;
   1398 	bus_space_handle_t sh = sc->sc_sh;
   1399 
   1400 	(void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
   1401 
   1402 	ifp->if_ipackets +=
   1403 	    bus_space_read_4(st, sh, STGE_FramesRcvdOk);
   1404 
   1405 	ifp->if_ierrors +=
   1406 	    (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
   1407 
   1408 	(void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
   1409 
   1410 	ifp->if_opackets +=
   1411 	    bus_space_read_4(st, sh, STGE_FramesXmtdOk);
   1412 
   1413 	ifp->if_collisions +=
   1414 	    bus_space_read_4(st, sh, STGE_LateCollisions) +
   1415 	    bus_space_read_4(st, sh, STGE_MultiColFrames) +
   1416 	    bus_space_read_4(st, sh, STGE_SingleColFrames);
   1417 
   1418 	ifp->if_oerrors +=
   1419 	    (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
   1420 	    (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
   1421 }
   1422 
   1423 /*
   1424  * stge_reset:
   1425  *
   1426  *	Perform a soft reset on the TC9021.
   1427  */
   1428 static void
   1429 stge_reset(struct stge_softc *sc)
   1430 {
   1431 	uint32_t ac;
   1432 	int i;
   1433 
   1434 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
   1435 
   1436 	/*
   1437 	 * Only assert RstOut if we're fiber.  We need GMII clocks
   1438 	 * to be present in order for the reset to complete on fiber
   1439 	 * cards.
   1440 	 */
   1441 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
   1442 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
   1443 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
   1444 	    (sc->sc_usefiber ? AC_RstOut : 0));
   1445 
   1446 	delay(50000);
   1447 
   1448 	for (i = 0; i < STGE_TIMEOUT; i++) {
   1449 		delay(5000);
   1450 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
   1451 		     AC_ResetBusy) == 0)
   1452 			break;
   1453 	}
   1454 
   1455 	if (i == STGE_TIMEOUT)
   1456 		printf("%s: reset failed to complete\n",
   1457 		    device_xname(sc->sc_dev));
   1458 
   1459 	delay(1000);
   1460 }
   1461 
   1462 /*
   1463  * stge_init:		[ ifnet interface function ]
   1464  *
   1465  *	Initialize the interface.  Must be called at splnet().
   1466  */
   1467 static int
   1468 stge_init(struct ifnet *ifp)
   1469 {
   1470 	struct stge_softc *sc = ifp->if_softc;
   1471 	bus_space_tag_t st = sc->sc_st;
   1472 	bus_space_handle_t sh = sc->sc_sh;
   1473 	struct stge_descsoft *ds;
   1474 	int i, error = 0;
   1475 
   1476 	/*
   1477 	 * Cancel any pending I/O.
   1478 	 */
   1479 	stge_stop(ifp, 0);
   1480 
   1481 	/*
   1482 	 * Reset the chip to a known state.
   1483 	 */
   1484 	stge_reset(sc);
   1485 
   1486 	/*
   1487 	 * Initialize the transmit descriptor ring.
   1488 	 */
   1489 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1490 	for (i = 0; i < STGE_NTXDESC; i++) {
   1491 		sc->sc_txdescs[i].tfd_next = htole64(
   1492 		    STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
   1493 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
   1494 	}
   1495 	sc->sc_txpending = 0;
   1496 	sc->sc_txdirty = 0;
   1497 	sc->sc_txlast = STGE_NTXDESC - 1;
   1498 
   1499 	/*
   1500 	 * Initialize the receive descriptor and receive job
   1501 	 * descriptor rings.
   1502 	 */
   1503 	for (i = 0; i < STGE_NRXDESC; i++) {
   1504 		ds = &sc->sc_rxsoft[i];
   1505 		if (ds->ds_mbuf == NULL) {
   1506 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
   1507 				printf("%s: unable to allocate or map rx "
   1508 				    "buffer %d, error = %d\n",
   1509 				    device_xname(sc->sc_dev), i, error);
   1510 				/*
   1511 				 * XXX Should attempt to run with fewer receive
   1512 				 * XXX buffers instead of just failing.
   1513 				 */
   1514 				stge_rxdrain(sc);
   1515 				goto out;
   1516 			}
   1517 		} else
   1518 			STGE_INIT_RXDESC(sc, i);
   1519 	}
   1520 	sc->sc_rxptr = 0;
   1521 	sc->sc_rxdiscard = 0;
   1522 	STGE_RXCHAIN_RESET(sc);
   1523 
   1524 	/* Set the station address. */
   1525 	for (i = 0; i < 6; i++)
   1526 		bus_space_write_1(st, sh, STGE_StationAddress0 + i,
   1527 		    CLLADDR(ifp->if_sadl)[i]);
   1528 
   1529 	/*
   1530 	 * Set the statistics masks.  Disable all the RMON stats,
   1531 	 * and disable selected stats in the non-RMON stats registers.
   1532 	 */
   1533 	bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
   1534 	bus_space_write_4(st, sh, STGE_StatisticsMask,
   1535 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
   1536 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
   1537 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
   1538 	    (1U << 21));
   1539 
   1540 	/* Set up the receive filter. */
   1541 	stge_set_filter(sc);
   1542 
   1543 	/*
   1544 	 * Give the transmit and receive ring to the chip.
   1545 	 */
   1546 	bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
   1547 	bus_space_write_4(st, sh, STGE_TFDListPtrLo,
   1548 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
   1549 
   1550 	bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
   1551 	bus_space_write_4(st, sh, STGE_RFDListPtrLo,
   1552 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
   1553 
   1554 	/*
   1555 	 * Initialize the Tx auto-poll period.  It's OK to make this number
   1556 	 * large (255 is the max, but we use 127) -- we explicitly kick the
   1557 	 * transmit engine when there's actually a packet.
   1558 	 */
   1559 	bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
   1560 
   1561 	/* ..and the Rx auto-poll period. */
   1562 	bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
   1563 
   1564 	/* Initialize the Tx start threshold. */
   1565 	bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
   1566 
   1567 	/* RX DMA thresholds, from linux */
   1568 	bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
   1569 	bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
   1570 
   1571 	/*
   1572 	 * Initialize the Rx DMA interrupt control register.  We
   1573 	 * request an interrupt after every incoming packet, but
   1574 	 * defer it for 32us (64 * 512 ns).  When the number of
   1575 	 * interrupts pending reaches 8, we stop deferring the
   1576 	 * interrupt, and signal it immediately.
   1577 	 */
   1578 	bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
   1579 	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
   1580 
   1581 	/*
   1582 	 * Initialize the interrupt mask.
   1583 	 */
   1584 	sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
   1585 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
   1586 	bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
   1587 	bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
   1588 
   1589 	/*
   1590 	 * Configure the DMA engine.
   1591 	 * XXX Should auto-tune TxBurstLimit.
   1592 	 */
   1593 	bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
   1594 	    DMAC_TxBurstLimit(3));
   1595 
   1596 	/*
   1597 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
   1598 	 * FIFO, and send an un-PAUSE frame when the FIFO is totally
   1599 	 * empty again.
   1600 	 */
   1601 	bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
   1602 	bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
   1603 
   1604 	/*
   1605 	 * Set the maximum frame size.
   1606 	 */
   1607 	bus_space_write_2(st, sh, STGE_MaxFrameSize,
   1608 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
   1609 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
   1610 	     ETHER_VLAN_ENCAP_LEN : 0));
   1611 
   1612 	/*
   1613 	 * Initialize MacCtrl -- do it before setting the media,
   1614 	 * as setting the media will actually program the register.
   1615 	 *
   1616 	 * Note: We have to poke the IFS value before poking
   1617 	 * anything else.
   1618 	 */
   1619 	sc->sc_MACCtrl = MC_IFSSelect(0);
   1620 	bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
   1621 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
   1622 #ifdef	STGE_VLAN_UNTAG
   1623 	sc->sc_MACCtrl |= MC_AutoVLANuntagging;
   1624 #endif
   1625 
   1626 	if (sc->sc_rev >= 6) {		/* >= B.2 */
   1627 		/* Multi-frag frame bug work-around. */
   1628 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1629 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
   1630 
   1631 		/* Tx Poll Now bug work-around. */
   1632 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1633 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
   1634 		/* XXX ? from linux */
   1635 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1636 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
   1637 	}
   1638 
   1639 	/*
   1640 	 * Set the current media.
   1641 	 */
   1642 	if ((error = ether_mediachange(ifp)) != 0)
   1643 		goto out;
   1644 
   1645 	/*
   1646 	 * Start the one second MII clock.
   1647 	 */
   1648 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
   1649 
   1650 	/*
   1651 	 * ...all done!
   1652 	 */
   1653 	ifp->if_flags |= IFF_RUNNING;
   1654 	ifp->if_flags &= ~IFF_OACTIVE;
   1655 
   1656  out:
   1657 	if (error)
   1658 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
   1659 	return (error);
   1660 }
   1661 
   1662 /*
   1663  * stge_drain:
   1664  *
   1665  *	Drain the receive queue.
   1666  */
   1667 static void
   1668 stge_rxdrain(struct stge_softc *sc)
   1669 {
   1670 	struct stge_descsoft *ds;
   1671 	int i;
   1672 
   1673 	for (i = 0; i < STGE_NRXDESC; i++) {
   1674 		ds = &sc->sc_rxsoft[i];
   1675 		if (ds->ds_mbuf != NULL) {
   1676 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1677 			ds->ds_mbuf->m_next = NULL;
   1678 			m_freem(ds->ds_mbuf);
   1679 			ds->ds_mbuf = NULL;
   1680 		}
   1681 	}
   1682 }
   1683 
   1684 /*
   1685  * stge_stop:		[ ifnet interface function ]
   1686  *
   1687  *	Stop transmission on the interface.
   1688  */
   1689 static void
   1690 stge_stop(struct ifnet *ifp, int disable)
   1691 {
   1692 	struct stge_softc *sc = ifp->if_softc;
   1693 	struct stge_descsoft *ds;
   1694 	int i;
   1695 
   1696 	/*
   1697 	 * Stop the one second clock.
   1698 	 */
   1699 	callout_stop(&sc->sc_tick_ch);
   1700 
   1701 	/* Down the MII. */
   1702 	mii_down(&sc->sc_mii);
   1703 
   1704 	/*
   1705 	 * Disable interrupts.
   1706 	 */
   1707 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
   1708 
   1709 	/*
   1710 	 * Stop receiver, transmitter, and stats update.
   1711 	 */
   1712 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
   1713 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
   1714 
   1715 	/*
   1716 	 * Stop the transmit and receive DMA.
   1717 	 */
   1718 	stge_dma_wait(sc);
   1719 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
   1720 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
   1721 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
   1722 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
   1723 
   1724 	/*
   1725 	 * Release any queued transmit buffers.
   1726 	 */
   1727 	for (i = 0; i < STGE_NTXDESC; i++) {
   1728 		ds = &sc->sc_txsoft[i];
   1729 		if (ds->ds_mbuf != NULL) {
   1730 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1731 			m_freem(ds->ds_mbuf);
   1732 			ds->ds_mbuf = NULL;
   1733 		}
   1734 	}
   1735 
   1736 	/*
   1737 	 * Mark the interface down and cancel the watchdog timer.
   1738 	 */
   1739 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1740 	ifp->if_timer = 0;
   1741 
   1742 	if (disable)
   1743 		stge_rxdrain(sc);
   1744 }
   1745 
   1746 static int
   1747 stge_eeprom_wait(struct stge_softc *sc)
   1748 {
   1749 	int i;
   1750 
   1751 	for (i = 0; i < STGE_TIMEOUT; i++) {
   1752 		delay(1000);
   1753 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
   1754 		     EC_EepromBusy) == 0)
   1755 			return (0);
   1756 	}
   1757 	return (1);
   1758 }
   1759 
   1760 /*
   1761  * stge_read_eeprom:
   1762  *
   1763  *	Read data from the serial EEPROM.
   1764  */
   1765 static void
   1766 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
   1767 {
   1768 
   1769 	if (stge_eeprom_wait(sc))
   1770 		printf("%s: EEPROM failed to come ready\n",
   1771 		    device_xname(sc->sc_dev));
   1772 
   1773 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
   1774 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
   1775 	if (stge_eeprom_wait(sc))
   1776 		printf("%s: EEPROM read timed out\n",
   1777 		    device_xname(sc->sc_dev));
   1778 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
   1779 }
   1780 
   1781 /*
   1782  * stge_add_rxbuf:
   1783  *
   1784  *	Add a receive buffer to the indicated descriptor.
   1785  */
   1786 static int
   1787 stge_add_rxbuf(struct stge_softc *sc, int idx)
   1788 {
   1789 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
   1790 	struct mbuf *m;
   1791 	int error;
   1792 
   1793 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1794 	if (m == NULL)
   1795 		return (ENOBUFS);
   1796 
   1797 	MCLGET(m, M_DONTWAIT);
   1798 	if ((m->m_flags & M_EXT) == 0) {
   1799 		m_freem(m);
   1800 		return (ENOBUFS);
   1801 	}
   1802 
   1803 	m->m_data = m->m_ext.ext_buf + 2;
   1804 	m->m_len = MCLBYTES - 2;
   1805 
   1806 	if (ds->ds_mbuf != NULL)
   1807 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1808 
   1809 	ds->ds_mbuf = m;
   1810 
   1811 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
   1812 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1813 	if (error) {
   1814 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1815 		    device_xname(sc->sc_dev), idx, error);
   1816 		panic("stge_add_rxbuf");	/* XXX */
   1817 	}
   1818 
   1819 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1820 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1821 
   1822 	STGE_INIT_RXDESC(sc, idx);
   1823 
   1824 	return (0);
   1825 }
   1826 
   1827 /*
   1828  * stge_set_filter:
   1829  *
   1830  *	Set up the receive filter.
   1831  */
   1832 static void
   1833 stge_set_filter(struct stge_softc *sc)
   1834 {
   1835 	struct ethercom *ec = &sc->sc_ethercom;
   1836 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1837 	struct ether_multi *enm;
   1838 	struct ether_multistep step;
   1839 	uint32_t crc;
   1840 	uint32_t mchash[2];
   1841 
   1842 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
   1843 	if (ifp->if_flags & IFF_BROADCAST)
   1844 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
   1845 
   1846 	/* XXX: ST1023 only works in promiscuous mode */
   1847 	if (sc->sc_stge1023)
   1848 		ifp->if_flags |= IFF_PROMISC;
   1849 
   1850 	if (ifp->if_flags & IFF_PROMISC) {
   1851 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
   1852 		goto allmulti;
   1853 	}
   1854 
   1855 	/*
   1856 	 * Set up the multicast address filter by passing all multicast
   1857 	 * addresses through a CRC generator, and then using the low-order
   1858 	 * 6 bits as an index into the 64 bit multicast hash table.  The
   1859 	 * high order bits select the register, while the rest of the bits
   1860 	 * select the bit within the register.
   1861 	 */
   1862 
   1863 	memset(mchash, 0, sizeof(mchash));
   1864 
   1865 	ETHER_FIRST_MULTI(step, ec, enm);
   1866 	if (enm == NULL)
   1867 		goto done;
   1868 
   1869 	while (enm != NULL) {
   1870 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1871 			/*
   1872 			 * We must listen to a range of multicast addresses.
   1873 			 * For now, just accept all multicasts, rather than
   1874 			 * trying to set only those filter bits needed to match
   1875 			 * the range.  (At this time, the only use of address
   1876 			 * ranges is for IP multicast routing, for which the
   1877 			 * range is big enough to require all bits set.)
   1878 			 */
   1879 			goto allmulti;
   1880 		}
   1881 
   1882 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1883 
   1884 		/* Just want the 6 least significant bits. */
   1885 		crc &= 0x3f;
   1886 
   1887 		/* Set the corresponding bit in the hash table. */
   1888 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
   1889 
   1890 		ETHER_NEXT_MULTI(step, enm);
   1891 	}
   1892 
   1893 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
   1894 
   1895 	ifp->if_flags &= ~IFF_ALLMULTI;
   1896 	goto done;
   1897 
   1898  allmulti:
   1899 	ifp->if_flags |= IFF_ALLMULTI;
   1900 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
   1901 
   1902  done:
   1903 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1904 		/*
   1905 		 * Program the multicast hash table.
   1906 		 */
   1907 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
   1908 		    mchash[0]);
   1909 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
   1910 		    mchash[1]);
   1911 	}
   1912 
   1913 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
   1914 	    sc->sc_ReceiveMode);
   1915 }
   1916 
   1917 /*
   1918  * stge_mii_readreg:	[mii interface function]
   1919  *
   1920  *	Read a PHY register on the MII of the TC9021.
   1921  */
   1922 static int
   1923 stge_mii_readreg(device_t self, int phy, int reg)
   1924 {
   1925 
   1926 	return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
   1927 }
   1928 
   1929 /*
   1930  * stge_mii_writereg:	[mii interface function]
   1931  *
   1932  *	Write a PHY register on the MII of the TC9021.
   1933  */
   1934 static void
   1935 stge_mii_writereg(device_t self, int phy, int reg, int val)
   1936 {
   1937 
   1938 	mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
   1939 }
   1940 
   1941 /*
   1942  * stge_mii_statchg:	[mii interface function]
   1943  *
   1944  *	Callback from MII layer when media changes.
   1945  */
   1946 static void
   1947 stge_mii_statchg(device_t self)
   1948 {
   1949 	struct stge_softc *sc = device_private(self);
   1950 
   1951 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   1952 		sc->sc_MACCtrl |= MC_DuplexSelect;
   1953 	else
   1954 		sc->sc_MACCtrl &= ~MC_DuplexSelect;
   1955 
   1956 	/* XXX 802.1x flow-control? */
   1957 
   1958 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
   1959 }
   1960 
   1961 /*
   1962  * sste_mii_bitbang_read: [mii bit-bang interface function]
   1963  *
   1964  *	Read the MII serial port for the MII bit-bang module.
   1965  */
   1966 static uint32_t
   1967 stge_mii_bitbang_read(device_t self)
   1968 {
   1969 	struct stge_softc *sc = device_private(self);
   1970 
   1971 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
   1972 }
   1973 
   1974 /*
   1975  * stge_mii_bitbang_write: [mii big-bang interface function]
   1976  *
   1977  *	Write the MII serial port for the MII bit-bang module.
   1978  */
   1979 static void
   1980 stge_mii_bitbang_write(device_t self, uint32_t val)
   1981 {
   1982 	struct stge_softc *sc = device_private(self);
   1983 
   1984 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
   1985 	    val | sc->sc_PhyCtrl);
   1986 }
   1987