if_stge.c revision 1.50 1 /* $NetBSD: if_stge.c,v 1.50 2010/04/05 07:20:27 joerg Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the Sundance Tech. TC9021 10/100/1000
34 * Ethernet controller.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.50 2010/04/05 07:20:27 joerg Exp $");
39
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 #include <sys/queue.h>
52
53 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
54
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_media.h>
58 #include <net/if_ether.h>
59
60 #include <net/bpf.h>
61
62 #include <sys/bus.h>
63 #include <sys/intr.h>
64
65 #include <dev/mii/mii.h>
66 #include <dev/mii/miivar.h>
67 #include <dev/mii/mii_bitbang.h>
68
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 #include <dev/pci/pcidevs.h>
72
73 #include <dev/pci/if_stgereg.h>
74
75 /* #define STGE_CU_BUG 1 */
76 #define STGE_VLAN_UNTAG 1
77 /* #define STGE_VLAN_CFI 1 */
78
79 /*
80 * Transmit descriptor list size.
81 */
82 #define STGE_NTXDESC 256
83 #define STGE_NTXDESC_MASK (STGE_NTXDESC - 1)
84 #define STGE_NEXTTX(x) (((x) + 1) & STGE_NTXDESC_MASK)
85
86 /*
87 * Receive descriptor list size.
88 */
89 #define STGE_NRXDESC 256
90 #define STGE_NRXDESC_MASK (STGE_NRXDESC - 1)
91 #define STGE_NEXTRX(x) (((x) + 1) & STGE_NRXDESC_MASK)
92
93 /*
94 * Only interrupt every N frames. Must be a power-of-two.
95 */
96 #define STGE_TXINTR_SPACING 16
97 #define STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
98
99 /*
100 * Control structures are DMA'd to the TC9021 chip. We allocate them in
101 * a single clump that maps to a single DMA segment to make several things
102 * easier.
103 */
104 struct stge_control_data {
105 /*
106 * The transmit descriptors.
107 */
108 struct stge_tfd scd_txdescs[STGE_NTXDESC];
109
110 /*
111 * The receive descriptors.
112 */
113 struct stge_rfd scd_rxdescs[STGE_NRXDESC];
114 };
115
116 #define STGE_CDOFF(x) offsetof(struct stge_control_data, x)
117 #define STGE_CDTXOFF(x) STGE_CDOFF(scd_txdescs[(x)])
118 #define STGE_CDRXOFF(x) STGE_CDOFF(scd_rxdescs[(x)])
119
120 /*
121 * Software state for transmit and receive jobs.
122 */
123 struct stge_descsoft {
124 struct mbuf *ds_mbuf; /* head of our mbuf chain */
125 bus_dmamap_t ds_dmamap; /* our DMA map */
126 };
127
128 /*
129 * Software state per device.
130 */
131 struct stge_softc {
132 device_t sc_dev; /* generic device information */
133 bus_space_tag_t sc_st; /* bus space tag */
134 bus_space_handle_t sc_sh; /* bus space handle */
135 bus_dma_tag_t sc_dmat; /* bus DMA tag */
136 struct ethercom sc_ethercom; /* ethernet common data */
137 int sc_rev; /* silicon revision */
138
139 void *sc_ih; /* interrupt cookie */
140
141 struct mii_data sc_mii; /* MII/media information */
142
143 callout_t sc_tick_ch; /* tick callout */
144
145 bus_dmamap_t sc_cddmamap; /* control data DMA map */
146 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
147
148 /*
149 * Software state for transmit and receive descriptors.
150 */
151 struct stge_descsoft sc_txsoft[STGE_NTXDESC];
152 struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
153
154 /*
155 * Control data structures.
156 */
157 struct stge_control_data *sc_control_data;
158 #define sc_txdescs sc_control_data->scd_txdescs
159 #define sc_rxdescs sc_control_data->scd_rxdescs
160
161 #ifdef STGE_EVENT_COUNTERS
162 /*
163 * Event counters.
164 */
165 struct evcnt sc_ev_txstall; /* Tx stalled */
166 struct evcnt sc_ev_txdmaintr; /* Tx DMA interrupts */
167 struct evcnt sc_ev_txindintr; /* Tx Indicate interrupts */
168 struct evcnt sc_ev_rxintr; /* Rx interrupts */
169
170 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
171 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
172 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
173 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
174 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
175 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
176 struct evcnt sc_ev_txcopy; /* Tx packets that we had to copy */
177
178 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
179 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
180 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-bound */
181
182 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
183 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
184 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
185 #endif /* STGE_EVENT_COUNTERS */
186
187 int sc_txpending; /* number of Tx requests pending */
188 int sc_txdirty; /* first dirty Tx descriptor */
189 int sc_txlast; /* last used Tx descriptor */
190
191 int sc_rxptr; /* next ready Rx descriptor/descsoft */
192 int sc_rxdiscard;
193 int sc_rxlen;
194 struct mbuf *sc_rxhead;
195 struct mbuf *sc_rxtail;
196 struct mbuf **sc_rxtailp;
197
198 int sc_txthresh; /* Tx threshold */
199 uint32_t sc_usefiber:1; /* if we're fiber */
200 uint32_t sc_stge1023:1; /* are we a 1023 */
201 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
202 uint32_t sc_MACCtrl; /* prototype MacCtrl register */
203 uint16_t sc_IntEnable; /* prototype IntEnable register */
204 uint16_t sc_ReceiveMode; /* prototype ReceiveMode register */
205 uint8_t sc_PhyCtrl; /* prototype PhyCtrl register */
206 };
207
208 #define STGE_RXCHAIN_RESET(sc) \
209 do { \
210 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
211 *(sc)->sc_rxtailp = NULL; \
212 (sc)->sc_rxlen = 0; \
213 } while (/*CONSTCOND*/0)
214
215 #define STGE_RXCHAIN_LINK(sc, m) \
216 do { \
217 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
218 (sc)->sc_rxtailp = &(m)->m_next; \
219 } while (/*CONSTCOND*/0)
220
221 #ifdef STGE_EVENT_COUNTERS
222 #define STGE_EVCNT_INCR(ev) (ev)->ev_count++
223 #else
224 #define STGE_EVCNT_INCR(ev) /* nothing */
225 #endif
226
227 #define STGE_CDTXADDR(sc, x) ((sc)->sc_cddma + STGE_CDTXOFF((x)))
228 #define STGE_CDRXADDR(sc, x) ((sc)->sc_cddma + STGE_CDRXOFF((x)))
229
230 #define STGE_CDTXSYNC(sc, x, ops) \
231 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
232 STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
233
234 #define STGE_CDRXSYNC(sc, x, ops) \
235 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
236 STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
237
238 #define STGE_INIT_RXDESC(sc, x) \
239 do { \
240 struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
241 struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
242 \
243 /* \
244 * Note: We scoot the packet forward 2 bytes in the buffer \
245 * so that the payload after the Ethernet header is aligned \
246 * to a 4-byte boundary. \
247 */ \
248 __rfd->rfd_frag.frag_word0 = \
249 htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
250 FRAG_LEN(MCLBYTES - 2)); \
251 __rfd->rfd_next = \
252 htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x)))); \
253 __rfd->rfd_status = 0; \
254 STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
255 } while (/*CONSTCOND*/0)
256
257 #define STGE_TIMEOUT 1000
258
259 static void stge_start(struct ifnet *);
260 static void stge_watchdog(struct ifnet *);
261 static int stge_ioctl(struct ifnet *, u_long, void *);
262 static int stge_init(struct ifnet *);
263 static void stge_stop(struct ifnet *, int);
264
265 static bool stge_shutdown(device_t, int);
266
267 static void stge_reset(struct stge_softc *);
268 static void stge_rxdrain(struct stge_softc *);
269 static int stge_add_rxbuf(struct stge_softc *, int);
270 static void stge_read_eeprom(struct stge_softc *, int, uint16_t *);
271 static void stge_tick(void *);
272
273 static void stge_stats_update(struct stge_softc *);
274
275 static void stge_set_filter(struct stge_softc *);
276
277 static int stge_intr(void *);
278 static void stge_txintr(struct stge_softc *);
279 static void stge_rxintr(struct stge_softc *);
280
281 static int stge_mii_readreg(device_t, int, int);
282 static void stge_mii_writereg(device_t, int, int, int);
283 static void stge_mii_statchg(device_t);
284
285 static int stge_match(device_t, cfdata_t, void *);
286 static void stge_attach(device_t, device_t, void *);
287
288 int stge_copy_small = 0;
289
290 CFATTACH_DECL_NEW(stge, sizeof(struct stge_softc),
291 stge_match, stge_attach, NULL, NULL);
292
293 static uint32_t stge_mii_bitbang_read(device_t);
294 static void stge_mii_bitbang_write(device_t, uint32_t);
295
296 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
297 stge_mii_bitbang_read,
298 stge_mii_bitbang_write,
299 {
300 PC_MgmtData, /* MII_BIT_MDO */
301 PC_MgmtData, /* MII_BIT_MDI */
302 PC_MgmtClk, /* MII_BIT_MDC */
303 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
304 0, /* MII_BIT_DIR_PHY_HOST */
305 }
306 };
307
308 /*
309 * Devices supported by this driver.
310 */
311 static const struct stge_product {
312 pci_vendor_id_t stge_vendor;
313 pci_product_id_t stge_product;
314 const char *stge_name;
315 } stge_products[] = {
316 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST1023,
317 "Sundance ST-1023 Gigabit Ethernet" },
318
319 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST2021,
320 "Sundance ST-2021 Gigabit Ethernet" },
321
322 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021,
323 "Tamarack TC9021 Gigabit Ethernet" },
324
325 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021_ALT,
326 "Tamarack TC9021 Gigabit Ethernet" },
327
328 /*
329 * The Sundance sample boards use the Sundance vendor ID,
330 * but the Tamarack product ID.
331 */
332 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021,
333 "Sundance TC9021 Gigabit Ethernet" },
334
335 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021_ALT,
336 "Sundance TC9021 Gigabit Ethernet" },
337
338 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL4000,
339 "D-Link DL-4000 Gigabit Ethernet" },
340
341 { PCI_VENDOR_ANTARES, PCI_PRODUCT_ANTARES_TC9021,
342 "Antares Gigabit Ethernet" },
343
344 { 0, 0,
345 NULL },
346 };
347
348 static const struct stge_product *
349 stge_lookup(const struct pci_attach_args *pa)
350 {
351 const struct stge_product *sp;
352
353 for (sp = stge_products; sp->stge_name != NULL; sp++) {
354 if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
355 PCI_PRODUCT(pa->pa_id) == sp->stge_product)
356 return (sp);
357 }
358 return (NULL);
359 }
360
361 static int
362 stge_match(device_t parent, cfdata_t cf, void *aux)
363 {
364 struct pci_attach_args *pa = aux;
365
366 if (stge_lookup(pa) != NULL)
367 return (1);
368
369 return (0);
370 }
371
372 static void
373 stge_attach(device_t parent, device_t self, void *aux)
374 {
375 struct stge_softc *sc = device_private(self);
376 struct pci_attach_args *pa = aux;
377 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
378 pci_chipset_tag_t pc = pa->pa_pc;
379 pci_intr_handle_t ih;
380 const char *intrstr = NULL;
381 bus_space_tag_t iot, memt;
382 bus_space_handle_t ioh, memh;
383 bus_dma_segment_t seg;
384 int ioh_valid, memh_valid;
385 int i, rseg, error;
386 const struct stge_product *sp;
387 uint8_t enaddr[ETHER_ADDR_LEN];
388
389 callout_init(&sc->sc_tick_ch, 0);
390
391 sp = stge_lookup(pa);
392 if (sp == NULL) {
393 printf("\n");
394 panic("ste_attach: impossible");
395 }
396
397 sc->sc_rev = PCI_REVISION(pa->pa_class);
398
399 aprint_normal(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
400
401 /*
402 * Map the device.
403 */
404 ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
405 PCI_MAPREG_TYPE_IO, 0,
406 &iot, &ioh, NULL, NULL) == 0);
407 memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
408 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
409 &memt, &memh, NULL, NULL) == 0);
410
411 if (memh_valid) {
412 sc->sc_st = memt;
413 sc->sc_sh = memh;
414 } else if (ioh_valid) {
415 sc->sc_st = iot;
416 sc->sc_sh = ioh;
417 } else {
418 aprint_error_dev(self, "unable to map device registers\n");
419 return;
420 }
421
422 sc->sc_dmat = pa->pa_dmat;
423
424 /* Enable bus mastering. */
425 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
426 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
427 PCI_COMMAND_MASTER_ENABLE);
428
429 /* power up chip */
430 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
431 error != EOPNOTSUPP) {
432 aprint_error_dev(self, "cannot activate %d\n",
433 error);
434 return;
435 }
436 /*
437 * Map and establish our interrupt.
438 */
439 if (pci_intr_map(pa, &ih)) {
440 aprint_error_dev(self, "unable to map interrupt\n");
441 return;
442 }
443 intrstr = pci_intr_string(pc, ih);
444 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
445 if (sc->sc_ih == NULL) {
446 aprint_error_dev(self, "unable to establish interrupt");
447 if (intrstr != NULL)
448 aprint_error(" at %s", intrstr);
449 aprint_error("\n");
450 return;
451 }
452 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
453
454 /*
455 * Allocate the control data structures, and create and load the
456 * DMA map for it.
457 */
458 if ((error = bus_dmamem_alloc(sc->sc_dmat,
459 sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
460 0)) != 0) {
461 aprint_error_dev(self,
462 "unable to allocate control data, error = %d\n",
463 error);
464 goto fail_0;
465 }
466
467 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
468 sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
469 BUS_DMA_COHERENT)) != 0) {
470 aprint_error_dev(self,
471 "unable to map control data, error = %d\n",
472 error);
473 goto fail_1;
474 }
475
476 if ((error = bus_dmamap_create(sc->sc_dmat,
477 sizeof(struct stge_control_data), 1,
478 sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
479 aprint_error_dev(self,
480 "unable to create control data DMA map, error = %d\n",
481 error);
482 goto fail_2;
483 }
484
485 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
486 sc->sc_control_data, sizeof(struct stge_control_data), NULL,
487 0)) != 0) {
488 aprint_error_dev(self,
489 "unable to load control data DMA map, error = %d\n",
490 error);
491 goto fail_3;
492 }
493
494 /*
495 * Create the transmit buffer DMA maps. Note that rev B.3
496 * and earlier seem to have a bug regarding multi-fragment
497 * packets. We need to limit the number of Tx segments on
498 * such chips to 1.
499 */
500 for (i = 0; i < STGE_NTXDESC; i++) {
501 if ((error = bus_dmamap_create(sc->sc_dmat,
502 ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
503 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
504 aprint_error_dev(self,
505 "unable to create tx DMA map %d, error = %d\n",
506 i, error);
507 goto fail_4;
508 }
509 }
510
511 /*
512 * Create the receive buffer DMA maps.
513 */
514 for (i = 0; i < STGE_NRXDESC; i++) {
515 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
516 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
517 aprint_error_dev(self,
518 "unable to create rx DMA map %d, error = %d\n",
519 i, error);
520 goto fail_5;
521 }
522 sc->sc_rxsoft[i].ds_mbuf = NULL;
523 }
524
525 /*
526 * Determine if we're copper or fiber. It affects how we
527 * reset the card.
528 */
529 if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
530 AC_PhyMedia)
531 sc->sc_usefiber = 1;
532 else
533 sc->sc_usefiber = 0;
534
535 /*
536 * Reset the chip to a known state.
537 */
538 stge_reset(sc);
539
540 /*
541 * Reading the station address from the EEPROM doesn't seem
542 * to work, at least on my sample boards. Instead, since
543 * the reset sequence does AutoInit, read it from the station
544 * address registers. For Sundance 1023 you can only read it
545 * from EEPROM.
546 */
547 if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
548 enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
549 STGE_StationAddress0) & 0xff;
550 enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
551 STGE_StationAddress0) >> 8;
552 enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
553 STGE_StationAddress1) & 0xff;
554 enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
555 STGE_StationAddress1) >> 8;
556 enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
557 STGE_StationAddress2) & 0xff;
558 enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
559 STGE_StationAddress2) >> 8;
560 sc->sc_stge1023 = 0;
561 } else {
562 uint16_t myaddr[ETHER_ADDR_LEN / 2];
563 for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
564 stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
565 &myaddr[i]);
566 myaddr[i] = le16toh(myaddr[i]);
567 }
568 (void)memcpy(enaddr, myaddr, sizeof(enaddr));
569 sc->sc_stge1023 = 1;
570 }
571
572 aprint_normal_dev(self, "Ethernet address %s\n",
573 ether_sprintf(enaddr));
574
575 /*
576 * Read some important bits from the PhyCtrl register.
577 */
578 sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
579 STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
580
581 /*
582 * Initialize our media structures and probe the MII.
583 */
584 sc->sc_mii.mii_ifp = ifp;
585 sc->sc_mii.mii_readreg = stge_mii_readreg;
586 sc->sc_mii.mii_writereg = stge_mii_writereg;
587 sc->sc_mii.mii_statchg = stge_mii_statchg;
588 sc->sc_ethercom.ec_mii = &sc->sc_mii;
589 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
590 ether_mediastatus);
591 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
592 MII_OFFSET_ANY, MIIF_DOPAUSE);
593 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
594 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
595 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
596 } else
597 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
598
599 ifp = &sc->sc_ethercom.ec_if;
600 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
601 ifp->if_softc = sc;
602 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
603 ifp->if_ioctl = stge_ioctl;
604 ifp->if_start = stge_start;
605 ifp->if_watchdog = stge_watchdog;
606 ifp->if_init = stge_init;
607 ifp->if_stop = stge_stop;
608 IFQ_SET_READY(&ifp->if_snd);
609
610 /*
611 * The manual recommends disabling early transmit, so we
612 * do. It's disabled anyway, if using IP checksumming,
613 * since the entire packet must be in the FIFO in order
614 * for the chip to perform the checksum.
615 */
616 sc->sc_txthresh = 0x0fff;
617
618 /*
619 * Disable MWI if the PCI layer tells us to.
620 */
621 sc->sc_DMACtrl = 0;
622 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
623 sc->sc_DMACtrl |= DMAC_MWIDisable;
624
625 /*
626 * We can support 802.1Q VLAN-sized frames and jumbo
627 * Ethernet frames.
628 *
629 * XXX Figure out how to do hw-assisted VLAN tagging in
630 * XXX a reasonable way on this chip.
631 */
632 sc->sc_ethercom.ec_capabilities |=
633 ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
634 ETHERCAP_VLAN_HWTAGGING;
635
636 /*
637 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
638 */
639 sc->sc_ethercom.ec_if.if_capabilities |=
640 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
641 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
642 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
643
644 /*
645 * Attach the interface.
646 */
647 if_attach(ifp);
648 ether_ifattach(ifp, enaddr);
649
650 #ifdef STGE_EVENT_COUNTERS
651 /*
652 * Attach event counters.
653 */
654 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
655 NULL, device_xname(self), "txstall");
656 evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
657 NULL, device_xname(self), "txdmaintr");
658 evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
659 NULL, device_xname(self), "txindintr");
660 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
661 NULL, device_xname(self), "rxintr");
662
663 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
664 NULL, device_xname(self), "txseg1");
665 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
666 NULL, device_xname(self), "txseg2");
667 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
668 NULL, device_xname(self), "txseg3");
669 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
670 NULL, device_xname(self), "txseg4");
671 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
672 NULL, device_xname(self), "txseg5");
673 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
674 NULL, device_xname(self), "txsegmore");
675 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
676 NULL, device_xname(self), "txcopy");
677
678 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
679 NULL, device_xname(self), "rxipsum");
680 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
681 NULL, device_xname(self), "rxtcpsum");
682 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
683 NULL, device_xname(self), "rxudpsum");
684 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
685 NULL, device_xname(self), "txipsum");
686 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
687 NULL, device_xname(self), "txtcpsum");
688 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
689 NULL, device_xname(self), "txudpsum");
690 #endif /* STGE_EVENT_COUNTERS */
691
692 /*
693 * Make sure the interface is shutdown during reboot.
694 */
695 if (pmf_device_register1(self, NULL, NULL, stge_shutdown))
696 pmf_class_network_register(self, ifp);
697 else
698 aprint_error_dev(self, "couldn't establish power handler\n");
699
700 return;
701
702 /*
703 * Free any resources we've allocated during the failed attach
704 * attempt. Do this in reverse order and fall through.
705 */
706 fail_5:
707 for (i = 0; i < STGE_NRXDESC; i++) {
708 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
709 bus_dmamap_destroy(sc->sc_dmat,
710 sc->sc_rxsoft[i].ds_dmamap);
711 }
712 fail_4:
713 for (i = 0; i < STGE_NTXDESC; i++) {
714 if (sc->sc_txsoft[i].ds_dmamap != NULL)
715 bus_dmamap_destroy(sc->sc_dmat,
716 sc->sc_txsoft[i].ds_dmamap);
717 }
718 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
719 fail_3:
720 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
721 fail_2:
722 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
723 sizeof(struct stge_control_data));
724 fail_1:
725 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
726 fail_0:
727 return;
728 }
729
730 /*
731 * stge_shutdown:
732 *
733 * Make sure the interface is stopped at reboot time.
734 */
735 static bool
736 stge_shutdown(device_t self, int howto)
737 {
738 struct stge_softc *sc = device_private(self);
739 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
740
741 stge_stop(ifp, 1);
742
743 return true;
744 }
745
746 static void
747 stge_dma_wait(struct stge_softc *sc)
748 {
749 int i;
750
751 for (i = 0; i < STGE_TIMEOUT; i++) {
752 delay(2);
753 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
754 DMAC_TxDMAInProg) == 0)
755 break;
756 }
757
758 if (i == STGE_TIMEOUT)
759 printf("%s: DMA wait timed out\n", device_xname(sc->sc_dev));
760 }
761
762 /*
763 * stge_start: [ifnet interface function]
764 *
765 * Start packet transmission on the interface.
766 */
767 static void
768 stge_start(struct ifnet *ifp)
769 {
770 struct stge_softc *sc = ifp->if_softc;
771 struct mbuf *m0;
772 struct stge_descsoft *ds;
773 struct stge_tfd *tfd;
774 bus_dmamap_t dmamap;
775 int error, firsttx, nexttx, opending, seg, totlen;
776 uint64_t csum_flags;
777
778 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
779 return;
780
781 /*
782 * Remember the previous number of pending transmissions
783 * and the first descriptor we will use.
784 */
785 opending = sc->sc_txpending;
786 firsttx = STGE_NEXTTX(sc->sc_txlast);
787
788 /*
789 * Loop through the send queue, setting up transmit descriptors
790 * until we drain the queue, or use up all available transmit
791 * descriptors.
792 */
793 for (;;) {
794 struct m_tag *mtag;
795 uint64_t tfc;
796
797 /*
798 * Grab a packet off the queue.
799 */
800 IFQ_POLL(&ifp->if_snd, m0);
801 if (m0 == NULL)
802 break;
803
804 /*
805 * Leave one unused descriptor at the end of the
806 * list to prevent wrapping completely around.
807 */
808 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
809 STGE_EVCNT_INCR(&sc->sc_ev_txstall);
810 break;
811 }
812
813 /*
814 * See if we have any VLAN stuff.
815 */
816 mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
817
818 /*
819 * Get the last and next available transmit descriptor.
820 */
821 nexttx = STGE_NEXTTX(sc->sc_txlast);
822 tfd = &sc->sc_txdescs[nexttx];
823 ds = &sc->sc_txsoft[nexttx];
824
825 dmamap = ds->ds_dmamap;
826
827 /*
828 * Load the DMA map. If this fails, the packet either
829 * didn't fit in the alloted number of segments, or we
830 * were short on resources. For the too-many-segments
831 * case, we simply report an error and drop the packet,
832 * since we can't sanely copy a jumbo packet to a single
833 * buffer.
834 */
835 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
836 BUS_DMA_NOWAIT);
837 if (error) {
838 if (error == EFBIG) {
839 printf("%s: Tx packet consumes too many "
840 "DMA segments, dropping...\n",
841 device_xname(sc->sc_dev));
842 IFQ_DEQUEUE(&ifp->if_snd, m0);
843 m_freem(m0);
844 continue;
845 }
846 /*
847 * Short on resources, just stop for now.
848 */
849 break;
850 }
851
852 IFQ_DEQUEUE(&ifp->if_snd, m0);
853
854 /*
855 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
856 */
857
858 /* Sync the DMA map. */
859 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
860 BUS_DMASYNC_PREWRITE);
861
862 /* Initialize the fragment list. */
863 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
864 tfd->tfd_frags[seg].frag_word0 =
865 htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
866 FRAG_LEN(dmamap->dm_segs[seg].ds_len));
867 totlen += dmamap->dm_segs[seg].ds_len;
868 }
869
870 #ifdef STGE_EVENT_COUNTERS
871 switch (dmamap->dm_nsegs) {
872 case 1:
873 STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
874 break;
875 case 2:
876 STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
877 break;
878 case 3:
879 STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
880 break;
881 case 4:
882 STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
883 break;
884 case 5:
885 STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
886 break;
887 default:
888 STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
889 break;
890 }
891 #endif /* STGE_EVENT_COUNTERS */
892
893 /*
894 * Initialize checksumming flags in the descriptor.
895 * Byte-swap constants so the compiler can optimize.
896 */
897 csum_flags = 0;
898 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
899 STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
900 csum_flags |= TFD_IPChecksumEnable;
901 }
902
903 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
904 STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
905 csum_flags |= TFD_TCPChecksumEnable;
906 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
907 STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
908 csum_flags |= TFD_UDPChecksumEnable;
909 }
910
911 /*
912 * Initialize the descriptor and give it to the chip.
913 * Check to see if we have a VLAN tag to insert.
914 */
915
916 tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
917 TFD_FragCount(seg) | csum_flags |
918 (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
919 TFD_TxDMAIndicate : 0);
920 if (mtag) {
921 #if 0
922 struct ether_header *eh =
923 mtod(m0, struct ether_header *);
924 u_int16_t etype = ntohs(eh->ether_type);
925 printf("%s: xmit (tag %d) etype %x\n",
926 ifp->if_xname, *mtod(n, int *), etype);
927 #endif
928 tfc |= TFD_VLANTagInsert |
929 #ifdef STGE_VLAN_CFI
930 TFD_CFI |
931 #endif
932 TFD_VID(VLAN_TAG_VALUE(mtag));
933 }
934 tfd->tfd_control = htole64(tfc);
935
936 /* Sync the descriptor. */
937 STGE_CDTXSYNC(sc, nexttx,
938 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
939
940 /*
941 * Kick the transmit DMA logic.
942 */
943 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
944 sc->sc_DMACtrl | DMAC_TxDMAPollNow);
945
946 /*
947 * Store a pointer to the packet so we can free it later.
948 */
949 ds->ds_mbuf = m0;
950
951 /* Advance the tx pointer. */
952 sc->sc_txpending++;
953 sc->sc_txlast = nexttx;
954
955 /*
956 * Pass the packet to any BPF listeners.
957 */
958 bpf_mtap(ifp, m0);
959 }
960
961 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
962 /* No more slots left; notify upper layer. */
963 ifp->if_flags |= IFF_OACTIVE;
964 }
965
966 if (sc->sc_txpending != opending) {
967 /*
968 * We enqueued packets. If the transmitter was idle,
969 * reset the txdirty pointer.
970 */
971 if (opending == 0)
972 sc->sc_txdirty = firsttx;
973
974 /* Set a watchdog timer in case the chip flakes out. */
975 ifp->if_timer = 5;
976 }
977 }
978
979 /*
980 * stge_watchdog: [ifnet interface function]
981 *
982 * Watchdog timer handler.
983 */
984 static void
985 stge_watchdog(struct ifnet *ifp)
986 {
987 struct stge_softc *sc = ifp->if_softc;
988
989 /*
990 * Sweep up first, since we don't interrupt every frame.
991 */
992 stge_txintr(sc);
993 if (sc->sc_txpending != 0) {
994 printf("%s: device timeout\n", device_xname(sc->sc_dev));
995 ifp->if_oerrors++;
996
997 (void) stge_init(ifp);
998
999 /* Try to get more packets going. */
1000 stge_start(ifp);
1001 }
1002 }
1003
1004 /*
1005 * stge_ioctl: [ifnet interface function]
1006 *
1007 * Handle control requests from the operator.
1008 */
1009 static int
1010 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1011 {
1012 struct stge_softc *sc = ifp->if_softc;
1013 int s, error;
1014
1015 s = splnet();
1016
1017 error = ether_ioctl(ifp, cmd, data);
1018 if (error == ENETRESET) {
1019 error = 0;
1020
1021 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1022 ;
1023 else if (ifp->if_flags & IFF_RUNNING) {
1024 /*
1025 * Multicast list has changed; set the hardware filter
1026 * accordingly.
1027 */
1028 stge_set_filter(sc);
1029 }
1030 }
1031
1032 /* Try to get more packets going. */
1033 stge_start(ifp);
1034
1035 splx(s);
1036 return (error);
1037 }
1038
1039 /*
1040 * stge_intr:
1041 *
1042 * Interrupt service routine.
1043 */
1044 static int
1045 stge_intr(void *arg)
1046 {
1047 struct stge_softc *sc = arg;
1048 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1049 uint32_t txstat;
1050 int wantinit;
1051 uint16_t isr;
1052
1053 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1054 IS_InterruptStatus) == 0)
1055 return (0);
1056
1057 for (wantinit = 0; wantinit == 0;) {
1058 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1059 if ((isr & sc->sc_IntEnable) == 0)
1060 break;
1061
1062 /* Host interface errors. */
1063 if (isr & IS_HostError) {
1064 printf("%s: Host interface error\n",
1065 device_xname(sc->sc_dev));
1066 wantinit = 1;
1067 continue;
1068 }
1069
1070 /* Receive interrupts. */
1071 if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
1072 STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1073 stge_rxintr(sc);
1074 if (isr & IS_RFDListEnd) {
1075 printf("%s: receive ring overflow\n",
1076 device_xname(sc->sc_dev));
1077 /*
1078 * XXX Should try to recover from this
1079 * XXX more gracefully.
1080 */
1081 wantinit = 1;
1082 }
1083 }
1084
1085 /* Transmit interrupts. */
1086 if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
1087 #ifdef STGE_EVENT_COUNTERS
1088 if (isr & IS_TxDMAComplete)
1089 STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1090 #endif
1091 stge_txintr(sc);
1092 }
1093
1094 /* Statistics overflow. */
1095 if (isr & IS_UpdateStats)
1096 stge_stats_update(sc);
1097
1098 /* Transmission errors. */
1099 if (isr & IS_TxComplete) {
1100 STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1101 for (;;) {
1102 txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1103 STGE_TxStatus);
1104 if ((txstat & TS_TxComplete) == 0)
1105 break;
1106 if (txstat & TS_TxUnderrun) {
1107 sc->sc_txthresh++;
1108 if (sc->sc_txthresh > 0x0fff)
1109 sc->sc_txthresh = 0x0fff;
1110 printf("%s: transmit underrun, new "
1111 "threshold: %d bytes\n",
1112 device_xname(sc->sc_dev),
1113 sc->sc_txthresh << 5);
1114 }
1115 if (txstat & TS_MaxCollisions)
1116 printf("%s: excessive collisions\n",
1117 device_xname(sc->sc_dev));
1118 }
1119 wantinit = 1;
1120 }
1121
1122 }
1123
1124 if (wantinit)
1125 stge_init(ifp);
1126
1127 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1128 sc->sc_IntEnable);
1129
1130 /* Try to get more packets going. */
1131 stge_start(ifp);
1132
1133 return (1);
1134 }
1135
1136 /*
1137 * stge_txintr:
1138 *
1139 * Helper; handle transmit interrupts.
1140 */
1141 static void
1142 stge_txintr(struct stge_softc *sc)
1143 {
1144 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1145 struct stge_descsoft *ds;
1146 uint64_t control;
1147 int i;
1148
1149 ifp->if_flags &= ~IFF_OACTIVE;
1150
1151 /*
1152 * Go through our Tx list and free mbufs for those
1153 * frames which have been transmitted.
1154 */
1155 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1156 i = STGE_NEXTTX(i), sc->sc_txpending--) {
1157 ds = &sc->sc_txsoft[i];
1158
1159 STGE_CDTXSYNC(sc, i,
1160 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1161
1162 control = le64toh(sc->sc_txdescs[i].tfd_control);
1163 if ((control & TFD_TFDDone) == 0)
1164 break;
1165
1166 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1167 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1168 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1169 m_freem(ds->ds_mbuf);
1170 ds->ds_mbuf = NULL;
1171 }
1172
1173 /* Update the dirty transmit buffer pointer. */
1174 sc->sc_txdirty = i;
1175
1176 /*
1177 * If there are no more pending transmissions, cancel the watchdog
1178 * timer.
1179 */
1180 if (sc->sc_txpending == 0)
1181 ifp->if_timer = 0;
1182 }
1183
1184 /*
1185 * stge_rxintr:
1186 *
1187 * Helper; handle receive interrupts.
1188 */
1189 static void
1190 stge_rxintr(struct stge_softc *sc)
1191 {
1192 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1193 struct stge_descsoft *ds;
1194 struct mbuf *m, *tailm;
1195 uint64_t status;
1196 int i, len;
1197
1198 for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1199 ds = &sc->sc_rxsoft[i];
1200
1201 STGE_CDRXSYNC(sc, i,
1202 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1203
1204 status = le64toh(sc->sc_rxdescs[i].rfd_status);
1205
1206 if ((status & RFD_RFDDone) == 0)
1207 break;
1208
1209 if (__predict_false(sc->sc_rxdiscard)) {
1210 STGE_INIT_RXDESC(sc, i);
1211 if (status & RFD_FrameEnd) {
1212 /* Reset our state. */
1213 sc->sc_rxdiscard = 0;
1214 }
1215 continue;
1216 }
1217
1218 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1219 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1220
1221 m = ds->ds_mbuf;
1222
1223 /*
1224 * Add a new receive buffer to the ring.
1225 */
1226 if (stge_add_rxbuf(sc, i) != 0) {
1227 /*
1228 * Failed, throw away what we've done so
1229 * far, and discard the rest of the packet.
1230 */
1231 ifp->if_ierrors++;
1232 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1233 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1234 STGE_INIT_RXDESC(sc, i);
1235 if ((status & RFD_FrameEnd) == 0)
1236 sc->sc_rxdiscard = 1;
1237 if (sc->sc_rxhead != NULL)
1238 m_freem(sc->sc_rxhead);
1239 STGE_RXCHAIN_RESET(sc);
1240 continue;
1241 }
1242
1243 #ifdef DIAGNOSTIC
1244 if (status & RFD_FrameStart) {
1245 KASSERT(sc->sc_rxhead == NULL);
1246 KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1247 }
1248 #endif
1249
1250 STGE_RXCHAIN_LINK(sc, m);
1251
1252 /*
1253 * If this is not the end of the packet, keep
1254 * looking.
1255 */
1256 if ((status & RFD_FrameEnd) == 0) {
1257 sc->sc_rxlen += m->m_len;
1258 continue;
1259 }
1260
1261 /*
1262 * Okay, we have the entire packet now...
1263 */
1264 *sc->sc_rxtailp = NULL;
1265 m = sc->sc_rxhead;
1266 tailm = sc->sc_rxtail;
1267
1268 STGE_RXCHAIN_RESET(sc);
1269
1270 /*
1271 * If the packet had an error, drop it. Note we
1272 * count the error later in the periodic stats update.
1273 */
1274 if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1275 RFD_RxAlignmentError | RFD_RxFCSError |
1276 RFD_RxLengthError)) {
1277 m_freem(m);
1278 continue;
1279 }
1280
1281 /*
1282 * No errors.
1283 *
1284 * Note we have configured the chip to not include
1285 * the CRC at the end of the packet.
1286 */
1287 len = RFD_RxDMAFrameLen(status);
1288 tailm->m_len = len - sc->sc_rxlen;
1289
1290 /*
1291 * If the packet is small enough to fit in a
1292 * single header mbuf, allocate one and copy
1293 * the data into it. This greatly reduces
1294 * memory consumption when we receive lots
1295 * of small packets.
1296 */
1297 if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1298 struct mbuf *nm;
1299 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1300 if (nm == NULL) {
1301 ifp->if_ierrors++;
1302 m_freem(m);
1303 continue;
1304 }
1305 nm->m_data += 2;
1306 nm->m_pkthdr.len = nm->m_len = len;
1307 m_copydata(m, 0, len, mtod(nm, void *));
1308 m_freem(m);
1309 m = nm;
1310 }
1311
1312 /*
1313 * Set the incoming checksum information for the packet.
1314 */
1315 if (status & RFD_IPDetected) {
1316 STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1317 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1318 if (status & RFD_IPError)
1319 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1320 if (status & RFD_TCPDetected) {
1321 STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1322 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1323 if (status & RFD_TCPError)
1324 m->m_pkthdr.csum_flags |=
1325 M_CSUM_TCP_UDP_BAD;
1326 } else if (status & RFD_UDPDetected) {
1327 STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1328 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1329 if (status & RFD_UDPError)
1330 m->m_pkthdr.csum_flags |=
1331 M_CSUM_TCP_UDP_BAD;
1332 }
1333 }
1334
1335 m->m_pkthdr.rcvif = ifp;
1336 m->m_pkthdr.len = len;
1337
1338 /*
1339 * Pass this up to any BPF listeners, but only
1340 * pass if up the stack if it's for us.
1341 */
1342 bpf_mtap(ifp, m);
1343 #ifdef STGE_VLAN_UNTAG
1344 /*
1345 * Check for VLAN tagged packets
1346 */
1347 if (status & RFD_VLANDetected)
1348 VLAN_INPUT_TAG(ifp, m, RFD_TCI(status), continue);
1349
1350 #endif
1351 #if 0
1352 if (status & RFD_VLANDetected) {
1353 struct ether_header *eh;
1354 u_int16_t etype;
1355
1356 eh = mtod(m, struct ether_header *);
1357 etype = ntohs(eh->ether_type);
1358 printf("%s: VLANtag detected (TCI %d) etype %x\n",
1359 ifp->if_xname, (u_int16_t) RFD_TCI(status),
1360 etype);
1361 }
1362 #endif
1363 /* Pass it on. */
1364 (*ifp->if_input)(ifp, m);
1365 }
1366
1367 /* Update the receive pointer. */
1368 sc->sc_rxptr = i;
1369 }
1370
1371 /*
1372 * stge_tick:
1373 *
1374 * One second timer, used to tick the MII.
1375 */
1376 static void
1377 stge_tick(void *arg)
1378 {
1379 struct stge_softc *sc = arg;
1380 int s;
1381
1382 s = splnet();
1383 mii_tick(&sc->sc_mii);
1384 stge_stats_update(sc);
1385 splx(s);
1386
1387 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1388 }
1389
1390 /*
1391 * stge_stats_update:
1392 *
1393 * Read the TC9021 statistics counters.
1394 */
1395 static void
1396 stge_stats_update(struct stge_softc *sc)
1397 {
1398 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1399 bus_space_tag_t st = sc->sc_st;
1400 bus_space_handle_t sh = sc->sc_sh;
1401
1402 (void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1403
1404 ifp->if_ipackets +=
1405 bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1406
1407 ifp->if_ierrors +=
1408 (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1409
1410 (void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1411
1412 ifp->if_opackets +=
1413 bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1414
1415 ifp->if_collisions +=
1416 bus_space_read_4(st, sh, STGE_LateCollisions) +
1417 bus_space_read_4(st, sh, STGE_MultiColFrames) +
1418 bus_space_read_4(st, sh, STGE_SingleColFrames);
1419
1420 ifp->if_oerrors +=
1421 (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1422 (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1423 }
1424
1425 /*
1426 * stge_reset:
1427 *
1428 * Perform a soft reset on the TC9021.
1429 */
1430 static void
1431 stge_reset(struct stge_softc *sc)
1432 {
1433 uint32_t ac;
1434 int i;
1435
1436 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1437
1438 /*
1439 * Only assert RstOut if we're fiber. We need GMII clocks
1440 * to be present in order for the reset to complete on fiber
1441 * cards.
1442 */
1443 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1444 ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1445 AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1446 (sc->sc_usefiber ? AC_RstOut : 0));
1447
1448 delay(50000);
1449
1450 for (i = 0; i < STGE_TIMEOUT; i++) {
1451 delay(5000);
1452 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1453 AC_ResetBusy) == 0)
1454 break;
1455 }
1456
1457 if (i == STGE_TIMEOUT)
1458 printf("%s: reset failed to complete\n",
1459 device_xname(sc->sc_dev));
1460
1461 delay(1000);
1462 }
1463
1464 /*
1465 * stge_init: [ ifnet interface function ]
1466 *
1467 * Initialize the interface. Must be called at splnet().
1468 */
1469 static int
1470 stge_init(struct ifnet *ifp)
1471 {
1472 struct stge_softc *sc = ifp->if_softc;
1473 bus_space_tag_t st = sc->sc_st;
1474 bus_space_handle_t sh = sc->sc_sh;
1475 struct stge_descsoft *ds;
1476 int i, error = 0;
1477
1478 /*
1479 * Cancel any pending I/O.
1480 */
1481 stge_stop(ifp, 0);
1482
1483 /*
1484 * Reset the chip to a known state.
1485 */
1486 stge_reset(sc);
1487
1488 /*
1489 * Initialize the transmit descriptor ring.
1490 */
1491 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1492 for (i = 0; i < STGE_NTXDESC; i++) {
1493 sc->sc_txdescs[i].tfd_next = htole64(
1494 STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1495 sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1496 }
1497 sc->sc_txpending = 0;
1498 sc->sc_txdirty = 0;
1499 sc->sc_txlast = STGE_NTXDESC - 1;
1500
1501 /*
1502 * Initialize the receive descriptor and receive job
1503 * descriptor rings.
1504 */
1505 for (i = 0; i < STGE_NRXDESC; i++) {
1506 ds = &sc->sc_rxsoft[i];
1507 if (ds->ds_mbuf == NULL) {
1508 if ((error = stge_add_rxbuf(sc, i)) != 0) {
1509 printf("%s: unable to allocate or map rx "
1510 "buffer %d, error = %d\n",
1511 device_xname(sc->sc_dev), i, error);
1512 /*
1513 * XXX Should attempt to run with fewer receive
1514 * XXX buffers instead of just failing.
1515 */
1516 stge_rxdrain(sc);
1517 goto out;
1518 }
1519 } else
1520 STGE_INIT_RXDESC(sc, i);
1521 }
1522 sc->sc_rxptr = 0;
1523 sc->sc_rxdiscard = 0;
1524 STGE_RXCHAIN_RESET(sc);
1525
1526 /* Set the station address. */
1527 for (i = 0; i < 6; i++)
1528 bus_space_write_1(st, sh, STGE_StationAddress0 + i,
1529 CLLADDR(ifp->if_sadl)[i]);
1530
1531 /*
1532 * Set the statistics masks. Disable all the RMON stats,
1533 * and disable selected stats in the non-RMON stats registers.
1534 */
1535 bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1536 bus_space_write_4(st, sh, STGE_StatisticsMask,
1537 (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1538 (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1539 (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1540 (1U << 21));
1541
1542 /* Set up the receive filter. */
1543 stge_set_filter(sc);
1544
1545 /*
1546 * Give the transmit and receive ring to the chip.
1547 */
1548 bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1549 bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1550 STGE_CDTXADDR(sc, sc->sc_txdirty));
1551
1552 bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1553 bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1554 STGE_CDRXADDR(sc, sc->sc_rxptr));
1555
1556 /*
1557 * Initialize the Tx auto-poll period. It's OK to make this number
1558 * large (255 is the max, but we use 127) -- we explicitly kick the
1559 * transmit engine when there's actually a packet.
1560 */
1561 bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1562
1563 /* ..and the Rx auto-poll period. */
1564 bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1565
1566 /* Initialize the Tx start threshold. */
1567 bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1568
1569 /* RX DMA thresholds, from linux */
1570 bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
1571 bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
1572
1573 /*
1574 * Initialize the Rx DMA interrupt control register. We
1575 * request an interrupt after every incoming packet, but
1576 * defer it for 32us (64 * 512 ns). When the number of
1577 * interrupts pending reaches 8, we stop deferring the
1578 * interrupt, and signal it immediately.
1579 */
1580 bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1581 RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1582
1583 /*
1584 * Initialize the interrupt mask.
1585 */
1586 sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1587 IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1588 bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1589 bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1590
1591 /*
1592 * Configure the DMA engine.
1593 * XXX Should auto-tune TxBurstLimit.
1594 */
1595 bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1596 DMAC_TxBurstLimit(3));
1597
1598 /*
1599 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1600 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1601 * empty again.
1602 */
1603 bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1604 bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1605
1606 /*
1607 * Set the maximum frame size.
1608 */
1609 bus_space_write_2(st, sh, STGE_MaxFrameSize,
1610 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1611 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1612 ETHER_VLAN_ENCAP_LEN : 0));
1613
1614 /*
1615 * Initialize MacCtrl -- do it before setting the media,
1616 * as setting the media will actually program the register.
1617 *
1618 * Note: We have to poke the IFS value before poking
1619 * anything else.
1620 */
1621 sc->sc_MACCtrl = MC_IFSSelect(0);
1622 bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1623 sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1624 #ifdef STGE_VLAN_UNTAG
1625 sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1626 #endif
1627
1628 if (sc->sc_rev >= 6) { /* >= B.2 */
1629 /* Multi-frag frame bug work-around. */
1630 bus_space_write_2(st, sh, STGE_DebugCtrl,
1631 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1632
1633 /* Tx Poll Now bug work-around. */
1634 bus_space_write_2(st, sh, STGE_DebugCtrl,
1635 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1636 /* XXX ? from linux */
1637 bus_space_write_2(st, sh, STGE_DebugCtrl,
1638 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
1639 }
1640
1641 /*
1642 * Set the current media.
1643 */
1644 if ((error = ether_mediachange(ifp)) != 0)
1645 goto out;
1646
1647 /*
1648 * Start the one second MII clock.
1649 */
1650 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1651
1652 /*
1653 * ...all done!
1654 */
1655 ifp->if_flags |= IFF_RUNNING;
1656 ifp->if_flags &= ~IFF_OACTIVE;
1657
1658 out:
1659 if (error)
1660 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1661 return (error);
1662 }
1663
1664 /*
1665 * stge_drain:
1666 *
1667 * Drain the receive queue.
1668 */
1669 static void
1670 stge_rxdrain(struct stge_softc *sc)
1671 {
1672 struct stge_descsoft *ds;
1673 int i;
1674
1675 for (i = 0; i < STGE_NRXDESC; i++) {
1676 ds = &sc->sc_rxsoft[i];
1677 if (ds->ds_mbuf != NULL) {
1678 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1679 ds->ds_mbuf->m_next = NULL;
1680 m_freem(ds->ds_mbuf);
1681 ds->ds_mbuf = NULL;
1682 }
1683 }
1684 }
1685
1686 /*
1687 * stge_stop: [ ifnet interface function ]
1688 *
1689 * Stop transmission on the interface.
1690 */
1691 static void
1692 stge_stop(struct ifnet *ifp, int disable)
1693 {
1694 struct stge_softc *sc = ifp->if_softc;
1695 struct stge_descsoft *ds;
1696 int i;
1697
1698 /*
1699 * Stop the one second clock.
1700 */
1701 callout_stop(&sc->sc_tick_ch);
1702
1703 /* Down the MII. */
1704 mii_down(&sc->sc_mii);
1705
1706 /*
1707 * Disable interrupts.
1708 */
1709 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1710
1711 /*
1712 * Stop receiver, transmitter, and stats update.
1713 */
1714 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1715 MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1716
1717 /*
1718 * Stop the transmit and receive DMA.
1719 */
1720 stge_dma_wait(sc);
1721 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1722 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1723 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1724 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1725
1726 /*
1727 * Release any queued transmit buffers.
1728 */
1729 for (i = 0; i < STGE_NTXDESC; i++) {
1730 ds = &sc->sc_txsoft[i];
1731 if (ds->ds_mbuf != NULL) {
1732 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1733 m_freem(ds->ds_mbuf);
1734 ds->ds_mbuf = NULL;
1735 }
1736 }
1737
1738 /*
1739 * Mark the interface down and cancel the watchdog timer.
1740 */
1741 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1742 ifp->if_timer = 0;
1743
1744 if (disable)
1745 stge_rxdrain(sc);
1746 }
1747
1748 static int
1749 stge_eeprom_wait(struct stge_softc *sc)
1750 {
1751 int i;
1752
1753 for (i = 0; i < STGE_TIMEOUT; i++) {
1754 delay(1000);
1755 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1756 EC_EepromBusy) == 0)
1757 return (0);
1758 }
1759 return (1);
1760 }
1761
1762 /*
1763 * stge_read_eeprom:
1764 *
1765 * Read data from the serial EEPROM.
1766 */
1767 static void
1768 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1769 {
1770
1771 if (stge_eeprom_wait(sc))
1772 printf("%s: EEPROM failed to come ready\n",
1773 device_xname(sc->sc_dev));
1774
1775 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1776 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1777 if (stge_eeprom_wait(sc))
1778 printf("%s: EEPROM read timed out\n",
1779 device_xname(sc->sc_dev));
1780 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1781 }
1782
1783 /*
1784 * stge_add_rxbuf:
1785 *
1786 * Add a receive buffer to the indicated descriptor.
1787 */
1788 static int
1789 stge_add_rxbuf(struct stge_softc *sc, int idx)
1790 {
1791 struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1792 struct mbuf *m;
1793 int error;
1794
1795 MGETHDR(m, M_DONTWAIT, MT_DATA);
1796 if (m == NULL)
1797 return (ENOBUFS);
1798
1799 MCLGET(m, M_DONTWAIT);
1800 if ((m->m_flags & M_EXT) == 0) {
1801 m_freem(m);
1802 return (ENOBUFS);
1803 }
1804
1805 m->m_data = m->m_ext.ext_buf + 2;
1806 m->m_len = MCLBYTES - 2;
1807
1808 if (ds->ds_mbuf != NULL)
1809 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1810
1811 ds->ds_mbuf = m;
1812
1813 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1814 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1815 if (error) {
1816 printf("%s: can't load rx DMA map %d, error = %d\n",
1817 device_xname(sc->sc_dev), idx, error);
1818 panic("stge_add_rxbuf"); /* XXX */
1819 }
1820
1821 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1822 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1823
1824 STGE_INIT_RXDESC(sc, idx);
1825
1826 return (0);
1827 }
1828
1829 /*
1830 * stge_set_filter:
1831 *
1832 * Set up the receive filter.
1833 */
1834 static void
1835 stge_set_filter(struct stge_softc *sc)
1836 {
1837 struct ethercom *ec = &sc->sc_ethercom;
1838 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1839 struct ether_multi *enm;
1840 struct ether_multistep step;
1841 uint32_t crc;
1842 uint32_t mchash[2];
1843
1844 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1845 if (ifp->if_flags & IFF_BROADCAST)
1846 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1847
1848 /* XXX: ST1023 only works in promiscuous mode */
1849 if (sc->sc_stge1023)
1850 ifp->if_flags |= IFF_PROMISC;
1851
1852 if (ifp->if_flags & IFF_PROMISC) {
1853 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1854 goto allmulti;
1855 }
1856
1857 /*
1858 * Set up the multicast address filter by passing all multicast
1859 * addresses through a CRC generator, and then using the low-order
1860 * 6 bits as an index into the 64 bit multicast hash table. The
1861 * high order bits select the register, while the rest of the bits
1862 * select the bit within the register.
1863 */
1864
1865 memset(mchash, 0, sizeof(mchash));
1866
1867 ETHER_FIRST_MULTI(step, ec, enm);
1868 if (enm == NULL)
1869 goto done;
1870
1871 while (enm != NULL) {
1872 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1873 /*
1874 * We must listen to a range of multicast addresses.
1875 * For now, just accept all multicasts, rather than
1876 * trying to set only those filter bits needed to match
1877 * the range. (At this time, the only use of address
1878 * ranges is for IP multicast routing, for which the
1879 * range is big enough to require all bits set.)
1880 */
1881 goto allmulti;
1882 }
1883
1884 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1885
1886 /* Just want the 6 least significant bits. */
1887 crc &= 0x3f;
1888
1889 /* Set the corresponding bit in the hash table. */
1890 mchash[crc >> 5] |= 1 << (crc & 0x1f);
1891
1892 ETHER_NEXT_MULTI(step, enm);
1893 }
1894
1895 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1896
1897 ifp->if_flags &= ~IFF_ALLMULTI;
1898 goto done;
1899
1900 allmulti:
1901 ifp->if_flags |= IFF_ALLMULTI;
1902 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1903
1904 done:
1905 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1906 /*
1907 * Program the multicast hash table.
1908 */
1909 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1910 mchash[0]);
1911 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1912 mchash[1]);
1913 }
1914
1915 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1916 sc->sc_ReceiveMode);
1917 }
1918
1919 /*
1920 * stge_mii_readreg: [mii interface function]
1921 *
1922 * Read a PHY register on the MII of the TC9021.
1923 */
1924 static int
1925 stge_mii_readreg(device_t self, int phy, int reg)
1926 {
1927
1928 return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1929 }
1930
1931 /*
1932 * stge_mii_writereg: [mii interface function]
1933 *
1934 * Write a PHY register on the MII of the TC9021.
1935 */
1936 static void
1937 stge_mii_writereg(device_t self, int phy, int reg, int val)
1938 {
1939
1940 mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1941 }
1942
1943 /*
1944 * stge_mii_statchg: [mii interface function]
1945 *
1946 * Callback from MII layer when media changes.
1947 */
1948 static void
1949 stge_mii_statchg(device_t self)
1950 {
1951 struct stge_softc *sc = device_private(self);
1952
1953 if (sc->sc_mii.mii_media_active & IFM_FDX)
1954 sc->sc_MACCtrl |= MC_DuplexSelect;
1955 else
1956 sc->sc_MACCtrl &= ~MC_DuplexSelect;
1957
1958 /* XXX 802.1x flow-control? */
1959
1960 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1961 }
1962
1963 /*
1964 * sste_mii_bitbang_read: [mii bit-bang interface function]
1965 *
1966 * Read the MII serial port for the MII bit-bang module.
1967 */
1968 static uint32_t
1969 stge_mii_bitbang_read(device_t self)
1970 {
1971 struct stge_softc *sc = device_private(self);
1972
1973 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
1974 }
1975
1976 /*
1977 * stge_mii_bitbang_write: [mii big-bang interface function]
1978 *
1979 * Write the MII serial port for the MII bit-bang module.
1980 */
1981 static void
1982 stge_mii_bitbang_write(device_t self, uint32_t val)
1983 {
1984 struct stge_softc *sc = device_private(self);
1985
1986 bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
1987 val | sc->sc_PhyCtrl);
1988 }
1989