if_stge.c revision 1.55 1 /* $NetBSD: if_stge.c,v 1.55 2012/07/22 14:33:04 matt Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the Sundance Tech. TC9021 10/100/1000
34 * Ethernet controller.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.55 2012/07/22 14:33:04 matt Exp $");
39
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 #include <sys/queue.h>
52
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57
58 #include <net/bpf.h>
59
60 #include <sys/bus.h>
61 #include <sys/intr.h>
62
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 #include <dev/mii/mii_bitbang.h>
66
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70
71 #include <dev/pci/if_stgereg.h>
72
73 #include <prop/proplib.h>
74
75 /* #define STGE_CU_BUG 1 */
76 #define STGE_VLAN_UNTAG 1
77 /* #define STGE_VLAN_CFI 1 */
78
79 /*
80 * Transmit descriptor list size.
81 */
82 #define STGE_NTXDESC 256
83 #define STGE_NTXDESC_MASK (STGE_NTXDESC - 1)
84 #define STGE_NEXTTX(x) (((x) + 1) & STGE_NTXDESC_MASK)
85
86 /*
87 * Receive descriptor list size.
88 */
89 #define STGE_NRXDESC 256
90 #define STGE_NRXDESC_MASK (STGE_NRXDESC - 1)
91 #define STGE_NEXTRX(x) (((x) + 1) & STGE_NRXDESC_MASK)
92
93 /*
94 * Only interrupt every N frames. Must be a power-of-two.
95 */
96 #define STGE_TXINTR_SPACING 16
97 #define STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
98
99 /*
100 * Control structures are DMA'd to the TC9021 chip. We allocate them in
101 * a single clump that maps to a single DMA segment to make several things
102 * easier.
103 */
104 struct stge_control_data {
105 /*
106 * The transmit descriptors.
107 */
108 struct stge_tfd scd_txdescs[STGE_NTXDESC];
109
110 /*
111 * The receive descriptors.
112 */
113 struct stge_rfd scd_rxdescs[STGE_NRXDESC];
114 };
115
116 #define STGE_CDOFF(x) offsetof(struct stge_control_data, x)
117 #define STGE_CDTXOFF(x) STGE_CDOFF(scd_txdescs[(x)])
118 #define STGE_CDRXOFF(x) STGE_CDOFF(scd_rxdescs[(x)])
119
120 /*
121 * Software state for transmit and receive jobs.
122 */
123 struct stge_descsoft {
124 struct mbuf *ds_mbuf; /* head of our mbuf chain */
125 bus_dmamap_t ds_dmamap; /* our DMA map */
126 };
127
128 /*
129 * Software state per device.
130 */
131 struct stge_softc {
132 device_t sc_dev; /* generic device information */
133 bus_space_tag_t sc_st; /* bus space tag */
134 bus_space_handle_t sc_sh; /* bus space handle */
135 bus_dma_tag_t sc_dmat; /* bus DMA tag */
136 struct ethercom sc_ethercom; /* ethernet common data */
137 int sc_rev; /* silicon revision */
138
139 void *sc_ih; /* interrupt cookie */
140
141 struct mii_data sc_mii; /* MII/media information */
142
143 callout_t sc_tick_ch; /* tick callout */
144
145 bus_dmamap_t sc_cddmamap; /* control data DMA map */
146 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
147
148 /*
149 * Software state for transmit and receive descriptors.
150 */
151 struct stge_descsoft sc_txsoft[STGE_NTXDESC];
152 struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
153
154 /*
155 * Control data structures.
156 */
157 struct stge_control_data *sc_control_data;
158 #define sc_txdescs sc_control_data->scd_txdescs
159 #define sc_rxdescs sc_control_data->scd_rxdescs
160
161 #ifdef STGE_EVENT_COUNTERS
162 /*
163 * Event counters.
164 */
165 struct evcnt sc_ev_txstall; /* Tx stalled */
166 struct evcnt sc_ev_txdmaintr; /* Tx DMA interrupts */
167 struct evcnt sc_ev_txindintr; /* Tx Indicate interrupts */
168 struct evcnt sc_ev_rxintr; /* Rx interrupts */
169
170 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
171 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
172 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
173 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
174 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
175 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
176 struct evcnt sc_ev_txcopy; /* Tx packets that we had to copy */
177
178 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
179 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
180 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-bound */
181
182 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
183 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
184 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
185 #endif /* STGE_EVENT_COUNTERS */
186
187 int sc_txpending; /* number of Tx requests pending */
188 int sc_txdirty; /* first dirty Tx descriptor */
189 int sc_txlast; /* last used Tx descriptor */
190
191 int sc_rxptr; /* next ready Rx descriptor/descsoft */
192 int sc_rxdiscard;
193 int sc_rxlen;
194 struct mbuf *sc_rxhead;
195 struct mbuf *sc_rxtail;
196 struct mbuf **sc_rxtailp;
197
198 int sc_txthresh; /* Tx threshold */
199 uint32_t sc_usefiber:1; /* if we're fiber */
200 uint32_t sc_stge1023:1; /* are we a 1023 */
201 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
202 uint32_t sc_MACCtrl; /* prototype MacCtrl register */
203 uint16_t sc_IntEnable; /* prototype IntEnable register */
204 uint16_t sc_ReceiveMode; /* prototype ReceiveMode register */
205 uint8_t sc_PhyCtrl; /* prototype PhyCtrl register */
206 };
207
208 #define STGE_RXCHAIN_RESET(sc) \
209 do { \
210 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
211 *(sc)->sc_rxtailp = NULL; \
212 (sc)->sc_rxlen = 0; \
213 } while (/*CONSTCOND*/0)
214
215 #define STGE_RXCHAIN_LINK(sc, m) \
216 do { \
217 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
218 (sc)->sc_rxtailp = &(m)->m_next; \
219 } while (/*CONSTCOND*/0)
220
221 #ifdef STGE_EVENT_COUNTERS
222 #define STGE_EVCNT_INCR(ev) (ev)->ev_count++
223 #else
224 #define STGE_EVCNT_INCR(ev) /* nothing */
225 #endif
226
227 #define STGE_CDTXADDR(sc, x) ((sc)->sc_cddma + STGE_CDTXOFF((x)))
228 #define STGE_CDRXADDR(sc, x) ((sc)->sc_cddma + STGE_CDRXOFF((x)))
229
230 #define STGE_CDTXSYNC(sc, x, ops) \
231 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
232 STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
233
234 #define STGE_CDRXSYNC(sc, x, ops) \
235 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
236 STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
237
238 #define STGE_INIT_RXDESC(sc, x) \
239 do { \
240 struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
241 struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
242 \
243 /* \
244 * Note: We scoot the packet forward 2 bytes in the buffer \
245 * so that the payload after the Ethernet header is aligned \
246 * to a 4-byte boundary. \
247 */ \
248 __rfd->rfd_frag.frag_word0 = \
249 htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
250 FRAG_LEN(MCLBYTES - 2)); \
251 __rfd->rfd_next = \
252 htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x)))); \
253 __rfd->rfd_status = 0; \
254 STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
255 } while (/*CONSTCOND*/0)
256
257 #define STGE_TIMEOUT 1000
258
259 static void stge_start(struct ifnet *);
260 static void stge_watchdog(struct ifnet *);
261 static int stge_ioctl(struct ifnet *, u_long, void *);
262 static int stge_init(struct ifnet *);
263 static void stge_stop(struct ifnet *, int);
264
265 static bool stge_shutdown(device_t, int);
266
267 static void stge_reset(struct stge_softc *);
268 static void stge_rxdrain(struct stge_softc *);
269 static int stge_add_rxbuf(struct stge_softc *, int);
270 static void stge_read_eeprom(struct stge_softc *, int, uint16_t *);
271 static void stge_tick(void *);
272
273 static void stge_stats_update(struct stge_softc *);
274
275 static void stge_set_filter(struct stge_softc *);
276
277 static int stge_intr(void *);
278 static void stge_txintr(struct stge_softc *);
279 static void stge_rxintr(struct stge_softc *);
280
281 static int stge_mii_readreg(device_t, int, int);
282 static void stge_mii_writereg(device_t, int, int, int);
283 static void stge_mii_statchg(struct ifnet *);
284
285 static int stge_match(device_t, cfdata_t, void *);
286 static void stge_attach(device_t, device_t, void *);
287
288 int stge_copy_small = 0;
289
290 CFATTACH_DECL_NEW(stge, sizeof(struct stge_softc),
291 stge_match, stge_attach, NULL, NULL);
292
293 static uint32_t stge_mii_bitbang_read(device_t);
294 static void stge_mii_bitbang_write(device_t, uint32_t);
295
296 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
297 stge_mii_bitbang_read,
298 stge_mii_bitbang_write,
299 {
300 PC_MgmtData, /* MII_BIT_MDO */
301 PC_MgmtData, /* MII_BIT_MDI */
302 PC_MgmtClk, /* MII_BIT_MDC */
303 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
304 0, /* MII_BIT_DIR_PHY_HOST */
305 }
306 };
307
308 /*
309 * Devices supported by this driver.
310 */
311 static const struct stge_product {
312 pci_vendor_id_t stge_vendor;
313 pci_product_id_t stge_product;
314 const char *stge_name;
315 } stge_products[] = {
316 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST1023,
317 "Sundance ST-1023 Gigabit Ethernet" },
318
319 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST2021,
320 "Sundance ST-2021 Gigabit Ethernet" },
321
322 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021,
323 "Tamarack TC9021 Gigabit Ethernet" },
324
325 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021_ALT,
326 "Tamarack TC9021 Gigabit Ethernet" },
327
328 /*
329 * The Sundance sample boards use the Sundance vendor ID,
330 * but the Tamarack product ID.
331 */
332 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021,
333 "Sundance TC9021 Gigabit Ethernet" },
334
335 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021_ALT,
336 "Sundance TC9021 Gigabit Ethernet" },
337
338 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL4000,
339 "D-Link DL-4000 Gigabit Ethernet" },
340
341 { PCI_VENDOR_ANTARES, PCI_PRODUCT_ANTARES_TC9021,
342 "Antares Gigabit Ethernet" },
343
344 { 0, 0,
345 NULL },
346 };
347
348 static const struct stge_product *
349 stge_lookup(const struct pci_attach_args *pa)
350 {
351 const struct stge_product *sp;
352
353 for (sp = stge_products; sp->stge_name != NULL; sp++) {
354 if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
355 PCI_PRODUCT(pa->pa_id) == sp->stge_product)
356 return (sp);
357 }
358 return (NULL);
359 }
360
361 static int
362 stge_match(device_t parent, cfdata_t cf, void *aux)
363 {
364 struct pci_attach_args *pa = aux;
365
366 if (stge_lookup(pa) != NULL)
367 return (1);
368
369 return (0);
370 }
371
372 static void
373 stge_attach(device_t parent, device_t self, void *aux)
374 {
375 struct stge_softc *sc = device_private(self);
376 struct pci_attach_args *pa = aux;
377 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
378 pci_chipset_tag_t pc = pa->pa_pc;
379 pci_intr_handle_t ih;
380 const char *intrstr = NULL;
381 bus_space_tag_t iot, memt;
382 bus_space_handle_t ioh, memh;
383 bus_dma_segment_t seg;
384 prop_data_t data;
385 int ioh_valid, memh_valid;
386 int i, rseg, error;
387 const struct stge_product *sp;
388 uint8_t enaddr[ETHER_ADDR_LEN];
389
390 callout_init(&sc->sc_tick_ch, 0);
391
392 sp = stge_lookup(pa);
393 if (sp == NULL) {
394 printf("\n");
395 panic("ste_attach: impossible");
396 }
397
398 sc->sc_rev = PCI_REVISION(pa->pa_class);
399
400 pci_aprint_devinfo_fancy(pa, NULL, sp->stge_name, 1);
401
402 /*
403 * Map the device.
404 */
405 ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
406 PCI_MAPREG_TYPE_IO, 0,
407 &iot, &ioh, NULL, NULL) == 0);
408 memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
409 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
410 &memt, &memh, NULL, NULL) == 0);
411
412 if (memh_valid) {
413 sc->sc_st = memt;
414 sc->sc_sh = memh;
415 } else if (ioh_valid) {
416 sc->sc_st = iot;
417 sc->sc_sh = ioh;
418 } else {
419 aprint_error_dev(self, "unable to map device registers\n");
420 return;
421 }
422
423 sc->sc_dmat = pa->pa_dmat;
424
425 /* Enable bus mastering. */
426 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
427 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
428 PCI_COMMAND_MASTER_ENABLE);
429
430 /* power up chip */
431 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
432 error != EOPNOTSUPP) {
433 aprint_error_dev(self, "cannot activate %d\n",
434 error);
435 return;
436 }
437 /*
438 * Map and establish our interrupt.
439 */
440 if (pci_intr_map(pa, &ih)) {
441 aprint_error_dev(self, "unable to map interrupt\n");
442 return;
443 }
444 intrstr = pci_intr_string(pc, ih);
445 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
446 if (sc->sc_ih == NULL) {
447 aprint_error_dev(self, "unable to establish interrupt");
448 if (intrstr != NULL)
449 aprint_error(" at %s", intrstr);
450 aprint_error("\n");
451 return;
452 }
453 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
454
455 /*
456 * Allocate the control data structures, and create and load the
457 * DMA map for it.
458 */
459 if ((error = bus_dmamem_alloc(sc->sc_dmat,
460 sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
461 0)) != 0) {
462 aprint_error_dev(self,
463 "unable to allocate control data, error = %d\n",
464 error);
465 goto fail_0;
466 }
467
468 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
469 sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
470 BUS_DMA_COHERENT)) != 0) {
471 aprint_error_dev(self,
472 "unable to map control data, error = %d\n",
473 error);
474 goto fail_1;
475 }
476
477 if ((error = bus_dmamap_create(sc->sc_dmat,
478 sizeof(struct stge_control_data), 1,
479 sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
480 aprint_error_dev(self,
481 "unable to create control data DMA map, error = %d\n",
482 error);
483 goto fail_2;
484 }
485
486 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
487 sc->sc_control_data, sizeof(struct stge_control_data), NULL,
488 0)) != 0) {
489 aprint_error_dev(self,
490 "unable to load control data DMA map, error = %d\n",
491 error);
492 goto fail_3;
493 }
494
495 /*
496 * Create the transmit buffer DMA maps. Note that rev B.3
497 * and earlier seem to have a bug regarding multi-fragment
498 * packets. We need to limit the number of Tx segments on
499 * such chips to 1.
500 */
501 for (i = 0; i < STGE_NTXDESC; i++) {
502 if ((error = bus_dmamap_create(sc->sc_dmat,
503 ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
504 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
505 aprint_error_dev(self,
506 "unable to create tx DMA map %d, error = %d\n",
507 i, error);
508 goto fail_4;
509 }
510 }
511
512 /*
513 * Create the receive buffer DMA maps.
514 */
515 for (i = 0; i < STGE_NRXDESC; i++) {
516 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
517 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
518 aprint_error_dev(self,
519 "unable to create rx DMA map %d, error = %d\n",
520 i, error);
521 goto fail_5;
522 }
523 sc->sc_rxsoft[i].ds_mbuf = NULL;
524 }
525
526 /*
527 * Determine if we're copper or fiber. It affects how we
528 * reset the card.
529 */
530 if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
531 AC_PhyMedia)
532 sc->sc_usefiber = 1;
533 else
534 sc->sc_usefiber = 0;
535
536 /*
537 * Reset the chip to a known state.
538 */
539 stge_reset(sc);
540
541 /*
542 * Reading the station address from the EEPROM doesn't seem
543 * to work, at least on my sample boards. Instead, since
544 * the reset sequence does AutoInit, read it from the station
545 * address registers. For Sundance 1023 you can only read it
546 * from EEPROM.
547 */
548 if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
549 enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
550 STGE_StationAddress0) & 0xff;
551 enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
552 STGE_StationAddress0) >> 8;
553 enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
554 STGE_StationAddress1) & 0xff;
555 enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
556 STGE_StationAddress1) >> 8;
557 enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
558 STGE_StationAddress2) & 0xff;
559 enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
560 STGE_StationAddress2) >> 8;
561 sc->sc_stge1023 = 0;
562 } else {
563 data = prop_dictionary_get(device_properties(self),
564 "mac-address");
565 if (data != NULL) {
566 /*
567 * Try to get the station address from device
568 * properties first, in case the EEPROM is missing.
569 */
570 KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
571 KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
572 (void)memcpy(enaddr, prop_data_data_nocopy(data),
573 ETHER_ADDR_LEN);
574 } else {
575 uint16_t myaddr[ETHER_ADDR_LEN / 2];
576 for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
577 stge_read_eeprom(sc,
578 STGE_EEPROM_StationAddress0 + i,
579 &myaddr[i]);
580 myaddr[i] = le16toh(myaddr[i]);
581 }
582 (void)memcpy(enaddr, myaddr, sizeof(enaddr));
583 }
584 sc->sc_stge1023 = 1;
585 }
586
587 aprint_normal_dev(self, "Ethernet address %s\n",
588 ether_sprintf(enaddr));
589
590 /*
591 * Read some important bits from the PhyCtrl register.
592 */
593 sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
594 STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
595
596 /*
597 * Initialize our media structures and probe the MII.
598 */
599 sc->sc_mii.mii_ifp = ifp;
600 sc->sc_mii.mii_readreg = stge_mii_readreg;
601 sc->sc_mii.mii_writereg = stge_mii_writereg;
602 sc->sc_mii.mii_statchg = stge_mii_statchg;
603 sc->sc_ethercom.ec_mii = &sc->sc_mii;
604 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
605 ether_mediastatus);
606 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
607 MII_OFFSET_ANY, MIIF_DOPAUSE);
608 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
609 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
610 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
611 } else
612 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
613
614 ifp = &sc->sc_ethercom.ec_if;
615 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
616 ifp->if_softc = sc;
617 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
618 ifp->if_ioctl = stge_ioctl;
619 ifp->if_start = stge_start;
620 ifp->if_watchdog = stge_watchdog;
621 ifp->if_init = stge_init;
622 ifp->if_stop = stge_stop;
623 IFQ_SET_READY(&ifp->if_snd);
624
625 /*
626 * The manual recommends disabling early transmit, so we
627 * do. It's disabled anyway, if using IP checksumming,
628 * since the entire packet must be in the FIFO in order
629 * for the chip to perform the checksum.
630 */
631 sc->sc_txthresh = 0x0fff;
632
633 /*
634 * Disable MWI if the PCI layer tells us to.
635 */
636 sc->sc_DMACtrl = 0;
637 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
638 sc->sc_DMACtrl |= DMAC_MWIDisable;
639
640 /*
641 * We can support 802.1Q VLAN-sized frames and jumbo
642 * Ethernet frames.
643 *
644 * XXX Figure out how to do hw-assisted VLAN tagging in
645 * XXX a reasonable way on this chip.
646 */
647 sc->sc_ethercom.ec_capabilities |=
648 ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
649 ETHERCAP_VLAN_HWTAGGING;
650
651 /*
652 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
653 */
654 sc->sc_ethercom.ec_if.if_capabilities |=
655 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
656 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
657 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
658
659 /*
660 * Attach the interface.
661 */
662 if_attach(ifp);
663 ether_ifattach(ifp, enaddr);
664
665 #ifdef STGE_EVENT_COUNTERS
666 /*
667 * Attach event counters.
668 */
669 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
670 NULL, device_xname(self), "txstall");
671 evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
672 NULL, device_xname(self), "txdmaintr");
673 evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
674 NULL, device_xname(self), "txindintr");
675 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
676 NULL, device_xname(self), "rxintr");
677
678 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
679 NULL, device_xname(self), "txseg1");
680 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
681 NULL, device_xname(self), "txseg2");
682 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
683 NULL, device_xname(self), "txseg3");
684 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
685 NULL, device_xname(self), "txseg4");
686 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
687 NULL, device_xname(self), "txseg5");
688 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
689 NULL, device_xname(self), "txsegmore");
690 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
691 NULL, device_xname(self), "txcopy");
692
693 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
694 NULL, device_xname(self), "rxipsum");
695 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
696 NULL, device_xname(self), "rxtcpsum");
697 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
698 NULL, device_xname(self), "rxudpsum");
699 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
700 NULL, device_xname(self), "txipsum");
701 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
702 NULL, device_xname(self), "txtcpsum");
703 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
704 NULL, device_xname(self), "txudpsum");
705 #endif /* STGE_EVENT_COUNTERS */
706
707 /*
708 * Make sure the interface is shutdown during reboot.
709 */
710 if (pmf_device_register1(self, NULL, NULL, stge_shutdown))
711 pmf_class_network_register(self, ifp);
712 else
713 aprint_error_dev(self, "couldn't establish power handler\n");
714
715 return;
716
717 /*
718 * Free any resources we've allocated during the failed attach
719 * attempt. Do this in reverse order and fall through.
720 */
721 fail_5:
722 for (i = 0; i < STGE_NRXDESC; i++) {
723 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
724 bus_dmamap_destroy(sc->sc_dmat,
725 sc->sc_rxsoft[i].ds_dmamap);
726 }
727 fail_4:
728 for (i = 0; i < STGE_NTXDESC; i++) {
729 if (sc->sc_txsoft[i].ds_dmamap != NULL)
730 bus_dmamap_destroy(sc->sc_dmat,
731 sc->sc_txsoft[i].ds_dmamap);
732 }
733 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
734 fail_3:
735 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
736 fail_2:
737 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
738 sizeof(struct stge_control_data));
739 fail_1:
740 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
741 fail_0:
742 return;
743 }
744
745 /*
746 * stge_shutdown:
747 *
748 * Make sure the interface is stopped at reboot time.
749 */
750 static bool
751 stge_shutdown(device_t self, int howto)
752 {
753 struct stge_softc *sc = device_private(self);
754 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
755
756 stge_stop(ifp, 1);
757 stge_reset(sc);
758 return true;
759 }
760
761 static void
762 stge_dma_wait(struct stge_softc *sc)
763 {
764 int i;
765
766 for (i = 0; i < STGE_TIMEOUT; i++) {
767 delay(2);
768 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
769 DMAC_TxDMAInProg) == 0)
770 break;
771 }
772
773 if (i == STGE_TIMEOUT)
774 printf("%s: DMA wait timed out\n", device_xname(sc->sc_dev));
775 }
776
777 /*
778 * stge_start: [ifnet interface function]
779 *
780 * Start packet transmission on the interface.
781 */
782 static void
783 stge_start(struct ifnet *ifp)
784 {
785 struct stge_softc *sc = ifp->if_softc;
786 struct mbuf *m0;
787 struct stge_descsoft *ds;
788 struct stge_tfd *tfd;
789 bus_dmamap_t dmamap;
790 int error, firsttx, nexttx, opending, seg, totlen;
791 uint64_t csum_flags;
792
793 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
794 return;
795
796 /*
797 * Remember the previous number of pending transmissions
798 * and the first descriptor we will use.
799 */
800 opending = sc->sc_txpending;
801 firsttx = STGE_NEXTTX(sc->sc_txlast);
802
803 /*
804 * Loop through the send queue, setting up transmit descriptors
805 * until we drain the queue, or use up all available transmit
806 * descriptors.
807 */
808 for (;;) {
809 struct m_tag *mtag;
810 uint64_t tfc;
811
812 /*
813 * Grab a packet off the queue.
814 */
815 IFQ_POLL(&ifp->if_snd, m0);
816 if (m0 == NULL)
817 break;
818
819 /*
820 * Leave one unused descriptor at the end of the
821 * list to prevent wrapping completely around.
822 */
823 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
824 STGE_EVCNT_INCR(&sc->sc_ev_txstall);
825 break;
826 }
827
828 /*
829 * See if we have any VLAN stuff.
830 */
831 mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
832
833 /*
834 * Get the last and next available transmit descriptor.
835 */
836 nexttx = STGE_NEXTTX(sc->sc_txlast);
837 tfd = &sc->sc_txdescs[nexttx];
838 ds = &sc->sc_txsoft[nexttx];
839
840 dmamap = ds->ds_dmamap;
841
842 /*
843 * Load the DMA map. If this fails, the packet either
844 * didn't fit in the alloted number of segments, or we
845 * were short on resources. For the too-many-segments
846 * case, we simply report an error and drop the packet,
847 * since we can't sanely copy a jumbo packet to a single
848 * buffer.
849 */
850 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
851 BUS_DMA_NOWAIT);
852 if (error) {
853 if (error == EFBIG) {
854 printf("%s: Tx packet consumes too many "
855 "DMA segments, dropping...\n",
856 device_xname(sc->sc_dev));
857 IFQ_DEQUEUE(&ifp->if_snd, m0);
858 m_freem(m0);
859 continue;
860 }
861 /*
862 * Short on resources, just stop for now.
863 */
864 break;
865 }
866
867 IFQ_DEQUEUE(&ifp->if_snd, m0);
868
869 /*
870 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
871 */
872
873 /* Sync the DMA map. */
874 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
875 BUS_DMASYNC_PREWRITE);
876
877 /* Initialize the fragment list. */
878 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
879 tfd->tfd_frags[seg].frag_word0 =
880 htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
881 FRAG_LEN(dmamap->dm_segs[seg].ds_len));
882 totlen += dmamap->dm_segs[seg].ds_len;
883 }
884
885 #ifdef STGE_EVENT_COUNTERS
886 switch (dmamap->dm_nsegs) {
887 case 1:
888 STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
889 break;
890 case 2:
891 STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
892 break;
893 case 3:
894 STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
895 break;
896 case 4:
897 STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
898 break;
899 case 5:
900 STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
901 break;
902 default:
903 STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
904 break;
905 }
906 #endif /* STGE_EVENT_COUNTERS */
907
908 /*
909 * Initialize checksumming flags in the descriptor.
910 * Byte-swap constants so the compiler can optimize.
911 */
912 csum_flags = 0;
913 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
914 STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
915 csum_flags |= TFD_IPChecksumEnable;
916 }
917
918 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
919 STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
920 csum_flags |= TFD_TCPChecksumEnable;
921 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
922 STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
923 csum_flags |= TFD_UDPChecksumEnable;
924 }
925
926 /*
927 * Initialize the descriptor and give it to the chip.
928 * Check to see if we have a VLAN tag to insert.
929 */
930
931 tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
932 TFD_FragCount(seg) | csum_flags |
933 (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
934 TFD_TxDMAIndicate : 0);
935 if (mtag) {
936 #if 0
937 struct ether_header *eh =
938 mtod(m0, struct ether_header *);
939 u_int16_t etype = ntohs(eh->ether_type);
940 printf("%s: xmit (tag %d) etype %x\n",
941 ifp->if_xname, *mtod(n, int *), etype);
942 #endif
943 tfc |= TFD_VLANTagInsert |
944 #ifdef STGE_VLAN_CFI
945 TFD_CFI |
946 #endif
947 TFD_VID(VLAN_TAG_VALUE(mtag));
948 }
949 tfd->tfd_control = htole64(tfc);
950
951 /* Sync the descriptor. */
952 STGE_CDTXSYNC(sc, nexttx,
953 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
954
955 /*
956 * Kick the transmit DMA logic.
957 */
958 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
959 sc->sc_DMACtrl | DMAC_TxDMAPollNow);
960
961 /*
962 * Store a pointer to the packet so we can free it later.
963 */
964 ds->ds_mbuf = m0;
965
966 /* Advance the tx pointer. */
967 sc->sc_txpending++;
968 sc->sc_txlast = nexttx;
969
970 /*
971 * Pass the packet to any BPF listeners.
972 */
973 bpf_mtap(ifp, m0);
974 }
975
976 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
977 /* No more slots left; notify upper layer. */
978 ifp->if_flags |= IFF_OACTIVE;
979 }
980
981 if (sc->sc_txpending != opending) {
982 /*
983 * We enqueued packets. If the transmitter was idle,
984 * reset the txdirty pointer.
985 */
986 if (opending == 0)
987 sc->sc_txdirty = firsttx;
988
989 /* Set a watchdog timer in case the chip flakes out. */
990 ifp->if_timer = 5;
991 }
992 }
993
994 /*
995 * stge_watchdog: [ifnet interface function]
996 *
997 * Watchdog timer handler.
998 */
999 static void
1000 stge_watchdog(struct ifnet *ifp)
1001 {
1002 struct stge_softc *sc = ifp->if_softc;
1003
1004 /*
1005 * Sweep up first, since we don't interrupt every frame.
1006 */
1007 stge_txintr(sc);
1008 if (sc->sc_txpending != 0) {
1009 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1010 ifp->if_oerrors++;
1011
1012 (void) stge_init(ifp);
1013
1014 /* Try to get more packets going. */
1015 stge_start(ifp);
1016 }
1017 }
1018
1019 /*
1020 * stge_ioctl: [ifnet interface function]
1021 *
1022 * Handle control requests from the operator.
1023 */
1024 static int
1025 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1026 {
1027 struct stge_softc *sc = ifp->if_softc;
1028 int s, error;
1029
1030 s = splnet();
1031
1032 error = ether_ioctl(ifp, cmd, data);
1033 if (error == ENETRESET) {
1034 error = 0;
1035
1036 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1037 ;
1038 else if (ifp->if_flags & IFF_RUNNING) {
1039 /*
1040 * Multicast list has changed; set the hardware filter
1041 * accordingly.
1042 */
1043 stge_set_filter(sc);
1044 }
1045 }
1046
1047 /* Try to get more packets going. */
1048 stge_start(ifp);
1049
1050 splx(s);
1051 return (error);
1052 }
1053
1054 /*
1055 * stge_intr:
1056 *
1057 * Interrupt service routine.
1058 */
1059 static int
1060 stge_intr(void *arg)
1061 {
1062 struct stge_softc *sc = arg;
1063 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1064 uint32_t txstat;
1065 int wantinit;
1066 uint16_t isr;
1067
1068 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1069 IS_InterruptStatus) == 0)
1070 return (0);
1071
1072 for (wantinit = 0; wantinit == 0;) {
1073 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1074 if ((isr & sc->sc_IntEnable) == 0)
1075 break;
1076
1077 /* Host interface errors. */
1078 if (isr & IS_HostError) {
1079 printf("%s: Host interface error\n",
1080 device_xname(sc->sc_dev));
1081 wantinit = 1;
1082 continue;
1083 }
1084
1085 /* Receive interrupts. */
1086 if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
1087 STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1088 stge_rxintr(sc);
1089 if (isr & IS_RFDListEnd) {
1090 printf("%s: receive ring overflow\n",
1091 device_xname(sc->sc_dev));
1092 /*
1093 * XXX Should try to recover from this
1094 * XXX more gracefully.
1095 */
1096 wantinit = 1;
1097 }
1098 }
1099
1100 /* Transmit interrupts. */
1101 if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
1102 #ifdef STGE_EVENT_COUNTERS
1103 if (isr & IS_TxDMAComplete)
1104 STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1105 #endif
1106 stge_txintr(sc);
1107 }
1108
1109 /* Statistics overflow. */
1110 if (isr & IS_UpdateStats)
1111 stge_stats_update(sc);
1112
1113 /* Transmission errors. */
1114 if (isr & IS_TxComplete) {
1115 STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1116 for (;;) {
1117 txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1118 STGE_TxStatus);
1119 if ((txstat & TS_TxComplete) == 0)
1120 break;
1121 if (txstat & TS_TxUnderrun) {
1122 sc->sc_txthresh++;
1123 if (sc->sc_txthresh > 0x0fff)
1124 sc->sc_txthresh = 0x0fff;
1125 printf("%s: transmit underrun, new "
1126 "threshold: %d bytes\n",
1127 device_xname(sc->sc_dev),
1128 sc->sc_txthresh << 5);
1129 }
1130 if (txstat & TS_MaxCollisions)
1131 printf("%s: excessive collisions\n",
1132 device_xname(sc->sc_dev));
1133 }
1134 wantinit = 1;
1135 }
1136
1137 }
1138
1139 if (wantinit)
1140 stge_init(ifp);
1141
1142 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1143 sc->sc_IntEnable);
1144
1145 /* Try to get more packets going. */
1146 stge_start(ifp);
1147
1148 return (1);
1149 }
1150
1151 /*
1152 * stge_txintr:
1153 *
1154 * Helper; handle transmit interrupts.
1155 */
1156 static void
1157 stge_txintr(struct stge_softc *sc)
1158 {
1159 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1160 struct stge_descsoft *ds;
1161 uint64_t control;
1162 int i;
1163
1164 ifp->if_flags &= ~IFF_OACTIVE;
1165
1166 /*
1167 * Go through our Tx list and free mbufs for those
1168 * frames which have been transmitted.
1169 */
1170 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1171 i = STGE_NEXTTX(i), sc->sc_txpending--) {
1172 ds = &sc->sc_txsoft[i];
1173
1174 STGE_CDTXSYNC(sc, i,
1175 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1176
1177 control = le64toh(sc->sc_txdescs[i].tfd_control);
1178 if ((control & TFD_TFDDone) == 0)
1179 break;
1180
1181 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1182 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1183 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1184 m_freem(ds->ds_mbuf);
1185 ds->ds_mbuf = NULL;
1186 }
1187
1188 /* Update the dirty transmit buffer pointer. */
1189 sc->sc_txdirty = i;
1190
1191 /*
1192 * If there are no more pending transmissions, cancel the watchdog
1193 * timer.
1194 */
1195 if (sc->sc_txpending == 0)
1196 ifp->if_timer = 0;
1197 }
1198
1199 /*
1200 * stge_rxintr:
1201 *
1202 * Helper; handle receive interrupts.
1203 */
1204 static void
1205 stge_rxintr(struct stge_softc *sc)
1206 {
1207 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1208 struct stge_descsoft *ds;
1209 struct mbuf *m, *tailm;
1210 uint64_t status;
1211 int i, len;
1212
1213 for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1214 ds = &sc->sc_rxsoft[i];
1215
1216 STGE_CDRXSYNC(sc, i,
1217 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1218
1219 status = le64toh(sc->sc_rxdescs[i].rfd_status);
1220
1221 if ((status & RFD_RFDDone) == 0)
1222 break;
1223
1224 if (__predict_false(sc->sc_rxdiscard)) {
1225 STGE_INIT_RXDESC(sc, i);
1226 if (status & RFD_FrameEnd) {
1227 /* Reset our state. */
1228 sc->sc_rxdiscard = 0;
1229 }
1230 continue;
1231 }
1232
1233 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1234 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1235
1236 m = ds->ds_mbuf;
1237
1238 /*
1239 * Add a new receive buffer to the ring.
1240 */
1241 if (stge_add_rxbuf(sc, i) != 0) {
1242 /*
1243 * Failed, throw away what we've done so
1244 * far, and discard the rest of the packet.
1245 */
1246 ifp->if_ierrors++;
1247 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1248 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1249 STGE_INIT_RXDESC(sc, i);
1250 if ((status & RFD_FrameEnd) == 0)
1251 sc->sc_rxdiscard = 1;
1252 if (sc->sc_rxhead != NULL)
1253 m_freem(sc->sc_rxhead);
1254 STGE_RXCHAIN_RESET(sc);
1255 continue;
1256 }
1257
1258 #ifdef DIAGNOSTIC
1259 if (status & RFD_FrameStart) {
1260 KASSERT(sc->sc_rxhead == NULL);
1261 KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1262 }
1263 #endif
1264
1265 STGE_RXCHAIN_LINK(sc, m);
1266
1267 /*
1268 * If this is not the end of the packet, keep
1269 * looking.
1270 */
1271 if ((status & RFD_FrameEnd) == 0) {
1272 sc->sc_rxlen += m->m_len;
1273 continue;
1274 }
1275
1276 /*
1277 * Okay, we have the entire packet now...
1278 */
1279 *sc->sc_rxtailp = NULL;
1280 m = sc->sc_rxhead;
1281 tailm = sc->sc_rxtail;
1282
1283 STGE_RXCHAIN_RESET(sc);
1284
1285 /*
1286 * If the packet had an error, drop it. Note we
1287 * count the error later in the periodic stats update.
1288 */
1289 if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1290 RFD_RxAlignmentError | RFD_RxFCSError |
1291 RFD_RxLengthError)) {
1292 m_freem(m);
1293 continue;
1294 }
1295
1296 /*
1297 * No errors.
1298 *
1299 * Note we have configured the chip to not include
1300 * the CRC at the end of the packet.
1301 */
1302 len = RFD_RxDMAFrameLen(status);
1303 tailm->m_len = len - sc->sc_rxlen;
1304
1305 /*
1306 * If the packet is small enough to fit in a
1307 * single header mbuf, allocate one and copy
1308 * the data into it. This greatly reduces
1309 * memory consumption when we receive lots
1310 * of small packets.
1311 */
1312 if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1313 struct mbuf *nm;
1314 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1315 if (nm == NULL) {
1316 ifp->if_ierrors++;
1317 m_freem(m);
1318 continue;
1319 }
1320 nm->m_data += 2;
1321 nm->m_pkthdr.len = nm->m_len = len;
1322 m_copydata(m, 0, len, mtod(nm, void *));
1323 m_freem(m);
1324 m = nm;
1325 }
1326
1327 /*
1328 * Set the incoming checksum information for the packet.
1329 */
1330 if (status & RFD_IPDetected) {
1331 STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1332 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1333 if (status & RFD_IPError)
1334 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1335 if (status & RFD_TCPDetected) {
1336 STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1337 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1338 if (status & RFD_TCPError)
1339 m->m_pkthdr.csum_flags |=
1340 M_CSUM_TCP_UDP_BAD;
1341 } else if (status & RFD_UDPDetected) {
1342 STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1343 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1344 if (status & RFD_UDPError)
1345 m->m_pkthdr.csum_flags |=
1346 M_CSUM_TCP_UDP_BAD;
1347 }
1348 }
1349
1350 m->m_pkthdr.rcvif = ifp;
1351 m->m_pkthdr.len = len;
1352
1353 /*
1354 * Pass this up to any BPF listeners, but only
1355 * pass if up the stack if it's for us.
1356 */
1357 bpf_mtap(ifp, m);
1358 #ifdef STGE_VLAN_UNTAG
1359 /*
1360 * Check for VLAN tagged packets
1361 */
1362 if (status & RFD_VLANDetected)
1363 VLAN_INPUT_TAG(ifp, m, RFD_TCI(status), continue);
1364
1365 #endif
1366 #if 0
1367 if (status & RFD_VLANDetected) {
1368 struct ether_header *eh;
1369 u_int16_t etype;
1370
1371 eh = mtod(m, struct ether_header *);
1372 etype = ntohs(eh->ether_type);
1373 printf("%s: VLANtag detected (TCI %d) etype %x\n",
1374 ifp->if_xname, (u_int16_t) RFD_TCI(status),
1375 etype);
1376 }
1377 #endif
1378 /* Pass it on. */
1379 (*ifp->if_input)(ifp, m);
1380 }
1381
1382 /* Update the receive pointer. */
1383 sc->sc_rxptr = i;
1384 }
1385
1386 /*
1387 * stge_tick:
1388 *
1389 * One second timer, used to tick the MII.
1390 */
1391 static void
1392 stge_tick(void *arg)
1393 {
1394 struct stge_softc *sc = arg;
1395 int s;
1396
1397 s = splnet();
1398 mii_tick(&sc->sc_mii);
1399 stge_stats_update(sc);
1400 splx(s);
1401
1402 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1403 }
1404
1405 /*
1406 * stge_stats_update:
1407 *
1408 * Read the TC9021 statistics counters.
1409 */
1410 static void
1411 stge_stats_update(struct stge_softc *sc)
1412 {
1413 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1414 bus_space_tag_t st = sc->sc_st;
1415 bus_space_handle_t sh = sc->sc_sh;
1416
1417 (void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1418
1419 ifp->if_ipackets +=
1420 bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1421
1422 ifp->if_ierrors +=
1423 (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1424
1425 (void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1426
1427 ifp->if_opackets +=
1428 bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1429
1430 ifp->if_collisions +=
1431 bus_space_read_4(st, sh, STGE_LateCollisions) +
1432 bus_space_read_4(st, sh, STGE_MultiColFrames) +
1433 bus_space_read_4(st, sh, STGE_SingleColFrames);
1434
1435 ifp->if_oerrors +=
1436 (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1437 (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1438 }
1439
1440 /*
1441 * stge_reset:
1442 *
1443 * Perform a soft reset on the TC9021.
1444 */
1445 static void
1446 stge_reset(struct stge_softc *sc)
1447 {
1448 uint32_t ac;
1449 int i;
1450
1451 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1452
1453 /*
1454 * Only assert RstOut if we're fiber. We need GMII clocks
1455 * to be present in order for the reset to complete on fiber
1456 * cards.
1457 */
1458 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1459 ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1460 AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1461 (sc->sc_usefiber ? AC_RstOut : 0));
1462
1463 delay(50000);
1464
1465 for (i = 0; i < STGE_TIMEOUT; i++) {
1466 delay(5000);
1467 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1468 AC_ResetBusy) == 0)
1469 break;
1470 }
1471
1472 if (i == STGE_TIMEOUT)
1473 printf("%s: reset failed to complete\n",
1474 device_xname(sc->sc_dev));
1475
1476 delay(1000);
1477 }
1478
1479 /*
1480 * stge_init: [ ifnet interface function ]
1481 *
1482 * Initialize the interface. Must be called at splnet().
1483 */
1484 static int
1485 stge_init(struct ifnet *ifp)
1486 {
1487 struct stge_softc *sc = ifp->if_softc;
1488 bus_space_tag_t st = sc->sc_st;
1489 bus_space_handle_t sh = sc->sc_sh;
1490 struct stge_descsoft *ds;
1491 int i, error = 0;
1492
1493 /*
1494 * Cancel any pending I/O.
1495 */
1496 stge_stop(ifp, 0);
1497
1498 /*
1499 * Reset the chip to a known state.
1500 */
1501 stge_reset(sc);
1502
1503 /*
1504 * Initialize the transmit descriptor ring.
1505 */
1506 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1507 for (i = 0; i < STGE_NTXDESC; i++) {
1508 sc->sc_txdescs[i].tfd_next = htole64(
1509 STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1510 sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1511 }
1512 sc->sc_txpending = 0;
1513 sc->sc_txdirty = 0;
1514 sc->sc_txlast = STGE_NTXDESC - 1;
1515
1516 /*
1517 * Initialize the receive descriptor and receive job
1518 * descriptor rings.
1519 */
1520 for (i = 0; i < STGE_NRXDESC; i++) {
1521 ds = &sc->sc_rxsoft[i];
1522 if (ds->ds_mbuf == NULL) {
1523 if ((error = stge_add_rxbuf(sc, i)) != 0) {
1524 printf("%s: unable to allocate or map rx "
1525 "buffer %d, error = %d\n",
1526 device_xname(sc->sc_dev), i, error);
1527 /*
1528 * XXX Should attempt to run with fewer receive
1529 * XXX buffers instead of just failing.
1530 */
1531 stge_rxdrain(sc);
1532 goto out;
1533 }
1534 } else
1535 STGE_INIT_RXDESC(sc, i);
1536 }
1537 sc->sc_rxptr = 0;
1538 sc->sc_rxdiscard = 0;
1539 STGE_RXCHAIN_RESET(sc);
1540
1541 /* Set the station address. */
1542 for (i = 0; i < 6; i++)
1543 bus_space_write_1(st, sh, STGE_StationAddress0 + i,
1544 CLLADDR(ifp->if_sadl)[i]);
1545
1546 /*
1547 * Set the statistics masks. Disable all the RMON stats,
1548 * and disable selected stats in the non-RMON stats registers.
1549 */
1550 bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1551 bus_space_write_4(st, sh, STGE_StatisticsMask,
1552 (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1553 (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1554 (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1555 (1U << 21));
1556
1557 /* Set up the receive filter. */
1558 stge_set_filter(sc);
1559
1560 /*
1561 * Give the transmit and receive ring to the chip.
1562 */
1563 bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1564 bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1565 STGE_CDTXADDR(sc, sc->sc_txdirty));
1566
1567 bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1568 bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1569 STGE_CDRXADDR(sc, sc->sc_rxptr));
1570
1571 /*
1572 * Initialize the Tx auto-poll period. It's OK to make this number
1573 * large (255 is the max, but we use 127) -- we explicitly kick the
1574 * transmit engine when there's actually a packet.
1575 */
1576 bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1577
1578 /* ..and the Rx auto-poll period. */
1579 bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1580
1581 /* Initialize the Tx start threshold. */
1582 bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1583
1584 /* RX DMA thresholds, from linux */
1585 bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
1586 bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
1587
1588 /*
1589 * Initialize the Rx DMA interrupt control register. We
1590 * request an interrupt after every incoming packet, but
1591 * defer it for 32us (64 * 512 ns). When the number of
1592 * interrupts pending reaches 8, we stop deferring the
1593 * interrupt, and signal it immediately.
1594 */
1595 bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1596 RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1597
1598 /*
1599 * Initialize the interrupt mask.
1600 */
1601 sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1602 IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1603 bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1604 bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1605
1606 /*
1607 * Configure the DMA engine.
1608 * XXX Should auto-tune TxBurstLimit.
1609 */
1610 bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1611 DMAC_TxBurstLimit(3));
1612
1613 /*
1614 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1615 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1616 * empty again.
1617 */
1618 bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1619 bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1620
1621 /*
1622 * Set the maximum frame size.
1623 */
1624 bus_space_write_2(st, sh, STGE_MaxFrameSize,
1625 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1626 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1627 ETHER_VLAN_ENCAP_LEN : 0));
1628
1629 /*
1630 * Initialize MacCtrl -- do it before setting the media,
1631 * as setting the media will actually program the register.
1632 *
1633 * Note: We have to poke the IFS value before poking
1634 * anything else.
1635 */
1636 sc->sc_MACCtrl = MC_IFSSelect(0);
1637 bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1638 sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1639 #ifdef STGE_VLAN_UNTAG
1640 sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1641 #endif
1642
1643 if (sc->sc_rev >= 6) { /* >= B.2 */
1644 /* Multi-frag frame bug work-around. */
1645 bus_space_write_2(st, sh, STGE_DebugCtrl,
1646 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1647
1648 /* Tx Poll Now bug work-around. */
1649 bus_space_write_2(st, sh, STGE_DebugCtrl,
1650 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1651 /* XXX ? from linux */
1652 bus_space_write_2(st, sh, STGE_DebugCtrl,
1653 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
1654 }
1655
1656 /*
1657 * Set the current media.
1658 */
1659 if ((error = ether_mediachange(ifp)) != 0)
1660 goto out;
1661
1662 /*
1663 * Start the one second MII clock.
1664 */
1665 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1666
1667 /*
1668 * ...all done!
1669 */
1670 ifp->if_flags |= IFF_RUNNING;
1671 ifp->if_flags &= ~IFF_OACTIVE;
1672
1673 out:
1674 if (error)
1675 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1676 return (error);
1677 }
1678
1679 /*
1680 * stge_drain:
1681 *
1682 * Drain the receive queue.
1683 */
1684 static void
1685 stge_rxdrain(struct stge_softc *sc)
1686 {
1687 struct stge_descsoft *ds;
1688 int i;
1689
1690 for (i = 0; i < STGE_NRXDESC; i++) {
1691 ds = &sc->sc_rxsoft[i];
1692 if (ds->ds_mbuf != NULL) {
1693 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1694 ds->ds_mbuf->m_next = NULL;
1695 m_freem(ds->ds_mbuf);
1696 ds->ds_mbuf = NULL;
1697 }
1698 }
1699 }
1700
1701 /*
1702 * stge_stop: [ ifnet interface function ]
1703 *
1704 * Stop transmission on the interface.
1705 */
1706 static void
1707 stge_stop(struct ifnet *ifp, int disable)
1708 {
1709 struct stge_softc *sc = ifp->if_softc;
1710 struct stge_descsoft *ds;
1711 int i;
1712
1713 /*
1714 * Stop the one second clock.
1715 */
1716 callout_stop(&sc->sc_tick_ch);
1717
1718 /* Down the MII. */
1719 mii_down(&sc->sc_mii);
1720
1721 /*
1722 * Disable interrupts.
1723 */
1724 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1725
1726 /*
1727 * Stop receiver, transmitter, and stats update.
1728 */
1729 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1730 MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1731
1732 /*
1733 * Stop the transmit and receive DMA.
1734 */
1735 stge_dma_wait(sc);
1736 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1737 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1738 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1739 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1740
1741 /*
1742 * Release any queued transmit buffers.
1743 */
1744 for (i = 0; i < STGE_NTXDESC; i++) {
1745 ds = &sc->sc_txsoft[i];
1746 if (ds->ds_mbuf != NULL) {
1747 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1748 m_freem(ds->ds_mbuf);
1749 ds->ds_mbuf = NULL;
1750 }
1751 }
1752
1753 /*
1754 * Mark the interface down and cancel the watchdog timer.
1755 */
1756 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1757 ifp->if_timer = 0;
1758
1759 if (disable)
1760 stge_rxdrain(sc);
1761 }
1762
1763 static int
1764 stge_eeprom_wait(struct stge_softc *sc)
1765 {
1766 int i;
1767
1768 for (i = 0; i < STGE_TIMEOUT; i++) {
1769 delay(1000);
1770 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1771 EC_EepromBusy) == 0)
1772 return (0);
1773 }
1774 return (1);
1775 }
1776
1777 /*
1778 * stge_read_eeprom:
1779 *
1780 * Read data from the serial EEPROM.
1781 */
1782 static void
1783 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1784 {
1785
1786 if (stge_eeprom_wait(sc))
1787 printf("%s: EEPROM failed to come ready\n",
1788 device_xname(sc->sc_dev));
1789
1790 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1791 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1792 if (stge_eeprom_wait(sc))
1793 printf("%s: EEPROM read timed out\n",
1794 device_xname(sc->sc_dev));
1795 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1796 }
1797
1798 /*
1799 * stge_add_rxbuf:
1800 *
1801 * Add a receive buffer to the indicated descriptor.
1802 */
1803 static int
1804 stge_add_rxbuf(struct stge_softc *sc, int idx)
1805 {
1806 struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1807 struct mbuf *m;
1808 int error;
1809
1810 MGETHDR(m, M_DONTWAIT, MT_DATA);
1811 if (m == NULL)
1812 return (ENOBUFS);
1813
1814 MCLGET(m, M_DONTWAIT);
1815 if ((m->m_flags & M_EXT) == 0) {
1816 m_freem(m);
1817 return (ENOBUFS);
1818 }
1819
1820 m->m_data = m->m_ext.ext_buf + 2;
1821 m->m_len = MCLBYTES - 2;
1822
1823 if (ds->ds_mbuf != NULL)
1824 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1825
1826 ds->ds_mbuf = m;
1827
1828 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1829 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1830 if (error) {
1831 printf("%s: can't load rx DMA map %d, error = %d\n",
1832 device_xname(sc->sc_dev), idx, error);
1833 panic("stge_add_rxbuf"); /* XXX */
1834 }
1835
1836 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1837 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1838
1839 STGE_INIT_RXDESC(sc, idx);
1840
1841 return (0);
1842 }
1843
1844 /*
1845 * stge_set_filter:
1846 *
1847 * Set up the receive filter.
1848 */
1849 static void
1850 stge_set_filter(struct stge_softc *sc)
1851 {
1852 struct ethercom *ec = &sc->sc_ethercom;
1853 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1854 struct ether_multi *enm;
1855 struct ether_multistep step;
1856 uint32_t crc;
1857 uint32_t mchash[2];
1858
1859 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1860 if (ifp->if_flags & IFF_BROADCAST)
1861 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1862
1863 /* XXX: ST1023 only works in promiscuous mode */
1864 if (sc->sc_stge1023)
1865 ifp->if_flags |= IFF_PROMISC;
1866
1867 if (ifp->if_flags & IFF_PROMISC) {
1868 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1869 goto allmulti;
1870 }
1871
1872 /*
1873 * Set up the multicast address filter by passing all multicast
1874 * addresses through a CRC generator, and then using the low-order
1875 * 6 bits as an index into the 64 bit multicast hash table. The
1876 * high order bits select the register, while the rest of the bits
1877 * select the bit within the register.
1878 */
1879
1880 memset(mchash, 0, sizeof(mchash));
1881
1882 ETHER_FIRST_MULTI(step, ec, enm);
1883 if (enm == NULL)
1884 goto done;
1885
1886 while (enm != NULL) {
1887 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1888 /*
1889 * We must listen to a range of multicast addresses.
1890 * For now, just accept all multicasts, rather than
1891 * trying to set only those filter bits needed to match
1892 * the range. (At this time, the only use of address
1893 * ranges is for IP multicast routing, for which the
1894 * range is big enough to require all bits set.)
1895 */
1896 goto allmulti;
1897 }
1898
1899 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1900
1901 /* Just want the 6 least significant bits. */
1902 crc &= 0x3f;
1903
1904 /* Set the corresponding bit in the hash table. */
1905 mchash[crc >> 5] |= 1 << (crc & 0x1f);
1906
1907 ETHER_NEXT_MULTI(step, enm);
1908 }
1909
1910 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1911
1912 ifp->if_flags &= ~IFF_ALLMULTI;
1913 goto done;
1914
1915 allmulti:
1916 ifp->if_flags |= IFF_ALLMULTI;
1917 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1918
1919 done:
1920 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1921 /*
1922 * Program the multicast hash table.
1923 */
1924 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1925 mchash[0]);
1926 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1927 mchash[1]);
1928 }
1929
1930 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1931 sc->sc_ReceiveMode);
1932 }
1933
1934 /*
1935 * stge_mii_readreg: [mii interface function]
1936 *
1937 * Read a PHY register on the MII of the TC9021.
1938 */
1939 static int
1940 stge_mii_readreg(device_t self, int phy, int reg)
1941 {
1942
1943 return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1944 }
1945
1946 /*
1947 * stge_mii_writereg: [mii interface function]
1948 *
1949 * Write a PHY register on the MII of the TC9021.
1950 */
1951 static void
1952 stge_mii_writereg(device_t self, int phy, int reg, int val)
1953 {
1954
1955 mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1956 }
1957
1958 /*
1959 * stge_mii_statchg: [mii interface function]
1960 *
1961 * Callback from MII layer when media changes.
1962 */
1963 static void
1964 stge_mii_statchg(struct ifnet *ifp)
1965 {
1966 struct stge_softc *sc = ifp->if_softc;
1967
1968 if (sc->sc_mii.mii_media_active & IFM_FDX)
1969 sc->sc_MACCtrl |= MC_DuplexSelect;
1970 else
1971 sc->sc_MACCtrl &= ~MC_DuplexSelect;
1972
1973 /* XXX 802.1x flow-control? */
1974
1975 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1976 }
1977
1978 /*
1979 * sste_mii_bitbang_read: [mii bit-bang interface function]
1980 *
1981 * Read the MII serial port for the MII bit-bang module.
1982 */
1983 static uint32_t
1984 stge_mii_bitbang_read(device_t self)
1985 {
1986 struct stge_softc *sc = device_private(self);
1987
1988 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
1989 }
1990
1991 /*
1992 * stge_mii_bitbang_write: [mii big-bang interface function]
1993 *
1994 * Write the MII serial port for the MII bit-bang module.
1995 */
1996 static void
1997 stge_mii_bitbang_write(device_t self, uint32_t val)
1998 {
1999 struct stge_softc *sc = device_private(self);
2000
2001 bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
2002 val | sc->sc_PhyCtrl);
2003 }
2004