if_stge.c revision 1.63 1 /* $NetBSD: if_stge.c,v 1.63 2017/09/26 07:42:06 knakahara Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the Sundance Tech. TC9021 10/100/1000
34 * Ethernet controller.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.63 2017/09/26 07:42:06 knakahara Exp $");
39
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 #include <sys/queue.h>
52
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57
58 #include <net/bpf.h>
59
60 #include <sys/bus.h>
61 #include <sys/intr.h>
62
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 #include <dev/mii/mii_bitbang.h>
66
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70
71 #include <dev/pci/if_stgereg.h>
72
73 #include <prop/proplib.h>
74
75 /* #define STGE_CU_BUG 1 */
76 #define STGE_VLAN_UNTAG 1
77 /* #define STGE_VLAN_CFI 1 */
78
79 /*
80 * Transmit descriptor list size.
81 */
82 #define STGE_NTXDESC 256
83 #define STGE_NTXDESC_MASK (STGE_NTXDESC - 1)
84 #define STGE_NEXTTX(x) (((x) + 1) & STGE_NTXDESC_MASK)
85
86 /*
87 * Receive descriptor list size.
88 */
89 #define STGE_NRXDESC 256
90 #define STGE_NRXDESC_MASK (STGE_NRXDESC - 1)
91 #define STGE_NEXTRX(x) (((x) + 1) & STGE_NRXDESC_MASK)
92
93 /*
94 * Only interrupt every N frames. Must be a power-of-two.
95 */
96 #define STGE_TXINTR_SPACING 16
97 #define STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
98
99 /*
100 * Control structures are DMA'd to the TC9021 chip. We allocate them in
101 * a single clump that maps to a single DMA segment to make several things
102 * easier.
103 */
104 struct stge_control_data {
105 /*
106 * The transmit descriptors.
107 */
108 struct stge_tfd scd_txdescs[STGE_NTXDESC];
109
110 /*
111 * The receive descriptors.
112 */
113 struct stge_rfd scd_rxdescs[STGE_NRXDESC];
114 };
115
116 #define STGE_CDOFF(x) offsetof(struct stge_control_data, x)
117 #define STGE_CDTXOFF(x) STGE_CDOFF(scd_txdescs[(x)])
118 #define STGE_CDRXOFF(x) STGE_CDOFF(scd_rxdescs[(x)])
119
120 /*
121 * Software state for transmit and receive jobs.
122 */
123 struct stge_descsoft {
124 struct mbuf *ds_mbuf; /* head of our mbuf chain */
125 bus_dmamap_t ds_dmamap; /* our DMA map */
126 };
127
128 /*
129 * Software state per device.
130 */
131 struct stge_softc {
132 device_t sc_dev; /* generic device information */
133 bus_space_tag_t sc_st; /* bus space tag */
134 bus_space_handle_t sc_sh; /* bus space handle */
135 bus_dma_tag_t sc_dmat; /* bus DMA tag */
136 struct ethercom sc_ethercom; /* ethernet common data */
137 int sc_rev; /* silicon revision */
138
139 void *sc_ih; /* interrupt cookie */
140
141 struct mii_data sc_mii; /* MII/media information */
142
143 callout_t sc_tick_ch; /* tick callout */
144
145 bus_dmamap_t sc_cddmamap; /* control data DMA map */
146 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
147
148 /*
149 * Software state for transmit and receive descriptors.
150 */
151 struct stge_descsoft sc_txsoft[STGE_NTXDESC];
152 struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
153
154 /*
155 * Control data structures.
156 */
157 struct stge_control_data *sc_control_data;
158 #define sc_txdescs sc_control_data->scd_txdescs
159 #define sc_rxdescs sc_control_data->scd_rxdescs
160
161 #ifdef STGE_EVENT_COUNTERS
162 /*
163 * Event counters.
164 */
165 struct evcnt sc_ev_txstall; /* Tx stalled */
166 struct evcnt sc_ev_txdmaintr; /* Tx DMA interrupts */
167 struct evcnt sc_ev_txindintr; /* Tx Indicate interrupts */
168 struct evcnt sc_ev_rxintr; /* Rx interrupts */
169
170 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
171 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
172 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
173 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
174 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
175 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
176 struct evcnt sc_ev_txcopy; /* Tx packets that we had to copy */
177
178 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
179 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
180 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-bound */
181
182 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
183 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
184 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
185 #endif /* STGE_EVENT_COUNTERS */
186
187 int sc_txpending; /* number of Tx requests pending */
188 int sc_txdirty; /* first dirty Tx descriptor */
189 int sc_txlast; /* last used Tx descriptor */
190
191 int sc_rxptr; /* next ready Rx descriptor/descsoft */
192 int sc_rxdiscard;
193 int sc_rxlen;
194 struct mbuf *sc_rxhead;
195 struct mbuf *sc_rxtail;
196 struct mbuf **sc_rxtailp;
197
198 int sc_txthresh; /* Tx threshold */
199 uint32_t sc_usefiber:1; /* if we're fiber */
200 uint32_t sc_stge1023:1; /* are we a 1023 */
201 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
202 uint32_t sc_MACCtrl; /* prototype MacCtrl register */
203 uint16_t sc_IntEnable; /* prototype IntEnable register */
204 uint16_t sc_ReceiveMode; /* prototype ReceiveMode register */
205 uint8_t sc_PhyCtrl; /* prototype PhyCtrl register */
206 };
207
208 #define STGE_RXCHAIN_RESET(sc) \
209 do { \
210 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
211 *(sc)->sc_rxtailp = NULL; \
212 (sc)->sc_rxlen = 0; \
213 } while (/*CONSTCOND*/0)
214
215 #define STGE_RXCHAIN_LINK(sc, m) \
216 do { \
217 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
218 (sc)->sc_rxtailp = &(m)->m_next; \
219 } while (/*CONSTCOND*/0)
220
221 #ifdef STGE_EVENT_COUNTERS
222 #define STGE_EVCNT_INCR(ev) (ev)->ev_count++
223 #else
224 #define STGE_EVCNT_INCR(ev) /* nothing */
225 #endif
226
227 #define STGE_CDTXADDR(sc, x) ((sc)->sc_cddma + STGE_CDTXOFF((x)))
228 #define STGE_CDRXADDR(sc, x) ((sc)->sc_cddma + STGE_CDRXOFF((x)))
229
230 #define STGE_CDTXSYNC(sc, x, ops) \
231 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
232 STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
233
234 #define STGE_CDRXSYNC(sc, x, ops) \
235 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
236 STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
237
238 #define STGE_INIT_RXDESC(sc, x) \
239 do { \
240 struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
241 struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
242 \
243 /* \
244 * Note: We scoot the packet forward 2 bytes in the buffer \
245 * so that the payload after the Ethernet header is aligned \
246 * to a 4-byte boundary. \
247 */ \
248 __rfd->rfd_frag.frag_word0 = \
249 htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
250 FRAG_LEN(MCLBYTES - 2)); \
251 __rfd->rfd_next = \
252 htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x)))); \
253 __rfd->rfd_status = 0; \
254 STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
255 } while (/*CONSTCOND*/0)
256
257 #define STGE_TIMEOUT 1000
258
259 static void stge_start(struct ifnet *);
260 static void stge_watchdog(struct ifnet *);
261 static int stge_ioctl(struct ifnet *, u_long, void *);
262 static int stge_init(struct ifnet *);
263 static void stge_stop(struct ifnet *, int);
264
265 static bool stge_shutdown(device_t, int);
266
267 static void stge_reset(struct stge_softc *);
268 static void stge_rxdrain(struct stge_softc *);
269 static int stge_add_rxbuf(struct stge_softc *, int);
270 static void stge_read_eeprom(struct stge_softc *, int, uint16_t *);
271 static void stge_tick(void *);
272
273 static void stge_stats_update(struct stge_softc *);
274
275 static void stge_set_filter(struct stge_softc *);
276
277 static int stge_intr(void *);
278 static void stge_txintr(struct stge_softc *);
279 static void stge_rxintr(struct stge_softc *);
280
281 static int stge_mii_readreg(device_t, int, int);
282 static void stge_mii_writereg(device_t, int, int, int);
283 static void stge_mii_statchg(struct ifnet *);
284
285 static int stge_match(device_t, cfdata_t, void *);
286 static void stge_attach(device_t, device_t, void *);
287
288 int stge_copy_small = 0;
289
290 CFATTACH_DECL_NEW(stge, sizeof(struct stge_softc),
291 stge_match, stge_attach, NULL, NULL);
292
293 static uint32_t stge_mii_bitbang_read(device_t);
294 static void stge_mii_bitbang_write(device_t, uint32_t);
295
296 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
297 stge_mii_bitbang_read,
298 stge_mii_bitbang_write,
299 {
300 PC_MgmtData, /* MII_BIT_MDO */
301 PC_MgmtData, /* MII_BIT_MDI */
302 PC_MgmtClk, /* MII_BIT_MDC */
303 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
304 0, /* MII_BIT_DIR_PHY_HOST */
305 }
306 };
307
308 /*
309 * Devices supported by this driver.
310 */
311 static const struct stge_product {
312 pci_vendor_id_t stge_vendor;
313 pci_product_id_t stge_product;
314 const char *stge_name;
315 } stge_products[] = {
316 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST1023,
317 "Sundance ST-1023 Gigabit Ethernet" },
318
319 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST2021,
320 "Sundance ST-2021 Gigabit Ethernet" },
321
322 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021,
323 "Tamarack TC9021 Gigabit Ethernet" },
324
325 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021_ALT,
326 "Tamarack TC9021 Gigabit Ethernet" },
327
328 /*
329 * The Sundance sample boards use the Sundance vendor ID,
330 * but the Tamarack product ID.
331 */
332 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021,
333 "Sundance TC9021 Gigabit Ethernet" },
334
335 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021_ALT,
336 "Sundance TC9021 Gigabit Ethernet" },
337
338 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL4000,
339 "D-Link DL-4000 Gigabit Ethernet" },
340
341 { PCI_VENDOR_ANTARES, PCI_PRODUCT_ANTARES_TC9021,
342 "Antares Gigabit Ethernet" },
343
344 { 0, 0,
345 NULL },
346 };
347
348 static const struct stge_product *
349 stge_lookup(const struct pci_attach_args *pa)
350 {
351 const struct stge_product *sp;
352
353 for (sp = stge_products; sp->stge_name != NULL; sp++) {
354 if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
355 PCI_PRODUCT(pa->pa_id) == sp->stge_product)
356 return (sp);
357 }
358 return (NULL);
359 }
360
361 static int
362 stge_match(device_t parent, cfdata_t cf, void *aux)
363 {
364 struct pci_attach_args *pa = aux;
365
366 if (stge_lookup(pa) != NULL)
367 return (1);
368
369 return (0);
370 }
371
372 static void
373 stge_attach(device_t parent, device_t self, void *aux)
374 {
375 struct stge_softc *sc = device_private(self);
376 struct pci_attach_args *pa = aux;
377 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
378 pci_chipset_tag_t pc = pa->pa_pc;
379 pci_intr_handle_t ih;
380 const char *intrstr = NULL;
381 bus_space_tag_t iot, memt;
382 bus_space_handle_t ioh, memh;
383 bus_dma_segment_t seg;
384 prop_data_t data;
385 int ioh_valid, memh_valid;
386 int i, rseg, error;
387 const struct stge_product *sp;
388 uint8_t enaddr[ETHER_ADDR_LEN];
389 char intrbuf[PCI_INTRSTR_LEN];
390
391 callout_init(&sc->sc_tick_ch, 0);
392
393 sp = stge_lookup(pa);
394 if (sp == NULL) {
395 printf("\n");
396 panic("ste_attach: impossible");
397 }
398
399 sc->sc_rev = PCI_REVISION(pa->pa_class);
400
401 pci_aprint_devinfo_fancy(pa, NULL, sp->stge_name, 1);
402
403 /*
404 * Map the device.
405 */
406 ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
407 PCI_MAPREG_TYPE_IO, 0,
408 &iot, &ioh, NULL, NULL) == 0);
409 memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
410 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
411 &memt, &memh, NULL, NULL) == 0);
412
413 if (memh_valid) {
414 sc->sc_st = memt;
415 sc->sc_sh = memh;
416 } else if (ioh_valid) {
417 sc->sc_st = iot;
418 sc->sc_sh = ioh;
419 } else {
420 aprint_error_dev(self, "unable to map device registers\n");
421 return;
422 }
423
424 sc->sc_dmat = pa->pa_dmat;
425
426 /* Enable bus mastering. */
427 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
428 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
429 PCI_COMMAND_MASTER_ENABLE);
430
431 /* power up chip */
432 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
433 error != EOPNOTSUPP) {
434 aprint_error_dev(self, "cannot activate %d\n", error);
435 return;
436 }
437 /*
438 * Map and establish our interrupt.
439 */
440 if (pci_intr_map(pa, &ih)) {
441 aprint_error_dev(self, "unable to map interrupt\n");
442 return;
443 }
444 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
445 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
446 if (sc->sc_ih == NULL) {
447 aprint_error_dev(self, "unable to establish interrupt");
448 if (intrstr != NULL)
449 aprint_error(" at %s", intrstr);
450 aprint_error("\n");
451 return;
452 }
453 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
454
455 /*
456 * Allocate the control data structures, and create and load the
457 * DMA map for it.
458 */
459 if ((error = bus_dmamem_alloc(sc->sc_dmat,
460 sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
461 0)) != 0) {
462 aprint_error_dev(self,
463 "unable to allocate control data, error = %d\n", error);
464 goto fail_0;
465 }
466
467 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
468 sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
469 BUS_DMA_COHERENT)) != 0) {
470 aprint_error_dev(self,
471 "unable to map control data, error = %d\n", error);
472 goto fail_1;
473 }
474
475 if ((error = bus_dmamap_create(sc->sc_dmat,
476 sizeof(struct stge_control_data), 1,
477 sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
478 aprint_error_dev(self,
479 "unable to create control data DMA map, error = %d\n",
480 error);
481 goto fail_2;
482 }
483
484 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
485 sc->sc_control_data, sizeof(struct stge_control_data), NULL,
486 0)) != 0) {
487 aprint_error_dev(self,
488 "unable to load control data DMA map, error = %d\n",
489 error);
490 goto fail_3;
491 }
492
493 /*
494 * Create the transmit buffer DMA maps. Note that rev B.3
495 * and earlier seem to have a bug regarding multi-fragment
496 * packets. We need to limit the number of Tx segments on
497 * such chips to 1.
498 */
499 for (i = 0; i < STGE_NTXDESC; i++) {
500 if ((error = bus_dmamap_create(sc->sc_dmat,
501 ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
502 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
503 aprint_error_dev(self,
504 "unable to create tx DMA map %d, error = %d\n",
505 i, error);
506 goto fail_4;
507 }
508 }
509
510 /*
511 * Create the receive buffer DMA maps.
512 */
513 for (i = 0; i < STGE_NRXDESC; i++) {
514 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
515 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
516 aprint_error_dev(self,
517 "unable to create rx DMA map %d, error = %d\n",
518 i, error);
519 goto fail_5;
520 }
521 sc->sc_rxsoft[i].ds_mbuf = NULL;
522 }
523
524 /*
525 * Determine if we're copper or fiber. It affects how we
526 * reset the card.
527 */
528 if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
529 AC_PhyMedia)
530 sc->sc_usefiber = 1;
531 else
532 sc->sc_usefiber = 0;
533
534 /*
535 * Reset the chip to a known state.
536 */
537 stge_reset(sc);
538
539 /*
540 * Reading the station address from the EEPROM doesn't seem
541 * to work, at least on my sample boards. Instead, since
542 * the reset sequence does AutoInit, read it from the station
543 * address registers. For Sundance 1023 you can only read it
544 * from EEPROM.
545 */
546 if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
547 enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
548 STGE_StationAddress0) & 0xff;
549 enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
550 STGE_StationAddress0) >> 8;
551 enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
552 STGE_StationAddress1) & 0xff;
553 enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
554 STGE_StationAddress1) >> 8;
555 enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
556 STGE_StationAddress2) & 0xff;
557 enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
558 STGE_StationAddress2) >> 8;
559 sc->sc_stge1023 = 0;
560 } else {
561 data = prop_dictionary_get(device_properties(self),
562 "mac-address");
563 if (data != NULL) {
564 /*
565 * Try to get the station address from device
566 * properties first, in case the EEPROM is missing.
567 */
568 KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
569 KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
570 (void)memcpy(enaddr, prop_data_data_nocopy(data),
571 ETHER_ADDR_LEN);
572 } else {
573 uint16_t myaddr[ETHER_ADDR_LEN / 2];
574 for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
575 stge_read_eeprom(sc,
576 STGE_EEPROM_StationAddress0 + i,
577 &myaddr[i]);
578 myaddr[i] = le16toh(myaddr[i]);
579 }
580 (void)memcpy(enaddr, myaddr, sizeof(enaddr));
581 }
582 sc->sc_stge1023 = 1;
583 }
584
585 aprint_normal_dev(self, "Ethernet address %s\n",
586 ether_sprintf(enaddr));
587
588 /*
589 * Read some important bits from the PhyCtrl register.
590 */
591 sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
592 STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
593
594 /*
595 * Initialize our media structures and probe the MII.
596 */
597 sc->sc_mii.mii_ifp = ifp;
598 sc->sc_mii.mii_readreg = stge_mii_readreg;
599 sc->sc_mii.mii_writereg = stge_mii_writereg;
600 sc->sc_mii.mii_statchg = stge_mii_statchg;
601 sc->sc_ethercom.ec_mii = &sc->sc_mii;
602 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
603 ether_mediastatus);
604 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
605 MII_OFFSET_ANY, MIIF_DOPAUSE);
606 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
607 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
608 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
609 } else
610 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
611
612 ifp = &sc->sc_ethercom.ec_if;
613 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
614 ifp->if_softc = sc;
615 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
616 ifp->if_ioctl = stge_ioctl;
617 ifp->if_start = stge_start;
618 ifp->if_watchdog = stge_watchdog;
619 ifp->if_init = stge_init;
620 ifp->if_stop = stge_stop;
621 IFQ_SET_READY(&ifp->if_snd);
622
623 /*
624 * The manual recommends disabling early transmit, so we
625 * do. It's disabled anyway, if using IP checksumming,
626 * since the entire packet must be in the FIFO in order
627 * for the chip to perform the checksum.
628 */
629 sc->sc_txthresh = 0x0fff;
630
631 /*
632 * Disable MWI if the PCI layer tells us to.
633 */
634 sc->sc_DMACtrl = 0;
635 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
636 sc->sc_DMACtrl |= DMAC_MWIDisable;
637
638 /*
639 * We can support 802.1Q VLAN-sized frames and jumbo
640 * Ethernet frames.
641 *
642 * XXX Figure out how to do hw-assisted VLAN tagging in
643 * XXX a reasonable way on this chip.
644 */
645 sc->sc_ethercom.ec_capabilities |=
646 ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
647 ETHERCAP_VLAN_HWTAGGING;
648
649 /*
650 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
651 */
652 sc->sc_ethercom.ec_if.if_capabilities |=
653 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
654 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
655 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
656
657 /*
658 * Attach the interface.
659 */
660 if_attach(ifp);
661 if_deferred_start_init(ifp, NULL);
662 ether_ifattach(ifp, enaddr);
663
664 #ifdef STGE_EVENT_COUNTERS
665 /*
666 * Attach event counters.
667 */
668 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
669 NULL, device_xname(self), "txstall");
670 evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
671 NULL, device_xname(self), "txdmaintr");
672 evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
673 NULL, device_xname(self), "txindintr");
674 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
675 NULL, device_xname(self), "rxintr");
676
677 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
678 NULL, device_xname(self), "txseg1");
679 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
680 NULL, device_xname(self), "txseg2");
681 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
682 NULL, device_xname(self), "txseg3");
683 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
684 NULL, device_xname(self), "txseg4");
685 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
686 NULL, device_xname(self), "txseg5");
687 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
688 NULL, device_xname(self), "txsegmore");
689 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
690 NULL, device_xname(self), "txcopy");
691
692 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
693 NULL, device_xname(self), "rxipsum");
694 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
695 NULL, device_xname(self), "rxtcpsum");
696 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
697 NULL, device_xname(self), "rxudpsum");
698 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
699 NULL, device_xname(self), "txipsum");
700 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
701 NULL, device_xname(self), "txtcpsum");
702 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
703 NULL, device_xname(self), "txudpsum");
704 #endif /* STGE_EVENT_COUNTERS */
705
706 /*
707 * Make sure the interface is shutdown during reboot.
708 */
709 if (pmf_device_register1(self, NULL, NULL, stge_shutdown))
710 pmf_class_network_register(self, ifp);
711 else
712 aprint_error_dev(self, "couldn't establish power handler\n");
713
714 return;
715
716 /*
717 * Free any resources we've allocated during the failed attach
718 * attempt. Do this in reverse order and fall through.
719 */
720 fail_5:
721 for (i = 0; i < STGE_NRXDESC; i++) {
722 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
723 bus_dmamap_destroy(sc->sc_dmat,
724 sc->sc_rxsoft[i].ds_dmamap);
725 }
726 fail_4:
727 for (i = 0; i < STGE_NTXDESC; i++) {
728 if (sc->sc_txsoft[i].ds_dmamap != NULL)
729 bus_dmamap_destroy(sc->sc_dmat,
730 sc->sc_txsoft[i].ds_dmamap);
731 }
732 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
733 fail_3:
734 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
735 fail_2:
736 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
737 sizeof(struct stge_control_data));
738 fail_1:
739 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
740 fail_0:
741 return;
742 }
743
744 /*
745 * stge_shutdown:
746 *
747 * Make sure the interface is stopped at reboot time.
748 */
749 static bool
750 stge_shutdown(device_t self, int howto)
751 {
752 struct stge_softc *sc = device_private(self);
753 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
754
755 stge_stop(ifp, 1);
756 stge_reset(sc);
757 return true;
758 }
759
760 static void
761 stge_dma_wait(struct stge_softc *sc)
762 {
763 int i;
764
765 for (i = 0; i < STGE_TIMEOUT; i++) {
766 delay(2);
767 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
768 DMAC_TxDMAInProg) == 0)
769 break;
770 }
771
772 if (i == STGE_TIMEOUT)
773 printf("%s: DMA wait timed out\n", device_xname(sc->sc_dev));
774 }
775
776 /*
777 * stge_start: [ifnet interface function]
778 *
779 * Start packet transmission on the interface.
780 */
781 static void
782 stge_start(struct ifnet *ifp)
783 {
784 struct stge_softc *sc = ifp->if_softc;
785 struct mbuf *m0;
786 struct stge_descsoft *ds;
787 struct stge_tfd *tfd;
788 bus_dmamap_t dmamap;
789 int error, firsttx, nexttx, opending, seg, totlen;
790 uint64_t csum_flags;
791
792 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
793 return;
794
795 /*
796 * Remember the previous number of pending transmissions
797 * and the first descriptor we will use.
798 */
799 opending = sc->sc_txpending;
800 firsttx = STGE_NEXTTX(sc->sc_txlast);
801
802 /*
803 * Loop through the send queue, setting up transmit descriptors
804 * until we drain the queue, or use up all available transmit
805 * descriptors.
806 */
807 for (;;) {
808 uint64_t tfc;
809 bool have_vtag;
810 uint16_t vtag;
811
812 /*
813 * Grab a packet off the queue.
814 */
815 IFQ_POLL(&ifp->if_snd, m0);
816 if (m0 == NULL)
817 break;
818
819 /*
820 * Leave one unused descriptor at the end of the
821 * list to prevent wrapping completely around.
822 */
823 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
824 STGE_EVCNT_INCR(&sc->sc_ev_txstall);
825 break;
826 }
827
828 /*
829 * See if we have any VLAN stuff.
830 */
831 have_vtag = vlan_has_tag(m0);
832 vtag = vlan_get_tag(m0);
833
834 /*
835 * Get the last and next available transmit descriptor.
836 */
837 nexttx = STGE_NEXTTX(sc->sc_txlast);
838 tfd = &sc->sc_txdescs[nexttx];
839 ds = &sc->sc_txsoft[nexttx];
840
841 dmamap = ds->ds_dmamap;
842
843 /*
844 * Load the DMA map. If this fails, the packet either
845 * didn't fit in the alloted number of segments, or we
846 * were short on resources. For the too-many-segments
847 * case, we simply report an error and drop the packet,
848 * since we can't sanely copy a jumbo packet to a single
849 * buffer.
850 */
851 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
852 BUS_DMA_NOWAIT);
853 if (error) {
854 if (error == EFBIG) {
855 printf("%s: Tx packet consumes too many "
856 "DMA segments, dropping...\n",
857 device_xname(sc->sc_dev));
858 IFQ_DEQUEUE(&ifp->if_snd, m0);
859 m_freem(m0);
860 continue;
861 }
862 /*
863 * Short on resources, just stop for now.
864 */
865 break;
866 }
867
868 IFQ_DEQUEUE(&ifp->if_snd, m0);
869
870 /*
871 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
872 */
873
874 /* Sync the DMA map. */
875 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
876 BUS_DMASYNC_PREWRITE);
877
878 /* Initialize the fragment list. */
879 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
880 tfd->tfd_frags[seg].frag_word0 =
881 htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
882 FRAG_LEN(dmamap->dm_segs[seg].ds_len));
883 totlen += dmamap->dm_segs[seg].ds_len;
884 }
885
886 #ifdef STGE_EVENT_COUNTERS
887 switch (dmamap->dm_nsegs) {
888 case 1:
889 STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
890 break;
891 case 2:
892 STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
893 break;
894 case 3:
895 STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
896 break;
897 case 4:
898 STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
899 break;
900 case 5:
901 STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
902 break;
903 default:
904 STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
905 break;
906 }
907 #endif /* STGE_EVENT_COUNTERS */
908
909 /*
910 * Initialize checksumming flags in the descriptor.
911 * Byte-swap constants so the compiler can optimize.
912 */
913 csum_flags = 0;
914 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
915 STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
916 csum_flags |= TFD_IPChecksumEnable;
917 }
918
919 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
920 STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
921 csum_flags |= TFD_TCPChecksumEnable;
922 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
923 STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
924 csum_flags |= TFD_UDPChecksumEnable;
925 }
926
927 /*
928 * Initialize the descriptor and give it to the chip.
929 * Check to see if we have a VLAN tag to insert.
930 */
931
932 tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
933 TFD_FragCount(seg) | csum_flags |
934 (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
935 TFD_TxDMAIndicate : 0);
936 if (have_vtag) {
937 #if 0
938 struct ether_header *eh =
939 mtod(m0, struct ether_header *);
940 u_int16_t etype = ntohs(eh->ether_type);
941 printf("%s: xmit (tag %d) etype %x\n",
942 ifp->if_xname, *mtod(n, int *), etype);
943 #endif
944 tfc |= TFD_VLANTagInsert |
945 #ifdef STGE_VLAN_CFI
946 TFD_CFI |
947 #endif
948 TFD_VID(vtag);
949 }
950 tfd->tfd_control = htole64(tfc);
951
952 /* Sync the descriptor. */
953 STGE_CDTXSYNC(sc, nexttx,
954 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
955
956 /*
957 * Kick the transmit DMA logic.
958 */
959 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
960 sc->sc_DMACtrl | DMAC_TxDMAPollNow);
961
962 /*
963 * Store a pointer to the packet so we can free it later.
964 */
965 ds->ds_mbuf = m0;
966
967 /* Advance the tx pointer. */
968 sc->sc_txpending++;
969 sc->sc_txlast = nexttx;
970
971 /*
972 * Pass the packet to any BPF listeners.
973 */
974 bpf_mtap(ifp, m0);
975 }
976
977 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
978 /* No more slots left; notify upper layer. */
979 ifp->if_flags |= IFF_OACTIVE;
980 }
981
982 if (sc->sc_txpending != opending) {
983 /*
984 * We enqueued packets. If the transmitter was idle,
985 * reset the txdirty pointer.
986 */
987 if (opending == 0)
988 sc->sc_txdirty = firsttx;
989
990 /* Set a watchdog timer in case the chip flakes out. */
991 ifp->if_timer = 5;
992 }
993 }
994
995 /*
996 * stge_watchdog: [ifnet interface function]
997 *
998 * Watchdog timer handler.
999 */
1000 static void
1001 stge_watchdog(struct ifnet *ifp)
1002 {
1003 struct stge_softc *sc = ifp->if_softc;
1004
1005 /*
1006 * Sweep up first, since we don't interrupt every frame.
1007 */
1008 stge_txintr(sc);
1009 if (sc->sc_txpending != 0) {
1010 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1011 ifp->if_oerrors++;
1012
1013 (void) stge_init(ifp);
1014
1015 /* Try to get more packets going. */
1016 stge_start(ifp);
1017 }
1018 }
1019
1020 /*
1021 * stge_ioctl: [ifnet interface function]
1022 *
1023 * Handle control requests from the operator.
1024 */
1025 static int
1026 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1027 {
1028 struct stge_softc *sc = ifp->if_softc;
1029 int s, error;
1030
1031 s = splnet();
1032
1033 error = ether_ioctl(ifp, cmd, data);
1034 if (error == ENETRESET) {
1035 error = 0;
1036
1037 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1038 ;
1039 else if (ifp->if_flags & IFF_RUNNING) {
1040 /*
1041 * Multicast list has changed; set the hardware filter
1042 * accordingly.
1043 */
1044 stge_set_filter(sc);
1045 }
1046 }
1047
1048 /* Try to get more packets going. */
1049 stge_start(ifp);
1050
1051 splx(s);
1052 return (error);
1053 }
1054
1055 /*
1056 * stge_intr:
1057 *
1058 * Interrupt service routine.
1059 */
1060 static int
1061 stge_intr(void *arg)
1062 {
1063 struct stge_softc *sc = arg;
1064 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1065 uint32_t txstat;
1066 int wantinit;
1067 uint16_t isr;
1068
1069 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1070 IS_InterruptStatus) == 0)
1071 return (0);
1072
1073 for (wantinit = 0; wantinit == 0;) {
1074 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1075 if ((isr & sc->sc_IntEnable) == 0)
1076 break;
1077
1078 /* Host interface errors. */
1079 if (isr & IS_HostError) {
1080 printf("%s: Host interface error\n",
1081 device_xname(sc->sc_dev));
1082 wantinit = 1;
1083 continue;
1084 }
1085
1086 /* Receive interrupts. */
1087 if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
1088 STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1089 stge_rxintr(sc);
1090 if (isr & IS_RFDListEnd) {
1091 printf("%s: receive ring overflow\n",
1092 device_xname(sc->sc_dev));
1093 /*
1094 * XXX Should try to recover from this
1095 * XXX more gracefully.
1096 */
1097 wantinit = 1;
1098 }
1099 }
1100
1101 /* Transmit interrupts. */
1102 if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
1103 #ifdef STGE_EVENT_COUNTERS
1104 if (isr & IS_TxDMAComplete)
1105 STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1106 #endif
1107 stge_txintr(sc);
1108 }
1109
1110 /* Statistics overflow. */
1111 if (isr & IS_UpdateStats)
1112 stge_stats_update(sc);
1113
1114 /* Transmission errors. */
1115 if (isr & IS_TxComplete) {
1116 STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1117 for (;;) {
1118 txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1119 STGE_TxStatus);
1120 if ((txstat & TS_TxComplete) == 0)
1121 break;
1122 if (txstat & TS_TxUnderrun) {
1123 sc->sc_txthresh++;
1124 if (sc->sc_txthresh > 0x0fff)
1125 sc->sc_txthresh = 0x0fff;
1126 printf("%s: transmit underrun, new "
1127 "threshold: %d bytes\n",
1128 device_xname(sc->sc_dev),
1129 sc->sc_txthresh << 5);
1130 }
1131 if (txstat & TS_MaxCollisions)
1132 printf("%s: excessive collisions\n",
1133 device_xname(sc->sc_dev));
1134 }
1135 wantinit = 1;
1136 }
1137
1138 }
1139
1140 if (wantinit)
1141 stge_init(ifp);
1142
1143 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1144 sc->sc_IntEnable);
1145
1146 /* Try to get more packets going. */
1147 if_schedule_deferred_start(ifp);
1148
1149 return (1);
1150 }
1151
1152 /*
1153 * stge_txintr:
1154 *
1155 * Helper; handle transmit interrupts.
1156 */
1157 static void
1158 stge_txintr(struct stge_softc *sc)
1159 {
1160 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1161 struct stge_descsoft *ds;
1162 uint64_t control;
1163 int i;
1164
1165 ifp->if_flags &= ~IFF_OACTIVE;
1166
1167 /*
1168 * Go through our Tx list and free mbufs for those
1169 * frames which have been transmitted.
1170 */
1171 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1172 i = STGE_NEXTTX(i), sc->sc_txpending--) {
1173 ds = &sc->sc_txsoft[i];
1174
1175 STGE_CDTXSYNC(sc, i,
1176 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1177
1178 control = le64toh(sc->sc_txdescs[i].tfd_control);
1179 if ((control & TFD_TFDDone) == 0)
1180 break;
1181
1182 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1183 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1184 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1185 m_freem(ds->ds_mbuf);
1186 ds->ds_mbuf = NULL;
1187 }
1188
1189 /* Update the dirty transmit buffer pointer. */
1190 sc->sc_txdirty = i;
1191
1192 /*
1193 * If there are no more pending transmissions, cancel the watchdog
1194 * timer.
1195 */
1196 if (sc->sc_txpending == 0)
1197 ifp->if_timer = 0;
1198 }
1199
1200 /*
1201 * stge_rxintr:
1202 *
1203 * Helper; handle receive interrupts.
1204 */
1205 static void
1206 stge_rxintr(struct stge_softc *sc)
1207 {
1208 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1209 struct stge_descsoft *ds;
1210 struct mbuf *m, *tailm;
1211 uint64_t status;
1212 int i, len;
1213
1214 for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1215 ds = &sc->sc_rxsoft[i];
1216
1217 STGE_CDRXSYNC(sc, i,
1218 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1219
1220 status = le64toh(sc->sc_rxdescs[i].rfd_status);
1221
1222 if ((status & RFD_RFDDone) == 0)
1223 break;
1224
1225 if (__predict_false(sc->sc_rxdiscard)) {
1226 STGE_INIT_RXDESC(sc, i);
1227 if (status & RFD_FrameEnd) {
1228 /* Reset our state. */
1229 sc->sc_rxdiscard = 0;
1230 }
1231 continue;
1232 }
1233
1234 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1235 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1236
1237 m = ds->ds_mbuf;
1238
1239 /*
1240 * Add a new receive buffer to the ring.
1241 */
1242 if (stge_add_rxbuf(sc, i) != 0) {
1243 /*
1244 * Failed, throw away what we've done so
1245 * far, and discard the rest of the packet.
1246 */
1247 ifp->if_ierrors++;
1248 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1249 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1250 STGE_INIT_RXDESC(sc, i);
1251 if ((status & RFD_FrameEnd) == 0)
1252 sc->sc_rxdiscard = 1;
1253 if (sc->sc_rxhead != NULL)
1254 m_freem(sc->sc_rxhead);
1255 STGE_RXCHAIN_RESET(sc);
1256 continue;
1257 }
1258
1259 #ifdef DIAGNOSTIC
1260 if (status & RFD_FrameStart) {
1261 KASSERT(sc->sc_rxhead == NULL);
1262 KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1263 }
1264 #endif
1265
1266 STGE_RXCHAIN_LINK(sc, m);
1267
1268 /*
1269 * If this is not the end of the packet, keep
1270 * looking.
1271 */
1272 if ((status & RFD_FrameEnd) == 0) {
1273 sc->sc_rxlen += m->m_len;
1274 continue;
1275 }
1276
1277 /*
1278 * Okay, we have the entire packet now...
1279 */
1280 *sc->sc_rxtailp = NULL;
1281 m = sc->sc_rxhead;
1282 tailm = sc->sc_rxtail;
1283
1284 STGE_RXCHAIN_RESET(sc);
1285
1286 /*
1287 * If the packet had an error, drop it. Note we
1288 * count the error later in the periodic stats update.
1289 */
1290 if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1291 RFD_RxAlignmentError | RFD_RxFCSError |
1292 RFD_RxLengthError)) {
1293 m_freem(m);
1294 continue;
1295 }
1296
1297 /*
1298 * No errors.
1299 *
1300 * Note we have configured the chip to not include
1301 * the CRC at the end of the packet.
1302 */
1303 len = RFD_RxDMAFrameLen(status);
1304 tailm->m_len = len - sc->sc_rxlen;
1305
1306 /*
1307 * If the packet is small enough to fit in a
1308 * single header mbuf, allocate one and copy
1309 * the data into it. This greatly reduces
1310 * memory consumption when we receive lots
1311 * of small packets.
1312 */
1313 if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1314 struct mbuf *nm;
1315 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1316 if (nm == NULL) {
1317 ifp->if_ierrors++;
1318 m_freem(m);
1319 continue;
1320 }
1321 nm->m_data += 2;
1322 nm->m_pkthdr.len = nm->m_len = len;
1323 m_copydata(m, 0, len, mtod(nm, void *));
1324 m_freem(m);
1325 m = nm;
1326 }
1327
1328 /*
1329 * Set the incoming checksum information for the packet.
1330 */
1331 if (status & RFD_IPDetected) {
1332 STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1333 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1334 if (status & RFD_IPError)
1335 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1336 if (status & RFD_TCPDetected) {
1337 STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1338 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1339 if (status & RFD_TCPError)
1340 m->m_pkthdr.csum_flags |=
1341 M_CSUM_TCP_UDP_BAD;
1342 } else if (status & RFD_UDPDetected) {
1343 STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1344 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1345 if (status & RFD_UDPError)
1346 m->m_pkthdr.csum_flags |=
1347 M_CSUM_TCP_UDP_BAD;
1348 }
1349 }
1350
1351 m_set_rcvif(m, ifp);
1352 m->m_pkthdr.len = len;
1353
1354 /*
1355 * Pass this up to any BPF listeners, but only
1356 * pass if up the stack if it's for us.
1357 */
1358 #ifdef STGE_VLAN_UNTAG
1359 /*
1360 * Check for VLAN tagged packets
1361 */
1362 if (status & RFD_VLANDetected)
1363 vlan_set_tag(m, RFD_TCI(status));
1364
1365 #endif
1366 #if 0
1367 if (status & RFD_VLANDetected) {
1368 struct ether_header *eh;
1369 u_int16_t etype;
1370
1371 eh = mtod(m, struct ether_header *);
1372 etype = ntohs(eh->ether_type);
1373 printf("%s: VLANtag detected (TCI %d) etype %x\n",
1374 ifp->if_xname, (u_int16_t) RFD_TCI(status),
1375 etype);
1376 }
1377 #endif
1378 /* Pass it on. */
1379 if_percpuq_enqueue(ifp->if_percpuq, m);
1380 }
1381
1382 /* Update the receive pointer. */
1383 sc->sc_rxptr = i;
1384 }
1385
1386 /*
1387 * stge_tick:
1388 *
1389 * One second timer, used to tick the MII.
1390 */
1391 static void
1392 stge_tick(void *arg)
1393 {
1394 struct stge_softc *sc = arg;
1395 int s;
1396
1397 s = splnet();
1398 mii_tick(&sc->sc_mii);
1399 stge_stats_update(sc);
1400 splx(s);
1401
1402 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1403 }
1404
1405 /*
1406 * stge_stats_update:
1407 *
1408 * Read the TC9021 statistics counters.
1409 */
1410 static void
1411 stge_stats_update(struct stge_softc *sc)
1412 {
1413 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1414 bus_space_tag_t st = sc->sc_st;
1415 bus_space_handle_t sh = sc->sc_sh;
1416
1417 (void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1418
1419 ifp->if_ipackets +=
1420 bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1421
1422 ifp->if_ierrors +=
1423 (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1424
1425 (void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1426
1427 ifp->if_opackets +=
1428 bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1429
1430 ifp->if_collisions +=
1431 bus_space_read_4(st, sh, STGE_LateCollisions) +
1432 bus_space_read_4(st, sh, STGE_MultiColFrames) +
1433 bus_space_read_4(st, sh, STGE_SingleColFrames);
1434
1435 ifp->if_oerrors +=
1436 (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1437 (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1438 }
1439
1440 /*
1441 * stge_reset:
1442 *
1443 * Perform a soft reset on the TC9021.
1444 */
1445 static void
1446 stge_reset(struct stge_softc *sc)
1447 {
1448 uint32_t ac;
1449 int i;
1450
1451 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1452
1453 /*
1454 * Only assert RstOut if we're fiber. We need GMII clocks
1455 * to be present in order for the reset to complete on fiber
1456 * cards.
1457 */
1458 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1459 ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1460 AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1461 (sc->sc_usefiber ? AC_RstOut : 0));
1462
1463 delay(50000);
1464
1465 for (i = 0; i < STGE_TIMEOUT; i++) {
1466 delay(5000);
1467 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1468 AC_ResetBusy) == 0)
1469 break;
1470 }
1471
1472 if (i == STGE_TIMEOUT)
1473 printf("%s: reset failed to complete\n",
1474 device_xname(sc->sc_dev));
1475
1476 delay(1000);
1477 }
1478
1479 /*
1480 * stge_init: [ ifnet interface function ]
1481 *
1482 * Initialize the interface. Must be called at splnet().
1483 */
1484 static int
1485 stge_init(struct ifnet *ifp)
1486 {
1487 struct stge_softc *sc = ifp->if_softc;
1488 bus_space_tag_t st = sc->sc_st;
1489 bus_space_handle_t sh = sc->sc_sh;
1490 struct stge_descsoft *ds;
1491 int i, error = 0;
1492
1493 /*
1494 * Cancel any pending I/O.
1495 */
1496 stge_stop(ifp, 0);
1497
1498 /*
1499 * Reset the chip to a known state.
1500 */
1501 stge_reset(sc);
1502
1503 /*
1504 * Initialize the transmit descriptor ring.
1505 */
1506 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1507 for (i = 0; i < STGE_NTXDESC; i++) {
1508 sc->sc_txdescs[i].tfd_next = htole64(
1509 STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1510 sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1511 }
1512 sc->sc_txpending = 0;
1513 sc->sc_txdirty = 0;
1514 sc->sc_txlast = STGE_NTXDESC - 1;
1515
1516 /*
1517 * Initialize the receive descriptor and receive job
1518 * descriptor rings.
1519 */
1520 for (i = 0; i < STGE_NRXDESC; i++) {
1521 ds = &sc->sc_rxsoft[i];
1522 if (ds->ds_mbuf == NULL) {
1523 if ((error = stge_add_rxbuf(sc, i)) != 0) {
1524 printf("%s: unable to allocate or map rx "
1525 "buffer %d, error = %d\n",
1526 device_xname(sc->sc_dev), i, error);
1527 /*
1528 * XXX Should attempt to run with fewer receive
1529 * XXX buffers instead of just failing.
1530 */
1531 stge_rxdrain(sc);
1532 goto out;
1533 }
1534 } else
1535 STGE_INIT_RXDESC(sc, i);
1536 }
1537 sc->sc_rxptr = 0;
1538 sc->sc_rxdiscard = 0;
1539 STGE_RXCHAIN_RESET(sc);
1540
1541 /* Set the station address. */
1542 for (i = 0; i < 6; i++)
1543 bus_space_write_1(st, sh, STGE_StationAddress0 + i,
1544 CLLADDR(ifp->if_sadl)[i]);
1545
1546 /*
1547 * Set the statistics masks. Disable all the RMON stats,
1548 * and disable selected stats in the non-RMON stats registers.
1549 */
1550 bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1551 bus_space_write_4(st, sh, STGE_StatisticsMask,
1552 (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1553 (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1554 (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1555 (1U << 21));
1556
1557 /* Set up the receive filter. */
1558 stge_set_filter(sc);
1559
1560 /*
1561 * Give the transmit and receive ring to the chip.
1562 */
1563 bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1564 bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1565 STGE_CDTXADDR(sc, sc->sc_txdirty));
1566
1567 bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1568 bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1569 STGE_CDRXADDR(sc, sc->sc_rxptr));
1570
1571 /*
1572 * Initialize the Tx auto-poll period. It's OK to make this number
1573 * large (255 is the max, but we use 127) -- we explicitly kick the
1574 * transmit engine when there's actually a packet.
1575 */
1576 bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1577
1578 /* ..and the Rx auto-poll period. */
1579 bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1580
1581 /* Initialize the Tx start threshold. */
1582 bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1583
1584 /* RX DMA thresholds, from linux */
1585 bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
1586 bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
1587
1588 /*
1589 * Initialize the Rx DMA interrupt control register. We
1590 * request an interrupt after every incoming packet, but
1591 * defer it for 32us (64 * 512 ns). When the number of
1592 * interrupts pending reaches 8, we stop deferring the
1593 * interrupt, and signal it immediately.
1594 */
1595 bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1596 RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1597
1598 /*
1599 * Initialize the interrupt mask.
1600 */
1601 sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1602 IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1603 bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1604 bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1605
1606 /*
1607 * Configure the DMA engine.
1608 * XXX Should auto-tune TxBurstLimit.
1609 */
1610 bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1611 DMAC_TxBurstLimit(3));
1612
1613 /*
1614 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1615 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1616 * empty again.
1617 */
1618 bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1619 bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1620
1621 /*
1622 * Set the maximum frame size.
1623 */
1624 bus_space_write_2(st, sh, STGE_MaxFrameSize,
1625 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1626 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1627 ETHER_VLAN_ENCAP_LEN : 0));
1628
1629 /*
1630 * Initialize MacCtrl -- do it before setting the media,
1631 * as setting the media will actually program the register.
1632 *
1633 * Note: We have to poke the IFS value before poking
1634 * anything else.
1635 */
1636 sc->sc_MACCtrl = MC_IFSSelect(0);
1637 bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1638 sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1639 #ifdef STGE_VLAN_UNTAG
1640 sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1641 #endif
1642
1643 if (sc->sc_rev >= 6) { /* >= B.2 */
1644 /* Multi-frag frame bug work-around. */
1645 bus_space_write_2(st, sh, STGE_DebugCtrl,
1646 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1647
1648 /* Tx Poll Now bug work-around. */
1649 bus_space_write_2(st, sh, STGE_DebugCtrl,
1650 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1651 /* XXX ? from linux */
1652 bus_space_write_2(st, sh, STGE_DebugCtrl,
1653 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
1654 }
1655
1656 /*
1657 * Set the current media.
1658 */
1659 if ((error = ether_mediachange(ifp)) != 0)
1660 goto out;
1661
1662 /*
1663 * Start the one second MII clock.
1664 */
1665 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1666
1667 /*
1668 * ...all done!
1669 */
1670 ifp->if_flags |= IFF_RUNNING;
1671 ifp->if_flags &= ~IFF_OACTIVE;
1672
1673 out:
1674 if (error)
1675 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1676 return (error);
1677 }
1678
1679 /*
1680 * stge_drain:
1681 *
1682 * Drain the receive queue.
1683 */
1684 static void
1685 stge_rxdrain(struct stge_softc *sc)
1686 {
1687 struct stge_descsoft *ds;
1688 int i;
1689
1690 for (i = 0; i < STGE_NRXDESC; i++) {
1691 ds = &sc->sc_rxsoft[i];
1692 if (ds->ds_mbuf != NULL) {
1693 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1694 ds->ds_mbuf->m_next = NULL;
1695 m_freem(ds->ds_mbuf);
1696 ds->ds_mbuf = NULL;
1697 }
1698 }
1699 }
1700
1701 /*
1702 * stge_stop: [ ifnet interface function ]
1703 *
1704 * Stop transmission on the interface.
1705 */
1706 static void
1707 stge_stop(struct ifnet *ifp, int disable)
1708 {
1709 struct stge_softc *sc = ifp->if_softc;
1710 struct stge_descsoft *ds;
1711 int i;
1712
1713 /*
1714 * Stop the one second clock.
1715 */
1716 callout_stop(&sc->sc_tick_ch);
1717
1718 /* Down the MII. */
1719 mii_down(&sc->sc_mii);
1720
1721 /*
1722 * Disable interrupts.
1723 */
1724 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1725
1726 /*
1727 * Stop receiver, transmitter, and stats update.
1728 */
1729 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1730 MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1731
1732 /*
1733 * Stop the transmit and receive DMA.
1734 */
1735 stge_dma_wait(sc);
1736 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1737 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1738 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1739 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1740
1741 /*
1742 * Release any queued transmit buffers.
1743 */
1744 for (i = 0; i < STGE_NTXDESC; i++) {
1745 ds = &sc->sc_txsoft[i];
1746 if (ds->ds_mbuf != NULL) {
1747 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1748 m_freem(ds->ds_mbuf);
1749 ds->ds_mbuf = NULL;
1750 }
1751 }
1752
1753 /*
1754 * Mark the interface down and cancel the watchdog timer.
1755 */
1756 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1757 ifp->if_timer = 0;
1758
1759 if (disable)
1760 stge_rxdrain(sc);
1761 }
1762
1763 static int
1764 stge_eeprom_wait(struct stge_softc *sc)
1765 {
1766 int i;
1767
1768 for (i = 0; i < STGE_TIMEOUT; i++) {
1769 delay(1000);
1770 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1771 EC_EepromBusy) == 0)
1772 return (0);
1773 }
1774 return (1);
1775 }
1776
1777 /*
1778 * stge_read_eeprom:
1779 *
1780 * Read data from the serial EEPROM.
1781 */
1782 static void
1783 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1784 {
1785
1786 if (stge_eeprom_wait(sc))
1787 printf("%s: EEPROM failed to come ready\n",
1788 device_xname(sc->sc_dev));
1789
1790 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1791 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1792 if (stge_eeprom_wait(sc))
1793 printf("%s: EEPROM read timed out\n",
1794 device_xname(sc->sc_dev));
1795 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1796 }
1797
1798 /*
1799 * stge_add_rxbuf:
1800 *
1801 * Add a receive buffer to the indicated descriptor.
1802 */
1803 static int
1804 stge_add_rxbuf(struct stge_softc *sc, int idx)
1805 {
1806 struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1807 struct mbuf *m;
1808 int error;
1809
1810 MGETHDR(m, M_DONTWAIT, MT_DATA);
1811 if (m == NULL)
1812 return (ENOBUFS);
1813
1814 MCLGET(m, M_DONTWAIT);
1815 if ((m->m_flags & M_EXT) == 0) {
1816 m_freem(m);
1817 return (ENOBUFS);
1818 }
1819
1820 m->m_data = m->m_ext.ext_buf + 2;
1821 m->m_len = MCLBYTES - 2;
1822
1823 if (ds->ds_mbuf != NULL)
1824 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1825
1826 ds->ds_mbuf = m;
1827
1828 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1829 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1830 if (error) {
1831 printf("%s: can't load rx DMA map %d, error = %d\n",
1832 device_xname(sc->sc_dev), idx, error);
1833 panic("stge_add_rxbuf"); /* XXX */
1834 }
1835
1836 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1837 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1838
1839 STGE_INIT_RXDESC(sc, idx);
1840
1841 return (0);
1842 }
1843
1844 /*
1845 * stge_set_filter:
1846 *
1847 * Set up the receive filter.
1848 */
1849 static void
1850 stge_set_filter(struct stge_softc *sc)
1851 {
1852 struct ethercom *ec = &sc->sc_ethercom;
1853 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1854 struct ether_multi *enm;
1855 struct ether_multistep step;
1856 uint32_t crc;
1857 uint32_t mchash[2];
1858
1859 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1860 if (ifp->if_flags & IFF_BROADCAST)
1861 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1862
1863 /* XXX: ST1023 only works in promiscuous mode */
1864 if (sc->sc_stge1023)
1865 ifp->if_flags |= IFF_PROMISC;
1866
1867 if (ifp->if_flags & IFF_PROMISC) {
1868 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1869 goto allmulti;
1870 }
1871
1872 /*
1873 * Set up the multicast address filter by passing all multicast
1874 * addresses through a CRC generator, and then using the low-order
1875 * 6 bits as an index into the 64 bit multicast hash table. The
1876 * high order bits select the register, while the rest of the bits
1877 * select the bit within the register.
1878 */
1879
1880 memset(mchash, 0, sizeof(mchash));
1881
1882 ETHER_FIRST_MULTI(step, ec, enm);
1883 if (enm == NULL)
1884 goto done;
1885
1886 while (enm != NULL) {
1887 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1888 /*
1889 * We must listen to a range of multicast addresses.
1890 * For now, just accept all multicasts, rather than
1891 * trying to set only those filter bits needed to match
1892 * the range. (At this time, the only use of address
1893 * ranges is for IP multicast routing, for which the
1894 * range is big enough to require all bits set.)
1895 */
1896 goto allmulti;
1897 }
1898
1899 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1900
1901 /* Just want the 6 least significant bits. */
1902 crc &= 0x3f;
1903
1904 /* Set the corresponding bit in the hash table. */
1905 mchash[crc >> 5] |= 1 << (crc & 0x1f);
1906
1907 ETHER_NEXT_MULTI(step, enm);
1908 }
1909
1910 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1911
1912 ifp->if_flags &= ~IFF_ALLMULTI;
1913 goto done;
1914
1915 allmulti:
1916 ifp->if_flags |= IFF_ALLMULTI;
1917 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1918
1919 done:
1920 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1921 /*
1922 * Program the multicast hash table.
1923 */
1924 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1925 mchash[0]);
1926 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1927 mchash[1]);
1928 }
1929
1930 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1931 sc->sc_ReceiveMode);
1932 }
1933
1934 /*
1935 * stge_mii_readreg: [mii interface function]
1936 *
1937 * Read a PHY register on the MII of the TC9021.
1938 */
1939 static int
1940 stge_mii_readreg(device_t self, int phy, int reg)
1941 {
1942
1943 return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1944 }
1945
1946 /*
1947 * stge_mii_writereg: [mii interface function]
1948 *
1949 * Write a PHY register on the MII of the TC9021.
1950 */
1951 static void
1952 stge_mii_writereg(device_t self, int phy, int reg, int val)
1953 {
1954
1955 mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1956 }
1957
1958 /*
1959 * stge_mii_statchg: [mii interface function]
1960 *
1961 * Callback from MII layer when media changes.
1962 */
1963 static void
1964 stge_mii_statchg(struct ifnet *ifp)
1965 {
1966 struct stge_softc *sc = ifp->if_softc;
1967
1968 if (sc->sc_mii.mii_media_active & IFM_FDX)
1969 sc->sc_MACCtrl |= MC_DuplexSelect;
1970 else
1971 sc->sc_MACCtrl &= ~MC_DuplexSelect;
1972
1973 /* XXX 802.1x flow-control? */
1974
1975 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1976 }
1977
1978 /*
1979 * sste_mii_bitbang_read: [mii bit-bang interface function]
1980 *
1981 * Read the MII serial port for the MII bit-bang module.
1982 */
1983 static uint32_t
1984 stge_mii_bitbang_read(device_t self)
1985 {
1986 struct stge_softc *sc = device_private(self);
1987
1988 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
1989 }
1990
1991 /*
1992 * stge_mii_bitbang_write: [mii big-bang interface function]
1993 *
1994 * Write the MII serial port for the MII bit-bang module.
1995 */
1996 static void
1997 stge_mii_bitbang_write(device_t self, uint32_t val)
1998 {
1999 struct stge_softc *sc = device_private(self);
2000
2001 bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
2002 val | sc->sc_PhyCtrl);
2003 }
2004