if_stge.c revision 1.64 1 /* $NetBSD: if_stge.c,v 1.64 2017/09/28 16:23:57 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the Sundance Tech. TC9021 10/100/1000
34 * Ethernet controller.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.64 2017/09/28 16:23:57 christos Exp $");
39
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 #include <sys/queue.h>
52
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57
58 #include <net/bpf.h>
59
60 #include <sys/bus.h>
61 #include <sys/intr.h>
62
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 #include <dev/mii/mii_bitbang.h>
66
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70
71 #include <dev/pci/if_stgereg.h>
72
73 #include <prop/proplib.h>
74
75 /* #define STGE_CU_BUG 1 */
76 #define STGE_VLAN_UNTAG 1
77 /* #define STGE_VLAN_CFI 1 */
78
79 /*
80 * Transmit descriptor list size.
81 */
82 #define STGE_NTXDESC 256
83 #define STGE_NTXDESC_MASK (STGE_NTXDESC - 1)
84 #define STGE_NEXTTX(x) (((x) + 1) & STGE_NTXDESC_MASK)
85
86 /*
87 * Receive descriptor list size.
88 */
89 #define STGE_NRXDESC 256
90 #define STGE_NRXDESC_MASK (STGE_NRXDESC - 1)
91 #define STGE_NEXTRX(x) (((x) + 1) & STGE_NRXDESC_MASK)
92
93 /*
94 * Only interrupt every N frames. Must be a power-of-two.
95 */
96 #define STGE_TXINTR_SPACING 16
97 #define STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
98
99 /*
100 * Control structures are DMA'd to the TC9021 chip. We allocate them in
101 * a single clump that maps to a single DMA segment to make several things
102 * easier.
103 */
104 struct stge_control_data {
105 /*
106 * The transmit descriptors.
107 */
108 struct stge_tfd scd_txdescs[STGE_NTXDESC];
109
110 /*
111 * The receive descriptors.
112 */
113 struct stge_rfd scd_rxdescs[STGE_NRXDESC];
114 };
115
116 #define STGE_CDOFF(x) offsetof(struct stge_control_data, x)
117 #define STGE_CDTXOFF(x) STGE_CDOFF(scd_txdescs[(x)])
118 #define STGE_CDRXOFF(x) STGE_CDOFF(scd_rxdescs[(x)])
119
120 /*
121 * Software state for transmit and receive jobs.
122 */
123 struct stge_descsoft {
124 struct mbuf *ds_mbuf; /* head of our mbuf chain */
125 bus_dmamap_t ds_dmamap; /* our DMA map */
126 };
127
128 /*
129 * Software state per device.
130 */
131 struct stge_softc {
132 device_t sc_dev; /* generic device information */
133 bus_space_tag_t sc_st; /* bus space tag */
134 bus_space_handle_t sc_sh; /* bus space handle */
135 bus_dma_tag_t sc_dmat; /* bus DMA tag */
136 struct ethercom sc_ethercom; /* ethernet common data */
137 int sc_rev; /* silicon revision */
138
139 void *sc_ih; /* interrupt cookie */
140
141 struct mii_data sc_mii; /* MII/media information */
142
143 callout_t sc_tick_ch; /* tick callout */
144
145 bus_dmamap_t sc_cddmamap; /* control data DMA map */
146 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
147
148 /*
149 * Software state for transmit and receive descriptors.
150 */
151 struct stge_descsoft sc_txsoft[STGE_NTXDESC];
152 struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
153
154 /*
155 * Control data structures.
156 */
157 struct stge_control_data *sc_control_data;
158 #define sc_txdescs sc_control_data->scd_txdescs
159 #define sc_rxdescs sc_control_data->scd_rxdescs
160
161 #ifdef STGE_EVENT_COUNTERS
162 /*
163 * Event counters.
164 */
165 struct evcnt sc_ev_txstall; /* Tx stalled */
166 struct evcnt sc_ev_txdmaintr; /* Tx DMA interrupts */
167 struct evcnt sc_ev_txindintr; /* Tx Indicate interrupts */
168 struct evcnt sc_ev_rxintr; /* Rx interrupts */
169
170 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
171 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
172 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
173 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
174 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
175 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
176 struct evcnt sc_ev_txcopy; /* Tx packets that we had to copy */
177
178 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
179 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
180 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-bound */
181
182 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
183 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
184 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
185 #endif /* STGE_EVENT_COUNTERS */
186
187 int sc_txpending; /* number of Tx requests pending */
188 int sc_txdirty; /* first dirty Tx descriptor */
189 int sc_txlast; /* last used Tx descriptor */
190
191 int sc_rxptr; /* next ready Rx descriptor/descsoft */
192 int sc_rxdiscard;
193 int sc_rxlen;
194 struct mbuf *sc_rxhead;
195 struct mbuf *sc_rxtail;
196 struct mbuf **sc_rxtailp;
197
198 int sc_txthresh; /* Tx threshold */
199 uint32_t sc_usefiber:1; /* if we're fiber */
200 uint32_t sc_stge1023:1; /* are we a 1023 */
201 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
202 uint32_t sc_MACCtrl; /* prototype MacCtrl register */
203 uint16_t sc_IntEnable; /* prototype IntEnable register */
204 uint16_t sc_ReceiveMode; /* prototype ReceiveMode register */
205 uint8_t sc_PhyCtrl; /* prototype PhyCtrl register */
206 };
207
208 #define STGE_RXCHAIN_RESET(sc) \
209 do { \
210 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
211 *(sc)->sc_rxtailp = NULL; \
212 (sc)->sc_rxlen = 0; \
213 } while (/*CONSTCOND*/0)
214
215 #define STGE_RXCHAIN_LINK(sc, m) \
216 do { \
217 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
218 (sc)->sc_rxtailp = &(m)->m_next; \
219 } while (/*CONSTCOND*/0)
220
221 #ifdef STGE_EVENT_COUNTERS
222 #define STGE_EVCNT_INCR(ev) (ev)->ev_count++
223 #else
224 #define STGE_EVCNT_INCR(ev) /* nothing */
225 #endif
226
227 #define STGE_CDTXADDR(sc, x) ((sc)->sc_cddma + STGE_CDTXOFF((x)))
228 #define STGE_CDRXADDR(sc, x) ((sc)->sc_cddma + STGE_CDRXOFF((x)))
229
230 #define STGE_CDTXSYNC(sc, x, ops) \
231 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
232 STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
233
234 #define STGE_CDRXSYNC(sc, x, ops) \
235 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
236 STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
237
238 #define STGE_INIT_RXDESC(sc, x) \
239 do { \
240 struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
241 struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
242 \
243 /* \
244 * Note: We scoot the packet forward 2 bytes in the buffer \
245 * so that the payload after the Ethernet header is aligned \
246 * to a 4-byte boundary. \
247 */ \
248 __rfd->rfd_frag.frag_word0 = \
249 htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
250 FRAG_LEN(MCLBYTES - 2)); \
251 __rfd->rfd_next = \
252 htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x)))); \
253 __rfd->rfd_status = 0; \
254 STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
255 } while (/*CONSTCOND*/0)
256
257 #define STGE_TIMEOUT 1000
258
259 static void stge_start(struct ifnet *);
260 static void stge_watchdog(struct ifnet *);
261 static int stge_ioctl(struct ifnet *, u_long, void *);
262 static int stge_init(struct ifnet *);
263 static void stge_stop(struct ifnet *, int);
264
265 static bool stge_shutdown(device_t, int);
266
267 static void stge_reset(struct stge_softc *);
268 static void stge_rxdrain(struct stge_softc *);
269 static int stge_add_rxbuf(struct stge_softc *, int);
270 static void stge_read_eeprom(struct stge_softc *, int, uint16_t *);
271 static void stge_tick(void *);
272
273 static void stge_stats_update(struct stge_softc *);
274
275 static void stge_set_filter(struct stge_softc *);
276
277 static int stge_intr(void *);
278 static void stge_txintr(struct stge_softc *);
279 static void stge_rxintr(struct stge_softc *);
280
281 static int stge_mii_readreg(device_t, int, int);
282 static void stge_mii_writereg(device_t, int, int, int);
283 static void stge_mii_statchg(struct ifnet *);
284
285 static int stge_match(device_t, cfdata_t, void *);
286 static void stge_attach(device_t, device_t, void *);
287
288 int stge_copy_small = 0;
289
290 CFATTACH_DECL_NEW(stge, sizeof(struct stge_softc),
291 stge_match, stge_attach, NULL, NULL);
292
293 static uint32_t stge_mii_bitbang_read(device_t);
294 static void stge_mii_bitbang_write(device_t, uint32_t);
295
296 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
297 stge_mii_bitbang_read,
298 stge_mii_bitbang_write,
299 {
300 PC_MgmtData, /* MII_BIT_MDO */
301 PC_MgmtData, /* MII_BIT_MDI */
302 PC_MgmtClk, /* MII_BIT_MDC */
303 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
304 0, /* MII_BIT_DIR_PHY_HOST */
305 }
306 };
307
308 /*
309 * Devices supported by this driver.
310 */
311 static const struct stge_product {
312 pci_vendor_id_t stge_vendor;
313 pci_product_id_t stge_product;
314 const char *stge_name;
315 } stge_products[] = {
316 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST1023,
317 "Sundance ST-1023 Gigabit Ethernet" },
318
319 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST2021,
320 "Sundance ST-2021 Gigabit Ethernet" },
321
322 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021,
323 "Tamarack TC9021 Gigabit Ethernet" },
324
325 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021_ALT,
326 "Tamarack TC9021 Gigabit Ethernet" },
327
328 /*
329 * The Sundance sample boards use the Sundance vendor ID,
330 * but the Tamarack product ID.
331 */
332 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021,
333 "Sundance TC9021 Gigabit Ethernet" },
334
335 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021_ALT,
336 "Sundance TC9021 Gigabit Ethernet" },
337
338 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL4000,
339 "D-Link DL-4000 Gigabit Ethernet" },
340
341 { PCI_VENDOR_ANTARES, PCI_PRODUCT_ANTARES_TC9021,
342 "Antares Gigabit Ethernet" },
343
344 { 0, 0,
345 NULL },
346 };
347
348 static const struct stge_product *
349 stge_lookup(const struct pci_attach_args *pa)
350 {
351 const struct stge_product *sp;
352
353 for (sp = stge_products; sp->stge_name != NULL; sp++) {
354 if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
355 PCI_PRODUCT(pa->pa_id) == sp->stge_product)
356 return (sp);
357 }
358 return (NULL);
359 }
360
361 static int
362 stge_match(device_t parent, cfdata_t cf, void *aux)
363 {
364 struct pci_attach_args *pa = aux;
365
366 if (stge_lookup(pa) != NULL)
367 return (1);
368
369 return (0);
370 }
371
372 static void
373 stge_attach(device_t parent, device_t self, void *aux)
374 {
375 struct stge_softc *sc = device_private(self);
376 struct pci_attach_args *pa = aux;
377 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
378 pci_chipset_tag_t pc = pa->pa_pc;
379 pci_intr_handle_t ih;
380 const char *intrstr = NULL;
381 bus_space_tag_t iot, memt;
382 bus_space_handle_t ioh, memh;
383 bus_dma_segment_t seg;
384 prop_data_t data;
385 int ioh_valid, memh_valid;
386 int i, rseg, error;
387 const struct stge_product *sp;
388 uint8_t enaddr[ETHER_ADDR_LEN];
389 char intrbuf[PCI_INTRSTR_LEN];
390
391 callout_init(&sc->sc_tick_ch, 0);
392
393 sp = stge_lookup(pa);
394 if (sp == NULL) {
395 printf("\n");
396 panic("ste_attach: impossible");
397 }
398
399 sc->sc_rev = PCI_REVISION(pa->pa_class);
400
401 pci_aprint_devinfo_fancy(pa, NULL, sp->stge_name, 1);
402
403 /*
404 * Map the device.
405 */
406 ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
407 PCI_MAPREG_TYPE_IO, 0,
408 &iot, &ioh, NULL, NULL) == 0);
409 memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
410 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
411 &memt, &memh, NULL, NULL) == 0);
412
413 if (memh_valid) {
414 sc->sc_st = memt;
415 sc->sc_sh = memh;
416 } else if (ioh_valid) {
417 sc->sc_st = iot;
418 sc->sc_sh = ioh;
419 } else {
420 aprint_error_dev(self, "unable to map device registers\n");
421 return;
422 }
423
424 sc->sc_dmat = pa->pa_dmat;
425
426 /* Enable bus mastering. */
427 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
428 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
429 PCI_COMMAND_MASTER_ENABLE);
430
431 /* power up chip */
432 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
433 error != EOPNOTSUPP) {
434 aprint_error_dev(self, "cannot activate %d\n", error);
435 return;
436 }
437 /*
438 * Map and establish our interrupt.
439 */
440 if (pci_intr_map(pa, &ih)) {
441 aprint_error_dev(self, "unable to map interrupt\n");
442 return;
443 }
444 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
445 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
446 if (sc->sc_ih == NULL) {
447 aprint_error_dev(self, "unable to establish interrupt");
448 if (intrstr != NULL)
449 aprint_error(" at %s", intrstr);
450 aprint_error("\n");
451 return;
452 }
453 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
454
455 /*
456 * Allocate the control data structures, and create and load the
457 * DMA map for it.
458 */
459 if ((error = bus_dmamem_alloc(sc->sc_dmat,
460 sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
461 0)) != 0) {
462 aprint_error_dev(self,
463 "unable to allocate control data, error = %d\n", error);
464 goto fail_0;
465 }
466
467 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
468 sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
469 BUS_DMA_COHERENT)) != 0) {
470 aprint_error_dev(self,
471 "unable to map control data, error = %d\n", error);
472 goto fail_1;
473 }
474
475 if ((error = bus_dmamap_create(sc->sc_dmat,
476 sizeof(struct stge_control_data), 1,
477 sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
478 aprint_error_dev(self,
479 "unable to create control data DMA map, error = %d\n",
480 error);
481 goto fail_2;
482 }
483
484 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
485 sc->sc_control_data, sizeof(struct stge_control_data), NULL,
486 0)) != 0) {
487 aprint_error_dev(self,
488 "unable to load control data DMA map, error = %d\n",
489 error);
490 goto fail_3;
491 }
492
493 /*
494 * Create the transmit buffer DMA maps. Note that rev B.3
495 * and earlier seem to have a bug regarding multi-fragment
496 * packets. We need to limit the number of Tx segments on
497 * such chips to 1.
498 */
499 for (i = 0; i < STGE_NTXDESC; i++) {
500 if ((error = bus_dmamap_create(sc->sc_dmat,
501 ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
502 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
503 aprint_error_dev(self,
504 "unable to create tx DMA map %d, error = %d\n",
505 i, error);
506 goto fail_4;
507 }
508 }
509
510 /*
511 * Create the receive buffer DMA maps.
512 */
513 for (i = 0; i < STGE_NRXDESC; i++) {
514 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
515 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
516 aprint_error_dev(self,
517 "unable to create rx DMA map %d, error = %d\n",
518 i, error);
519 goto fail_5;
520 }
521 sc->sc_rxsoft[i].ds_mbuf = NULL;
522 }
523
524 /*
525 * Determine if we're copper or fiber. It affects how we
526 * reset the card.
527 */
528 if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
529 AC_PhyMedia)
530 sc->sc_usefiber = 1;
531 else
532 sc->sc_usefiber = 0;
533
534 /*
535 * Reset the chip to a known state.
536 */
537 stge_reset(sc);
538
539 /*
540 * Reading the station address from the EEPROM doesn't seem
541 * to work, at least on my sample boards. Instead, since
542 * the reset sequence does AutoInit, read it from the station
543 * address registers. For Sundance 1023 you can only read it
544 * from EEPROM.
545 */
546 if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
547 enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
548 STGE_StationAddress0) & 0xff;
549 enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
550 STGE_StationAddress0) >> 8;
551 enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
552 STGE_StationAddress1) & 0xff;
553 enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
554 STGE_StationAddress1) >> 8;
555 enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
556 STGE_StationAddress2) & 0xff;
557 enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
558 STGE_StationAddress2) >> 8;
559 sc->sc_stge1023 = 0;
560 } else {
561 data = prop_dictionary_get(device_properties(self),
562 "mac-address");
563 if (data != NULL) {
564 /*
565 * Try to get the station address from device
566 * properties first, in case the EEPROM is missing.
567 */
568 KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
569 KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
570 (void)memcpy(enaddr, prop_data_data_nocopy(data),
571 ETHER_ADDR_LEN);
572 } else {
573 uint16_t myaddr[ETHER_ADDR_LEN / 2];
574 for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
575 stge_read_eeprom(sc,
576 STGE_EEPROM_StationAddress0 + i,
577 &myaddr[i]);
578 myaddr[i] = le16toh(myaddr[i]);
579 }
580 (void)memcpy(enaddr, myaddr, sizeof(enaddr));
581 }
582 sc->sc_stge1023 = 1;
583 }
584
585 aprint_normal_dev(self, "Ethernet address %s\n",
586 ether_sprintf(enaddr));
587
588 /*
589 * Read some important bits from the PhyCtrl register.
590 */
591 sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
592 STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
593
594 /*
595 * Initialize our media structures and probe the MII.
596 */
597 sc->sc_mii.mii_ifp = ifp;
598 sc->sc_mii.mii_readreg = stge_mii_readreg;
599 sc->sc_mii.mii_writereg = stge_mii_writereg;
600 sc->sc_mii.mii_statchg = stge_mii_statchg;
601 sc->sc_ethercom.ec_mii = &sc->sc_mii;
602 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
603 ether_mediastatus);
604 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
605 MII_OFFSET_ANY, MIIF_DOPAUSE);
606 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
607 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
608 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
609 } else
610 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
611
612 ifp = &sc->sc_ethercom.ec_if;
613 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
614 ifp->if_softc = sc;
615 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
616 ifp->if_ioctl = stge_ioctl;
617 ifp->if_start = stge_start;
618 ifp->if_watchdog = stge_watchdog;
619 ifp->if_init = stge_init;
620 ifp->if_stop = stge_stop;
621 IFQ_SET_READY(&ifp->if_snd);
622
623 /*
624 * The manual recommends disabling early transmit, so we
625 * do. It's disabled anyway, if using IP checksumming,
626 * since the entire packet must be in the FIFO in order
627 * for the chip to perform the checksum.
628 */
629 sc->sc_txthresh = 0x0fff;
630
631 /*
632 * Disable MWI if the PCI layer tells us to.
633 */
634 sc->sc_DMACtrl = 0;
635 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
636 sc->sc_DMACtrl |= DMAC_MWIDisable;
637
638 /*
639 * We can support 802.1Q VLAN-sized frames and jumbo
640 * Ethernet frames.
641 *
642 * XXX Figure out how to do hw-assisted VLAN tagging in
643 * XXX a reasonable way on this chip.
644 */
645 sc->sc_ethercom.ec_capabilities |=
646 ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
647 ETHERCAP_VLAN_HWTAGGING;
648
649 /*
650 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
651 */
652 sc->sc_ethercom.ec_if.if_capabilities |=
653 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
654 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
655 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
656
657 /*
658 * Attach the interface.
659 */
660 if_attach(ifp);
661 if_deferred_start_init(ifp, NULL);
662 ether_ifattach(ifp, enaddr);
663
664 #ifdef STGE_EVENT_COUNTERS
665 /*
666 * Attach event counters.
667 */
668 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
669 NULL, device_xname(self), "txstall");
670 evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
671 NULL, device_xname(self), "txdmaintr");
672 evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
673 NULL, device_xname(self), "txindintr");
674 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
675 NULL, device_xname(self), "rxintr");
676
677 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
678 NULL, device_xname(self), "txseg1");
679 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
680 NULL, device_xname(self), "txseg2");
681 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
682 NULL, device_xname(self), "txseg3");
683 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
684 NULL, device_xname(self), "txseg4");
685 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
686 NULL, device_xname(self), "txseg5");
687 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
688 NULL, device_xname(self), "txsegmore");
689 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
690 NULL, device_xname(self), "txcopy");
691
692 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
693 NULL, device_xname(self), "rxipsum");
694 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
695 NULL, device_xname(self), "rxtcpsum");
696 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
697 NULL, device_xname(self), "rxudpsum");
698 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
699 NULL, device_xname(self), "txipsum");
700 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
701 NULL, device_xname(self), "txtcpsum");
702 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
703 NULL, device_xname(self), "txudpsum");
704 #endif /* STGE_EVENT_COUNTERS */
705
706 /*
707 * Make sure the interface is shutdown during reboot.
708 */
709 if (pmf_device_register1(self, NULL, NULL, stge_shutdown))
710 pmf_class_network_register(self, ifp);
711 else
712 aprint_error_dev(self, "couldn't establish power handler\n");
713
714 return;
715
716 /*
717 * Free any resources we've allocated during the failed attach
718 * attempt. Do this in reverse order and fall through.
719 */
720 fail_5:
721 for (i = 0; i < STGE_NRXDESC; i++) {
722 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
723 bus_dmamap_destroy(sc->sc_dmat,
724 sc->sc_rxsoft[i].ds_dmamap);
725 }
726 fail_4:
727 for (i = 0; i < STGE_NTXDESC; i++) {
728 if (sc->sc_txsoft[i].ds_dmamap != NULL)
729 bus_dmamap_destroy(sc->sc_dmat,
730 sc->sc_txsoft[i].ds_dmamap);
731 }
732 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
733 fail_3:
734 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
735 fail_2:
736 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
737 sizeof(struct stge_control_data));
738 fail_1:
739 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
740 fail_0:
741 return;
742 }
743
744 /*
745 * stge_shutdown:
746 *
747 * Make sure the interface is stopped at reboot time.
748 */
749 static bool
750 stge_shutdown(device_t self, int howto)
751 {
752 struct stge_softc *sc = device_private(self);
753 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
754
755 stge_stop(ifp, 1);
756 stge_reset(sc);
757 return true;
758 }
759
760 static void
761 stge_dma_wait(struct stge_softc *sc)
762 {
763 int i;
764
765 for (i = 0; i < STGE_TIMEOUT; i++) {
766 delay(2);
767 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
768 DMAC_TxDMAInProg) == 0)
769 break;
770 }
771
772 if (i == STGE_TIMEOUT)
773 printf("%s: DMA wait timed out\n", device_xname(sc->sc_dev));
774 }
775
776 /*
777 * stge_start: [ifnet interface function]
778 *
779 * Start packet transmission on the interface.
780 */
781 static void
782 stge_start(struct ifnet *ifp)
783 {
784 struct stge_softc *sc = ifp->if_softc;
785 struct mbuf *m0;
786 struct stge_descsoft *ds;
787 struct stge_tfd *tfd;
788 bus_dmamap_t dmamap;
789 int error, firsttx, nexttx, opending, seg, totlen;
790 uint64_t csum_flags;
791
792 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
793 return;
794
795 /*
796 * Remember the previous number of pending transmissions
797 * and the first descriptor we will use.
798 */
799 opending = sc->sc_txpending;
800 firsttx = STGE_NEXTTX(sc->sc_txlast);
801
802 /*
803 * Loop through the send queue, setting up transmit descriptors
804 * until we drain the queue, or use up all available transmit
805 * descriptors.
806 */
807 for (;;) {
808 uint64_t tfc;
809 bool have_vtag;
810 uint16_t vtag;
811
812 /*
813 * Grab a packet off the queue.
814 */
815 IFQ_POLL(&ifp->if_snd, m0);
816 if (m0 == NULL)
817 break;
818
819 /*
820 * Leave one unused descriptor at the end of the
821 * list to prevent wrapping completely around.
822 */
823 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
824 STGE_EVCNT_INCR(&sc->sc_ev_txstall);
825 break;
826 }
827
828 /*
829 * See if we have any VLAN stuff.
830 */
831 have_vtag = vlan_has_tag(m0);
832 if (have_vtag)
833 vtag = vlan_get_tag(m0);
834
835 /*
836 * Get the last and next available transmit descriptor.
837 */
838 nexttx = STGE_NEXTTX(sc->sc_txlast);
839 tfd = &sc->sc_txdescs[nexttx];
840 ds = &sc->sc_txsoft[nexttx];
841
842 dmamap = ds->ds_dmamap;
843
844 /*
845 * Load the DMA map. If this fails, the packet either
846 * didn't fit in the alloted number of segments, or we
847 * were short on resources. For the too-many-segments
848 * case, we simply report an error and drop the packet,
849 * since we can't sanely copy a jumbo packet to a single
850 * buffer.
851 */
852 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
853 BUS_DMA_NOWAIT);
854 if (error) {
855 if (error == EFBIG) {
856 printf("%s: Tx packet consumes too many "
857 "DMA segments, dropping...\n",
858 device_xname(sc->sc_dev));
859 IFQ_DEQUEUE(&ifp->if_snd, m0);
860 m_freem(m0);
861 continue;
862 }
863 /*
864 * Short on resources, just stop for now.
865 */
866 break;
867 }
868
869 IFQ_DEQUEUE(&ifp->if_snd, m0);
870
871 /*
872 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
873 */
874
875 /* Sync the DMA map. */
876 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
877 BUS_DMASYNC_PREWRITE);
878
879 /* Initialize the fragment list. */
880 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
881 tfd->tfd_frags[seg].frag_word0 =
882 htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
883 FRAG_LEN(dmamap->dm_segs[seg].ds_len));
884 totlen += dmamap->dm_segs[seg].ds_len;
885 }
886
887 #ifdef STGE_EVENT_COUNTERS
888 switch (dmamap->dm_nsegs) {
889 case 1:
890 STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
891 break;
892 case 2:
893 STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
894 break;
895 case 3:
896 STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
897 break;
898 case 4:
899 STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
900 break;
901 case 5:
902 STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
903 break;
904 default:
905 STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
906 break;
907 }
908 #endif /* STGE_EVENT_COUNTERS */
909
910 /*
911 * Initialize checksumming flags in the descriptor.
912 * Byte-swap constants so the compiler can optimize.
913 */
914 csum_flags = 0;
915 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
916 STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
917 csum_flags |= TFD_IPChecksumEnable;
918 }
919
920 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
921 STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
922 csum_flags |= TFD_TCPChecksumEnable;
923 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
924 STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
925 csum_flags |= TFD_UDPChecksumEnable;
926 }
927
928 /*
929 * Initialize the descriptor and give it to the chip.
930 * Check to see if we have a VLAN tag to insert.
931 */
932
933 tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
934 TFD_FragCount(seg) | csum_flags |
935 (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
936 TFD_TxDMAIndicate : 0);
937 if (have_vtag) {
938 #if 0
939 struct ether_header *eh =
940 mtod(m0, struct ether_header *);
941 u_int16_t etype = ntohs(eh->ether_type);
942 printf("%s: xmit (tag %d) etype %x\n",
943 ifp->if_xname, *mtod(n, int *), etype);
944 #endif
945 tfc |= TFD_VLANTagInsert |
946 #ifdef STGE_VLAN_CFI
947 TFD_CFI |
948 #endif
949 TFD_VID(vtag);
950 }
951 tfd->tfd_control = htole64(tfc);
952
953 /* Sync the descriptor. */
954 STGE_CDTXSYNC(sc, nexttx,
955 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
956
957 /*
958 * Kick the transmit DMA logic.
959 */
960 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
961 sc->sc_DMACtrl | DMAC_TxDMAPollNow);
962
963 /*
964 * Store a pointer to the packet so we can free it later.
965 */
966 ds->ds_mbuf = m0;
967
968 /* Advance the tx pointer. */
969 sc->sc_txpending++;
970 sc->sc_txlast = nexttx;
971
972 /*
973 * Pass the packet to any BPF listeners.
974 */
975 bpf_mtap(ifp, m0);
976 }
977
978 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
979 /* No more slots left; notify upper layer. */
980 ifp->if_flags |= IFF_OACTIVE;
981 }
982
983 if (sc->sc_txpending != opending) {
984 /*
985 * We enqueued packets. If the transmitter was idle,
986 * reset the txdirty pointer.
987 */
988 if (opending == 0)
989 sc->sc_txdirty = firsttx;
990
991 /* Set a watchdog timer in case the chip flakes out. */
992 ifp->if_timer = 5;
993 }
994 }
995
996 /*
997 * stge_watchdog: [ifnet interface function]
998 *
999 * Watchdog timer handler.
1000 */
1001 static void
1002 stge_watchdog(struct ifnet *ifp)
1003 {
1004 struct stge_softc *sc = ifp->if_softc;
1005
1006 /*
1007 * Sweep up first, since we don't interrupt every frame.
1008 */
1009 stge_txintr(sc);
1010 if (sc->sc_txpending != 0) {
1011 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1012 ifp->if_oerrors++;
1013
1014 (void) stge_init(ifp);
1015
1016 /* Try to get more packets going. */
1017 stge_start(ifp);
1018 }
1019 }
1020
1021 /*
1022 * stge_ioctl: [ifnet interface function]
1023 *
1024 * Handle control requests from the operator.
1025 */
1026 static int
1027 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1028 {
1029 struct stge_softc *sc = ifp->if_softc;
1030 int s, error;
1031
1032 s = splnet();
1033
1034 error = ether_ioctl(ifp, cmd, data);
1035 if (error == ENETRESET) {
1036 error = 0;
1037
1038 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1039 ;
1040 else if (ifp->if_flags & IFF_RUNNING) {
1041 /*
1042 * Multicast list has changed; set the hardware filter
1043 * accordingly.
1044 */
1045 stge_set_filter(sc);
1046 }
1047 }
1048
1049 /* Try to get more packets going. */
1050 stge_start(ifp);
1051
1052 splx(s);
1053 return (error);
1054 }
1055
1056 /*
1057 * stge_intr:
1058 *
1059 * Interrupt service routine.
1060 */
1061 static int
1062 stge_intr(void *arg)
1063 {
1064 struct stge_softc *sc = arg;
1065 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1066 uint32_t txstat;
1067 int wantinit;
1068 uint16_t isr;
1069
1070 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1071 IS_InterruptStatus) == 0)
1072 return (0);
1073
1074 for (wantinit = 0; wantinit == 0;) {
1075 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1076 if ((isr & sc->sc_IntEnable) == 0)
1077 break;
1078
1079 /* Host interface errors. */
1080 if (isr & IS_HostError) {
1081 printf("%s: Host interface error\n",
1082 device_xname(sc->sc_dev));
1083 wantinit = 1;
1084 continue;
1085 }
1086
1087 /* Receive interrupts. */
1088 if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
1089 STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1090 stge_rxintr(sc);
1091 if (isr & IS_RFDListEnd) {
1092 printf("%s: receive ring overflow\n",
1093 device_xname(sc->sc_dev));
1094 /*
1095 * XXX Should try to recover from this
1096 * XXX more gracefully.
1097 */
1098 wantinit = 1;
1099 }
1100 }
1101
1102 /* Transmit interrupts. */
1103 if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
1104 #ifdef STGE_EVENT_COUNTERS
1105 if (isr & IS_TxDMAComplete)
1106 STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1107 #endif
1108 stge_txintr(sc);
1109 }
1110
1111 /* Statistics overflow. */
1112 if (isr & IS_UpdateStats)
1113 stge_stats_update(sc);
1114
1115 /* Transmission errors. */
1116 if (isr & IS_TxComplete) {
1117 STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1118 for (;;) {
1119 txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1120 STGE_TxStatus);
1121 if ((txstat & TS_TxComplete) == 0)
1122 break;
1123 if (txstat & TS_TxUnderrun) {
1124 sc->sc_txthresh++;
1125 if (sc->sc_txthresh > 0x0fff)
1126 sc->sc_txthresh = 0x0fff;
1127 printf("%s: transmit underrun, new "
1128 "threshold: %d bytes\n",
1129 device_xname(sc->sc_dev),
1130 sc->sc_txthresh << 5);
1131 }
1132 if (txstat & TS_MaxCollisions)
1133 printf("%s: excessive collisions\n",
1134 device_xname(sc->sc_dev));
1135 }
1136 wantinit = 1;
1137 }
1138
1139 }
1140
1141 if (wantinit)
1142 stge_init(ifp);
1143
1144 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1145 sc->sc_IntEnable);
1146
1147 /* Try to get more packets going. */
1148 if_schedule_deferred_start(ifp);
1149
1150 return (1);
1151 }
1152
1153 /*
1154 * stge_txintr:
1155 *
1156 * Helper; handle transmit interrupts.
1157 */
1158 static void
1159 stge_txintr(struct stge_softc *sc)
1160 {
1161 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1162 struct stge_descsoft *ds;
1163 uint64_t control;
1164 int i;
1165
1166 ifp->if_flags &= ~IFF_OACTIVE;
1167
1168 /*
1169 * Go through our Tx list and free mbufs for those
1170 * frames which have been transmitted.
1171 */
1172 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1173 i = STGE_NEXTTX(i), sc->sc_txpending--) {
1174 ds = &sc->sc_txsoft[i];
1175
1176 STGE_CDTXSYNC(sc, i,
1177 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1178
1179 control = le64toh(sc->sc_txdescs[i].tfd_control);
1180 if ((control & TFD_TFDDone) == 0)
1181 break;
1182
1183 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1184 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1185 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1186 m_freem(ds->ds_mbuf);
1187 ds->ds_mbuf = NULL;
1188 }
1189
1190 /* Update the dirty transmit buffer pointer. */
1191 sc->sc_txdirty = i;
1192
1193 /*
1194 * If there are no more pending transmissions, cancel the watchdog
1195 * timer.
1196 */
1197 if (sc->sc_txpending == 0)
1198 ifp->if_timer = 0;
1199 }
1200
1201 /*
1202 * stge_rxintr:
1203 *
1204 * Helper; handle receive interrupts.
1205 */
1206 static void
1207 stge_rxintr(struct stge_softc *sc)
1208 {
1209 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1210 struct stge_descsoft *ds;
1211 struct mbuf *m, *tailm;
1212 uint64_t status;
1213 int i, len;
1214
1215 for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1216 ds = &sc->sc_rxsoft[i];
1217
1218 STGE_CDRXSYNC(sc, i,
1219 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1220
1221 status = le64toh(sc->sc_rxdescs[i].rfd_status);
1222
1223 if ((status & RFD_RFDDone) == 0)
1224 break;
1225
1226 if (__predict_false(sc->sc_rxdiscard)) {
1227 STGE_INIT_RXDESC(sc, i);
1228 if (status & RFD_FrameEnd) {
1229 /* Reset our state. */
1230 sc->sc_rxdiscard = 0;
1231 }
1232 continue;
1233 }
1234
1235 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1236 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1237
1238 m = ds->ds_mbuf;
1239
1240 /*
1241 * Add a new receive buffer to the ring.
1242 */
1243 if (stge_add_rxbuf(sc, i) != 0) {
1244 /*
1245 * Failed, throw away what we've done so
1246 * far, and discard the rest of the packet.
1247 */
1248 ifp->if_ierrors++;
1249 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1250 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1251 STGE_INIT_RXDESC(sc, i);
1252 if ((status & RFD_FrameEnd) == 0)
1253 sc->sc_rxdiscard = 1;
1254 if (sc->sc_rxhead != NULL)
1255 m_freem(sc->sc_rxhead);
1256 STGE_RXCHAIN_RESET(sc);
1257 continue;
1258 }
1259
1260 #ifdef DIAGNOSTIC
1261 if (status & RFD_FrameStart) {
1262 KASSERT(sc->sc_rxhead == NULL);
1263 KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1264 }
1265 #endif
1266
1267 STGE_RXCHAIN_LINK(sc, m);
1268
1269 /*
1270 * If this is not the end of the packet, keep
1271 * looking.
1272 */
1273 if ((status & RFD_FrameEnd) == 0) {
1274 sc->sc_rxlen += m->m_len;
1275 continue;
1276 }
1277
1278 /*
1279 * Okay, we have the entire packet now...
1280 */
1281 *sc->sc_rxtailp = NULL;
1282 m = sc->sc_rxhead;
1283 tailm = sc->sc_rxtail;
1284
1285 STGE_RXCHAIN_RESET(sc);
1286
1287 /*
1288 * If the packet had an error, drop it. Note we
1289 * count the error later in the periodic stats update.
1290 */
1291 if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1292 RFD_RxAlignmentError | RFD_RxFCSError |
1293 RFD_RxLengthError)) {
1294 m_freem(m);
1295 continue;
1296 }
1297
1298 /*
1299 * No errors.
1300 *
1301 * Note we have configured the chip to not include
1302 * the CRC at the end of the packet.
1303 */
1304 len = RFD_RxDMAFrameLen(status);
1305 tailm->m_len = len - sc->sc_rxlen;
1306
1307 /*
1308 * If the packet is small enough to fit in a
1309 * single header mbuf, allocate one and copy
1310 * the data into it. This greatly reduces
1311 * memory consumption when we receive lots
1312 * of small packets.
1313 */
1314 if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1315 struct mbuf *nm;
1316 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1317 if (nm == NULL) {
1318 ifp->if_ierrors++;
1319 m_freem(m);
1320 continue;
1321 }
1322 nm->m_data += 2;
1323 nm->m_pkthdr.len = nm->m_len = len;
1324 m_copydata(m, 0, len, mtod(nm, void *));
1325 m_freem(m);
1326 m = nm;
1327 }
1328
1329 /*
1330 * Set the incoming checksum information for the packet.
1331 */
1332 if (status & RFD_IPDetected) {
1333 STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1334 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1335 if (status & RFD_IPError)
1336 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1337 if (status & RFD_TCPDetected) {
1338 STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1339 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1340 if (status & RFD_TCPError)
1341 m->m_pkthdr.csum_flags |=
1342 M_CSUM_TCP_UDP_BAD;
1343 } else if (status & RFD_UDPDetected) {
1344 STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1345 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1346 if (status & RFD_UDPError)
1347 m->m_pkthdr.csum_flags |=
1348 M_CSUM_TCP_UDP_BAD;
1349 }
1350 }
1351
1352 m_set_rcvif(m, ifp);
1353 m->m_pkthdr.len = len;
1354
1355 /*
1356 * Pass this up to any BPF listeners, but only
1357 * pass if up the stack if it's for us.
1358 */
1359 #ifdef STGE_VLAN_UNTAG
1360 /*
1361 * Check for VLAN tagged packets
1362 */
1363 if (status & RFD_VLANDetected)
1364 vlan_set_tag(m, RFD_TCI(status));
1365
1366 #endif
1367 #if 0
1368 if (status & RFD_VLANDetected) {
1369 struct ether_header *eh;
1370 u_int16_t etype;
1371
1372 eh = mtod(m, struct ether_header *);
1373 etype = ntohs(eh->ether_type);
1374 printf("%s: VLANtag detected (TCI %d) etype %x\n",
1375 ifp->if_xname, (u_int16_t) RFD_TCI(status),
1376 etype);
1377 }
1378 #endif
1379 /* Pass it on. */
1380 if_percpuq_enqueue(ifp->if_percpuq, m);
1381 }
1382
1383 /* Update the receive pointer. */
1384 sc->sc_rxptr = i;
1385 }
1386
1387 /*
1388 * stge_tick:
1389 *
1390 * One second timer, used to tick the MII.
1391 */
1392 static void
1393 stge_tick(void *arg)
1394 {
1395 struct stge_softc *sc = arg;
1396 int s;
1397
1398 s = splnet();
1399 mii_tick(&sc->sc_mii);
1400 stge_stats_update(sc);
1401 splx(s);
1402
1403 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1404 }
1405
1406 /*
1407 * stge_stats_update:
1408 *
1409 * Read the TC9021 statistics counters.
1410 */
1411 static void
1412 stge_stats_update(struct stge_softc *sc)
1413 {
1414 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1415 bus_space_tag_t st = sc->sc_st;
1416 bus_space_handle_t sh = sc->sc_sh;
1417
1418 (void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1419
1420 ifp->if_ipackets +=
1421 bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1422
1423 ifp->if_ierrors +=
1424 (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1425
1426 (void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1427
1428 ifp->if_opackets +=
1429 bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1430
1431 ifp->if_collisions +=
1432 bus_space_read_4(st, sh, STGE_LateCollisions) +
1433 bus_space_read_4(st, sh, STGE_MultiColFrames) +
1434 bus_space_read_4(st, sh, STGE_SingleColFrames);
1435
1436 ifp->if_oerrors +=
1437 (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1438 (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1439 }
1440
1441 /*
1442 * stge_reset:
1443 *
1444 * Perform a soft reset on the TC9021.
1445 */
1446 static void
1447 stge_reset(struct stge_softc *sc)
1448 {
1449 uint32_t ac;
1450 int i;
1451
1452 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1453
1454 /*
1455 * Only assert RstOut if we're fiber. We need GMII clocks
1456 * to be present in order for the reset to complete on fiber
1457 * cards.
1458 */
1459 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1460 ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1461 AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1462 (sc->sc_usefiber ? AC_RstOut : 0));
1463
1464 delay(50000);
1465
1466 for (i = 0; i < STGE_TIMEOUT; i++) {
1467 delay(5000);
1468 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1469 AC_ResetBusy) == 0)
1470 break;
1471 }
1472
1473 if (i == STGE_TIMEOUT)
1474 printf("%s: reset failed to complete\n",
1475 device_xname(sc->sc_dev));
1476
1477 delay(1000);
1478 }
1479
1480 /*
1481 * stge_init: [ ifnet interface function ]
1482 *
1483 * Initialize the interface. Must be called at splnet().
1484 */
1485 static int
1486 stge_init(struct ifnet *ifp)
1487 {
1488 struct stge_softc *sc = ifp->if_softc;
1489 bus_space_tag_t st = sc->sc_st;
1490 bus_space_handle_t sh = sc->sc_sh;
1491 struct stge_descsoft *ds;
1492 int i, error = 0;
1493
1494 /*
1495 * Cancel any pending I/O.
1496 */
1497 stge_stop(ifp, 0);
1498
1499 /*
1500 * Reset the chip to a known state.
1501 */
1502 stge_reset(sc);
1503
1504 /*
1505 * Initialize the transmit descriptor ring.
1506 */
1507 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1508 for (i = 0; i < STGE_NTXDESC; i++) {
1509 sc->sc_txdescs[i].tfd_next = htole64(
1510 STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1511 sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1512 }
1513 sc->sc_txpending = 0;
1514 sc->sc_txdirty = 0;
1515 sc->sc_txlast = STGE_NTXDESC - 1;
1516
1517 /*
1518 * Initialize the receive descriptor and receive job
1519 * descriptor rings.
1520 */
1521 for (i = 0; i < STGE_NRXDESC; i++) {
1522 ds = &sc->sc_rxsoft[i];
1523 if (ds->ds_mbuf == NULL) {
1524 if ((error = stge_add_rxbuf(sc, i)) != 0) {
1525 printf("%s: unable to allocate or map rx "
1526 "buffer %d, error = %d\n",
1527 device_xname(sc->sc_dev), i, error);
1528 /*
1529 * XXX Should attempt to run with fewer receive
1530 * XXX buffers instead of just failing.
1531 */
1532 stge_rxdrain(sc);
1533 goto out;
1534 }
1535 } else
1536 STGE_INIT_RXDESC(sc, i);
1537 }
1538 sc->sc_rxptr = 0;
1539 sc->sc_rxdiscard = 0;
1540 STGE_RXCHAIN_RESET(sc);
1541
1542 /* Set the station address. */
1543 for (i = 0; i < 6; i++)
1544 bus_space_write_1(st, sh, STGE_StationAddress0 + i,
1545 CLLADDR(ifp->if_sadl)[i]);
1546
1547 /*
1548 * Set the statistics masks. Disable all the RMON stats,
1549 * and disable selected stats in the non-RMON stats registers.
1550 */
1551 bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1552 bus_space_write_4(st, sh, STGE_StatisticsMask,
1553 (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1554 (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1555 (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1556 (1U << 21));
1557
1558 /* Set up the receive filter. */
1559 stge_set_filter(sc);
1560
1561 /*
1562 * Give the transmit and receive ring to the chip.
1563 */
1564 bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1565 bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1566 STGE_CDTXADDR(sc, sc->sc_txdirty));
1567
1568 bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1569 bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1570 STGE_CDRXADDR(sc, sc->sc_rxptr));
1571
1572 /*
1573 * Initialize the Tx auto-poll period. It's OK to make this number
1574 * large (255 is the max, but we use 127) -- we explicitly kick the
1575 * transmit engine when there's actually a packet.
1576 */
1577 bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1578
1579 /* ..and the Rx auto-poll period. */
1580 bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1581
1582 /* Initialize the Tx start threshold. */
1583 bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1584
1585 /* RX DMA thresholds, from linux */
1586 bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
1587 bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
1588
1589 /*
1590 * Initialize the Rx DMA interrupt control register. We
1591 * request an interrupt after every incoming packet, but
1592 * defer it for 32us (64 * 512 ns). When the number of
1593 * interrupts pending reaches 8, we stop deferring the
1594 * interrupt, and signal it immediately.
1595 */
1596 bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1597 RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1598
1599 /*
1600 * Initialize the interrupt mask.
1601 */
1602 sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1603 IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1604 bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1605 bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1606
1607 /*
1608 * Configure the DMA engine.
1609 * XXX Should auto-tune TxBurstLimit.
1610 */
1611 bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1612 DMAC_TxBurstLimit(3));
1613
1614 /*
1615 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1616 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1617 * empty again.
1618 */
1619 bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1620 bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1621
1622 /*
1623 * Set the maximum frame size.
1624 */
1625 bus_space_write_2(st, sh, STGE_MaxFrameSize,
1626 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1627 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1628 ETHER_VLAN_ENCAP_LEN : 0));
1629
1630 /*
1631 * Initialize MacCtrl -- do it before setting the media,
1632 * as setting the media will actually program the register.
1633 *
1634 * Note: We have to poke the IFS value before poking
1635 * anything else.
1636 */
1637 sc->sc_MACCtrl = MC_IFSSelect(0);
1638 bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1639 sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1640 #ifdef STGE_VLAN_UNTAG
1641 sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1642 #endif
1643
1644 if (sc->sc_rev >= 6) { /* >= B.2 */
1645 /* Multi-frag frame bug work-around. */
1646 bus_space_write_2(st, sh, STGE_DebugCtrl,
1647 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1648
1649 /* Tx Poll Now bug work-around. */
1650 bus_space_write_2(st, sh, STGE_DebugCtrl,
1651 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1652 /* XXX ? from linux */
1653 bus_space_write_2(st, sh, STGE_DebugCtrl,
1654 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
1655 }
1656
1657 /*
1658 * Set the current media.
1659 */
1660 if ((error = ether_mediachange(ifp)) != 0)
1661 goto out;
1662
1663 /*
1664 * Start the one second MII clock.
1665 */
1666 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1667
1668 /*
1669 * ...all done!
1670 */
1671 ifp->if_flags |= IFF_RUNNING;
1672 ifp->if_flags &= ~IFF_OACTIVE;
1673
1674 out:
1675 if (error)
1676 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1677 return (error);
1678 }
1679
1680 /*
1681 * stge_drain:
1682 *
1683 * Drain the receive queue.
1684 */
1685 static void
1686 stge_rxdrain(struct stge_softc *sc)
1687 {
1688 struct stge_descsoft *ds;
1689 int i;
1690
1691 for (i = 0; i < STGE_NRXDESC; i++) {
1692 ds = &sc->sc_rxsoft[i];
1693 if (ds->ds_mbuf != NULL) {
1694 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1695 ds->ds_mbuf->m_next = NULL;
1696 m_freem(ds->ds_mbuf);
1697 ds->ds_mbuf = NULL;
1698 }
1699 }
1700 }
1701
1702 /*
1703 * stge_stop: [ ifnet interface function ]
1704 *
1705 * Stop transmission on the interface.
1706 */
1707 static void
1708 stge_stop(struct ifnet *ifp, int disable)
1709 {
1710 struct stge_softc *sc = ifp->if_softc;
1711 struct stge_descsoft *ds;
1712 int i;
1713
1714 /*
1715 * Stop the one second clock.
1716 */
1717 callout_stop(&sc->sc_tick_ch);
1718
1719 /* Down the MII. */
1720 mii_down(&sc->sc_mii);
1721
1722 /*
1723 * Disable interrupts.
1724 */
1725 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1726
1727 /*
1728 * Stop receiver, transmitter, and stats update.
1729 */
1730 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1731 MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1732
1733 /*
1734 * Stop the transmit and receive DMA.
1735 */
1736 stge_dma_wait(sc);
1737 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1738 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1739 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1740 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1741
1742 /*
1743 * Release any queued transmit buffers.
1744 */
1745 for (i = 0; i < STGE_NTXDESC; i++) {
1746 ds = &sc->sc_txsoft[i];
1747 if (ds->ds_mbuf != NULL) {
1748 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1749 m_freem(ds->ds_mbuf);
1750 ds->ds_mbuf = NULL;
1751 }
1752 }
1753
1754 /*
1755 * Mark the interface down and cancel the watchdog timer.
1756 */
1757 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1758 ifp->if_timer = 0;
1759
1760 if (disable)
1761 stge_rxdrain(sc);
1762 }
1763
1764 static int
1765 stge_eeprom_wait(struct stge_softc *sc)
1766 {
1767 int i;
1768
1769 for (i = 0; i < STGE_TIMEOUT; i++) {
1770 delay(1000);
1771 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1772 EC_EepromBusy) == 0)
1773 return (0);
1774 }
1775 return (1);
1776 }
1777
1778 /*
1779 * stge_read_eeprom:
1780 *
1781 * Read data from the serial EEPROM.
1782 */
1783 static void
1784 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1785 {
1786
1787 if (stge_eeprom_wait(sc))
1788 printf("%s: EEPROM failed to come ready\n",
1789 device_xname(sc->sc_dev));
1790
1791 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1792 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1793 if (stge_eeprom_wait(sc))
1794 printf("%s: EEPROM read timed out\n",
1795 device_xname(sc->sc_dev));
1796 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1797 }
1798
1799 /*
1800 * stge_add_rxbuf:
1801 *
1802 * Add a receive buffer to the indicated descriptor.
1803 */
1804 static int
1805 stge_add_rxbuf(struct stge_softc *sc, int idx)
1806 {
1807 struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1808 struct mbuf *m;
1809 int error;
1810
1811 MGETHDR(m, M_DONTWAIT, MT_DATA);
1812 if (m == NULL)
1813 return (ENOBUFS);
1814
1815 MCLGET(m, M_DONTWAIT);
1816 if ((m->m_flags & M_EXT) == 0) {
1817 m_freem(m);
1818 return (ENOBUFS);
1819 }
1820
1821 m->m_data = m->m_ext.ext_buf + 2;
1822 m->m_len = MCLBYTES - 2;
1823
1824 if (ds->ds_mbuf != NULL)
1825 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1826
1827 ds->ds_mbuf = m;
1828
1829 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1830 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1831 if (error) {
1832 printf("%s: can't load rx DMA map %d, error = %d\n",
1833 device_xname(sc->sc_dev), idx, error);
1834 panic("stge_add_rxbuf"); /* XXX */
1835 }
1836
1837 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1838 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1839
1840 STGE_INIT_RXDESC(sc, idx);
1841
1842 return (0);
1843 }
1844
1845 /*
1846 * stge_set_filter:
1847 *
1848 * Set up the receive filter.
1849 */
1850 static void
1851 stge_set_filter(struct stge_softc *sc)
1852 {
1853 struct ethercom *ec = &sc->sc_ethercom;
1854 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1855 struct ether_multi *enm;
1856 struct ether_multistep step;
1857 uint32_t crc;
1858 uint32_t mchash[2];
1859
1860 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1861 if (ifp->if_flags & IFF_BROADCAST)
1862 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1863
1864 /* XXX: ST1023 only works in promiscuous mode */
1865 if (sc->sc_stge1023)
1866 ifp->if_flags |= IFF_PROMISC;
1867
1868 if (ifp->if_flags & IFF_PROMISC) {
1869 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1870 goto allmulti;
1871 }
1872
1873 /*
1874 * Set up the multicast address filter by passing all multicast
1875 * addresses through a CRC generator, and then using the low-order
1876 * 6 bits as an index into the 64 bit multicast hash table. The
1877 * high order bits select the register, while the rest of the bits
1878 * select the bit within the register.
1879 */
1880
1881 memset(mchash, 0, sizeof(mchash));
1882
1883 ETHER_FIRST_MULTI(step, ec, enm);
1884 if (enm == NULL)
1885 goto done;
1886
1887 while (enm != NULL) {
1888 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1889 /*
1890 * We must listen to a range of multicast addresses.
1891 * For now, just accept all multicasts, rather than
1892 * trying to set only those filter bits needed to match
1893 * the range. (At this time, the only use of address
1894 * ranges is for IP multicast routing, for which the
1895 * range is big enough to require all bits set.)
1896 */
1897 goto allmulti;
1898 }
1899
1900 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1901
1902 /* Just want the 6 least significant bits. */
1903 crc &= 0x3f;
1904
1905 /* Set the corresponding bit in the hash table. */
1906 mchash[crc >> 5] |= 1 << (crc & 0x1f);
1907
1908 ETHER_NEXT_MULTI(step, enm);
1909 }
1910
1911 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1912
1913 ifp->if_flags &= ~IFF_ALLMULTI;
1914 goto done;
1915
1916 allmulti:
1917 ifp->if_flags |= IFF_ALLMULTI;
1918 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1919
1920 done:
1921 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1922 /*
1923 * Program the multicast hash table.
1924 */
1925 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1926 mchash[0]);
1927 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1928 mchash[1]);
1929 }
1930
1931 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1932 sc->sc_ReceiveMode);
1933 }
1934
1935 /*
1936 * stge_mii_readreg: [mii interface function]
1937 *
1938 * Read a PHY register on the MII of the TC9021.
1939 */
1940 static int
1941 stge_mii_readreg(device_t self, int phy, int reg)
1942 {
1943
1944 return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1945 }
1946
1947 /*
1948 * stge_mii_writereg: [mii interface function]
1949 *
1950 * Write a PHY register on the MII of the TC9021.
1951 */
1952 static void
1953 stge_mii_writereg(device_t self, int phy, int reg, int val)
1954 {
1955
1956 mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1957 }
1958
1959 /*
1960 * stge_mii_statchg: [mii interface function]
1961 *
1962 * Callback from MII layer when media changes.
1963 */
1964 static void
1965 stge_mii_statchg(struct ifnet *ifp)
1966 {
1967 struct stge_softc *sc = ifp->if_softc;
1968
1969 if (sc->sc_mii.mii_media_active & IFM_FDX)
1970 sc->sc_MACCtrl |= MC_DuplexSelect;
1971 else
1972 sc->sc_MACCtrl &= ~MC_DuplexSelect;
1973
1974 /* XXX 802.1x flow-control? */
1975
1976 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1977 }
1978
1979 /*
1980 * sste_mii_bitbang_read: [mii bit-bang interface function]
1981 *
1982 * Read the MII serial port for the MII bit-bang module.
1983 */
1984 static uint32_t
1985 stge_mii_bitbang_read(device_t self)
1986 {
1987 struct stge_softc *sc = device_private(self);
1988
1989 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
1990 }
1991
1992 /*
1993 * stge_mii_bitbang_write: [mii big-bang interface function]
1994 *
1995 * Write the MII serial port for the MII bit-bang module.
1996 */
1997 static void
1998 stge_mii_bitbang_write(device_t self, uint32_t val)
1999 {
2000 struct stge_softc *sc = device_private(self);
2001
2002 bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
2003 val | sc->sc_PhyCtrl);
2004 }
2005