Home | History | Annotate | Line # | Download | only in pci
if_stge.c revision 1.67
      1 /*	$NetBSD: if_stge.c,v 1.67 2019/01/22 03:42:27 msaitoh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Device driver for the Sundance Tech. TC9021 10/100/1000
     34  * Ethernet controller.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.67 2019/01/22 03:42:27 msaitoh Exp $");
     39 
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/callout.h>
     44 #include <sys/mbuf.h>
     45 #include <sys/malloc.h>
     46 #include <sys/kernel.h>
     47 #include <sys/socket.h>
     48 #include <sys/ioctl.h>
     49 #include <sys/errno.h>
     50 #include <sys/device.h>
     51 #include <sys/queue.h>
     52 
     53 #include <net/if.h>
     54 #include <net/if_dl.h>
     55 #include <net/if_media.h>
     56 #include <net/if_ether.h>
     57 
     58 #include <net/bpf.h>
     59 
     60 #include <sys/bus.h>
     61 #include <sys/intr.h>
     62 
     63 #include <dev/mii/mii.h>
     64 #include <dev/mii/miivar.h>
     65 #include <dev/mii/mii_bitbang.h>
     66 
     67 #include <dev/pci/pcireg.h>
     68 #include <dev/pci/pcivar.h>
     69 #include <dev/pci/pcidevs.h>
     70 
     71 #include <dev/pci/if_stgereg.h>
     72 
     73 #include <prop/proplib.h>
     74 
     75 /* #define	STGE_CU_BUG			1 */
     76 #define	STGE_VLAN_UNTAG			1
     77 /* #define	STGE_VLAN_CFI		1 */
     78 
     79 /*
     80  * Transmit descriptor list size.
     81  */
     82 #define	STGE_NTXDESC		256
     83 #define	STGE_NTXDESC_MASK	(STGE_NTXDESC - 1)
     84 #define	STGE_NEXTTX(x)		(((x) + 1) & STGE_NTXDESC_MASK)
     85 
     86 /*
     87  * Receive descriptor list size.
     88  */
     89 #define	STGE_NRXDESC		256
     90 #define	STGE_NRXDESC_MASK	(STGE_NRXDESC - 1)
     91 #define	STGE_NEXTRX(x)		(((x) + 1) & STGE_NRXDESC_MASK)
     92 
     93 /*
     94  * Only interrupt every N frames.  Must be a power-of-two.
     95  */
     96 #define	STGE_TXINTR_SPACING	16
     97 #define	STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
     98 
     99 /*
    100  * Control structures are DMA'd to the TC9021 chip.  We allocate them in
    101  * a single clump that maps to a single DMA segment to make several things
    102  * easier.
    103  */
    104 struct stge_control_data {
    105 	/*
    106 	 * The transmit descriptors.
    107 	 */
    108 	struct stge_tfd scd_txdescs[STGE_NTXDESC];
    109 
    110 	/*
    111 	 * The receive descriptors.
    112 	 */
    113 	struct stge_rfd scd_rxdescs[STGE_NRXDESC];
    114 };
    115 
    116 #define	STGE_CDOFF(x)	offsetof(struct stge_control_data, x)
    117 #define	STGE_CDTXOFF(x)	STGE_CDOFF(scd_txdescs[(x)])
    118 #define	STGE_CDRXOFF(x)	STGE_CDOFF(scd_rxdescs[(x)])
    119 
    120 /*
    121  * Software state for transmit and receive jobs.
    122  */
    123 struct stge_descsoft {
    124 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
    125 	bus_dmamap_t ds_dmamap;		/* our DMA map */
    126 };
    127 
    128 /*
    129  * Software state per device.
    130  */
    131 struct stge_softc {
    132 	device_t sc_dev;		/* generic device information */
    133 	bus_space_tag_t sc_st;		/* bus space tag */
    134 	bus_space_handle_t sc_sh;	/* bus space handle */
    135 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    136 	struct ethercom sc_ethercom;	/* ethernet common data */
    137 	int sc_rev;			/* silicon revision */
    138 
    139 	void *sc_ih;			/* interrupt cookie */
    140 
    141 	struct mii_data sc_mii;		/* MII/media information */
    142 
    143 	callout_t sc_tick_ch;		/* tick callout */
    144 
    145 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    146 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    147 
    148 	/*
    149 	 * Software state for transmit and receive descriptors.
    150 	 */
    151 	struct stge_descsoft sc_txsoft[STGE_NTXDESC];
    152 	struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
    153 
    154 	/*
    155 	 * Control data structures.
    156 	 */
    157 	struct stge_control_data *sc_control_data;
    158 #define	sc_txdescs	sc_control_data->scd_txdescs
    159 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    160 
    161 #ifdef STGE_EVENT_COUNTERS
    162 	/*
    163 	 * Event counters.
    164 	 */
    165 	struct evcnt sc_ev_txstall;	/* Tx stalled */
    166 	struct evcnt sc_ev_txdmaintr;	/* Tx DMA interrupts */
    167 	struct evcnt sc_ev_txindintr;	/* Tx Indicate interrupts */
    168 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    169 
    170 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
    171 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
    172 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
    173 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
    174 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
    175 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
    176 	struct evcnt sc_ev_txcopy;	/* Tx packets that we had to copy */
    177 
    178 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    179 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    180 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
    181 
    182 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    183 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    184 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    185 #endif /* STGE_EVENT_COUNTERS */
    186 
    187 	int	sc_txpending;		/* number of Tx requests pending */
    188 	int	sc_txdirty;		/* first dirty Tx descriptor */
    189 	int	sc_txlast;		/* last used Tx descriptor */
    190 
    191 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    192 	int	sc_rxdiscard;
    193 	int	sc_rxlen;
    194 	struct mbuf *sc_rxhead;
    195 	struct mbuf *sc_rxtail;
    196 	struct mbuf **sc_rxtailp;
    197 
    198 	int	sc_txthresh;		/* Tx threshold */
    199 	uint32_t sc_usefiber:1;		/* if we're fiber */
    200 	uint32_t sc_stge1023:1;		/* are we a 1023 */
    201 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
    202 	uint32_t sc_MACCtrl;		/* prototype MacCtrl register */
    203 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
    204 	uint16_t sc_ReceiveMode;	/* prototype ReceiveMode register */
    205 	uint8_t sc_PhyCtrl;		/* prototype PhyCtrl register */
    206 };
    207 
    208 #define	STGE_RXCHAIN_RESET(sc)						\
    209 do {									\
    210 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    211 	*(sc)->sc_rxtailp = NULL;					\
    212 	(sc)->sc_rxlen = 0;						\
    213 } while (/*CONSTCOND*/0)
    214 
    215 #define	STGE_RXCHAIN_LINK(sc, m)					\
    216 do {									\
    217 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    218 	(sc)->sc_rxtailp = &(m)->m_next;				\
    219 } while (/*CONSTCOND*/0)
    220 
    221 #ifdef STGE_EVENT_COUNTERS
    222 #define	STGE_EVCNT_INCR(ev)	(ev)->ev_count++
    223 #else
    224 #define	STGE_EVCNT_INCR(ev)	/* nothing */
    225 #endif
    226 
    227 #define	STGE_CDTXADDR(sc, x)	((sc)->sc_cddma + STGE_CDTXOFF((x)))
    228 #define	STGE_CDRXADDR(sc, x)	((sc)->sc_cddma + STGE_CDRXOFF((x)))
    229 
    230 #define	STGE_CDTXSYNC(sc, x, ops)					\
    231 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    232 	    STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
    233 
    234 #define	STGE_CDRXSYNC(sc, x, ops)					\
    235 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    236 	    STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
    237 
    238 #define	STGE_INIT_RXDESC(sc, x)						\
    239 do {									\
    240 	struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
    241 	struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)];		\
    242 									\
    243 	/*								\
    244 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    245 	 * so that the payload after the Ethernet header is aligned	\
    246 	 * to a 4-byte boundary.					\
    247 	 */								\
    248 	__rfd->rfd_frag.frag_word0 =					\
    249 	    htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
    250 	    FRAG_LEN(MCLBYTES - 2));					\
    251 	__rfd->rfd_next =						\
    252 	    htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x))));	\
    253 	__rfd->rfd_status = 0;						\
    254 	STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    255 } while (/*CONSTCOND*/0)
    256 
    257 #define STGE_TIMEOUT 1000
    258 
    259 static void	stge_start(struct ifnet *);
    260 static void	stge_watchdog(struct ifnet *);
    261 static int	stge_ioctl(struct ifnet *, u_long, void *);
    262 static int	stge_init(struct ifnet *);
    263 static void	stge_stop(struct ifnet *, int);
    264 
    265 static bool	stge_shutdown(device_t, int);
    266 
    267 static void	stge_reset(struct stge_softc *);
    268 static void	stge_rxdrain(struct stge_softc *);
    269 static int	stge_add_rxbuf(struct stge_softc *, int);
    270 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
    271 static void	stge_tick(void *);
    272 
    273 static void	stge_stats_update(struct stge_softc *);
    274 
    275 static void	stge_set_filter(struct stge_softc *);
    276 
    277 static int	stge_intr(void *);
    278 static void	stge_txintr(struct stge_softc *);
    279 static void	stge_rxintr(struct stge_softc *);
    280 
    281 static int	stge_mii_readreg(device_t, int, int, uint16_t *);
    282 static int	stge_mii_writereg(device_t, int, int, uint16_t);
    283 static void	stge_mii_statchg(struct ifnet *);
    284 
    285 static int	stge_match(device_t, cfdata_t, void *);
    286 static void	stge_attach(device_t, device_t, void *);
    287 
    288 int	stge_copy_small = 0;
    289 
    290 CFATTACH_DECL_NEW(stge, sizeof(struct stge_softc),
    291     stge_match, stge_attach, NULL, NULL);
    292 
    293 static uint32_t stge_mii_bitbang_read(device_t);
    294 static void	stge_mii_bitbang_write(device_t, uint32_t);
    295 
    296 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
    297 	stge_mii_bitbang_read,
    298 	stge_mii_bitbang_write,
    299 	{
    300 		PC_MgmtData,		/* MII_BIT_MDO */
    301 		PC_MgmtData,		/* MII_BIT_MDI */
    302 		PC_MgmtClk,		/* MII_BIT_MDC */
    303 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
    304 		0,			/* MII_BIT_DIR_PHY_HOST */
    305 	}
    306 };
    307 
    308 /*
    309  * Devices supported by this driver.
    310  */
    311 static const struct stge_product {
    312 	pci_vendor_id_t		stge_vendor;
    313 	pci_product_id_t	stge_product;
    314 	const char		*stge_name;
    315 } stge_products[] = {
    316 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST1023,
    317 	  "Sundance ST-1023 Gigabit Ethernet" },
    318 
    319 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST2021,
    320 	  "Sundance ST-2021 Gigabit Ethernet" },
    321 
    322 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021,
    323 	  "Tamarack TC9021 Gigabit Ethernet" },
    324 
    325 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021_ALT,
    326 	  "Tamarack TC9021 Gigabit Ethernet" },
    327 
    328 	/*
    329 	 * The Sundance sample boards use the Sundance vendor ID,
    330 	 * but the Tamarack product ID.
    331 	 */
    332 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021,
    333 	  "Sundance TC9021 Gigabit Ethernet" },
    334 
    335 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021_ALT,
    336 	  "Sundance TC9021 Gigabit Ethernet" },
    337 
    338 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL4000,
    339 	  "D-Link DL-4000 Gigabit Ethernet" },
    340 
    341 	{ PCI_VENDOR_ANTARES,		PCI_PRODUCT_ANTARES_TC9021,
    342 	  "Antares Gigabit Ethernet" },
    343 
    344 	{ 0,				0,
    345 	  NULL },
    346 };
    347 
    348 static const struct stge_product *
    349 stge_lookup(const struct pci_attach_args *pa)
    350 {
    351 	const struct stge_product *sp;
    352 
    353 	for (sp = stge_products; sp->stge_name != NULL; sp++) {
    354 		if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
    355 		    PCI_PRODUCT(pa->pa_id) == sp->stge_product)
    356 			return (sp);
    357 	}
    358 	return (NULL);
    359 }
    360 
    361 static int
    362 stge_match(device_t parent, cfdata_t cf, void *aux)
    363 {
    364 	struct pci_attach_args *pa = aux;
    365 
    366 	if (stge_lookup(pa) != NULL)
    367 		return (1);
    368 
    369 	return (0);
    370 }
    371 
    372 static void
    373 stge_attach(device_t parent, device_t self, void *aux)
    374 {
    375 	struct stge_softc *sc = device_private(self);
    376 	struct pci_attach_args *pa = aux;
    377 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    378 	pci_chipset_tag_t pc = pa->pa_pc;
    379 	pci_intr_handle_t ih;
    380 	const char *intrstr = NULL;
    381 	bus_space_tag_t iot, memt;
    382 	bus_space_handle_t ioh, memh;
    383 	bus_dma_segment_t seg;
    384 	prop_data_t data;
    385 	int ioh_valid, memh_valid;
    386 	int i, rseg, error;
    387 	const struct stge_product *sp;
    388 	uint8_t enaddr[ETHER_ADDR_LEN];
    389 	char intrbuf[PCI_INTRSTR_LEN];
    390 
    391 	callout_init(&sc->sc_tick_ch, 0);
    392 
    393 	sp = stge_lookup(pa);
    394 	if (sp == NULL) {
    395 		printf("\n");
    396 		panic("ste_attach: impossible");
    397 	}
    398 
    399 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    400 
    401 	pci_aprint_devinfo_fancy(pa, NULL, sp->stge_name, 1);
    402 
    403 	/*
    404 	 * Map the device.
    405 	 */
    406 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
    407 	    PCI_MAPREG_TYPE_IO, 0,
    408 	    &iot, &ioh, NULL, NULL) == 0);
    409 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
    410 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    411 	    &memt, &memh, NULL, NULL) == 0);
    412 
    413 	if (memh_valid) {
    414 		sc->sc_st = memt;
    415 		sc->sc_sh = memh;
    416 	} else if (ioh_valid) {
    417 		sc->sc_st = iot;
    418 		sc->sc_sh = ioh;
    419 	} else {
    420 		aprint_error_dev(self, "unable to map device registers\n");
    421 		return;
    422 	}
    423 
    424 	sc->sc_dmat = pa->pa_dmat;
    425 
    426 	/* Enable bus mastering. */
    427 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    428 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    429 	    PCI_COMMAND_MASTER_ENABLE);
    430 
    431 	/* power up chip */
    432 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
    433 	    error != EOPNOTSUPP) {
    434 		aprint_error_dev(self, "cannot activate %d\n", error);
    435 		return;
    436 	}
    437 	/*
    438 	 * Map and establish our interrupt.
    439 	 */
    440 	if (pci_intr_map(pa, &ih)) {
    441 		aprint_error_dev(self, "unable to map interrupt\n");
    442 		return;
    443 	}
    444 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    445 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, stge_intr, sc,
    446 	    device_xname(self));
    447 	if (sc->sc_ih == NULL) {
    448 		aprint_error_dev(self, "unable to establish interrupt");
    449 		if (intrstr != NULL)
    450 			aprint_error(" at %s", intrstr);
    451 		aprint_error("\n");
    452 		return;
    453 	}
    454 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    455 
    456 	/*
    457 	 * Allocate the control data structures, and create and load the
    458 	 * DMA map for it.
    459 	 */
    460 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    461 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    462 	    0)) != 0) {
    463 		aprint_error_dev(self,
    464 		    "unable to allocate control data, error = %d\n", error);
    465 		goto fail_0;
    466 	}
    467 
    468 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    469 	    sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
    470 	    BUS_DMA_COHERENT)) != 0) {
    471 		aprint_error_dev(self,
    472 		    "unable to map control data, error = %d\n", error);
    473 		goto fail_1;
    474 	}
    475 
    476 	if ((error = bus_dmamap_create(sc->sc_dmat,
    477 	    sizeof(struct stge_control_data), 1,
    478 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    479 		aprint_error_dev(self,
    480 		    "unable to create control data DMA map, error = %d\n",
    481 		    error);
    482 		goto fail_2;
    483 	}
    484 
    485 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    486 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
    487 	    0)) != 0) {
    488 		aprint_error_dev(self,
    489 		    "unable to load control data DMA map, error = %d\n",
    490 		    error);
    491 		goto fail_3;
    492 	}
    493 
    494 	/*
    495 	 * Create the transmit buffer DMA maps.  Note that rev B.3
    496 	 * and earlier seem to have a bug regarding multi-fragment
    497 	 * packets.  We need to limit the number of Tx segments on
    498 	 * such chips to 1.
    499 	 */
    500 	for (i = 0; i < STGE_NTXDESC; i++) {
    501 		if ((error = bus_dmamap_create(sc->sc_dmat,
    502 		    ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
    503 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
    504 			aprint_error_dev(self,
    505 			    "unable to create tx DMA map %d, error = %d\n",
    506 			    i, error);
    507 			goto fail_4;
    508 		}
    509 	}
    510 
    511 	/*
    512 	 * Create the receive buffer DMA maps.
    513 	 */
    514 	for (i = 0; i < STGE_NRXDESC; i++) {
    515 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    516 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
    517 			aprint_error_dev(self,
    518 			    "unable to create rx DMA map %d, error = %d\n",
    519 			    i, error);
    520 			goto fail_5;
    521 		}
    522 		sc->sc_rxsoft[i].ds_mbuf = NULL;
    523 	}
    524 
    525 	/*
    526 	 * Determine if we're copper or fiber.  It affects how we
    527 	 * reset the card.
    528 	 */
    529 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
    530 	    AC_PhyMedia)
    531 		sc->sc_usefiber = 1;
    532 	else
    533 		sc->sc_usefiber = 0;
    534 
    535 	/*
    536 	 * Reset the chip to a known state.
    537 	 */
    538 	stge_reset(sc);
    539 
    540 	/*
    541 	 * Reading the station address from the EEPROM doesn't seem
    542 	 * to work, at least on my sample boards.  Instead, since
    543 	 * the reset sequence does AutoInit, read it from the station
    544 	 * address registers. For Sundance 1023 you can only read it
    545 	 * from EEPROM.
    546 	 */
    547 	if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
    548 		enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    549 		    STGE_StationAddress0) & 0xff;
    550 		enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    551 		    STGE_StationAddress0) >> 8;
    552 		enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    553 		    STGE_StationAddress1) & 0xff;
    554 		enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    555 		    STGE_StationAddress1) >> 8;
    556 		enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    557 		    STGE_StationAddress2) & 0xff;
    558 		enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    559 		    STGE_StationAddress2) >> 8;
    560 		sc->sc_stge1023 = 0;
    561 	} else {
    562 		data = prop_dictionary_get(device_properties(self),
    563 		    "mac-address");
    564 		if (data != NULL) {
    565 			/*
    566 			 * Try to get the station address from device
    567 			 * properties first, in case the EEPROM is missing.
    568 			 */
    569 			KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
    570 			KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
    571 			(void)memcpy(enaddr, prop_data_data_nocopy(data),
    572 			    ETHER_ADDR_LEN);
    573 		} else {
    574 			uint16_t myaddr[ETHER_ADDR_LEN / 2];
    575 			for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
    576 				stge_read_eeprom(sc,
    577 				    STGE_EEPROM_StationAddress0 + i,
    578 				    &myaddr[i]);
    579 				myaddr[i] = le16toh(myaddr[i]);
    580 			}
    581 			(void)memcpy(enaddr, myaddr, sizeof(enaddr));
    582 		}
    583 		sc->sc_stge1023 = 1;
    584 	}
    585 
    586 	aprint_normal_dev(self, "Ethernet address %s\n",
    587 	    ether_sprintf(enaddr));
    588 
    589 	/*
    590 	 * Read some important bits from the PhyCtrl register.
    591 	 */
    592 	sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
    593 	    STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
    594 
    595 	/*
    596 	 * Initialize our media structures and probe the MII.
    597 	 */
    598 	sc->sc_mii.mii_ifp = ifp;
    599 	sc->sc_mii.mii_readreg = stge_mii_readreg;
    600 	sc->sc_mii.mii_writereg = stge_mii_writereg;
    601 	sc->sc_mii.mii_statchg = stge_mii_statchg;
    602 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
    603 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
    604 	    ether_mediastatus);
    605 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    606 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
    607 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    608 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    609 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    610 	} else
    611 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    612 
    613 	ifp = &sc->sc_ethercom.ec_if;
    614 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    615 	ifp->if_softc = sc;
    616 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    617 	ifp->if_ioctl = stge_ioctl;
    618 	ifp->if_start = stge_start;
    619 	ifp->if_watchdog = stge_watchdog;
    620 	ifp->if_init = stge_init;
    621 	ifp->if_stop = stge_stop;
    622 	IFQ_SET_READY(&ifp->if_snd);
    623 
    624 	/*
    625 	 * The manual recommends disabling early transmit, so we
    626 	 * do.  It's disabled anyway, if using IP checksumming,
    627 	 * since the entire packet must be in the FIFO in order
    628 	 * for the chip to perform the checksum.
    629 	 */
    630 	sc->sc_txthresh = 0x0fff;
    631 
    632 	/*
    633 	 * Disable MWI if the PCI layer tells us to.
    634 	 */
    635 	sc->sc_DMACtrl = 0;
    636 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
    637 		sc->sc_DMACtrl |= DMAC_MWIDisable;
    638 
    639 	/*
    640 	 * We can support 802.1Q VLAN-sized frames and jumbo
    641 	 * Ethernet frames.
    642 	 *
    643 	 * XXX Figure out how to do hw-assisted VLAN tagging in
    644 	 * XXX a reasonable way on this chip.
    645 	 */
    646 	sc->sc_ethercom.ec_capabilities |=
    647 	    ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
    648 	    ETHERCAP_VLAN_HWTAGGING;
    649 
    650 	/*
    651 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
    652 	 */
    653 	sc->sc_ethercom.ec_if.if_capabilities |=
    654 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    655 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    656 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    657 
    658 	/*
    659 	 * Attach the interface.
    660 	 */
    661 	if_attach(ifp);
    662 	if_deferred_start_init(ifp, NULL);
    663 	ether_ifattach(ifp, enaddr);
    664 
    665 #ifdef STGE_EVENT_COUNTERS
    666 	/*
    667 	 * Attach event counters.
    668 	 */
    669 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
    670 	    NULL, device_xname(self), "txstall");
    671 	evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
    672 	    NULL, device_xname(self), "txdmaintr");
    673 	evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
    674 	    NULL, device_xname(self), "txindintr");
    675 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    676 	    NULL, device_xname(self), "rxintr");
    677 
    678 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
    679 	    NULL, device_xname(self), "txseg1");
    680 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
    681 	    NULL, device_xname(self), "txseg2");
    682 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
    683 	    NULL, device_xname(self), "txseg3");
    684 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
    685 	    NULL, device_xname(self), "txseg4");
    686 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
    687 	    NULL, device_xname(self), "txseg5");
    688 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
    689 	    NULL, device_xname(self), "txsegmore");
    690 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
    691 	    NULL, device_xname(self), "txcopy");
    692 
    693 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    694 	    NULL, device_xname(self), "rxipsum");
    695 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
    696 	    NULL, device_xname(self), "rxtcpsum");
    697 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
    698 	    NULL, device_xname(self), "rxudpsum");
    699 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    700 	    NULL, device_xname(self), "txipsum");
    701 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
    702 	    NULL, device_xname(self), "txtcpsum");
    703 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
    704 	    NULL, device_xname(self), "txudpsum");
    705 #endif /* STGE_EVENT_COUNTERS */
    706 
    707 	/*
    708 	 * Make sure the interface is shutdown during reboot.
    709 	 */
    710 	if (pmf_device_register1(self, NULL, NULL, stge_shutdown))
    711 		pmf_class_network_register(self, ifp);
    712 	else
    713 		aprint_error_dev(self, "couldn't establish power handler\n");
    714 
    715 	return;
    716 
    717 	/*
    718 	 * Free any resources we've allocated during the failed attach
    719 	 * attempt.  Do this in reverse order and fall through.
    720 	 */
    721  fail_5:
    722 	for (i = 0; i < STGE_NRXDESC; i++) {
    723 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
    724 			bus_dmamap_destroy(sc->sc_dmat,
    725 			    sc->sc_rxsoft[i].ds_dmamap);
    726 	}
    727  fail_4:
    728 	for (i = 0; i < STGE_NTXDESC; i++) {
    729 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
    730 			bus_dmamap_destroy(sc->sc_dmat,
    731 			    sc->sc_txsoft[i].ds_dmamap);
    732 	}
    733 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    734  fail_3:
    735 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    736  fail_2:
    737 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    738 	    sizeof(struct stge_control_data));
    739  fail_1:
    740 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    741  fail_0:
    742 	return;
    743 }
    744 
    745 /*
    746  * stge_shutdown:
    747  *
    748  *	Make sure the interface is stopped at reboot time.
    749  */
    750 static bool
    751 stge_shutdown(device_t self, int howto)
    752 {
    753 	struct stge_softc *sc = device_private(self);
    754 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    755 
    756 	stge_stop(ifp, 1);
    757 	stge_reset(sc);
    758 	return true;
    759 }
    760 
    761 static void
    762 stge_dma_wait(struct stge_softc *sc)
    763 {
    764 	int i;
    765 
    766 	for (i = 0; i < STGE_TIMEOUT; i++) {
    767 		delay(2);
    768 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
    769 		     DMAC_TxDMAInProg) == 0)
    770 			break;
    771 	}
    772 
    773 	if (i == STGE_TIMEOUT)
    774 		printf("%s: DMA wait timed out\n", device_xname(sc->sc_dev));
    775 }
    776 
    777 /*
    778  * stge_start:		[ifnet interface function]
    779  *
    780  *	Start packet transmission on the interface.
    781  */
    782 static void
    783 stge_start(struct ifnet *ifp)
    784 {
    785 	struct stge_softc *sc = ifp->if_softc;
    786 	struct mbuf *m0;
    787 	struct stge_descsoft *ds;
    788 	struct stge_tfd *tfd;
    789 	bus_dmamap_t dmamap;
    790 	int error, firsttx, nexttx, opending, seg, totlen;
    791 	uint64_t csum_flags;
    792 
    793 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    794 		return;
    795 
    796 	/*
    797 	 * Remember the previous number of pending transmissions
    798 	 * and the first descriptor we will use.
    799 	 */
    800 	opending = sc->sc_txpending;
    801 	firsttx = STGE_NEXTTX(sc->sc_txlast);
    802 
    803 	/*
    804 	 * Loop through the send queue, setting up transmit descriptors
    805 	 * until we drain the queue, or use up all available transmit
    806 	 * descriptors.
    807 	 */
    808 	for (;;) {
    809 		uint64_t tfc;
    810 		bool have_vtag;
    811 		uint16_t vtag;
    812 
    813 		/*
    814 		 * Grab a packet off the queue.
    815 		 */
    816 		IFQ_POLL(&ifp->if_snd, m0);
    817 		if (m0 == NULL)
    818 			break;
    819 
    820 		/*
    821 		 * Leave one unused descriptor at the end of the
    822 		 * list to prevent wrapping completely around.
    823 		 */
    824 		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
    825 			STGE_EVCNT_INCR(&sc->sc_ev_txstall);
    826 			break;
    827 		}
    828 
    829 		/*
    830 		 * See if we have any VLAN stuff.
    831 		 */
    832 		have_vtag = vlan_has_tag(m0);
    833 		if (have_vtag)
    834 			vtag = vlan_get_tag(m0);
    835 
    836 		/*
    837 		 * Get the last and next available transmit descriptor.
    838 		 */
    839 		nexttx = STGE_NEXTTX(sc->sc_txlast);
    840 		tfd = &sc->sc_txdescs[nexttx];
    841 		ds = &sc->sc_txsoft[nexttx];
    842 
    843 		dmamap = ds->ds_dmamap;
    844 
    845 		/*
    846 		 * Load the DMA map.  If this fails, the packet either
    847 		 * didn't fit in the alloted number of segments, or we
    848 		 * were short on resources.  For the too-many-segments
    849 		 * case, we simply report an error and drop the packet,
    850 		 * since we can't sanely copy a jumbo packet to a single
    851 		 * buffer.
    852 		 */
    853 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    854 		    BUS_DMA_NOWAIT);
    855 		if (error) {
    856 			if (error == EFBIG) {
    857 				printf("%s: Tx packet consumes too many "
    858 				    "DMA segments, dropping...\n",
    859 				    device_xname(sc->sc_dev));
    860 				IFQ_DEQUEUE(&ifp->if_snd, m0);
    861 				m_freem(m0);
    862 				continue;
    863 			}
    864 			/*
    865 			 * Short on resources, just stop for now.
    866 			 */
    867 			break;
    868 		}
    869 
    870 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    871 
    872 		/*
    873 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    874 		 */
    875 
    876 		/* Sync the DMA map. */
    877 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    878 		    BUS_DMASYNC_PREWRITE);
    879 
    880 		/* Initialize the fragment list. */
    881 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
    882 			tfd->tfd_frags[seg].frag_word0 =
    883 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
    884 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
    885 			totlen += dmamap->dm_segs[seg].ds_len;
    886 		}
    887 
    888 #ifdef STGE_EVENT_COUNTERS
    889 		switch (dmamap->dm_nsegs) {
    890 		case 1:
    891 			STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
    892 			break;
    893 		case 2:
    894 			STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
    895 			break;
    896 		case 3:
    897 			STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
    898 			break;
    899 		case 4:
    900 			STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
    901 			break;
    902 		case 5:
    903 			STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
    904 			break;
    905 		default:
    906 			STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
    907 			break;
    908 		}
    909 #endif /* STGE_EVENT_COUNTERS */
    910 
    911 		/*
    912 		 * Initialize checksumming flags in the descriptor.
    913 		 * Byte-swap constants so the compiler can optimize.
    914 		 */
    915 		csum_flags = 0;
    916 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
    917 			STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
    918 			csum_flags |= TFD_IPChecksumEnable;
    919 		}
    920 
    921 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
    922 			STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
    923 			csum_flags |= TFD_TCPChecksumEnable;
    924 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
    925 			STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
    926 			csum_flags |= TFD_UDPChecksumEnable;
    927 		}
    928 
    929 		/*
    930 		 * Initialize the descriptor and give it to the chip.
    931 		 * Check to see if we have a VLAN tag to insert.
    932 		 */
    933 
    934 		tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
    935 		    TFD_FragCount(seg) | csum_flags |
    936 		    (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
    937 			TFD_TxDMAIndicate : 0);
    938 		if (have_vtag) {
    939 #if	0
    940 			struct ether_header *eh =
    941 			    mtod(m0, struct ether_header *);
    942 			u_int16_t etype = ntohs(eh->ether_type);
    943 			printf("%s: xmit (tag %d) etype %x\n",
    944 			   ifp->if_xname, *mtod(n, int *), etype);
    945 #endif
    946 			tfc |= TFD_VLANTagInsert |
    947 #ifdef	STGE_VLAN_CFI
    948 			    TFD_CFI |
    949 #endif
    950 			    TFD_VID(vtag);
    951 		}
    952 		tfd->tfd_control = htole64(tfc);
    953 
    954 		/* Sync the descriptor. */
    955 		STGE_CDTXSYNC(sc, nexttx,
    956 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    957 
    958 		/*
    959 		 * Kick the transmit DMA logic.
    960 		 */
    961 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
    962 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
    963 
    964 		/*
    965 		 * Store a pointer to the packet so we can free it later.
    966 		 */
    967 		ds->ds_mbuf = m0;
    968 
    969 		/* Advance the tx pointer. */
    970 		sc->sc_txpending++;
    971 		sc->sc_txlast = nexttx;
    972 
    973 		/*
    974 		 * Pass the packet to any BPF listeners.
    975 		 */
    976 		bpf_mtap(ifp, m0, BPF_D_OUT);
    977 	}
    978 
    979 	if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
    980 		/* No more slots left; notify upper layer. */
    981 		ifp->if_flags |= IFF_OACTIVE;
    982 	}
    983 
    984 	if (sc->sc_txpending != opending) {
    985 		/*
    986 		 * We enqueued packets.  If the transmitter was idle,
    987 		 * reset the txdirty pointer.
    988 		 */
    989 		if (opending == 0)
    990 			sc->sc_txdirty = firsttx;
    991 
    992 		/* Set a watchdog timer in case the chip flakes out. */
    993 		ifp->if_timer = 5;
    994 	}
    995 }
    996 
    997 /*
    998  * stge_watchdog:	[ifnet interface function]
    999  *
   1000  *	Watchdog timer handler.
   1001  */
   1002 static void
   1003 stge_watchdog(struct ifnet *ifp)
   1004 {
   1005 	struct stge_softc *sc = ifp->if_softc;
   1006 
   1007 	/*
   1008 	 * Sweep up first, since we don't interrupt every frame.
   1009 	 */
   1010 	stge_txintr(sc);
   1011 	if (sc->sc_txpending != 0) {
   1012 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
   1013 		ifp->if_oerrors++;
   1014 
   1015 		(void) stge_init(ifp);
   1016 
   1017 		/* Try to get more packets going. */
   1018 		stge_start(ifp);
   1019 	}
   1020 }
   1021 
   1022 /*
   1023  * stge_ioctl:		[ifnet interface function]
   1024  *
   1025  *	Handle control requests from the operator.
   1026  */
   1027 static int
   1028 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1029 {
   1030 	struct stge_softc *sc = ifp->if_softc;
   1031 	int s, error;
   1032 
   1033 	s = splnet();
   1034 
   1035 	error = ether_ioctl(ifp, cmd, data);
   1036 	if (error == ENETRESET) {
   1037 		error = 0;
   1038 
   1039 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1040 			;
   1041 		else if (ifp->if_flags & IFF_RUNNING) {
   1042 			/*
   1043 			 * Multicast list has changed; set the hardware filter
   1044 			 * accordingly.
   1045 			 */
   1046 			stge_set_filter(sc);
   1047 		}
   1048 	}
   1049 
   1050 	/* Try to get more packets going. */
   1051 	stge_start(ifp);
   1052 
   1053 	splx(s);
   1054 	return (error);
   1055 }
   1056 
   1057 /*
   1058  * stge_intr:
   1059  *
   1060  *	Interrupt service routine.
   1061  */
   1062 static int
   1063 stge_intr(void *arg)
   1064 {
   1065 	struct stge_softc *sc = arg;
   1066 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1067 	uint32_t txstat;
   1068 	int wantinit;
   1069 	uint16_t isr;
   1070 
   1071 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
   1072 	     IS_InterruptStatus) == 0)
   1073 		return (0);
   1074 
   1075 	for (wantinit = 0; wantinit == 0;) {
   1076 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
   1077 		if ((isr & sc->sc_IntEnable) == 0)
   1078 			break;
   1079 
   1080 		/* Host interface errors. */
   1081 		if (isr & IS_HostError) {
   1082 			printf("%s: Host interface error\n",
   1083 			    device_xname(sc->sc_dev));
   1084 			wantinit = 1;
   1085 			continue;
   1086 		}
   1087 
   1088 		/* Receive interrupts. */
   1089 		if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
   1090 			STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
   1091 			stge_rxintr(sc);
   1092 			if (isr & IS_RFDListEnd) {
   1093 				printf("%s: receive ring overflow\n",
   1094 				    device_xname(sc->sc_dev));
   1095 				/*
   1096 				 * XXX Should try to recover from this
   1097 				 * XXX more gracefully.
   1098 				 */
   1099 				wantinit = 1;
   1100 			}
   1101 		}
   1102 
   1103 		/* Transmit interrupts. */
   1104 		if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
   1105 #ifdef STGE_EVENT_COUNTERS
   1106 			if (isr & IS_TxDMAComplete)
   1107 				STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
   1108 #endif
   1109 			stge_txintr(sc);
   1110 		}
   1111 
   1112 		/* Statistics overflow. */
   1113 		if (isr & IS_UpdateStats)
   1114 			stge_stats_update(sc);
   1115 
   1116 		/* Transmission errors. */
   1117 		if (isr & IS_TxComplete) {
   1118 			STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
   1119 			for (;;) {
   1120 				txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
   1121 				    STGE_TxStatus);
   1122 				if ((txstat & TS_TxComplete) == 0)
   1123 					break;
   1124 				if (txstat & TS_TxUnderrun) {
   1125 					sc->sc_txthresh++;
   1126 					if (sc->sc_txthresh > 0x0fff)
   1127 						sc->sc_txthresh = 0x0fff;
   1128 					printf("%s: transmit underrun, new "
   1129 					    "threshold: %d bytes\n",
   1130 					    device_xname(sc->sc_dev),
   1131 					    sc->sc_txthresh << 5);
   1132 				}
   1133 				if (txstat & TS_MaxCollisions)
   1134 					printf("%s: excessive collisions\n",
   1135 					    device_xname(sc->sc_dev));
   1136 			}
   1137 			wantinit = 1;
   1138 		}
   1139 
   1140 	}
   1141 
   1142 	if (wantinit)
   1143 		stge_init(ifp);
   1144 
   1145 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
   1146 	    sc->sc_IntEnable);
   1147 
   1148 	/* Try to get more packets going. */
   1149 	if_schedule_deferred_start(ifp);
   1150 
   1151 	return (1);
   1152 }
   1153 
   1154 /*
   1155  * stge_txintr:
   1156  *
   1157  *	Helper; handle transmit interrupts.
   1158  */
   1159 static void
   1160 stge_txintr(struct stge_softc *sc)
   1161 {
   1162 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1163 	struct stge_descsoft *ds;
   1164 	uint64_t control;
   1165 	int i;
   1166 
   1167 	ifp->if_flags &= ~IFF_OACTIVE;
   1168 
   1169 	/*
   1170 	 * Go through our Tx list and free mbufs for those
   1171 	 * frames which have been transmitted.
   1172 	 */
   1173 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
   1174 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
   1175 		ds = &sc->sc_txsoft[i];
   1176 
   1177 		STGE_CDTXSYNC(sc, i,
   1178 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1179 
   1180 		control = le64toh(sc->sc_txdescs[i].tfd_control);
   1181 		if ((control & TFD_TFDDone) == 0)
   1182 			break;
   1183 
   1184 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
   1185 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1186 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1187 		m_freem(ds->ds_mbuf);
   1188 		ds->ds_mbuf = NULL;
   1189 	}
   1190 
   1191 	/* Update the dirty transmit buffer pointer. */
   1192 	sc->sc_txdirty = i;
   1193 
   1194 	/*
   1195 	 * If there are no more pending transmissions, cancel the watchdog
   1196 	 * timer.
   1197 	 */
   1198 	if (sc->sc_txpending == 0)
   1199 		ifp->if_timer = 0;
   1200 }
   1201 
   1202 /*
   1203  * stge_rxintr:
   1204  *
   1205  *	Helper; handle receive interrupts.
   1206  */
   1207 static void
   1208 stge_rxintr(struct stge_softc *sc)
   1209 {
   1210 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1211 	struct stge_descsoft *ds;
   1212 	struct mbuf *m, *tailm;
   1213 	uint64_t status;
   1214 	int i, len;
   1215 
   1216 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
   1217 		ds = &sc->sc_rxsoft[i];
   1218 
   1219 		STGE_CDRXSYNC(sc, i,
   1220 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1221 
   1222 		status = le64toh(sc->sc_rxdescs[i].rfd_status);
   1223 
   1224 		if ((status & RFD_RFDDone) == 0)
   1225 			break;
   1226 
   1227 		if (__predict_false(sc->sc_rxdiscard)) {
   1228 			STGE_INIT_RXDESC(sc, i);
   1229 			if (status & RFD_FrameEnd) {
   1230 				/* Reset our state. */
   1231 				sc->sc_rxdiscard = 0;
   1232 			}
   1233 			continue;
   1234 		}
   1235 
   1236 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1237 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1238 
   1239 		m = ds->ds_mbuf;
   1240 
   1241 		/*
   1242 		 * Add a new receive buffer to the ring.
   1243 		 */
   1244 		if (stge_add_rxbuf(sc, i) != 0) {
   1245 			/*
   1246 			 * Failed, throw away what we've done so
   1247 			 * far, and discard the rest of the packet.
   1248 			 */
   1249 			ifp->if_ierrors++;
   1250 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1251 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1252 			STGE_INIT_RXDESC(sc, i);
   1253 			if ((status & RFD_FrameEnd) == 0)
   1254 				sc->sc_rxdiscard = 1;
   1255 			if (sc->sc_rxhead != NULL)
   1256 				m_freem(sc->sc_rxhead);
   1257 			STGE_RXCHAIN_RESET(sc);
   1258 			continue;
   1259 		}
   1260 
   1261 #ifdef DIAGNOSTIC
   1262 		if (status & RFD_FrameStart) {
   1263 			KASSERT(sc->sc_rxhead == NULL);
   1264 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
   1265 		}
   1266 #endif
   1267 
   1268 		STGE_RXCHAIN_LINK(sc, m);
   1269 
   1270 		/*
   1271 		 * If this is not the end of the packet, keep
   1272 		 * looking.
   1273 		 */
   1274 		if ((status & RFD_FrameEnd) == 0) {
   1275 			sc->sc_rxlen += m->m_len;
   1276 			continue;
   1277 		}
   1278 
   1279 		/*
   1280 		 * Okay, we have the entire packet now...
   1281 		 */
   1282 		*sc->sc_rxtailp = NULL;
   1283 		m = sc->sc_rxhead;
   1284 		tailm = sc->sc_rxtail;
   1285 
   1286 		STGE_RXCHAIN_RESET(sc);
   1287 
   1288 		/*
   1289 		 * If the packet had an error, drop it.  Note we
   1290 		 * count the error later in the periodic stats update.
   1291 		 */
   1292 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
   1293 			      RFD_RxAlignmentError | RFD_RxFCSError |
   1294 			      RFD_RxLengthError)) {
   1295 			m_freem(m);
   1296 			continue;
   1297 		}
   1298 
   1299 		/*
   1300 		 * No errors.
   1301 		 *
   1302 		 * Note we have configured the chip to not include
   1303 		 * the CRC at the end of the packet.
   1304 		 */
   1305 		len = RFD_RxDMAFrameLen(status);
   1306 		tailm->m_len = len - sc->sc_rxlen;
   1307 
   1308 		/*
   1309 		 * If the packet is small enough to fit in a
   1310 		 * single header mbuf, allocate one and copy
   1311 		 * the data into it.  This greatly reduces
   1312 		 * memory consumption when we receive lots
   1313 		 * of small packets.
   1314 		 */
   1315 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
   1316 			struct mbuf *nm;
   1317 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1318 			if (nm == NULL) {
   1319 				ifp->if_ierrors++;
   1320 				m_freem(m);
   1321 				continue;
   1322 			}
   1323 			nm->m_data += 2;
   1324 			nm->m_pkthdr.len = nm->m_len = len;
   1325 			m_copydata(m, 0, len, mtod(nm, void *));
   1326 			m_freem(m);
   1327 			m = nm;
   1328 		}
   1329 
   1330 		/*
   1331 		 * Set the incoming checksum information for the packet.
   1332 		 */
   1333 		if (status & RFD_IPDetected) {
   1334 			STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1335 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1336 			if (status & RFD_IPError)
   1337 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1338 			if (status & RFD_TCPDetected) {
   1339 				STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   1340 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1341 				if (status & RFD_TCPError)
   1342 					m->m_pkthdr.csum_flags |=
   1343 					    M_CSUM_TCP_UDP_BAD;
   1344 			} else if (status & RFD_UDPDetected) {
   1345 				STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   1346 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1347 				if (status & RFD_UDPError)
   1348 					m->m_pkthdr.csum_flags |=
   1349 					    M_CSUM_TCP_UDP_BAD;
   1350 			}
   1351 		}
   1352 
   1353 		m_set_rcvif(m, ifp);
   1354 		m->m_pkthdr.len = len;
   1355 
   1356 		/*
   1357 		 * Pass this up to any BPF listeners, but only
   1358 		 * pass if up the stack if it's for us.
   1359 		 */
   1360 #ifdef	STGE_VLAN_UNTAG
   1361 		/*
   1362 		 * Check for VLAN tagged packets
   1363 		 */
   1364 		if (status & RFD_VLANDetected)
   1365 			vlan_set_tag(m, RFD_TCI(status));
   1366 
   1367 #endif
   1368 #if	0
   1369 		if (status & RFD_VLANDetected) {
   1370 			struct ether_header *eh;
   1371 			u_int16_t etype;
   1372 
   1373 			eh = mtod(m, struct ether_header *);
   1374 			etype = ntohs(eh->ether_type);
   1375 			printf("%s: VLANtag detected (TCI %d) etype %x\n",
   1376 			    ifp->if_xname, (u_int16_t) RFD_TCI(status),
   1377 			    etype);
   1378 		}
   1379 #endif
   1380 		/* Pass it on. */
   1381 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1382 	}
   1383 
   1384 	/* Update the receive pointer. */
   1385 	sc->sc_rxptr = i;
   1386 }
   1387 
   1388 /*
   1389  * stge_tick:
   1390  *
   1391  *	One second timer, used to tick the MII.
   1392  */
   1393 static void
   1394 stge_tick(void *arg)
   1395 {
   1396 	struct stge_softc *sc = arg;
   1397 	int s;
   1398 
   1399 	s = splnet();
   1400 	mii_tick(&sc->sc_mii);
   1401 	stge_stats_update(sc);
   1402 	splx(s);
   1403 
   1404 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
   1405 }
   1406 
   1407 /*
   1408  * stge_stats_update:
   1409  *
   1410  *	Read the TC9021 statistics counters.
   1411  */
   1412 static void
   1413 stge_stats_update(struct stge_softc *sc)
   1414 {
   1415 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1416 	bus_space_tag_t st = sc->sc_st;
   1417 	bus_space_handle_t sh = sc->sc_sh;
   1418 
   1419 	(void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
   1420 
   1421 	ifp->if_ipackets +=
   1422 	    bus_space_read_4(st, sh, STGE_FramesRcvdOk);
   1423 
   1424 	ifp->if_ierrors +=
   1425 	    (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
   1426 
   1427 	(void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
   1428 
   1429 	ifp->if_opackets +=
   1430 	    bus_space_read_4(st, sh, STGE_FramesXmtdOk);
   1431 
   1432 	ifp->if_collisions +=
   1433 	    bus_space_read_4(st, sh, STGE_LateCollisions) +
   1434 	    bus_space_read_4(st, sh, STGE_MultiColFrames) +
   1435 	    bus_space_read_4(st, sh, STGE_SingleColFrames);
   1436 
   1437 	ifp->if_oerrors +=
   1438 	    (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
   1439 	    (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
   1440 }
   1441 
   1442 /*
   1443  * stge_reset:
   1444  *
   1445  *	Perform a soft reset on the TC9021.
   1446  */
   1447 static void
   1448 stge_reset(struct stge_softc *sc)
   1449 {
   1450 	uint32_t ac;
   1451 	int i;
   1452 
   1453 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
   1454 
   1455 	/*
   1456 	 * Only assert RstOut if we're fiber.  We need GMII clocks
   1457 	 * to be present in order for the reset to complete on fiber
   1458 	 * cards.
   1459 	 */
   1460 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
   1461 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
   1462 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
   1463 	    (sc->sc_usefiber ? AC_RstOut : 0));
   1464 
   1465 	delay(50000);
   1466 
   1467 	for (i = 0; i < STGE_TIMEOUT; i++) {
   1468 		delay(5000);
   1469 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
   1470 		     AC_ResetBusy) == 0)
   1471 			break;
   1472 	}
   1473 
   1474 	if (i == STGE_TIMEOUT)
   1475 		printf("%s: reset failed to complete\n",
   1476 		    device_xname(sc->sc_dev));
   1477 
   1478 	delay(1000);
   1479 }
   1480 
   1481 /*
   1482  * stge_init:		[ ifnet interface function ]
   1483  *
   1484  *	Initialize the interface.  Must be called at splnet().
   1485  */
   1486 static int
   1487 stge_init(struct ifnet *ifp)
   1488 {
   1489 	struct stge_softc *sc = ifp->if_softc;
   1490 	bus_space_tag_t st = sc->sc_st;
   1491 	bus_space_handle_t sh = sc->sc_sh;
   1492 	struct stge_descsoft *ds;
   1493 	int i, error = 0;
   1494 
   1495 	/*
   1496 	 * Cancel any pending I/O.
   1497 	 */
   1498 	stge_stop(ifp, 0);
   1499 
   1500 	/*
   1501 	 * Reset the chip to a known state.
   1502 	 */
   1503 	stge_reset(sc);
   1504 
   1505 	/*
   1506 	 * Initialize the transmit descriptor ring.
   1507 	 */
   1508 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1509 	for (i = 0; i < STGE_NTXDESC; i++) {
   1510 		sc->sc_txdescs[i].tfd_next = htole64(
   1511 		    STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
   1512 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
   1513 	}
   1514 	sc->sc_txpending = 0;
   1515 	sc->sc_txdirty = 0;
   1516 	sc->sc_txlast = STGE_NTXDESC - 1;
   1517 
   1518 	/*
   1519 	 * Initialize the receive descriptor and receive job
   1520 	 * descriptor rings.
   1521 	 */
   1522 	for (i = 0; i < STGE_NRXDESC; i++) {
   1523 		ds = &sc->sc_rxsoft[i];
   1524 		if (ds->ds_mbuf == NULL) {
   1525 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
   1526 				printf("%s: unable to allocate or map rx "
   1527 				    "buffer %d, error = %d\n",
   1528 				    device_xname(sc->sc_dev), i, error);
   1529 				/*
   1530 				 * XXX Should attempt to run with fewer receive
   1531 				 * XXX buffers instead of just failing.
   1532 				 */
   1533 				stge_rxdrain(sc);
   1534 				goto out;
   1535 			}
   1536 		} else
   1537 			STGE_INIT_RXDESC(sc, i);
   1538 	}
   1539 	sc->sc_rxptr = 0;
   1540 	sc->sc_rxdiscard = 0;
   1541 	STGE_RXCHAIN_RESET(sc);
   1542 
   1543 	/* Set the station address. */
   1544 	for (i = 0; i < 6; i++)
   1545 		bus_space_write_1(st, sh, STGE_StationAddress0 + i,
   1546 		    CLLADDR(ifp->if_sadl)[i]);
   1547 
   1548 	/*
   1549 	 * Set the statistics masks.  Disable all the RMON stats,
   1550 	 * and disable selected stats in the non-RMON stats registers.
   1551 	 */
   1552 	bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
   1553 	bus_space_write_4(st, sh, STGE_StatisticsMask,
   1554 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
   1555 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
   1556 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
   1557 	    (1U << 21));
   1558 
   1559 	/* Set up the receive filter. */
   1560 	stge_set_filter(sc);
   1561 
   1562 	/*
   1563 	 * Give the transmit and receive ring to the chip.
   1564 	 */
   1565 	bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
   1566 	bus_space_write_4(st, sh, STGE_TFDListPtrLo,
   1567 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
   1568 
   1569 	bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
   1570 	bus_space_write_4(st, sh, STGE_RFDListPtrLo,
   1571 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
   1572 
   1573 	/*
   1574 	 * Initialize the Tx auto-poll period.  It's OK to make this number
   1575 	 * large (255 is the max, but we use 127) -- we explicitly kick the
   1576 	 * transmit engine when there's actually a packet.
   1577 	 */
   1578 	bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
   1579 
   1580 	/* ..and the Rx auto-poll period. */
   1581 	bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
   1582 
   1583 	/* Initialize the Tx start threshold. */
   1584 	bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
   1585 
   1586 	/* RX DMA thresholds, from linux */
   1587 	bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
   1588 	bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
   1589 
   1590 	/*
   1591 	 * Initialize the Rx DMA interrupt control register.  We
   1592 	 * request an interrupt after every incoming packet, but
   1593 	 * defer it for 32us (64 * 512 ns).  When the number of
   1594 	 * interrupts pending reaches 8, we stop deferring the
   1595 	 * interrupt, and signal it immediately.
   1596 	 */
   1597 	bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
   1598 	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
   1599 
   1600 	/*
   1601 	 * Initialize the interrupt mask.
   1602 	 */
   1603 	sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
   1604 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
   1605 	bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
   1606 	bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
   1607 
   1608 	/*
   1609 	 * Configure the DMA engine.
   1610 	 * XXX Should auto-tune TxBurstLimit.
   1611 	 */
   1612 	bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
   1613 	    DMAC_TxBurstLimit(3));
   1614 
   1615 	/*
   1616 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
   1617 	 * FIFO, and send an un-PAUSE frame when the FIFO is totally
   1618 	 * empty again.
   1619 	 */
   1620 	bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
   1621 	bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
   1622 
   1623 	/*
   1624 	 * Set the maximum frame size.
   1625 	 */
   1626 	bus_space_write_2(st, sh, STGE_MaxFrameSize,
   1627 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
   1628 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
   1629 	     ETHER_VLAN_ENCAP_LEN : 0));
   1630 
   1631 	/*
   1632 	 * Initialize MacCtrl -- do it before setting the media,
   1633 	 * as setting the media will actually program the register.
   1634 	 *
   1635 	 * Note: We have to poke the IFS value before poking
   1636 	 * anything else.
   1637 	 */
   1638 	sc->sc_MACCtrl = MC_IFSSelect(0);
   1639 	bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
   1640 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
   1641 #ifdef	STGE_VLAN_UNTAG
   1642 	sc->sc_MACCtrl |= MC_AutoVLANuntagging;
   1643 #endif
   1644 
   1645 	if (sc->sc_rev >= 6) {		/* >= B.2 */
   1646 		/* Multi-frag frame bug work-around. */
   1647 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1648 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
   1649 
   1650 		/* Tx Poll Now bug work-around. */
   1651 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1652 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
   1653 		/* XXX ? from linux */
   1654 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1655 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
   1656 	}
   1657 
   1658 	/*
   1659 	 * Set the current media.
   1660 	 */
   1661 	if ((error = ether_mediachange(ifp)) != 0)
   1662 		goto out;
   1663 
   1664 	/*
   1665 	 * Start the one second MII clock.
   1666 	 */
   1667 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
   1668 
   1669 	/*
   1670 	 * ...all done!
   1671 	 */
   1672 	ifp->if_flags |= IFF_RUNNING;
   1673 	ifp->if_flags &= ~IFF_OACTIVE;
   1674 
   1675  out:
   1676 	if (error)
   1677 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
   1678 	return (error);
   1679 }
   1680 
   1681 /*
   1682  * stge_drain:
   1683  *
   1684  *	Drain the receive queue.
   1685  */
   1686 static void
   1687 stge_rxdrain(struct stge_softc *sc)
   1688 {
   1689 	struct stge_descsoft *ds;
   1690 	int i;
   1691 
   1692 	for (i = 0; i < STGE_NRXDESC; i++) {
   1693 		ds = &sc->sc_rxsoft[i];
   1694 		if (ds->ds_mbuf != NULL) {
   1695 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1696 			ds->ds_mbuf->m_next = NULL;
   1697 			m_freem(ds->ds_mbuf);
   1698 			ds->ds_mbuf = NULL;
   1699 		}
   1700 	}
   1701 }
   1702 
   1703 /*
   1704  * stge_stop:		[ ifnet interface function ]
   1705  *
   1706  *	Stop transmission on the interface.
   1707  */
   1708 static void
   1709 stge_stop(struct ifnet *ifp, int disable)
   1710 {
   1711 	struct stge_softc *sc = ifp->if_softc;
   1712 	struct stge_descsoft *ds;
   1713 	int i;
   1714 
   1715 	/*
   1716 	 * Stop the one second clock.
   1717 	 */
   1718 	callout_stop(&sc->sc_tick_ch);
   1719 
   1720 	/* Down the MII. */
   1721 	mii_down(&sc->sc_mii);
   1722 
   1723 	/*
   1724 	 * Disable interrupts.
   1725 	 */
   1726 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
   1727 
   1728 	/*
   1729 	 * Stop receiver, transmitter, and stats update.
   1730 	 */
   1731 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
   1732 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
   1733 
   1734 	/*
   1735 	 * Stop the transmit and receive DMA.
   1736 	 */
   1737 	stge_dma_wait(sc);
   1738 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
   1739 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
   1740 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
   1741 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
   1742 
   1743 	/*
   1744 	 * Release any queued transmit buffers.
   1745 	 */
   1746 	for (i = 0; i < STGE_NTXDESC; i++) {
   1747 		ds = &sc->sc_txsoft[i];
   1748 		if (ds->ds_mbuf != NULL) {
   1749 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1750 			m_freem(ds->ds_mbuf);
   1751 			ds->ds_mbuf = NULL;
   1752 		}
   1753 	}
   1754 
   1755 	/*
   1756 	 * Mark the interface down and cancel the watchdog timer.
   1757 	 */
   1758 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1759 	ifp->if_timer = 0;
   1760 
   1761 	if (disable)
   1762 		stge_rxdrain(sc);
   1763 }
   1764 
   1765 static int
   1766 stge_eeprom_wait(struct stge_softc *sc)
   1767 {
   1768 	int i;
   1769 
   1770 	for (i = 0; i < STGE_TIMEOUT; i++) {
   1771 		delay(1000);
   1772 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
   1773 		     EC_EepromBusy) == 0)
   1774 			return (0);
   1775 	}
   1776 	return (1);
   1777 }
   1778 
   1779 /*
   1780  * stge_read_eeprom:
   1781  *
   1782  *	Read data from the serial EEPROM.
   1783  */
   1784 static void
   1785 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
   1786 {
   1787 
   1788 	if (stge_eeprom_wait(sc))
   1789 		printf("%s: EEPROM failed to come ready\n",
   1790 		    device_xname(sc->sc_dev));
   1791 
   1792 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
   1793 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
   1794 	if (stge_eeprom_wait(sc))
   1795 		printf("%s: EEPROM read timed out\n",
   1796 		    device_xname(sc->sc_dev));
   1797 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
   1798 }
   1799 
   1800 /*
   1801  * stge_add_rxbuf:
   1802  *
   1803  *	Add a receive buffer to the indicated descriptor.
   1804  */
   1805 static int
   1806 stge_add_rxbuf(struct stge_softc *sc, int idx)
   1807 {
   1808 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
   1809 	struct mbuf *m;
   1810 	int error;
   1811 
   1812 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1813 	if (m == NULL)
   1814 		return (ENOBUFS);
   1815 
   1816 	MCLGET(m, M_DONTWAIT);
   1817 	if ((m->m_flags & M_EXT) == 0) {
   1818 		m_freem(m);
   1819 		return (ENOBUFS);
   1820 	}
   1821 
   1822 	m->m_data = m->m_ext.ext_buf + 2;
   1823 	m->m_len = MCLBYTES - 2;
   1824 
   1825 	if (ds->ds_mbuf != NULL)
   1826 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1827 
   1828 	ds->ds_mbuf = m;
   1829 
   1830 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
   1831 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1832 	if (error) {
   1833 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1834 		    device_xname(sc->sc_dev), idx, error);
   1835 		panic("stge_add_rxbuf");	/* XXX */
   1836 	}
   1837 
   1838 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1839 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1840 
   1841 	STGE_INIT_RXDESC(sc, idx);
   1842 
   1843 	return (0);
   1844 }
   1845 
   1846 /*
   1847  * stge_set_filter:
   1848  *
   1849  *	Set up the receive filter.
   1850  */
   1851 static void
   1852 stge_set_filter(struct stge_softc *sc)
   1853 {
   1854 	struct ethercom *ec = &sc->sc_ethercom;
   1855 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1856 	struct ether_multi *enm;
   1857 	struct ether_multistep step;
   1858 	uint32_t crc;
   1859 	uint32_t mchash[2];
   1860 
   1861 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
   1862 	if (ifp->if_flags & IFF_BROADCAST)
   1863 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
   1864 
   1865 	/* XXX: ST1023 only works in promiscuous mode */
   1866 	if (sc->sc_stge1023)
   1867 		ifp->if_flags |= IFF_PROMISC;
   1868 
   1869 	if (ifp->if_flags & IFF_PROMISC) {
   1870 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
   1871 		goto allmulti;
   1872 	}
   1873 
   1874 	/*
   1875 	 * Set up the multicast address filter by passing all multicast
   1876 	 * addresses through a CRC generator, and then using the low-order
   1877 	 * 6 bits as an index into the 64 bit multicast hash table.  The
   1878 	 * high order bits select the register, while the rest of the bits
   1879 	 * select the bit within the register.
   1880 	 */
   1881 
   1882 	memset(mchash, 0, sizeof(mchash));
   1883 
   1884 	ETHER_FIRST_MULTI(step, ec, enm);
   1885 	if (enm == NULL)
   1886 		goto done;
   1887 
   1888 	while (enm != NULL) {
   1889 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1890 			/*
   1891 			 * We must listen to a range of multicast addresses.
   1892 			 * For now, just accept all multicasts, rather than
   1893 			 * trying to set only those filter bits needed to match
   1894 			 * the range.  (At this time, the only use of address
   1895 			 * ranges is for IP multicast routing, for which the
   1896 			 * range is big enough to require all bits set.)
   1897 			 */
   1898 			goto allmulti;
   1899 		}
   1900 
   1901 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1902 
   1903 		/* Just want the 6 least significant bits. */
   1904 		crc &= 0x3f;
   1905 
   1906 		/* Set the corresponding bit in the hash table. */
   1907 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
   1908 
   1909 		ETHER_NEXT_MULTI(step, enm);
   1910 	}
   1911 
   1912 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
   1913 
   1914 	ifp->if_flags &= ~IFF_ALLMULTI;
   1915 	goto done;
   1916 
   1917  allmulti:
   1918 	ifp->if_flags |= IFF_ALLMULTI;
   1919 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
   1920 
   1921  done:
   1922 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1923 		/*
   1924 		 * Program the multicast hash table.
   1925 		 */
   1926 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
   1927 		    mchash[0]);
   1928 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
   1929 		    mchash[1]);
   1930 	}
   1931 
   1932 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
   1933 	    sc->sc_ReceiveMode);
   1934 }
   1935 
   1936 /*
   1937  * stge_mii_readreg:	[mii interface function]
   1938  *
   1939  *	Read a PHY register on the MII of the TC9021.
   1940  */
   1941 static int
   1942 stge_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   1943 {
   1944 
   1945 	return mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg, val);
   1946 }
   1947 
   1948 /*
   1949  * stge_mii_writereg:	[mii interface function]
   1950  *
   1951  *	Write a PHY register on the MII of the TC9021.
   1952  */
   1953 static int
   1954 stge_mii_writereg(device_t self, int phy, int reg, uint16_t val)
   1955 {
   1956 
   1957 	return mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg,
   1958 	    val);
   1959 }
   1960 
   1961 /*
   1962  * stge_mii_statchg:	[mii interface function]
   1963  *
   1964  *	Callback from MII layer when media changes.
   1965  */
   1966 static void
   1967 stge_mii_statchg(struct ifnet *ifp)
   1968 {
   1969 	struct stge_softc *sc = ifp->if_softc;
   1970 
   1971 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   1972 		sc->sc_MACCtrl |= MC_DuplexSelect;
   1973 	else
   1974 		sc->sc_MACCtrl &= ~MC_DuplexSelect;
   1975 
   1976 	/* XXX 802.1x flow-control? */
   1977 
   1978 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
   1979 }
   1980 
   1981 /*
   1982  * sste_mii_bitbang_read: [mii bit-bang interface function]
   1983  *
   1984  *	Read the MII serial port for the MII bit-bang module.
   1985  */
   1986 static uint32_t
   1987 stge_mii_bitbang_read(device_t self)
   1988 {
   1989 	struct stge_softc *sc = device_private(self);
   1990 
   1991 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
   1992 }
   1993 
   1994 /*
   1995  * stge_mii_bitbang_write: [mii big-bang interface function]
   1996  *
   1997  *	Write the MII serial port for the MII bit-bang module.
   1998  */
   1999 static void
   2000 stge_mii_bitbang_write(device_t self, uint32_t val)
   2001 {
   2002 	struct stge_softc *sc = device_private(self);
   2003 
   2004 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
   2005 	    val | sc->sc_PhyCtrl);
   2006 }
   2007