if_stge.c revision 1.68 1 /* $NetBSD: if_stge.c,v 1.68 2019/05/23 10:51:39 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the Sundance Tech. TC9021 10/100/1000
34 * Ethernet controller.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.68 2019/05/23 10:51:39 msaitoh Exp $");
39
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 #include <sys/queue.h>
52
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57
58 #include <net/bpf.h>
59
60 #include <sys/bus.h>
61 #include <sys/intr.h>
62
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 #include <dev/mii/mii_bitbang.h>
66
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70
71 #include <dev/pci/if_stgereg.h>
72
73 #include <prop/proplib.h>
74
75 /* #define STGE_CU_BUG 1 */
76 #define STGE_VLAN_UNTAG 1
77 /* #define STGE_VLAN_CFI 1 */
78
79 /*
80 * Transmit descriptor list size.
81 */
82 #define STGE_NTXDESC 256
83 #define STGE_NTXDESC_MASK (STGE_NTXDESC - 1)
84 #define STGE_NEXTTX(x) (((x) + 1) & STGE_NTXDESC_MASK)
85
86 /*
87 * Receive descriptor list size.
88 */
89 #define STGE_NRXDESC 256
90 #define STGE_NRXDESC_MASK (STGE_NRXDESC - 1)
91 #define STGE_NEXTRX(x) (((x) + 1) & STGE_NRXDESC_MASK)
92
93 /*
94 * Only interrupt every N frames. Must be a power-of-two.
95 */
96 #define STGE_TXINTR_SPACING 16
97 #define STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
98
99 /*
100 * Control structures are DMA'd to the TC9021 chip. We allocate them in
101 * a single clump that maps to a single DMA segment to make several things
102 * easier.
103 */
104 struct stge_control_data {
105 /*
106 * The transmit descriptors.
107 */
108 struct stge_tfd scd_txdescs[STGE_NTXDESC];
109
110 /*
111 * The receive descriptors.
112 */
113 struct stge_rfd scd_rxdescs[STGE_NRXDESC];
114 };
115
116 #define STGE_CDOFF(x) offsetof(struct stge_control_data, x)
117 #define STGE_CDTXOFF(x) STGE_CDOFF(scd_txdescs[(x)])
118 #define STGE_CDRXOFF(x) STGE_CDOFF(scd_rxdescs[(x)])
119
120 /*
121 * Software state for transmit and receive jobs.
122 */
123 struct stge_descsoft {
124 struct mbuf *ds_mbuf; /* head of our mbuf chain */
125 bus_dmamap_t ds_dmamap; /* our DMA map */
126 };
127
128 /*
129 * Software state per device.
130 */
131 struct stge_softc {
132 device_t sc_dev; /* generic device information */
133 bus_space_tag_t sc_st; /* bus space tag */
134 bus_space_handle_t sc_sh; /* bus space handle */
135 bus_dma_tag_t sc_dmat; /* bus DMA tag */
136 struct ethercom sc_ethercom; /* ethernet common data */
137 int sc_rev; /* silicon revision */
138
139 void *sc_ih; /* interrupt cookie */
140
141 struct mii_data sc_mii; /* MII/media information */
142
143 callout_t sc_tick_ch; /* tick callout */
144
145 bus_dmamap_t sc_cddmamap; /* control data DMA map */
146 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
147
148 /*
149 * Software state for transmit and receive descriptors.
150 */
151 struct stge_descsoft sc_txsoft[STGE_NTXDESC];
152 struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
153
154 /*
155 * Control data structures.
156 */
157 struct stge_control_data *sc_control_data;
158 #define sc_txdescs sc_control_data->scd_txdescs
159 #define sc_rxdescs sc_control_data->scd_rxdescs
160
161 #ifdef STGE_EVENT_COUNTERS
162 /*
163 * Event counters.
164 */
165 struct evcnt sc_ev_txstall; /* Tx stalled */
166 struct evcnt sc_ev_txdmaintr; /* Tx DMA interrupts */
167 struct evcnt sc_ev_txindintr; /* Tx Indicate interrupts */
168 struct evcnt sc_ev_rxintr; /* Rx interrupts */
169
170 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
171 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
172 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
173 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
174 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
175 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
176 struct evcnt sc_ev_txcopy; /* Tx packets that we had to copy */
177
178 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
179 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
180 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-bound */
181
182 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
183 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
184 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
185 #endif /* STGE_EVENT_COUNTERS */
186
187 int sc_txpending; /* number of Tx requests pending */
188 int sc_txdirty; /* first dirty Tx descriptor */
189 int sc_txlast; /* last used Tx descriptor */
190
191 int sc_rxptr; /* next ready Rx descriptor/descsoft */
192 int sc_rxdiscard;
193 int sc_rxlen;
194 struct mbuf *sc_rxhead;
195 struct mbuf *sc_rxtail;
196 struct mbuf **sc_rxtailp;
197
198 int sc_txthresh; /* Tx threshold */
199 uint32_t sc_usefiber:1; /* if we're fiber */
200 uint32_t sc_stge1023:1; /* are we a 1023 */
201 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
202 uint32_t sc_MACCtrl; /* prototype MacCtrl register */
203 uint16_t sc_IntEnable; /* prototype IntEnable register */
204 uint16_t sc_ReceiveMode; /* prototype ReceiveMode register */
205 uint8_t sc_PhyCtrl; /* prototype PhyCtrl register */
206 };
207
208 #define STGE_RXCHAIN_RESET(sc) \
209 do { \
210 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
211 *(sc)->sc_rxtailp = NULL; \
212 (sc)->sc_rxlen = 0; \
213 } while (/*CONSTCOND*/0)
214
215 #define STGE_RXCHAIN_LINK(sc, m) \
216 do { \
217 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
218 (sc)->sc_rxtailp = &(m)->m_next; \
219 } while (/*CONSTCOND*/0)
220
221 #ifdef STGE_EVENT_COUNTERS
222 #define STGE_EVCNT_INCR(ev) (ev)->ev_count++
223 #else
224 #define STGE_EVCNT_INCR(ev) /* nothing */
225 #endif
226
227 #define STGE_CDTXADDR(sc, x) ((sc)->sc_cddma + STGE_CDTXOFF((x)))
228 #define STGE_CDRXADDR(sc, x) ((sc)->sc_cddma + STGE_CDRXOFF((x)))
229
230 #define STGE_CDTXSYNC(sc, x, ops) \
231 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
232 STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
233
234 #define STGE_CDRXSYNC(sc, x, ops) \
235 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
236 STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
237
238 #define STGE_INIT_RXDESC(sc, x) \
239 do { \
240 struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
241 struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
242 \
243 /* \
244 * Note: We scoot the packet forward 2 bytes in the buffer \
245 * so that the payload after the Ethernet header is aligned \
246 * to a 4-byte boundary. \
247 */ \
248 __rfd->rfd_frag.frag_word0 = \
249 htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
250 FRAG_LEN(MCLBYTES - 2)); \
251 __rfd->rfd_next = \
252 htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x)))); \
253 __rfd->rfd_status = 0; \
254 STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
255 } while (/*CONSTCOND*/0)
256
257 #define STGE_TIMEOUT 1000
258
259 static void stge_start(struct ifnet *);
260 static void stge_watchdog(struct ifnet *);
261 static int stge_ioctl(struct ifnet *, u_long, void *);
262 static int stge_init(struct ifnet *);
263 static void stge_stop(struct ifnet *, int);
264
265 static bool stge_shutdown(device_t, int);
266
267 static void stge_reset(struct stge_softc *);
268 static void stge_rxdrain(struct stge_softc *);
269 static int stge_add_rxbuf(struct stge_softc *, int);
270 static void stge_read_eeprom(struct stge_softc *, int, uint16_t *);
271 static void stge_tick(void *);
272
273 static void stge_stats_update(struct stge_softc *);
274
275 static void stge_set_filter(struct stge_softc *);
276
277 static int stge_intr(void *);
278 static void stge_txintr(struct stge_softc *);
279 static void stge_rxintr(struct stge_softc *);
280
281 static int stge_mii_readreg(device_t, int, int, uint16_t *);
282 static int stge_mii_writereg(device_t, int, int, uint16_t);
283 static void stge_mii_statchg(struct ifnet *);
284
285 static int stge_match(device_t, cfdata_t, void *);
286 static void stge_attach(device_t, device_t, void *);
287
288 int stge_copy_small = 0;
289
290 CFATTACH_DECL_NEW(stge, sizeof(struct stge_softc),
291 stge_match, stge_attach, NULL, NULL);
292
293 static uint32_t stge_mii_bitbang_read(device_t);
294 static void stge_mii_bitbang_write(device_t, uint32_t);
295
296 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
297 stge_mii_bitbang_read,
298 stge_mii_bitbang_write,
299 {
300 PC_MgmtData, /* MII_BIT_MDO */
301 PC_MgmtData, /* MII_BIT_MDI */
302 PC_MgmtClk, /* MII_BIT_MDC */
303 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
304 0, /* MII_BIT_DIR_PHY_HOST */
305 }
306 };
307
308 /*
309 * Devices supported by this driver.
310 */
311 static const struct stge_product {
312 pci_vendor_id_t stge_vendor;
313 pci_product_id_t stge_product;
314 const char *stge_name;
315 } stge_products[] = {
316 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST1023,
317 "Sundance ST-1023 Gigabit Ethernet" },
318
319 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST2021,
320 "Sundance ST-2021 Gigabit Ethernet" },
321
322 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021,
323 "Tamarack TC9021 Gigabit Ethernet" },
324
325 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021_ALT,
326 "Tamarack TC9021 Gigabit Ethernet" },
327
328 /*
329 * The Sundance sample boards use the Sundance vendor ID,
330 * but the Tamarack product ID.
331 */
332 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021,
333 "Sundance TC9021 Gigabit Ethernet" },
334
335 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021_ALT,
336 "Sundance TC9021 Gigabit Ethernet" },
337
338 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL4000,
339 "D-Link DL-4000 Gigabit Ethernet" },
340
341 { PCI_VENDOR_ANTARES, PCI_PRODUCT_ANTARES_TC9021,
342 "Antares Gigabit Ethernet" },
343
344 { 0, 0,
345 NULL },
346 };
347
348 static const struct stge_product *
349 stge_lookup(const struct pci_attach_args *pa)
350 {
351 const struct stge_product *sp;
352
353 for (sp = stge_products; sp->stge_name != NULL; sp++) {
354 if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
355 PCI_PRODUCT(pa->pa_id) == sp->stge_product)
356 return (sp);
357 }
358 return (NULL);
359 }
360
361 static int
362 stge_match(device_t parent, cfdata_t cf, void *aux)
363 {
364 struct pci_attach_args *pa = aux;
365
366 if (stge_lookup(pa) != NULL)
367 return (1);
368
369 return (0);
370 }
371
372 static void
373 stge_attach(device_t parent, device_t self, void *aux)
374 {
375 struct stge_softc *sc = device_private(self);
376 struct pci_attach_args *pa = aux;
377 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
378 struct mii_data * const mii = &sc->sc_mii;
379 pci_chipset_tag_t pc = pa->pa_pc;
380 pci_intr_handle_t ih;
381 const char *intrstr = NULL;
382 bus_space_tag_t iot, memt;
383 bus_space_handle_t ioh, memh;
384 bus_dma_segment_t seg;
385 prop_data_t data;
386 int ioh_valid, memh_valid;
387 int i, rseg, error;
388 const struct stge_product *sp;
389 uint8_t enaddr[ETHER_ADDR_LEN];
390 char intrbuf[PCI_INTRSTR_LEN];
391
392 callout_init(&sc->sc_tick_ch, 0);
393
394 sp = stge_lookup(pa);
395 if (sp == NULL) {
396 printf("\n");
397 panic("ste_attach: impossible");
398 }
399
400 sc->sc_rev = PCI_REVISION(pa->pa_class);
401
402 pci_aprint_devinfo_fancy(pa, NULL, sp->stge_name, 1);
403
404 /*
405 * Map the device.
406 */
407 ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
408 PCI_MAPREG_TYPE_IO, 0,
409 &iot, &ioh, NULL, NULL) == 0);
410 memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
411 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
412 &memt, &memh, NULL, NULL) == 0);
413
414 if (memh_valid) {
415 sc->sc_st = memt;
416 sc->sc_sh = memh;
417 } else if (ioh_valid) {
418 sc->sc_st = iot;
419 sc->sc_sh = ioh;
420 } else {
421 aprint_error_dev(self, "unable to map device registers\n");
422 return;
423 }
424
425 sc->sc_dmat = pa->pa_dmat;
426
427 /* Enable bus mastering. */
428 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
429 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
430 PCI_COMMAND_MASTER_ENABLE);
431
432 /* power up chip */
433 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
434 error != EOPNOTSUPP) {
435 aprint_error_dev(self, "cannot activate %d\n", error);
436 return;
437 }
438 /*
439 * Map and establish our interrupt.
440 */
441 if (pci_intr_map(pa, &ih)) {
442 aprint_error_dev(self, "unable to map interrupt\n");
443 return;
444 }
445 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
446 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, stge_intr, sc,
447 device_xname(self));
448 if (sc->sc_ih == NULL) {
449 aprint_error_dev(self, "unable to establish interrupt");
450 if (intrstr != NULL)
451 aprint_error(" at %s", intrstr);
452 aprint_error("\n");
453 return;
454 }
455 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
456
457 /*
458 * Allocate the control data structures, and create and load the
459 * DMA map for it.
460 */
461 if ((error = bus_dmamem_alloc(sc->sc_dmat,
462 sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
463 0)) != 0) {
464 aprint_error_dev(self,
465 "unable to allocate control data, error = %d\n", error);
466 goto fail_0;
467 }
468
469 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
470 sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
471 BUS_DMA_COHERENT)) != 0) {
472 aprint_error_dev(self,
473 "unable to map control data, error = %d\n", error);
474 goto fail_1;
475 }
476
477 if ((error = bus_dmamap_create(sc->sc_dmat,
478 sizeof(struct stge_control_data), 1,
479 sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
480 aprint_error_dev(self,
481 "unable to create control data DMA map, error = %d\n",
482 error);
483 goto fail_2;
484 }
485
486 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
487 sc->sc_control_data, sizeof(struct stge_control_data), NULL,
488 0)) != 0) {
489 aprint_error_dev(self,
490 "unable to load control data DMA map, error = %d\n",
491 error);
492 goto fail_3;
493 }
494
495 /*
496 * Create the transmit buffer DMA maps. Note that rev B.3
497 * and earlier seem to have a bug regarding multi-fragment
498 * packets. We need to limit the number of Tx segments on
499 * such chips to 1.
500 */
501 for (i = 0; i < STGE_NTXDESC; i++) {
502 if ((error = bus_dmamap_create(sc->sc_dmat,
503 ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
504 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
505 aprint_error_dev(self,
506 "unable to create tx DMA map %d, error = %d\n",
507 i, error);
508 goto fail_4;
509 }
510 }
511
512 /*
513 * Create the receive buffer DMA maps.
514 */
515 for (i = 0; i < STGE_NRXDESC; i++) {
516 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
517 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
518 aprint_error_dev(self,
519 "unable to create rx DMA map %d, error = %d\n",
520 i, error);
521 goto fail_5;
522 }
523 sc->sc_rxsoft[i].ds_mbuf = NULL;
524 }
525
526 /*
527 * Determine if we're copper or fiber. It affects how we
528 * reset the card.
529 */
530 if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
531 AC_PhyMedia)
532 sc->sc_usefiber = 1;
533 else
534 sc->sc_usefiber = 0;
535
536 /*
537 * Reset the chip to a known state.
538 */
539 stge_reset(sc);
540
541 /*
542 * Reading the station address from the EEPROM doesn't seem
543 * to work, at least on my sample boards. Instead, since
544 * the reset sequence does AutoInit, read it from the station
545 * address registers. For Sundance 1023 you can only read it
546 * from EEPROM.
547 */
548 if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
549 enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
550 STGE_StationAddress0) & 0xff;
551 enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
552 STGE_StationAddress0) >> 8;
553 enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
554 STGE_StationAddress1) & 0xff;
555 enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
556 STGE_StationAddress1) >> 8;
557 enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
558 STGE_StationAddress2) & 0xff;
559 enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
560 STGE_StationAddress2) >> 8;
561 sc->sc_stge1023 = 0;
562 } else {
563 data = prop_dictionary_get(device_properties(self),
564 "mac-address");
565 if (data != NULL) {
566 /*
567 * Try to get the station address from device
568 * properties first, in case the EEPROM is missing.
569 */
570 KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
571 KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
572 (void)memcpy(enaddr, prop_data_data_nocopy(data),
573 ETHER_ADDR_LEN);
574 } else {
575 uint16_t myaddr[ETHER_ADDR_LEN / 2];
576 for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
577 stge_read_eeprom(sc,
578 STGE_EEPROM_StationAddress0 + i,
579 &myaddr[i]);
580 myaddr[i] = le16toh(myaddr[i]);
581 }
582 (void)memcpy(enaddr, myaddr, sizeof(enaddr));
583 }
584 sc->sc_stge1023 = 1;
585 }
586
587 aprint_normal_dev(self, "Ethernet address %s\n",
588 ether_sprintf(enaddr));
589
590 /*
591 * Read some important bits from the PhyCtrl register.
592 */
593 sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
594 STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
595
596 /*
597 * Initialize our media structures and probe the MII.
598 */
599 mii->mii_ifp = ifp;
600 mii->mii_readreg = stge_mii_readreg;
601 mii->mii_writereg = stge_mii_writereg;
602 mii->mii_statchg = stge_mii_statchg;
603 sc->sc_ethercom.ec_mii = mii;
604 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
605 ether_mediastatus);
606 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
607 MII_OFFSET_ANY, MIIF_DOPAUSE);
608 if (LIST_FIRST(&mii->mii_phys) == NULL) {
609 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
610 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
611 } else
612 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
613
614 ifp = &sc->sc_ethercom.ec_if;
615 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
616 ifp->if_softc = sc;
617 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
618 ifp->if_ioctl = stge_ioctl;
619 ifp->if_start = stge_start;
620 ifp->if_watchdog = stge_watchdog;
621 ifp->if_init = stge_init;
622 ifp->if_stop = stge_stop;
623 IFQ_SET_READY(&ifp->if_snd);
624
625 /*
626 * The manual recommends disabling early transmit, so we
627 * do. It's disabled anyway, if using IP checksumming,
628 * since the entire packet must be in the FIFO in order
629 * for the chip to perform the checksum.
630 */
631 sc->sc_txthresh = 0x0fff;
632
633 /*
634 * Disable MWI if the PCI layer tells us to.
635 */
636 sc->sc_DMACtrl = 0;
637 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
638 sc->sc_DMACtrl |= DMAC_MWIDisable;
639
640 /*
641 * We can support 802.1Q VLAN-sized frames and jumbo
642 * Ethernet frames.
643 *
644 * XXX Figure out how to do hw-assisted VLAN tagging in
645 * XXX a reasonable way on this chip.
646 */
647 sc->sc_ethercom.ec_capabilities |=
648 ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
649 ETHERCAP_VLAN_HWTAGGING;
650
651 /*
652 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
653 */
654 sc->sc_ethercom.ec_if.if_capabilities |=
655 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
656 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
657 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
658
659 /*
660 * Attach the interface.
661 */
662 if_attach(ifp);
663 if_deferred_start_init(ifp, NULL);
664 ether_ifattach(ifp, enaddr);
665
666 #ifdef STGE_EVENT_COUNTERS
667 /*
668 * Attach event counters.
669 */
670 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
671 NULL, device_xname(self), "txstall");
672 evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
673 NULL, device_xname(self), "txdmaintr");
674 evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
675 NULL, device_xname(self), "txindintr");
676 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
677 NULL, device_xname(self), "rxintr");
678
679 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
680 NULL, device_xname(self), "txseg1");
681 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
682 NULL, device_xname(self), "txseg2");
683 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
684 NULL, device_xname(self), "txseg3");
685 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
686 NULL, device_xname(self), "txseg4");
687 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
688 NULL, device_xname(self), "txseg5");
689 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
690 NULL, device_xname(self), "txsegmore");
691 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
692 NULL, device_xname(self), "txcopy");
693
694 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
695 NULL, device_xname(self), "rxipsum");
696 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
697 NULL, device_xname(self), "rxtcpsum");
698 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
699 NULL, device_xname(self), "rxudpsum");
700 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
701 NULL, device_xname(self), "txipsum");
702 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
703 NULL, device_xname(self), "txtcpsum");
704 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
705 NULL, device_xname(self), "txudpsum");
706 #endif /* STGE_EVENT_COUNTERS */
707
708 /*
709 * Make sure the interface is shutdown during reboot.
710 */
711 if (pmf_device_register1(self, NULL, NULL, stge_shutdown))
712 pmf_class_network_register(self, ifp);
713 else
714 aprint_error_dev(self, "couldn't establish power handler\n");
715
716 return;
717
718 /*
719 * Free any resources we've allocated during the failed attach
720 * attempt. Do this in reverse order and fall through.
721 */
722 fail_5:
723 for (i = 0; i < STGE_NRXDESC; i++) {
724 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
725 bus_dmamap_destroy(sc->sc_dmat,
726 sc->sc_rxsoft[i].ds_dmamap);
727 }
728 fail_4:
729 for (i = 0; i < STGE_NTXDESC; i++) {
730 if (sc->sc_txsoft[i].ds_dmamap != NULL)
731 bus_dmamap_destroy(sc->sc_dmat,
732 sc->sc_txsoft[i].ds_dmamap);
733 }
734 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
735 fail_3:
736 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
737 fail_2:
738 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
739 sizeof(struct stge_control_data));
740 fail_1:
741 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
742 fail_0:
743 return;
744 }
745
746 /*
747 * stge_shutdown:
748 *
749 * Make sure the interface is stopped at reboot time.
750 */
751 static bool
752 stge_shutdown(device_t self, int howto)
753 {
754 struct stge_softc *sc = device_private(self);
755 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
756
757 stge_stop(ifp, 1);
758 stge_reset(sc);
759 return true;
760 }
761
762 static void
763 stge_dma_wait(struct stge_softc *sc)
764 {
765 int i;
766
767 for (i = 0; i < STGE_TIMEOUT; i++) {
768 delay(2);
769 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
770 DMAC_TxDMAInProg) == 0)
771 break;
772 }
773
774 if (i == STGE_TIMEOUT)
775 printf("%s: DMA wait timed out\n", device_xname(sc->sc_dev));
776 }
777
778 /*
779 * stge_start: [ifnet interface function]
780 *
781 * Start packet transmission on the interface.
782 */
783 static void
784 stge_start(struct ifnet *ifp)
785 {
786 struct stge_softc *sc = ifp->if_softc;
787 struct mbuf *m0;
788 struct stge_descsoft *ds;
789 struct stge_tfd *tfd;
790 bus_dmamap_t dmamap;
791 int error, firsttx, nexttx, opending, seg, totlen;
792 uint64_t csum_flags;
793
794 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
795 return;
796
797 /*
798 * Remember the previous number of pending transmissions
799 * and the first descriptor we will use.
800 */
801 opending = sc->sc_txpending;
802 firsttx = STGE_NEXTTX(sc->sc_txlast);
803
804 /*
805 * Loop through the send queue, setting up transmit descriptors
806 * until we drain the queue, or use up all available transmit
807 * descriptors.
808 */
809 for (;;) {
810 uint64_t tfc;
811 bool have_vtag;
812 uint16_t vtag;
813
814 /*
815 * Grab a packet off the queue.
816 */
817 IFQ_POLL(&ifp->if_snd, m0);
818 if (m0 == NULL)
819 break;
820
821 /*
822 * Leave one unused descriptor at the end of the
823 * list to prevent wrapping completely around.
824 */
825 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
826 STGE_EVCNT_INCR(&sc->sc_ev_txstall);
827 break;
828 }
829
830 /*
831 * See if we have any VLAN stuff.
832 */
833 have_vtag = vlan_has_tag(m0);
834 if (have_vtag)
835 vtag = vlan_get_tag(m0);
836
837 /*
838 * Get the last and next available transmit descriptor.
839 */
840 nexttx = STGE_NEXTTX(sc->sc_txlast);
841 tfd = &sc->sc_txdescs[nexttx];
842 ds = &sc->sc_txsoft[nexttx];
843
844 dmamap = ds->ds_dmamap;
845
846 /*
847 * Load the DMA map. If this fails, the packet either
848 * didn't fit in the alloted number of segments, or we
849 * were short on resources. For the too-many-segments
850 * case, we simply report an error and drop the packet,
851 * since we can't sanely copy a jumbo packet to a single
852 * buffer.
853 */
854 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
855 BUS_DMA_NOWAIT);
856 if (error) {
857 if (error == EFBIG) {
858 printf("%s: Tx packet consumes too many "
859 "DMA segments, dropping...\n",
860 device_xname(sc->sc_dev));
861 IFQ_DEQUEUE(&ifp->if_snd, m0);
862 m_freem(m0);
863 continue;
864 }
865 /*
866 * Short on resources, just stop for now.
867 */
868 break;
869 }
870
871 IFQ_DEQUEUE(&ifp->if_snd, m0);
872
873 /*
874 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
875 */
876
877 /* Sync the DMA map. */
878 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
879 BUS_DMASYNC_PREWRITE);
880
881 /* Initialize the fragment list. */
882 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
883 tfd->tfd_frags[seg].frag_word0 =
884 htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
885 FRAG_LEN(dmamap->dm_segs[seg].ds_len));
886 totlen += dmamap->dm_segs[seg].ds_len;
887 }
888
889 #ifdef STGE_EVENT_COUNTERS
890 switch (dmamap->dm_nsegs) {
891 case 1:
892 STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
893 break;
894 case 2:
895 STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
896 break;
897 case 3:
898 STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
899 break;
900 case 4:
901 STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
902 break;
903 case 5:
904 STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
905 break;
906 default:
907 STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
908 break;
909 }
910 #endif /* STGE_EVENT_COUNTERS */
911
912 /*
913 * Initialize checksumming flags in the descriptor.
914 * Byte-swap constants so the compiler can optimize.
915 */
916 csum_flags = 0;
917 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
918 STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
919 csum_flags |= TFD_IPChecksumEnable;
920 }
921
922 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
923 STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
924 csum_flags |= TFD_TCPChecksumEnable;
925 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
926 STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
927 csum_flags |= TFD_UDPChecksumEnable;
928 }
929
930 /*
931 * Initialize the descriptor and give it to the chip.
932 * Check to see if we have a VLAN tag to insert.
933 */
934
935 tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
936 TFD_FragCount(seg) | csum_flags |
937 (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
938 TFD_TxDMAIndicate : 0);
939 if (have_vtag) {
940 #if 0
941 struct ether_header *eh =
942 mtod(m0, struct ether_header *);
943 uint16_t etype = ntohs(eh->ether_type);
944 printf("%s: xmit (tag %d) etype %x\n",
945 ifp->if_xname, *mtod(n, int *), etype);
946 #endif
947 tfc |= TFD_VLANTagInsert |
948 #ifdef STGE_VLAN_CFI
949 TFD_CFI |
950 #endif
951 TFD_VID(vtag);
952 }
953 tfd->tfd_control = htole64(tfc);
954
955 /* Sync the descriptor. */
956 STGE_CDTXSYNC(sc, nexttx,
957 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
958
959 /*
960 * Kick the transmit DMA logic.
961 */
962 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
963 sc->sc_DMACtrl | DMAC_TxDMAPollNow);
964
965 /*
966 * Store a pointer to the packet so we can free it later.
967 */
968 ds->ds_mbuf = m0;
969
970 /* Advance the tx pointer. */
971 sc->sc_txpending++;
972 sc->sc_txlast = nexttx;
973
974 /*
975 * Pass the packet to any BPF listeners.
976 */
977 bpf_mtap(ifp, m0, BPF_D_OUT);
978 }
979
980 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
981 /* No more slots left; notify upper layer. */
982 ifp->if_flags |= IFF_OACTIVE;
983 }
984
985 if (sc->sc_txpending != opending) {
986 /*
987 * We enqueued packets. If the transmitter was idle,
988 * reset the txdirty pointer.
989 */
990 if (opending == 0)
991 sc->sc_txdirty = firsttx;
992
993 /* Set a watchdog timer in case the chip flakes out. */
994 ifp->if_timer = 5;
995 }
996 }
997
998 /*
999 * stge_watchdog: [ifnet interface function]
1000 *
1001 * Watchdog timer handler.
1002 */
1003 static void
1004 stge_watchdog(struct ifnet *ifp)
1005 {
1006 struct stge_softc *sc = ifp->if_softc;
1007
1008 /*
1009 * Sweep up first, since we don't interrupt every frame.
1010 */
1011 stge_txintr(sc);
1012 if (sc->sc_txpending != 0) {
1013 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1014 ifp->if_oerrors++;
1015
1016 (void) stge_init(ifp);
1017
1018 /* Try to get more packets going. */
1019 stge_start(ifp);
1020 }
1021 }
1022
1023 /*
1024 * stge_ioctl: [ifnet interface function]
1025 *
1026 * Handle control requests from the operator.
1027 */
1028 static int
1029 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1030 {
1031 struct stge_softc *sc = ifp->if_softc;
1032 int s, error;
1033
1034 s = splnet();
1035
1036 error = ether_ioctl(ifp, cmd, data);
1037 if (error == ENETRESET) {
1038 error = 0;
1039
1040 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1041 ;
1042 else if (ifp->if_flags & IFF_RUNNING) {
1043 /*
1044 * Multicast list has changed; set the hardware filter
1045 * accordingly.
1046 */
1047 stge_set_filter(sc);
1048 }
1049 }
1050
1051 /* Try to get more packets going. */
1052 stge_start(ifp);
1053
1054 splx(s);
1055 return (error);
1056 }
1057
1058 /*
1059 * stge_intr:
1060 *
1061 * Interrupt service routine.
1062 */
1063 static int
1064 stge_intr(void *arg)
1065 {
1066 struct stge_softc *sc = arg;
1067 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1068 uint32_t txstat;
1069 int wantinit;
1070 uint16_t isr;
1071
1072 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
1073 IS_InterruptStatus) == 0)
1074 return (0);
1075
1076 for (wantinit = 0; wantinit == 0;) {
1077 isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
1078 if ((isr & sc->sc_IntEnable) == 0)
1079 break;
1080
1081 /* Host interface errors. */
1082 if (isr & IS_HostError) {
1083 printf("%s: Host interface error\n",
1084 device_xname(sc->sc_dev));
1085 wantinit = 1;
1086 continue;
1087 }
1088
1089 /* Receive interrupts. */
1090 if (isr & (IS_RxDMAComplete | IS_RFDListEnd)) {
1091 STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1092 stge_rxintr(sc);
1093 if (isr & IS_RFDListEnd) {
1094 printf("%s: receive ring overflow\n",
1095 device_xname(sc->sc_dev));
1096 /*
1097 * XXX Should try to recover from this
1098 * XXX more gracefully.
1099 */
1100 wantinit = 1;
1101 }
1102 }
1103
1104 /* Transmit interrupts. */
1105 if (isr & (IS_TxDMAComplete | IS_TxComplete)) {
1106 #ifdef STGE_EVENT_COUNTERS
1107 if (isr & IS_TxDMAComplete)
1108 STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1109 #endif
1110 stge_txintr(sc);
1111 }
1112
1113 /* Statistics overflow. */
1114 if (isr & IS_UpdateStats)
1115 stge_stats_update(sc);
1116
1117 /* Transmission errors. */
1118 if (isr & IS_TxComplete) {
1119 STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1120 for (;;) {
1121 txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
1122 STGE_TxStatus);
1123 if ((txstat & TS_TxComplete) == 0)
1124 break;
1125 if (txstat & TS_TxUnderrun) {
1126 sc->sc_txthresh++;
1127 if (sc->sc_txthresh > 0x0fff)
1128 sc->sc_txthresh = 0x0fff;
1129 printf("%s: transmit underrun, new "
1130 "threshold: %d bytes\n",
1131 device_xname(sc->sc_dev),
1132 sc->sc_txthresh << 5);
1133 }
1134 if (txstat & TS_MaxCollisions)
1135 printf("%s: excessive collisions\n",
1136 device_xname(sc->sc_dev));
1137 }
1138 wantinit = 1;
1139 }
1140
1141 }
1142
1143 if (wantinit)
1144 stge_init(ifp);
1145
1146 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
1147 sc->sc_IntEnable);
1148
1149 /* Try to get more packets going. */
1150 if_schedule_deferred_start(ifp);
1151
1152 return (1);
1153 }
1154
1155 /*
1156 * stge_txintr:
1157 *
1158 * Helper; handle transmit interrupts.
1159 */
1160 static void
1161 stge_txintr(struct stge_softc *sc)
1162 {
1163 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1164 struct stge_descsoft *ds;
1165 uint64_t control;
1166 int i;
1167
1168 ifp->if_flags &= ~IFF_OACTIVE;
1169
1170 /*
1171 * Go through our Tx list and free mbufs for those
1172 * frames which have been transmitted.
1173 */
1174 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1175 i = STGE_NEXTTX(i), sc->sc_txpending--) {
1176 ds = &sc->sc_txsoft[i];
1177
1178 STGE_CDTXSYNC(sc, i,
1179 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1180
1181 control = le64toh(sc->sc_txdescs[i].tfd_control);
1182 if ((control & TFD_TFDDone) == 0)
1183 break;
1184
1185 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1186 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1187 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1188 m_freem(ds->ds_mbuf);
1189 ds->ds_mbuf = NULL;
1190 }
1191
1192 /* Update the dirty transmit buffer pointer. */
1193 sc->sc_txdirty = i;
1194
1195 /*
1196 * If there are no more pending transmissions, cancel the watchdog
1197 * timer.
1198 */
1199 if (sc->sc_txpending == 0)
1200 ifp->if_timer = 0;
1201 }
1202
1203 /*
1204 * stge_rxintr:
1205 *
1206 * Helper; handle receive interrupts.
1207 */
1208 static void
1209 stge_rxintr(struct stge_softc *sc)
1210 {
1211 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1212 struct stge_descsoft *ds;
1213 struct mbuf *m, *tailm;
1214 uint64_t status;
1215 int i, len;
1216
1217 for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1218 ds = &sc->sc_rxsoft[i];
1219
1220 STGE_CDRXSYNC(sc, i,
1221 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1222
1223 status = le64toh(sc->sc_rxdescs[i].rfd_status);
1224
1225 if ((status & RFD_RFDDone) == 0)
1226 break;
1227
1228 if (__predict_false(sc->sc_rxdiscard)) {
1229 STGE_INIT_RXDESC(sc, i);
1230 if (status & RFD_FrameEnd) {
1231 /* Reset our state. */
1232 sc->sc_rxdiscard = 0;
1233 }
1234 continue;
1235 }
1236
1237 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1238 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1239
1240 m = ds->ds_mbuf;
1241
1242 /*
1243 * Add a new receive buffer to the ring.
1244 */
1245 if (stge_add_rxbuf(sc, i) != 0) {
1246 /*
1247 * Failed, throw away what we've done so
1248 * far, and discard the rest of the packet.
1249 */
1250 ifp->if_ierrors++;
1251 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1252 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1253 STGE_INIT_RXDESC(sc, i);
1254 if ((status & RFD_FrameEnd) == 0)
1255 sc->sc_rxdiscard = 1;
1256 if (sc->sc_rxhead != NULL)
1257 m_freem(sc->sc_rxhead);
1258 STGE_RXCHAIN_RESET(sc);
1259 continue;
1260 }
1261
1262 #ifdef DIAGNOSTIC
1263 if (status & RFD_FrameStart) {
1264 KASSERT(sc->sc_rxhead == NULL);
1265 KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1266 }
1267 #endif
1268
1269 STGE_RXCHAIN_LINK(sc, m);
1270
1271 /*
1272 * If this is not the end of the packet, keep
1273 * looking.
1274 */
1275 if ((status & RFD_FrameEnd) == 0) {
1276 sc->sc_rxlen += m->m_len;
1277 continue;
1278 }
1279
1280 /*
1281 * Okay, we have the entire packet now...
1282 */
1283 *sc->sc_rxtailp = NULL;
1284 m = sc->sc_rxhead;
1285 tailm = sc->sc_rxtail;
1286
1287 STGE_RXCHAIN_RESET(sc);
1288
1289 /*
1290 * If the packet had an error, drop it. Note we
1291 * count the error later in the periodic stats update.
1292 */
1293 if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1294 RFD_RxAlignmentError | RFD_RxFCSError |
1295 RFD_RxLengthError)) {
1296 m_freem(m);
1297 continue;
1298 }
1299
1300 /*
1301 * No errors.
1302 *
1303 * Note we have configured the chip to not include
1304 * the CRC at the end of the packet.
1305 */
1306 len = RFD_RxDMAFrameLen(status);
1307 tailm->m_len = len - sc->sc_rxlen;
1308
1309 /*
1310 * If the packet is small enough to fit in a
1311 * single header mbuf, allocate one and copy
1312 * the data into it. This greatly reduces
1313 * memory consumption when we receive lots
1314 * of small packets.
1315 */
1316 if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1317 struct mbuf *nm;
1318 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1319 if (nm == NULL) {
1320 ifp->if_ierrors++;
1321 m_freem(m);
1322 continue;
1323 }
1324 nm->m_data += 2;
1325 nm->m_pkthdr.len = nm->m_len = len;
1326 m_copydata(m, 0, len, mtod(nm, void *));
1327 m_freem(m);
1328 m = nm;
1329 }
1330
1331 /*
1332 * Set the incoming checksum information for the packet.
1333 */
1334 if (status & RFD_IPDetected) {
1335 STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1336 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1337 if (status & RFD_IPError)
1338 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1339 if (status & RFD_TCPDetected) {
1340 STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1341 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1342 if (status & RFD_TCPError)
1343 m->m_pkthdr.csum_flags |=
1344 M_CSUM_TCP_UDP_BAD;
1345 } else if (status & RFD_UDPDetected) {
1346 STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1347 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1348 if (status & RFD_UDPError)
1349 m->m_pkthdr.csum_flags |=
1350 M_CSUM_TCP_UDP_BAD;
1351 }
1352 }
1353
1354 m_set_rcvif(m, ifp);
1355 m->m_pkthdr.len = len;
1356
1357 /*
1358 * Pass this up to any BPF listeners, but only
1359 * pass if up the stack if it's for us.
1360 */
1361 #ifdef STGE_VLAN_UNTAG
1362 /*
1363 * Check for VLAN tagged packets
1364 */
1365 if (status & RFD_VLANDetected)
1366 vlan_set_tag(m, RFD_TCI(status));
1367
1368 #endif
1369 #if 0
1370 if (status & RFD_VLANDetected) {
1371 struct ether_header *eh;
1372 uint16_t etype;
1373
1374 eh = mtod(m, struct ether_header *);
1375 etype = ntohs(eh->ether_type);
1376 printf("%s: VLANtag detected (TCI %d) etype %x\n",
1377 ifp->if_xname, (uint16_t) RFD_TCI(status),
1378 etype);
1379 }
1380 #endif
1381 /* Pass it on. */
1382 if_percpuq_enqueue(ifp->if_percpuq, m);
1383 }
1384
1385 /* Update the receive pointer. */
1386 sc->sc_rxptr = i;
1387 }
1388
1389 /*
1390 * stge_tick:
1391 *
1392 * One second timer, used to tick the MII.
1393 */
1394 static void
1395 stge_tick(void *arg)
1396 {
1397 struct stge_softc *sc = arg;
1398 int s;
1399
1400 s = splnet();
1401 mii_tick(&sc->sc_mii);
1402 stge_stats_update(sc);
1403 splx(s);
1404
1405 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1406 }
1407
1408 /*
1409 * stge_stats_update:
1410 *
1411 * Read the TC9021 statistics counters.
1412 */
1413 static void
1414 stge_stats_update(struct stge_softc *sc)
1415 {
1416 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1417 bus_space_tag_t st = sc->sc_st;
1418 bus_space_handle_t sh = sc->sc_sh;
1419
1420 (void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
1421
1422 ifp->if_ipackets +=
1423 bus_space_read_4(st, sh, STGE_FramesRcvdOk);
1424
1425 ifp->if_ierrors +=
1426 (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
1427
1428 (void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
1429
1430 ifp->if_opackets +=
1431 bus_space_read_4(st, sh, STGE_FramesXmtdOk);
1432
1433 ifp->if_collisions +=
1434 bus_space_read_4(st, sh, STGE_LateCollisions) +
1435 bus_space_read_4(st, sh, STGE_MultiColFrames) +
1436 bus_space_read_4(st, sh, STGE_SingleColFrames);
1437
1438 ifp->if_oerrors +=
1439 (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
1440 (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
1441 }
1442
1443 /*
1444 * stge_reset:
1445 *
1446 * Perform a soft reset on the TC9021.
1447 */
1448 static void
1449 stge_reset(struct stge_softc *sc)
1450 {
1451 uint32_t ac;
1452 int i;
1453
1454 ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
1455
1456 /*
1457 * Only assert RstOut if we're fiber. We need GMII clocks
1458 * to be present in order for the reset to complete on fiber
1459 * cards.
1460 */
1461 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
1462 ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1463 AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1464 (sc->sc_usefiber ? AC_RstOut : 0));
1465
1466 delay(50000);
1467
1468 for (i = 0; i < STGE_TIMEOUT; i++) {
1469 delay(5000);
1470 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
1471 AC_ResetBusy) == 0)
1472 break;
1473 }
1474
1475 if (i == STGE_TIMEOUT)
1476 printf("%s: reset failed to complete\n",
1477 device_xname(sc->sc_dev));
1478
1479 delay(1000);
1480 }
1481
1482 /*
1483 * stge_init: [ ifnet interface function ]
1484 *
1485 * Initialize the interface. Must be called at splnet().
1486 */
1487 static int
1488 stge_init(struct ifnet *ifp)
1489 {
1490 struct stge_softc *sc = ifp->if_softc;
1491 bus_space_tag_t st = sc->sc_st;
1492 bus_space_handle_t sh = sc->sc_sh;
1493 struct stge_descsoft *ds;
1494 int i, error = 0;
1495
1496 /*
1497 * Cancel any pending I/O.
1498 */
1499 stge_stop(ifp, 0);
1500
1501 /*
1502 * Reset the chip to a known state.
1503 */
1504 stge_reset(sc);
1505
1506 /*
1507 * Initialize the transmit descriptor ring.
1508 */
1509 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1510 for (i = 0; i < STGE_NTXDESC; i++) {
1511 sc->sc_txdescs[i].tfd_next = htole64(
1512 STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1513 sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1514 }
1515 sc->sc_txpending = 0;
1516 sc->sc_txdirty = 0;
1517 sc->sc_txlast = STGE_NTXDESC - 1;
1518
1519 /*
1520 * Initialize the receive descriptor and receive job
1521 * descriptor rings.
1522 */
1523 for (i = 0; i < STGE_NRXDESC; i++) {
1524 ds = &sc->sc_rxsoft[i];
1525 if (ds->ds_mbuf == NULL) {
1526 if ((error = stge_add_rxbuf(sc, i)) != 0) {
1527 printf("%s: unable to allocate or map rx "
1528 "buffer %d, error = %d\n",
1529 device_xname(sc->sc_dev), i, error);
1530 /*
1531 * XXX Should attempt to run with fewer receive
1532 * XXX buffers instead of just failing.
1533 */
1534 stge_rxdrain(sc);
1535 goto out;
1536 }
1537 } else
1538 STGE_INIT_RXDESC(sc, i);
1539 }
1540 sc->sc_rxptr = 0;
1541 sc->sc_rxdiscard = 0;
1542 STGE_RXCHAIN_RESET(sc);
1543
1544 /* Set the station address. */
1545 for (i = 0; i < 6; i++)
1546 bus_space_write_1(st, sh, STGE_StationAddress0 + i,
1547 CLLADDR(ifp->if_sadl)[i]);
1548
1549 /*
1550 * Set the statistics masks. Disable all the RMON stats,
1551 * and disable selected stats in the non-RMON stats registers.
1552 */
1553 bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
1554 bus_space_write_4(st, sh, STGE_StatisticsMask,
1555 (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1556 (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1557 (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1558 (1U << 21));
1559
1560 /* Set up the receive filter. */
1561 stge_set_filter(sc);
1562
1563 /*
1564 * Give the transmit and receive ring to the chip.
1565 */
1566 bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1567 bus_space_write_4(st, sh, STGE_TFDListPtrLo,
1568 STGE_CDTXADDR(sc, sc->sc_txdirty));
1569
1570 bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1571 bus_space_write_4(st, sh, STGE_RFDListPtrLo,
1572 STGE_CDRXADDR(sc, sc->sc_rxptr));
1573
1574 /*
1575 * Initialize the Tx auto-poll period. It's OK to make this number
1576 * large (255 is the max, but we use 127) -- we explicitly kick the
1577 * transmit engine when there's actually a packet.
1578 */
1579 bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
1580
1581 /* ..and the Rx auto-poll period. */
1582 bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
1583
1584 /* Initialize the Tx start threshold. */
1585 bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
1586
1587 /* RX DMA thresholds, from linux */
1588 bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
1589 bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
1590
1591 /*
1592 * Initialize the Rx DMA interrupt control register. We
1593 * request an interrupt after every incoming packet, but
1594 * defer it for 32us (64 * 512 ns). When the number of
1595 * interrupts pending reaches 8, we stop deferring the
1596 * interrupt, and signal it immediately.
1597 */
1598 bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
1599 RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1600
1601 /*
1602 * Initialize the interrupt mask.
1603 */
1604 sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1605 IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1606 bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
1607 bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
1608
1609 /*
1610 * Configure the DMA engine.
1611 * XXX Should auto-tune TxBurstLimit.
1612 */
1613 bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
1614 DMAC_TxBurstLimit(3));
1615
1616 /*
1617 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1618 * FIFO, and send an un-PAUSE frame when the FIFO is totally
1619 * empty again.
1620 */
1621 bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
1622 bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
1623
1624 /*
1625 * Set the maximum frame size.
1626 */
1627 bus_space_write_2(st, sh, STGE_MaxFrameSize,
1628 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1629 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1630 ETHER_VLAN_ENCAP_LEN : 0));
1631
1632 /*
1633 * Initialize MacCtrl -- do it before setting the media,
1634 * as setting the media will actually program the register.
1635 *
1636 * Note: We have to poke the IFS value before poking
1637 * anything else.
1638 */
1639 sc->sc_MACCtrl = MC_IFSSelect(0);
1640 bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
1641 sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1642 #ifdef STGE_VLAN_UNTAG
1643 sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1644 #endif
1645
1646 if (sc->sc_rev >= 6) { /* >= B.2 */
1647 /* Multi-frag frame bug work-around. */
1648 bus_space_write_2(st, sh, STGE_DebugCtrl,
1649 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
1650
1651 /* Tx Poll Now bug work-around. */
1652 bus_space_write_2(st, sh, STGE_DebugCtrl,
1653 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
1654 /* XXX ? from linux */
1655 bus_space_write_2(st, sh, STGE_DebugCtrl,
1656 bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
1657 }
1658
1659 /*
1660 * Set the current media.
1661 */
1662 if ((error = ether_mediachange(ifp)) != 0)
1663 goto out;
1664
1665 /*
1666 * Start the one second MII clock.
1667 */
1668 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1669
1670 /*
1671 * ...all done!
1672 */
1673 ifp->if_flags |= IFF_RUNNING;
1674 ifp->if_flags &= ~IFF_OACTIVE;
1675
1676 out:
1677 if (error)
1678 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1679 return (error);
1680 }
1681
1682 /*
1683 * stge_drain:
1684 *
1685 * Drain the receive queue.
1686 */
1687 static void
1688 stge_rxdrain(struct stge_softc *sc)
1689 {
1690 struct stge_descsoft *ds;
1691 int i;
1692
1693 for (i = 0; i < STGE_NRXDESC; i++) {
1694 ds = &sc->sc_rxsoft[i];
1695 if (ds->ds_mbuf != NULL) {
1696 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1697 ds->ds_mbuf->m_next = NULL;
1698 m_freem(ds->ds_mbuf);
1699 ds->ds_mbuf = NULL;
1700 }
1701 }
1702 }
1703
1704 /*
1705 * stge_stop: [ ifnet interface function ]
1706 *
1707 * Stop transmission on the interface.
1708 */
1709 static void
1710 stge_stop(struct ifnet *ifp, int disable)
1711 {
1712 struct stge_softc *sc = ifp->if_softc;
1713 struct stge_descsoft *ds;
1714 int i;
1715
1716 /*
1717 * Stop the one second clock.
1718 */
1719 callout_stop(&sc->sc_tick_ch);
1720
1721 /* Down the MII. */
1722 mii_down(&sc->sc_mii);
1723
1724 /*
1725 * Disable interrupts.
1726 */
1727 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
1728
1729 /*
1730 * Stop receiver, transmitter, and stats update.
1731 */
1732 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
1733 MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1734
1735 /*
1736 * Stop the transmit and receive DMA.
1737 */
1738 stge_dma_wait(sc);
1739 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
1740 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
1741 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
1742 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
1743
1744 /*
1745 * Release any queued transmit buffers.
1746 */
1747 for (i = 0; i < STGE_NTXDESC; i++) {
1748 ds = &sc->sc_txsoft[i];
1749 if (ds->ds_mbuf != NULL) {
1750 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1751 m_freem(ds->ds_mbuf);
1752 ds->ds_mbuf = NULL;
1753 }
1754 }
1755
1756 /*
1757 * Mark the interface down and cancel the watchdog timer.
1758 */
1759 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1760 ifp->if_timer = 0;
1761
1762 if (disable)
1763 stge_rxdrain(sc);
1764 }
1765
1766 static int
1767 stge_eeprom_wait(struct stge_softc *sc)
1768 {
1769 int i;
1770
1771 for (i = 0; i < STGE_TIMEOUT; i++) {
1772 delay(1000);
1773 if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
1774 EC_EepromBusy) == 0)
1775 return (0);
1776 }
1777 return (1);
1778 }
1779
1780 /*
1781 * stge_read_eeprom:
1782 *
1783 * Read data from the serial EEPROM.
1784 */
1785 static void
1786 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1787 {
1788
1789 if (stge_eeprom_wait(sc))
1790 printf("%s: EEPROM failed to come ready\n",
1791 device_xname(sc->sc_dev));
1792
1793 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
1794 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1795 if (stge_eeprom_wait(sc))
1796 printf("%s: EEPROM read timed out\n",
1797 device_xname(sc->sc_dev));
1798 *data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
1799 }
1800
1801 /*
1802 * stge_add_rxbuf:
1803 *
1804 * Add a receive buffer to the indicated descriptor.
1805 */
1806 static int
1807 stge_add_rxbuf(struct stge_softc *sc, int idx)
1808 {
1809 struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1810 struct mbuf *m;
1811 int error;
1812
1813 MGETHDR(m, M_DONTWAIT, MT_DATA);
1814 if (m == NULL)
1815 return (ENOBUFS);
1816
1817 MCLGET(m, M_DONTWAIT);
1818 if ((m->m_flags & M_EXT) == 0) {
1819 m_freem(m);
1820 return (ENOBUFS);
1821 }
1822
1823 m->m_data = m->m_ext.ext_buf + 2;
1824 m->m_len = MCLBYTES - 2;
1825
1826 if (ds->ds_mbuf != NULL)
1827 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1828
1829 ds->ds_mbuf = m;
1830
1831 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1832 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1833 if (error) {
1834 printf("%s: can't load rx DMA map %d, error = %d\n",
1835 device_xname(sc->sc_dev), idx, error);
1836 panic("stge_add_rxbuf"); /* XXX */
1837 }
1838
1839 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1840 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1841
1842 STGE_INIT_RXDESC(sc, idx);
1843
1844 return (0);
1845 }
1846
1847 /*
1848 * stge_set_filter:
1849 *
1850 * Set up the receive filter.
1851 */
1852 static void
1853 stge_set_filter(struct stge_softc *sc)
1854 {
1855 struct ethercom *ec = &sc->sc_ethercom;
1856 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1857 struct ether_multi *enm;
1858 struct ether_multistep step;
1859 uint32_t crc;
1860 uint32_t mchash[2];
1861
1862 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1863 if (ifp->if_flags & IFF_BROADCAST)
1864 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1865
1866 /* XXX: ST1023 only works in promiscuous mode */
1867 if (sc->sc_stge1023)
1868 ifp->if_flags |= IFF_PROMISC;
1869
1870 if (ifp->if_flags & IFF_PROMISC) {
1871 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1872 goto allmulti;
1873 }
1874
1875 /*
1876 * Set up the multicast address filter by passing all multicast
1877 * addresses through a CRC generator, and then using the low-order
1878 * 6 bits as an index into the 64 bit multicast hash table. The
1879 * high order bits select the register, while the rest of the bits
1880 * select the bit within the register.
1881 */
1882
1883 memset(mchash, 0, sizeof(mchash));
1884
1885 ETHER_FIRST_MULTI(step, ec, enm);
1886 if (enm == NULL)
1887 goto done;
1888
1889 while (enm != NULL) {
1890 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1891 /*
1892 * We must listen to a range of multicast addresses.
1893 * For now, just accept all multicasts, rather than
1894 * trying to set only those filter bits needed to match
1895 * the range. (At this time, the only use of address
1896 * ranges is for IP multicast routing, for which the
1897 * range is big enough to require all bits set.)
1898 */
1899 goto allmulti;
1900 }
1901
1902 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1903
1904 /* Just want the 6 least significant bits. */
1905 crc &= 0x3f;
1906
1907 /* Set the corresponding bit in the hash table. */
1908 mchash[crc >> 5] |= 1 << (crc & 0x1f);
1909
1910 ETHER_NEXT_MULTI(step, enm);
1911 }
1912
1913 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1914
1915 ifp->if_flags &= ~IFF_ALLMULTI;
1916 goto done;
1917
1918 allmulti:
1919 ifp->if_flags |= IFF_ALLMULTI;
1920 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1921
1922 done:
1923 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1924 /*
1925 * Program the multicast hash table.
1926 */
1927 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
1928 mchash[0]);
1929 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
1930 mchash[1]);
1931 }
1932
1933 bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
1934 sc->sc_ReceiveMode);
1935 }
1936
1937 /*
1938 * stge_mii_readreg: [mii interface function]
1939 *
1940 * Read a PHY register on the MII of the TC9021.
1941 */
1942 static int
1943 stge_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1944 {
1945
1946 return mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg, val);
1947 }
1948
1949 /*
1950 * stge_mii_writereg: [mii interface function]
1951 *
1952 * Write a PHY register on the MII of the TC9021.
1953 */
1954 static int
1955 stge_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1956 {
1957
1958 return mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg,
1959 val);
1960 }
1961
1962 /*
1963 * stge_mii_statchg: [mii interface function]
1964 *
1965 * Callback from MII layer when media changes.
1966 */
1967 static void
1968 stge_mii_statchg(struct ifnet *ifp)
1969 {
1970 struct stge_softc *sc = ifp->if_softc;
1971
1972 if (sc->sc_mii.mii_media_active & IFM_FDX)
1973 sc->sc_MACCtrl |= MC_DuplexSelect;
1974 else
1975 sc->sc_MACCtrl &= ~MC_DuplexSelect;
1976
1977 /* XXX 802.1x flow-control? */
1978
1979 bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
1980 }
1981
1982 /*
1983 * sste_mii_bitbang_read: [mii bit-bang interface function]
1984 *
1985 * Read the MII serial port for the MII bit-bang module.
1986 */
1987 static uint32_t
1988 stge_mii_bitbang_read(device_t self)
1989 {
1990 struct stge_softc *sc = device_private(self);
1991
1992 return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
1993 }
1994
1995 /*
1996 * stge_mii_bitbang_write: [mii big-bang interface function]
1997 *
1998 * Write the MII serial port for the MII bit-bang module.
1999 */
2000 static void
2001 stge_mii_bitbang_write(device_t self, uint32_t val)
2002 {
2003 struct stge_softc *sc = device_private(self);
2004
2005 bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
2006 val | sc->sc_PhyCtrl);
2007 }
2008