Home | History | Annotate | Line # | Download | only in pci
if_stge.c revision 1.68
      1 /*	$NetBSD: if_stge.c,v 1.68 2019/05/23 10:51:39 msaitoh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Device driver for the Sundance Tech. TC9021 10/100/1000
     34  * Ethernet controller.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.68 2019/05/23 10:51:39 msaitoh Exp $");
     39 
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/callout.h>
     44 #include <sys/mbuf.h>
     45 #include <sys/malloc.h>
     46 #include <sys/kernel.h>
     47 #include <sys/socket.h>
     48 #include <sys/ioctl.h>
     49 #include <sys/errno.h>
     50 #include <sys/device.h>
     51 #include <sys/queue.h>
     52 
     53 #include <net/if.h>
     54 #include <net/if_dl.h>
     55 #include <net/if_media.h>
     56 #include <net/if_ether.h>
     57 
     58 #include <net/bpf.h>
     59 
     60 #include <sys/bus.h>
     61 #include <sys/intr.h>
     62 
     63 #include <dev/mii/mii.h>
     64 #include <dev/mii/miivar.h>
     65 #include <dev/mii/mii_bitbang.h>
     66 
     67 #include <dev/pci/pcireg.h>
     68 #include <dev/pci/pcivar.h>
     69 #include <dev/pci/pcidevs.h>
     70 
     71 #include <dev/pci/if_stgereg.h>
     72 
     73 #include <prop/proplib.h>
     74 
     75 /* #define	STGE_CU_BUG			1 */
     76 #define	STGE_VLAN_UNTAG			1
     77 /* #define	STGE_VLAN_CFI		1 */
     78 
     79 /*
     80  * Transmit descriptor list size.
     81  */
     82 #define	STGE_NTXDESC		256
     83 #define	STGE_NTXDESC_MASK	(STGE_NTXDESC - 1)
     84 #define	STGE_NEXTTX(x)		(((x) + 1) & STGE_NTXDESC_MASK)
     85 
     86 /*
     87  * Receive descriptor list size.
     88  */
     89 #define	STGE_NRXDESC		256
     90 #define	STGE_NRXDESC_MASK	(STGE_NRXDESC - 1)
     91 #define	STGE_NEXTRX(x)		(((x) + 1) & STGE_NRXDESC_MASK)
     92 
     93 /*
     94  * Only interrupt every N frames.  Must be a power-of-two.
     95  */
     96 #define	STGE_TXINTR_SPACING	16
     97 #define	STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
     98 
     99 /*
    100  * Control structures are DMA'd to the TC9021 chip.  We allocate them in
    101  * a single clump that maps to a single DMA segment to make several things
    102  * easier.
    103  */
    104 struct stge_control_data {
    105 	/*
    106 	 * The transmit descriptors.
    107 	 */
    108 	struct stge_tfd scd_txdescs[STGE_NTXDESC];
    109 
    110 	/*
    111 	 * The receive descriptors.
    112 	 */
    113 	struct stge_rfd scd_rxdescs[STGE_NRXDESC];
    114 };
    115 
    116 #define	STGE_CDOFF(x)	offsetof(struct stge_control_data, x)
    117 #define	STGE_CDTXOFF(x)	STGE_CDOFF(scd_txdescs[(x)])
    118 #define	STGE_CDRXOFF(x)	STGE_CDOFF(scd_rxdescs[(x)])
    119 
    120 /*
    121  * Software state for transmit and receive jobs.
    122  */
    123 struct stge_descsoft {
    124 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
    125 	bus_dmamap_t ds_dmamap;		/* our DMA map */
    126 };
    127 
    128 /*
    129  * Software state per device.
    130  */
    131 struct stge_softc {
    132 	device_t sc_dev;		/* generic device information */
    133 	bus_space_tag_t sc_st;		/* bus space tag */
    134 	bus_space_handle_t sc_sh;	/* bus space handle */
    135 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    136 	struct ethercom sc_ethercom;	/* ethernet common data */
    137 	int sc_rev;			/* silicon revision */
    138 
    139 	void *sc_ih;			/* interrupt cookie */
    140 
    141 	struct mii_data sc_mii;		/* MII/media information */
    142 
    143 	callout_t sc_tick_ch;		/* tick callout */
    144 
    145 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    146 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    147 
    148 	/*
    149 	 * Software state for transmit and receive descriptors.
    150 	 */
    151 	struct stge_descsoft sc_txsoft[STGE_NTXDESC];
    152 	struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
    153 
    154 	/*
    155 	 * Control data structures.
    156 	 */
    157 	struct stge_control_data *sc_control_data;
    158 #define	sc_txdescs	sc_control_data->scd_txdescs
    159 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    160 
    161 #ifdef STGE_EVENT_COUNTERS
    162 	/*
    163 	 * Event counters.
    164 	 */
    165 	struct evcnt sc_ev_txstall;	/* Tx stalled */
    166 	struct evcnt sc_ev_txdmaintr;	/* Tx DMA interrupts */
    167 	struct evcnt sc_ev_txindintr;	/* Tx Indicate interrupts */
    168 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    169 
    170 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
    171 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
    172 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
    173 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
    174 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
    175 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
    176 	struct evcnt sc_ev_txcopy;	/* Tx packets that we had to copy */
    177 
    178 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    179 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    180 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
    181 
    182 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    183 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    184 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    185 #endif /* STGE_EVENT_COUNTERS */
    186 
    187 	int	sc_txpending;		/* number of Tx requests pending */
    188 	int	sc_txdirty;		/* first dirty Tx descriptor */
    189 	int	sc_txlast;		/* last used Tx descriptor */
    190 
    191 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    192 	int	sc_rxdiscard;
    193 	int	sc_rxlen;
    194 	struct mbuf *sc_rxhead;
    195 	struct mbuf *sc_rxtail;
    196 	struct mbuf **sc_rxtailp;
    197 
    198 	int	sc_txthresh;		/* Tx threshold */
    199 	uint32_t sc_usefiber:1;		/* if we're fiber */
    200 	uint32_t sc_stge1023:1;		/* are we a 1023 */
    201 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
    202 	uint32_t sc_MACCtrl;		/* prototype MacCtrl register */
    203 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
    204 	uint16_t sc_ReceiveMode;	/* prototype ReceiveMode register */
    205 	uint8_t sc_PhyCtrl;		/* prototype PhyCtrl register */
    206 };
    207 
    208 #define	STGE_RXCHAIN_RESET(sc)						\
    209 do {									\
    210 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    211 	*(sc)->sc_rxtailp = NULL;					\
    212 	(sc)->sc_rxlen = 0;						\
    213 } while (/*CONSTCOND*/0)
    214 
    215 #define	STGE_RXCHAIN_LINK(sc, m)					\
    216 do {									\
    217 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    218 	(sc)->sc_rxtailp = &(m)->m_next;				\
    219 } while (/*CONSTCOND*/0)
    220 
    221 #ifdef STGE_EVENT_COUNTERS
    222 #define	STGE_EVCNT_INCR(ev)	(ev)->ev_count++
    223 #else
    224 #define	STGE_EVCNT_INCR(ev)	/* nothing */
    225 #endif
    226 
    227 #define	STGE_CDTXADDR(sc, x)	((sc)->sc_cddma + STGE_CDTXOFF((x)))
    228 #define	STGE_CDRXADDR(sc, x)	((sc)->sc_cddma + STGE_CDRXOFF((x)))
    229 
    230 #define	STGE_CDTXSYNC(sc, x, ops)					\
    231 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    232 	    STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
    233 
    234 #define	STGE_CDRXSYNC(sc, x, ops)					\
    235 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    236 	    STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
    237 
    238 #define	STGE_INIT_RXDESC(sc, x)						\
    239 do {									\
    240 	struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
    241 	struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)];		\
    242 									\
    243 	/*								\
    244 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    245 	 * so that the payload after the Ethernet header is aligned	\
    246 	 * to a 4-byte boundary.					\
    247 	 */								\
    248 	__rfd->rfd_frag.frag_word0 =					\
    249 	    htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
    250 	    FRAG_LEN(MCLBYTES - 2));					\
    251 	__rfd->rfd_next =						\
    252 	    htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x))));	\
    253 	__rfd->rfd_status = 0;						\
    254 	STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
    255 } while (/*CONSTCOND*/0)
    256 
    257 #define STGE_TIMEOUT 1000
    258 
    259 static void	stge_start(struct ifnet *);
    260 static void	stge_watchdog(struct ifnet *);
    261 static int	stge_ioctl(struct ifnet *, u_long, void *);
    262 static int	stge_init(struct ifnet *);
    263 static void	stge_stop(struct ifnet *, int);
    264 
    265 static bool	stge_shutdown(device_t, int);
    266 
    267 static void	stge_reset(struct stge_softc *);
    268 static void	stge_rxdrain(struct stge_softc *);
    269 static int	stge_add_rxbuf(struct stge_softc *, int);
    270 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
    271 static void	stge_tick(void *);
    272 
    273 static void	stge_stats_update(struct stge_softc *);
    274 
    275 static void	stge_set_filter(struct stge_softc *);
    276 
    277 static int	stge_intr(void *);
    278 static void	stge_txintr(struct stge_softc *);
    279 static void	stge_rxintr(struct stge_softc *);
    280 
    281 static int	stge_mii_readreg(device_t, int, int, uint16_t *);
    282 static int	stge_mii_writereg(device_t, int, int, uint16_t);
    283 static void	stge_mii_statchg(struct ifnet *);
    284 
    285 static int	stge_match(device_t, cfdata_t, void *);
    286 static void	stge_attach(device_t, device_t, void *);
    287 
    288 int	stge_copy_small = 0;
    289 
    290 CFATTACH_DECL_NEW(stge, sizeof(struct stge_softc),
    291     stge_match, stge_attach, NULL, NULL);
    292 
    293 static uint32_t stge_mii_bitbang_read(device_t);
    294 static void	stge_mii_bitbang_write(device_t, uint32_t);
    295 
    296 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
    297 	stge_mii_bitbang_read,
    298 	stge_mii_bitbang_write,
    299 	{
    300 		PC_MgmtData,		/* MII_BIT_MDO */
    301 		PC_MgmtData,		/* MII_BIT_MDI */
    302 		PC_MgmtClk,		/* MII_BIT_MDC */
    303 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
    304 		0,			/* MII_BIT_DIR_PHY_HOST */
    305 	}
    306 };
    307 
    308 /*
    309  * Devices supported by this driver.
    310  */
    311 static const struct stge_product {
    312 	pci_vendor_id_t		stge_vendor;
    313 	pci_product_id_t	stge_product;
    314 	const char		*stge_name;
    315 } stge_products[] = {
    316 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST1023,
    317 	  "Sundance ST-1023 Gigabit Ethernet" },
    318 
    319 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST2021,
    320 	  "Sundance ST-2021 Gigabit Ethernet" },
    321 
    322 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021,
    323 	  "Tamarack TC9021 Gigabit Ethernet" },
    324 
    325 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021_ALT,
    326 	  "Tamarack TC9021 Gigabit Ethernet" },
    327 
    328 	/*
    329 	 * The Sundance sample boards use the Sundance vendor ID,
    330 	 * but the Tamarack product ID.
    331 	 */
    332 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021,
    333 	  "Sundance TC9021 Gigabit Ethernet" },
    334 
    335 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021_ALT,
    336 	  "Sundance TC9021 Gigabit Ethernet" },
    337 
    338 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL4000,
    339 	  "D-Link DL-4000 Gigabit Ethernet" },
    340 
    341 	{ PCI_VENDOR_ANTARES,		PCI_PRODUCT_ANTARES_TC9021,
    342 	  "Antares Gigabit Ethernet" },
    343 
    344 	{ 0,				0,
    345 	  NULL },
    346 };
    347 
    348 static const struct stge_product *
    349 stge_lookup(const struct pci_attach_args *pa)
    350 {
    351 	const struct stge_product *sp;
    352 
    353 	for (sp = stge_products; sp->stge_name != NULL; sp++) {
    354 		if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
    355 		    PCI_PRODUCT(pa->pa_id) == sp->stge_product)
    356 			return (sp);
    357 	}
    358 	return (NULL);
    359 }
    360 
    361 static int
    362 stge_match(device_t parent, cfdata_t cf, void *aux)
    363 {
    364 	struct pci_attach_args *pa = aux;
    365 
    366 	if (stge_lookup(pa) != NULL)
    367 		return (1);
    368 
    369 	return (0);
    370 }
    371 
    372 static void
    373 stge_attach(device_t parent, device_t self, void *aux)
    374 {
    375 	struct stge_softc *sc = device_private(self);
    376 	struct pci_attach_args *pa = aux;
    377 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    378 	struct mii_data * const mii = &sc->sc_mii;
    379 	pci_chipset_tag_t pc = pa->pa_pc;
    380 	pci_intr_handle_t ih;
    381 	const char *intrstr = NULL;
    382 	bus_space_tag_t iot, memt;
    383 	bus_space_handle_t ioh, memh;
    384 	bus_dma_segment_t seg;
    385 	prop_data_t data;
    386 	int ioh_valid, memh_valid;
    387 	int i, rseg, error;
    388 	const struct stge_product *sp;
    389 	uint8_t enaddr[ETHER_ADDR_LEN];
    390 	char intrbuf[PCI_INTRSTR_LEN];
    391 
    392 	callout_init(&sc->sc_tick_ch, 0);
    393 
    394 	sp = stge_lookup(pa);
    395 	if (sp == NULL) {
    396 		printf("\n");
    397 		panic("ste_attach: impossible");
    398 	}
    399 
    400 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    401 
    402 	pci_aprint_devinfo_fancy(pa, NULL, sp->stge_name, 1);
    403 
    404 	/*
    405 	 * Map the device.
    406 	 */
    407 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
    408 	    PCI_MAPREG_TYPE_IO, 0,
    409 	    &iot, &ioh, NULL, NULL) == 0);
    410 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
    411 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
    412 	    &memt, &memh, NULL, NULL) == 0);
    413 
    414 	if (memh_valid) {
    415 		sc->sc_st = memt;
    416 		sc->sc_sh = memh;
    417 	} else if (ioh_valid) {
    418 		sc->sc_st = iot;
    419 		sc->sc_sh = ioh;
    420 	} else {
    421 		aprint_error_dev(self, "unable to map device registers\n");
    422 		return;
    423 	}
    424 
    425 	sc->sc_dmat = pa->pa_dmat;
    426 
    427 	/* Enable bus mastering. */
    428 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    429 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    430 	    PCI_COMMAND_MASTER_ENABLE);
    431 
    432 	/* power up chip */
    433 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
    434 	    error != EOPNOTSUPP) {
    435 		aprint_error_dev(self, "cannot activate %d\n", error);
    436 		return;
    437 	}
    438 	/*
    439 	 * Map and establish our interrupt.
    440 	 */
    441 	if (pci_intr_map(pa, &ih)) {
    442 		aprint_error_dev(self, "unable to map interrupt\n");
    443 		return;
    444 	}
    445 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    446 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, stge_intr, sc,
    447 	    device_xname(self));
    448 	if (sc->sc_ih == NULL) {
    449 		aprint_error_dev(self, "unable to establish interrupt");
    450 		if (intrstr != NULL)
    451 			aprint_error(" at %s", intrstr);
    452 		aprint_error("\n");
    453 		return;
    454 	}
    455 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    456 
    457 	/*
    458 	 * Allocate the control data structures, and create and load the
    459 	 * DMA map for it.
    460 	 */
    461 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    462 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    463 	    0)) != 0) {
    464 		aprint_error_dev(self,
    465 		    "unable to allocate control data, error = %d\n", error);
    466 		goto fail_0;
    467 	}
    468 
    469 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    470 	    sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
    471 	    BUS_DMA_COHERENT)) != 0) {
    472 		aprint_error_dev(self,
    473 		    "unable to map control data, error = %d\n", error);
    474 		goto fail_1;
    475 	}
    476 
    477 	if ((error = bus_dmamap_create(sc->sc_dmat,
    478 	    sizeof(struct stge_control_data), 1,
    479 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    480 		aprint_error_dev(self,
    481 		    "unable to create control data DMA map, error = %d\n",
    482 		    error);
    483 		goto fail_2;
    484 	}
    485 
    486 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    487 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
    488 	    0)) != 0) {
    489 		aprint_error_dev(self,
    490 		    "unable to load control data DMA map, error = %d\n",
    491 		    error);
    492 		goto fail_3;
    493 	}
    494 
    495 	/*
    496 	 * Create the transmit buffer DMA maps.  Note that rev B.3
    497 	 * and earlier seem to have a bug regarding multi-fragment
    498 	 * packets.  We need to limit the number of Tx segments on
    499 	 * such chips to 1.
    500 	 */
    501 	for (i = 0; i < STGE_NTXDESC; i++) {
    502 		if ((error = bus_dmamap_create(sc->sc_dmat,
    503 		    ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
    504 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
    505 			aprint_error_dev(self,
    506 			    "unable to create tx DMA map %d, error = %d\n",
    507 			    i, error);
    508 			goto fail_4;
    509 		}
    510 	}
    511 
    512 	/*
    513 	 * Create the receive buffer DMA maps.
    514 	 */
    515 	for (i = 0; i < STGE_NRXDESC; i++) {
    516 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    517 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
    518 			aprint_error_dev(self,
    519 			    "unable to create rx DMA map %d, error = %d\n",
    520 			    i, error);
    521 			goto fail_5;
    522 		}
    523 		sc->sc_rxsoft[i].ds_mbuf = NULL;
    524 	}
    525 
    526 	/*
    527 	 * Determine if we're copper or fiber.  It affects how we
    528 	 * reset the card.
    529 	 */
    530 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
    531 	    AC_PhyMedia)
    532 		sc->sc_usefiber = 1;
    533 	else
    534 		sc->sc_usefiber = 0;
    535 
    536 	/*
    537 	 * Reset the chip to a known state.
    538 	 */
    539 	stge_reset(sc);
    540 
    541 	/*
    542 	 * Reading the station address from the EEPROM doesn't seem
    543 	 * to work, at least on my sample boards.  Instead, since
    544 	 * the reset sequence does AutoInit, read it from the station
    545 	 * address registers. For Sundance 1023 you can only read it
    546 	 * from EEPROM.
    547 	 */
    548 	if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
    549 		enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    550 		    STGE_StationAddress0) & 0xff;
    551 		enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    552 		    STGE_StationAddress0) >> 8;
    553 		enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    554 		    STGE_StationAddress1) & 0xff;
    555 		enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    556 		    STGE_StationAddress1) >> 8;
    557 		enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    558 		    STGE_StationAddress2) & 0xff;
    559 		enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    560 		    STGE_StationAddress2) >> 8;
    561 		sc->sc_stge1023 = 0;
    562 	} else {
    563 		data = prop_dictionary_get(device_properties(self),
    564 		    "mac-address");
    565 		if (data != NULL) {
    566 			/*
    567 			 * Try to get the station address from device
    568 			 * properties first, in case the EEPROM is missing.
    569 			 */
    570 			KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
    571 			KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
    572 			(void)memcpy(enaddr, prop_data_data_nocopy(data),
    573 			    ETHER_ADDR_LEN);
    574 		} else {
    575 			uint16_t myaddr[ETHER_ADDR_LEN / 2];
    576 			for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
    577 				stge_read_eeprom(sc,
    578 				    STGE_EEPROM_StationAddress0 + i,
    579 				    &myaddr[i]);
    580 				myaddr[i] = le16toh(myaddr[i]);
    581 			}
    582 			(void)memcpy(enaddr, myaddr, sizeof(enaddr));
    583 		}
    584 		sc->sc_stge1023 = 1;
    585 	}
    586 
    587 	aprint_normal_dev(self, "Ethernet address %s\n",
    588 	    ether_sprintf(enaddr));
    589 
    590 	/*
    591 	 * Read some important bits from the PhyCtrl register.
    592 	 */
    593 	sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
    594 	    STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
    595 
    596 	/*
    597 	 * Initialize our media structures and probe the MII.
    598 	 */
    599 	mii->mii_ifp = ifp;
    600 	mii->mii_readreg = stge_mii_readreg;
    601 	mii->mii_writereg = stge_mii_writereg;
    602 	mii->mii_statchg = stge_mii_statchg;
    603 	sc->sc_ethercom.ec_mii = mii;
    604 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
    605 	    ether_mediastatus);
    606 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
    607 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
    608 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    609 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
    610 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
    611 	} else
    612 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    613 
    614 	ifp = &sc->sc_ethercom.ec_if;
    615 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    616 	ifp->if_softc = sc;
    617 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    618 	ifp->if_ioctl = stge_ioctl;
    619 	ifp->if_start = stge_start;
    620 	ifp->if_watchdog = stge_watchdog;
    621 	ifp->if_init = stge_init;
    622 	ifp->if_stop = stge_stop;
    623 	IFQ_SET_READY(&ifp->if_snd);
    624 
    625 	/*
    626 	 * The manual recommends disabling early transmit, so we
    627 	 * do.  It's disabled anyway, if using IP checksumming,
    628 	 * since the entire packet must be in the FIFO in order
    629 	 * for the chip to perform the checksum.
    630 	 */
    631 	sc->sc_txthresh = 0x0fff;
    632 
    633 	/*
    634 	 * Disable MWI if the PCI layer tells us to.
    635 	 */
    636 	sc->sc_DMACtrl = 0;
    637 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
    638 		sc->sc_DMACtrl |= DMAC_MWIDisable;
    639 
    640 	/*
    641 	 * We can support 802.1Q VLAN-sized frames and jumbo
    642 	 * Ethernet frames.
    643 	 *
    644 	 * XXX Figure out how to do hw-assisted VLAN tagging in
    645 	 * XXX a reasonable way on this chip.
    646 	 */
    647 	sc->sc_ethercom.ec_capabilities |=
    648 	    ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
    649 	    ETHERCAP_VLAN_HWTAGGING;
    650 
    651 	/*
    652 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
    653 	 */
    654 	sc->sc_ethercom.ec_if.if_capabilities |=
    655 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    656 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    657 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    658 
    659 	/*
    660 	 * Attach the interface.
    661 	 */
    662 	if_attach(ifp);
    663 	if_deferred_start_init(ifp, NULL);
    664 	ether_ifattach(ifp, enaddr);
    665 
    666 #ifdef STGE_EVENT_COUNTERS
    667 	/*
    668 	 * Attach event counters.
    669 	 */
    670 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
    671 	    NULL, device_xname(self), "txstall");
    672 	evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
    673 	    NULL, device_xname(self), "txdmaintr");
    674 	evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
    675 	    NULL, device_xname(self), "txindintr");
    676 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    677 	    NULL, device_xname(self), "rxintr");
    678 
    679 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
    680 	    NULL, device_xname(self), "txseg1");
    681 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
    682 	    NULL, device_xname(self), "txseg2");
    683 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
    684 	    NULL, device_xname(self), "txseg3");
    685 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
    686 	    NULL, device_xname(self), "txseg4");
    687 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
    688 	    NULL, device_xname(self), "txseg5");
    689 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
    690 	    NULL, device_xname(self), "txsegmore");
    691 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
    692 	    NULL, device_xname(self), "txcopy");
    693 
    694 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    695 	    NULL, device_xname(self), "rxipsum");
    696 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
    697 	    NULL, device_xname(self), "rxtcpsum");
    698 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
    699 	    NULL, device_xname(self), "rxudpsum");
    700 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    701 	    NULL, device_xname(self), "txipsum");
    702 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
    703 	    NULL, device_xname(self), "txtcpsum");
    704 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
    705 	    NULL, device_xname(self), "txudpsum");
    706 #endif /* STGE_EVENT_COUNTERS */
    707 
    708 	/*
    709 	 * Make sure the interface is shutdown during reboot.
    710 	 */
    711 	if (pmf_device_register1(self, NULL, NULL, stge_shutdown))
    712 		pmf_class_network_register(self, ifp);
    713 	else
    714 		aprint_error_dev(self, "couldn't establish power handler\n");
    715 
    716 	return;
    717 
    718 	/*
    719 	 * Free any resources we've allocated during the failed attach
    720 	 * attempt.  Do this in reverse order and fall through.
    721 	 */
    722  fail_5:
    723 	for (i = 0; i < STGE_NRXDESC; i++) {
    724 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
    725 			bus_dmamap_destroy(sc->sc_dmat,
    726 			    sc->sc_rxsoft[i].ds_dmamap);
    727 	}
    728  fail_4:
    729 	for (i = 0; i < STGE_NTXDESC; i++) {
    730 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
    731 			bus_dmamap_destroy(sc->sc_dmat,
    732 			    sc->sc_txsoft[i].ds_dmamap);
    733 	}
    734 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    735  fail_3:
    736 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    737  fail_2:
    738 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    739 	    sizeof(struct stge_control_data));
    740  fail_1:
    741 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    742  fail_0:
    743 	return;
    744 }
    745 
    746 /*
    747  * stge_shutdown:
    748  *
    749  *	Make sure the interface is stopped at reboot time.
    750  */
    751 static bool
    752 stge_shutdown(device_t self, int howto)
    753 {
    754 	struct stge_softc *sc = device_private(self);
    755 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    756 
    757 	stge_stop(ifp, 1);
    758 	stge_reset(sc);
    759 	return true;
    760 }
    761 
    762 static void
    763 stge_dma_wait(struct stge_softc *sc)
    764 {
    765 	int i;
    766 
    767 	for (i = 0; i < STGE_TIMEOUT; i++) {
    768 		delay(2);
    769 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
    770 		     DMAC_TxDMAInProg) == 0)
    771 			break;
    772 	}
    773 
    774 	if (i == STGE_TIMEOUT)
    775 		printf("%s: DMA wait timed out\n", device_xname(sc->sc_dev));
    776 }
    777 
    778 /*
    779  * stge_start:		[ifnet interface function]
    780  *
    781  *	Start packet transmission on the interface.
    782  */
    783 static void
    784 stge_start(struct ifnet *ifp)
    785 {
    786 	struct stge_softc *sc = ifp->if_softc;
    787 	struct mbuf *m0;
    788 	struct stge_descsoft *ds;
    789 	struct stge_tfd *tfd;
    790 	bus_dmamap_t dmamap;
    791 	int error, firsttx, nexttx, opending, seg, totlen;
    792 	uint64_t csum_flags;
    793 
    794 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    795 		return;
    796 
    797 	/*
    798 	 * Remember the previous number of pending transmissions
    799 	 * and the first descriptor we will use.
    800 	 */
    801 	opending = sc->sc_txpending;
    802 	firsttx = STGE_NEXTTX(sc->sc_txlast);
    803 
    804 	/*
    805 	 * Loop through the send queue, setting up transmit descriptors
    806 	 * until we drain the queue, or use up all available transmit
    807 	 * descriptors.
    808 	 */
    809 	for (;;) {
    810 		uint64_t tfc;
    811 		bool have_vtag;
    812 		uint16_t vtag;
    813 
    814 		/*
    815 		 * Grab a packet off the queue.
    816 		 */
    817 		IFQ_POLL(&ifp->if_snd, m0);
    818 		if (m0 == NULL)
    819 			break;
    820 
    821 		/*
    822 		 * Leave one unused descriptor at the end of the
    823 		 * list to prevent wrapping completely around.
    824 		 */
    825 		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
    826 			STGE_EVCNT_INCR(&sc->sc_ev_txstall);
    827 			break;
    828 		}
    829 
    830 		/*
    831 		 * See if we have any VLAN stuff.
    832 		 */
    833 		have_vtag = vlan_has_tag(m0);
    834 		if (have_vtag)
    835 			vtag = vlan_get_tag(m0);
    836 
    837 		/*
    838 		 * Get the last and next available transmit descriptor.
    839 		 */
    840 		nexttx = STGE_NEXTTX(sc->sc_txlast);
    841 		tfd = &sc->sc_txdescs[nexttx];
    842 		ds = &sc->sc_txsoft[nexttx];
    843 
    844 		dmamap = ds->ds_dmamap;
    845 
    846 		/*
    847 		 * Load the DMA map.  If this fails, the packet either
    848 		 * didn't fit in the alloted number of segments, or we
    849 		 * were short on resources.  For the too-many-segments
    850 		 * case, we simply report an error and drop the packet,
    851 		 * since we can't sanely copy a jumbo packet to a single
    852 		 * buffer.
    853 		 */
    854 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    855 		    BUS_DMA_NOWAIT);
    856 		if (error) {
    857 			if (error == EFBIG) {
    858 				printf("%s: Tx packet consumes too many "
    859 				    "DMA segments, dropping...\n",
    860 				    device_xname(sc->sc_dev));
    861 				IFQ_DEQUEUE(&ifp->if_snd, m0);
    862 				m_freem(m0);
    863 				continue;
    864 			}
    865 			/*
    866 			 * Short on resources, just stop for now.
    867 			 */
    868 			break;
    869 		}
    870 
    871 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    872 
    873 		/*
    874 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    875 		 */
    876 
    877 		/* Sync the DMA map. */
    878 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    879 		    BUS_DMASYNC_PREWRITE);
    880 
    881 		/* Initialize the fragment list. */
    882 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
    883 			tfd->tfd_frags[seg].frag_word0 =
    884 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
    885 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
    886 			totlen += dmamap->dm_segs[seg].ds_len;
    887 		}
    888 
    889 #ifdef STGE_EVENT_COUNTERS
    890 		switch (dmamap->dm_nsegs) {
    891 		case 1:
    892 			STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
    893 			break;
    894 		case 2:
    895 			STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
    896 			break;
    897 		case 3:
    898 			STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
    899 			break;
    900 		case 4:
    901 			STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
    902 			break;
    903 		case 5:
    904 			STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
    905 			break;
    906 		default:
    907 			STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
    908 			break;
    909 		}
    910 #endif /* STGE_EVENT_COUNTERS */
    911 
    912 		/*
    913 		 * Initialize checksumming flags in the descriptor.
    914 		 * Byte-swap constants so the compiler can optimize.
    915 		 */
    916 		csum_flags = 0;
    917 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
    918 			STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
    919 			csum_flags |= TFD_IPChecksumEnable;
    920 		}
    921 
    922 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
    923 			STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
    924 			csum_flags |= TFD_TCPChecksumEnable;
    925 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
    926 			STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
    927 			csum_flags |= TFD_UDPChecksumEnable;
    928 		}
    929 
    930 		/*
    931 		 * Initialize the descriptor and give it to the chip.
    932 		 * Check to see if we have a VLAN tag to insert.
    933 		 */
    934 
    935 		tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
    936 		    TFD_FragCount(seg) | csum_flags |
    937 		    (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
    938 			TFD_TxDMAIndicate : 0);
    939 		if (have_vtag) {
    940 #if	0
    941 			struct ether_header *eh =
    942 			    mtod(m0, struct ether_header *);
    943 			uint16_t etype = ntohs(eh->ether_type);
    944 			printf("%s: xmit (tag %d) etype %x\n",
    945 			   ifp->if_xname, *mtod(n, int *), etype);
    946 #endif
    947 			tfc |= TFD_VLANTagInsert |
    948 #ifdef	STGE_VLAN_CFI
    949 			    TFD_CFI |
    950 #endif
    951 			    TFD_VID(vtag);
    952 		}
    953 		tfd->tfd_control = htole64(tfc);
    954 
    955 		/* Sync the descriptor. */
    956 		STGE_CDTXSYNC(sc, nexttx,
    957 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    958 
    959 		/*
    960 		 * Kick the transmit DMA logic.
    961 		 */
    962 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
    963 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
    964 
    965 		/*
    966 		 * Store a pointer to the packet so we can free it later.
    967 		 */
    968 		ds->ds_mbuf = m0;
    969 
    970 		/* Advance the tx pointer. */
    971 		sc->sc_txpending++;
    972 		sc->sc_txlast = nexttx;
    973 
    974 		/*
    975 		 * Pass the packet to any BPF listeners.
    976 		 */
    977 		bpf_mtap(ifp, m0, BPF_D_OUT);
    978 	}
    979 
    980 	if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
    981 		/* No more slots left; notify upper layer. */
    982 		ifp->if_flags |= IFF_OACTIVE;
    983 	}
    984 
    985 	if (sc->sc_txpending != opending) {
    986 		/*
    987 		 * We enqueued packets.  If the transmitter was idle,
    988 		 * reset the txdirty pointer.
    989 		 */
    990 		if (opending == 0)
    991 			sc->sc_txdirty = firsttx;
    992 
    993 		/* Set a watchdog timer in case the chip flakes out. */
    994 		ifp->if_timer = 5;
    995 	}
    996 }
    997 
    998 /*
    999  * stge_watchdog:	[ifnet interface function]
   1000  *
   1001  *	Watchdog timer handler.
   1002  */
   1003 static void
   1004 stge_watchdog(struct ifnet *ifp)
   1005 {
   1006 	struct stge_softc *sc = ifp->if_softc;
   1007 
   1008 	/*
   1009 	 * Sweep up first, since we don't interrupt every frame.
   1010 	 */
   1011 	stge_txintr(sc);
   1012 	if (sc->sc_txpending != 0) {
   1013 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
   1014 		ifp->if_oerrors++;
   1015 
   1016 		(void) stge_init(ifp);
   1017 
   1018 		/* Try to get more packets going. */
   1019 		stge_start(ifp);
   1020 	}
   1021 }
   1022 
   1023 /*
   1024  * stge_ioctl:		[ifnet interface function]
   1025  *
   1026  *	Handle control requests from the operator.
   1027  */
   1028 static int
   1029 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1030 {
   1031 	struct stge_softc *sc = ifp->if_softc;
   1032 	int s, error;
   1033 
   1034 	s = splnet();
   1035 
   1036 	error = ether_ioctl(ifp, cmd, data);
   1037 	if (error == ENETRESET) {
   1038 		error = 0;
   1039 
   1040 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1041 			;
   1042 		else if (ifp->if_flags & IFF_RUNNING) {
   1043 			/*
   1044 			 * Multicast list has changed; set the hardware filter
   1045 			 * accordingly.
   1046 			 */
   1047 			stge_set_filter(sc);
   1048 		}
   1049 	}
   1050 
   1051 	/* Try to get more packets going. */
   1052 	stge_start(ifp);
   1053 
   1054 	splx(s);
   1055 	return (error);
   1056 }
   1057 
   1058 /*
   1059  * stge_intr:
   1060  *
   1061  *	Interrupt service routine.
   1062  */
   1063 static int
   1064 stge_intr(void *arg)
   1065 {
   1066 	struct stge_softc *sc = arg;
   1067 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1068 	uint32_t txstat;
   1069 	int wantinit;
   1070 	uint16_t isr;
   1071 
   1072 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
   1073 	     IS_InterruptStatus) == 0)
   1074 		return (0);
   1075 
   1076 	for (wantinit = 0; wantinit == 0;) {
   1077 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
   1078 		if ((isr & sc->sc_IntEnable) == 0)
   1079 			break;
   1080 
   1081 		/* Host interface errors. */
   1082 		if (isr & IS_HostError) {
   1083 			printf("%s: Host interface error\n",
   1084 			    device_xname(sc->sc_dev));
   1085 			wantinit = 1;
   1086 			continue;
   1087 		}
   1088 
   1089 		/* Receive interrupts. */
   1090 		if (isr & (IS_RxDMAComplete | IS_RFDListEnd)) {
   1091 			STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
   1092 			stge_rxintr(sc);
   1093 			if (isr & IS_RFDListEnd) {
   1094 				printf("%s: receive ring overflow\n",
   1095 				    device_xname(sc->sc_dev));
   1096 				/*
   1097 				 * XXX Should try to recover from this
   1098 				 * XXX more gracefully.
   1099 				 */
   1100 				wantinit = 1;
   1101 			}
   1102 		}
   1103 
   1104 		/* Transmit interrupts. */
   1105 		if (isr & (IS_TxDMAComplete | IS_TxComplete)) {
   1106 #ifdef STGE_EVENT_COUNTERS
   1107 			if (isr & IS_TxDMAComplete)
   1108 				STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
   1109 #endif
   1110 			stge_txintr(sc);
   1111 		}
   1112 
   1113 		/* Statistics overflow. */
   1114 		if (isr & IS_UpdateStats)
   1115 			stge_stats_update(sc);
   1116 
   1117 		/* Transmission errors. */
   1118 		if (isr & IS_TxComplete) {
   1119 			STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
   1120 			for (;;) {
   1121 				txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
   1122 				    STGE_TxStatus);
   1123 				if ((txstat & TS_TxComplete) == 0)
   1124 					break;
   1125 				if (txstat & TS_TxUnderrun) {
   1126 					sc->sc_txthresh++;
   1127 					if (sc->sc_txthresh > 0x0fff)
   1128 						sc->sc_txthresh = 0x0fff;
   1129 					printf("%s: transmit underrun, new "
   1130 					    "threshold: %d bytes\n",
   1131 					    device_xname(sc->sc_dev),
   1132 					    sc->sc_txthresh << 5);
   1133 				}
   1134 				if (txstat & TS_MaxCollisions)
   1135 					printf("%s: excessive collisions\n",
   1136 					    device_xname(sc->sc_dev));
   1137 			}
   1138 			wantinit = 1;
   1139 		}
   1140 
   1141 	}
   1142 
   1143 	if (wantinit)
   1144 		stge_init(ifp);
   1145 
   1146 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
   1147 	    sc->sc_IntEnable);
   1148 
   1149 	/* Try to get more packets going. */
   1150 	if_schedule_deferred_start(ifp);
   1151 
   1152 	return (1);
   1153 }
   1154 
   1155 /*
   1156  * stge_txintr:
   1157  *
   1158  *	Helper; handle transmit interrupts.
   1159  */
   1160 static void
   1161 stge_txintr(struct stge_softc *sc)
   1162 {
   1163 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1164 	struct stge_descsoft *ds;
   1165 	uint64_t control;
   1166 	int i;
   1167 
   1168 	ifp->if_flags &= ~IFF_OACTIVE;
   1169 
   1170 	/*
   1171 	 * Go through our Tx list and free mbufs for those
   1172 	 * frames which have been transmitted.
   1173 	 */
   1174 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
   1175 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
   1176 		ds = &sc->sc_txsoft[i];
   1177 
   1178 		STGE_CDTXSYNC(sc, i,
   1179 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1180 
   1181 		control = le64toh(sc->sc_txdescs[i].tfd_control);
   1182 		if ((control & TFD_TFDDone) == 0)
   1183 			break;
   1184 
   1185 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
   1186 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1187 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1188 		m_freem(ds->ds_mbuf);
   1189 		ds->ds_mbuf = NULL;
   1190 	}
   1191 
   1192 	/* Update the dirty transmit buffer pointer. */
   1193 	sc->sc_txdirty = i;
   1194 
   1195 	/*
   1196 	 * If there are no more pending transmissions, cancel the watchdog
   1197 	 * timer.
   1198 	 */
   1199 	if (sc->sc_txpending == 0)
   1200 		ifp->if_timer = 0;
   1201 }
   1202 
   1203 /*
   1204  * stge_rxintr:
   1205  *
   1206  *	Helper; handle receive interrupts.
   1207  */
   1208 static void
   1209 stge_rxintr(struct stge_softc *sc)
   1210 {
   1211 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1212 	struct stge_descsoft *ds;
   1213 	struct mbuf *m, *tailm;
   1214 	uint64_t status;
   1215 	int i, len;
   1216 
   1217 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
   1218 		ds = &sc->sc_rxsoft[i];
   1219 
   1220 		STGE_CDRXSYNC(sc, i,
   1221 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1222 
   1223 		status = le64toh(sc->sc_rxdescs[i].rfd_status);
   1224 
   1225 		if ((status & RFD_RFDDone) == 0)
   1226 			break;
   1227 
   1228 		if (__predict_false(sc->sc_rxdiscard)) {
   1229 			STGE_INIT_RXDESC(sc, i);
   1230 			if (status & RFD_FrameEnd) {
   1231 				/* Reset our state. */
   1232 				sc->sc_rxdiscard = 0;
   1233 			}
   1234 			continue;
   1235 		}
   1236 
   1237 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1238 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1239 
   1240 		m = ds->ds_mbuf;
   1241 
   1242 		/*
   1243 		 * Add a new receive buffer to the ring.
   1244 		 */
   1245 		if (stge_add_rxbuf(sc, i) != 0) {
   1246 			/*
   1247 			 * Failed, throw away what we've done so
   1248 			 * far, and discard the rest of the packet.
   1249 			 */
   1250 			ifp->if_ierrors++;
   1251 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1252 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1253 			STGE_INIT_RXDESC(sc, i);
   1254 			if ((status & RFD_FrameEnd) == 0)
   1255 				sc->sc_rxdiscard = 1;
   1256 			if (sc->sc_rxhead != NULL)
   1257 				m_freem(sc->sc_rxhead);
   1258 			STGE_RXCHAIN_RESET(sc);
   1259 			continue;
   1260 		}
   1261 
   1262 #ifdef DIAGNOSTIC
   1263 		if (status & RFD_FrameStart) {
   1264 			KASSERT(sc->sc_rxhead == NULL);
   1265 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
   1266 		}
   1267 #endif
   1268 
   1269 		STGE_RXCHAIN_LINK(sc, m);
   1270 
   1271 		/*
   1272 		 * If this is not the end of the packet, keep
   1273 		 * looking.
   1274 		 */
   1275 		if ((status & RFD_FrameEnd) == 0) {
   1276 			sc->sc_rxlen += m->m_len;
   1277 			continue;
   1278 		}
   1279 
   1280 		/*
   1281 		 * Okay, we have the entire packet now...
   1282 		 */
   1283 		*sc->sc_rxtailp = NULL;
   1284 		m = sc->sc_rxhead;
   1285 		tailm = sc->sc_rxtail;
   1286 
   1287 		STGE_RXCHAIN_RESET(sc);
   1288 
   1289 		/*
   1290 		 * If the packet had an error, drop it.  Note we
   1291 		 * count the error later in the periodic stats update.
   1292 		 */
   1293 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
   1294 			      RFD_RxAlignmentError | RFD_RxFCSError |
   1295 			      RFD_RxLengthError)) {
   1296 			m_freem(m);
   1297 			continue;
   1298 		}
   1299 
   1300 		/*
   1301 		 * No errors.
   1302 		 *
   1303 		 * Note we have configured the chip to not include
   1304 		 * the CRC at the end of the packet.
   1305 		 */
   1306 		len = RFD_RxDMAFrameLen(status);
   1307 		tailm->m_len = len - sc->sc_rxlen;
   1308 
   1309 		/*
   1310 		 * If the packet is small enough to fit in a
   1311 		 * single header mbuf, allocate one and copy
   1312 		 * the data into it.  This greatly reduces
   1313 		 * memory consumption when we receive lots
   1314 		 * of small packets.
   1315 		 */
   1316 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
   1317 			struct mbuf *nm;
   1318 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1319 			if (nm == NULL) {
   1320 				ifp->if_ierrors++;
   1321 				m_freem(m);
   1322 				continue;
   1323 			}
   1324 			nm->m_data += 2;
   1325 			nm->m_pkthdr.len = nm->m_len = len;
   1326 			m_copydata(m, 0, len, mtod(nm, void *));
   1327 			m_freem(m);
   1328 			m = nm;
   1329 		}
   1330 
   1331 		/*
   1332 		 * Set the incoming checksum information for the packet.
   1333 		 */
   1334 		if (status & RFD_IPDetected) {
   1335 			STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1336 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1337 			if (status & RFD_IPError)
   1338 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1339 			if (status & RFD_TCPDetected) {
   1340 				STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   1341 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1342 				if (status & RFD_TCPError)
   1343 					m->m_pkthdr.csum_flags |=
   1344 					    M_CSUM_TCP_UDP_BAD;
   1345 			} else if (status & RFD_UDPDetected) {
   1346 				STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   1347 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1348 				if (status & RFD_UDPError)
   1349 					m->m_pkthdr.csum_flags |=
   1350 					    M_CSUM_TCP_UDP_BAD;
   1351 			}
   1352 		}
   1353 
   1354 		m_set_rcvif(m, ifp);
   1355 		m->m_pkthdr.len = len;
   1356 
   1357 		/*
   1358 		 * Pass this up to any BPF listeners, but only
   1359 		 * pass if up the stack if it's for us.
   1360 		 */
   1361 #ifdef	STGE_VLAN_UNTAG
   1362 		/*
   1363 		 * Check for VLAN tagged packets
   1364 		 */
   1365 		if (status & RFD_VLANDetected)
   1366 			vlan_set_tag(m, RFD_TCI(status));
   1367 
   1368 #endif
   1369 #if	0
   1370 		if (status & RFD_VLANDetected) {
   1371 			struct ether_header *eh;
   1372 			uint16_t etype;
   1373 
   1374 			eh = mtod(m, struct ether_header *);
   1375 			etype = ntohs(eh->ether_type);
   1376 			printf("%s: VLANtag detected (TCI %d) etype %x\n",
   1377 			    ifp->if_xname, (uint16_t) RFD_TCI(status),
   1378 			    etype);
   1379 		}
   1380 #endif
   1381 		/* Pass it on. */
   1382 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1383 	}
   1384 
   1385 	/* Update the receive pointer. */
   1386 	sc->sc_rxptr = i;
   1387 }
   1388 
   1389 /*
   1390  * stge_tick:
   1391  *
   1392  *	One second timer, used to tick the MII.
   1393  */
   1394 static void
   1395 stge_tick(void *arg)
   1396 {
   1397 	struct stge_softc *sc = arg;
   1398 	int s;
   1399 
   1400 	s = splnet();
   1401 	mii_tick(&sc->sc_mii);
   1402 	stge_stats_update(sc);
   1403 	splx(s);
   1404 
   1405 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
   1406 }
   1407 
   1408 /*
   1409  * stge_stats_update:
   1410  *
   1411  *	Read the TC9021 statistics counters.
   1412  */
   1413 static void
   1414 stge_stats_update(struct stge_softc *sc)
   1415 {
   1416 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1417 	bus_space_tag_t st = sc->sc_st;
   1418 	bus_space_handle_t sh = sc->sc_sh;
   1419 
   1420 	(void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
   1421 
   1422 	ifp->if_ipackets +=
   1423 	    bus_space_read_4(st, sh, STGE_FramesRcvdOk);
   1424 
   1425 	ifp->if_ierrors +=
   1426 	    (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
   1427 
   1428 	(void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
   1429 
   1430 	ifp->if_opackets +=
   1431 	    bus_space_read_4(st, sh, STGE_FramesXmtdOk);
   1432 
   1433 	ifp->if_collisions +=
   1434 	    bus_space_read_4(st, sh, STGE_LateCollisions) +
   1435 	    bus_space_read_4(st, sh, STGE_MultiColFrames) +
   1436 	    bus_space_read_4(st, sh, STGE_SingleColFrames);
   1437 
   1438 	ifp->if_oerrors +=
   1439 	    (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
   1440 	    (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
   1441 }
   1442 
   1443 /*
   1444  * stge_reset:
   1445  *
   1446  *	Perform a soft reset on the TC9021.
   1447  */
   1448 static void
   1449 stge_reset(struct stge_softc *sc)
   1450 {
   1451 	uint32_t ac;
   1452 	int i;
   1453 
   1454 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
   1455 
   1456 	/*
   1457 	 * Only assert RstOut if we're fiber.  We need GMII clocks
   1458 	 * to be present in order for the reset to complete on fiber
   1459 	 * cards.
   1460 	 */
   1461 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
   1462 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
   1463 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
   1464 	    (sc->sc_usefiber ? AC_RstOut : 0));
   1465 
   1466 	delay(50000);
   1467 
   1468 	for (i = 0; i < STGE_TIMEOUT; i++) {
   1469 		delay(5000);
   1470 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
   1471 		     AC_ResetBusy) == 0)
   1472 			break;
   1473 	}
   1474 
   1475 	if (i == STGE_TIMEOUT)
   1476 		printf("%s: reset failed to complete\n",
   1477 		    device_xname(sc->sc_dev));
   1478 
   1479 	delay(1000);
   1480 }
   1481 
   1482 /*
   1483  * stge_init:		[ ifnet interface function ]
   1484  *
   1485  *	Initialize the interface.  Must be called at splnet().
   1486  */
   1487 static int
   1488 stge_init(struct ifnet *ifp)
   1489 {
   1490 	struct stge_softc *sc = ifp->if_softc;
   1491 	bus_space_tag_t st = sc->sc_st;
   1492 	bus_space_handle_t sh = sc->sc_sh;
   1493 	struct stge_descsoft *ds;
   1494 	int i, error = 0;
   1495 
   1496 	/*
   1497 	 * Cancel any pending I/O.
   1498 	 */
   1499 	stge_stop(ifp, 0);
   1500 
   1501 	/*
   1502 	 * Reset the chip to a known state.
   1503 	 */
   1504 	stge_reset(sc);
   1505 
   1506 	/*
   1507 	 * Initialize the transmit descriptor ring.
   1508 	 */
   1509 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1510 	for (i = 0; i < STGE_NTXDESC; i++) {
   1511 		sc->sc_txdescs[i].tfd_next = htole64(
   1512 		    STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
   1513 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
   1514 	}
   1515 	sc->sc_txpending = 0;
   1516 	sc->sc_txdirty = 0;
   1517 	sc->sc_txlast = STGE_NTXDESC - 1;
   1518 
   1519 	/*
   1520 	 * Initialize the receive descriptor and receive job
   1521 	 * descriptor rings.
   1522 	 */
   1523 	for (i = 0; i < STGE_NRXDESC; i++) {
   1524 		ds = &sc->sc_rxsoft[i];
   1525 		if (ds->ds_mbuf == NULL) {
   1526 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
   1527 				printf("%s: unable to allocate or map rx "
   1528 				    "buffer %d, error = %d\n",
   1529 				    device_xname(sc->sc_dev), i, error);
   1530 				/*
   1531 				 * XXX Should attempt to run with fewer receive
   1532 				 * XXX buffers instead of just failing.
   1533 				 */
   1534 				stge_rxdrain(sc);
   1535 				goto out;
   1536 			}
   1537 		} else
   1538 			STGE_INIT_RXDESC(sc, i);
   1539 	}
   1540 	sc->sc_rxptr = 0;
   1541 	sc->sc_rxdiscard = 0;
   1542 	STGE_RXCHAIN_RESET(sc);
   1543 
   1544 	/* Set the station address. */
   1545 	for (i = 0; i < 6; i++)
   1546 		bus_space_write_1(st, sh, STGE_StationAddress0 + i,
   1547 		    CLLADDR(ifp->if_sadl)[i]);
   1548 
   1549 	/*
   1550 	 * Set the statistics masks.  Disable all the RMON stats,
   1551 	 * and disable selected stats in the non-RMON stats registers.
   1552 	 */
   1553 	bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
   1554 	bus_space_write_4(st, sh, STGE_StatisticsMask,
   1555 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
   1556 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
   1557 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
   1558 	    (1U << 21));
   1559 
   1560 	/* Set up the receive filter. */
   1561 	stge_set_filter(sc);
   1562 
   1563 	/*
   1564 	 * Give the transmit and receive ring to the chip.
   1565 	 */
   1566 	bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
   1567 	bus_space_write_4(st, sh, STGE_TFDListPtrLo,
   1568 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
   1569 
   1570 	bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
   1571 	bus_space_write_4(st, sh, STGE_RFDListPtrLo,
   1572 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
   1573 
   1574 	/*
   1575 	 * Initialize the Tx auto-poll period.  It's OK to make this number
   1576 	 * large (255 is the max, but we use 127) -- we explicitly kick the
   1577 	 * transmit engine when there's actually a packet.
   1578 	 */
   1579 	bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
   1580 
   1581 	/* ..and the Rx auto-poll period. */
   1582 	bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
   1583 
   1584 	/* Initialize the Tx start threshold. */
   1585 	bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
   1586 
   1587 	/* RX DMA thresholds, from linux */
   1588 	bus_space_write_1(st, sh, STGE_RxDMABurstThresh, 0x30);
   1589 	bus_space_write_1(st, sh, STGE_RxDMAUrgentThresh, 0x30);
   1590 
   1591 	/*
   1592 	 * Initialize the Rx DMA interrupt control register.  We
   1593 	 * request an interrupt after every incoming packet, but
   1594 	 * defer it for 32us (64 * 512 ns).  When the number of
   1595 	 * interrupts pending reaches 8, we stop deferring the
   1596 	 * interrupt, and signal it immediately.
   1597 	 */
   1598 	bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
   1599 	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
   1600 
   1601 	/*
   1602 	 * Initialize the interrupt mask.
   1603 	 */
   1604 	sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
   1605 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
   1606 	bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
   1607 	bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
   1608 
   1609 	/*
   1610 	 * Configure the DMA engine.
   1611 	 * XXX Should auto-tune TxBurstLimit.
   1612 	 */
   1613 	bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
   1614 	    DMAC_TxBurstLimit(3));
   1615 
   1616 	/*
   1617 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
   1618 	 * FIFO, and send an un-PAUSE frame when the FIFO is totally
   1619 	 * empty again.
   1620 	 */
   1621 	bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
   1622 	bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
   1623 
   1624 	/*
   1625 	 * Set the maximum frame size.
   1626 	 */
   1627 	bus_space_write_2(st, sh, STGE_MaxFrameSize,
   1628 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
   1629 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
   1630 	     ETHER_VLAN_ENCAP_LEN : 0));
   1631 
   1632 	/*
   1633 	 * Initialize MacCtrl -- do it before setting the media,
   1634 	 * as setting the media will actually program the register.
   1635 	 *
   1636 	 * Note: We have to poke the IFS value before poking
   1637 	 * anything else.
   1638 	 */
   1639 	sc->sc_MACCtrl = MC_IFSSelect(0);
   1640 	bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
   1641 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
   1642 #ifdef	STGE_VLAN_UNTAG
   1643 	sc->sc_MACCtrl |= MC_AutoVLANuntagging;
   1644 #endif
   1645 
   1646 	if (sc->sc_rev >= 6) {		/* >= B.2 */
   1647 		/* Multi-frag frame bug work-around. */
   1648 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1649 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
   1650 
   1651 		/* Tx Poll Now bug work-around. */
   1652 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1653 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
   1654 		/* XXX ? from linux */
   1655 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1656 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0020);
   1657 	}
   1658 
   1659 	/*
   1660 	 * Set the current media.
   1661 	 */
   1662 	if ((error = ether_mediachange(ifp)) != 0)
   1663 		goto out;
   1664 
   1665 	/*
   1666 	 * Start the one second MII clock.
   1667 	 */
   1668 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
   1669 
   1670 	/*
   1671 	 * ...all done!
   1672 	 */
   1673 	ifp->if_flags |= IFF_RUNNING;
   1674 	ifp->if_flags &= ~IFF_OACTIVE;
   1675 
   1676  out:
   1677 	if (error)
   1678 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
   1679 	return (error);
   1680 }
   1681 
   1682 /*
   1683  * stge_drain:
   1684  *
   1685  *	Drain the receive queue.
   1686  */
   1687 static void
   1688 stge_rxdrain(struct stge_softc *sc)
   1689 {
   1690 	struct stge_descsoft *ds;
   1691 	int i;
   1692 
   1693 	for (i = 0; i < STGE_NRXDESC; i++) {
   1694 		ds = &sc->sc_rxsoft[i];
   1695 		if (ds->ds_mbuf != NULL) {
   1696 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1697 			ds->ds_mbuf->m_next = NULL;
   1698 			m_freem(ds->ds_mbuf);
   1699 			ds->ds_mbuf = NULL;
   1700 		}
   1701 	}
   1702 }
   1703 
   1704 /*
   1705  * stge_stop:		[ ifnet interface function ]
   1706  *
   1707  *	Stop transmission on the interface.
   1708  */
   1709 static void
   1710 stge_stop(struct ifnet *ifp, int disable)
   1711 {
   1712 	struct stge_softc *sc = ifp->if_softc;
   1713 	struct stge_descsoft *ds;
   1714 	int i;
   1715 
   1716 	/*
   1717 	 * Stop the one second clock.
   1718 	 */
   1719 	callout_stop(&sc->sc_tick_ch);
   1720 
   1721 	/* Down the MII. */
   1722 	mii_down(&sc->sc_mii);
   1723 
   1724 	/*
   1725 	 * Disable interrupts.
   1726 	 */
   1727 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
   1728 
   1729 	/*
   1730 	 * Stop receiver, transmitter, and stats update.
   1731 	 */
   1732 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
   1733 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
   1734 
   1735 	/*
   1736 	 * Stop the transmit and receive DMA.
   1737 	 */
   1738 	stge_dma_wait(sc);
   1739 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
   1740 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
   1741 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
   1742 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
   1743 
   1744 	/*
   1745 	 * Release any queued transmit buffers.
   1746 	 */
   1747 	for (i = 0; i < STGE_NTXDESC; i++) {
   1748 		ds = &sc->sc_txsoft[i];
   1749 		if (ds->ds_mbuf != NULL) {
   1750 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1751 			m_freem(ds->ds_mbuf);
   1752 			ds->ds_mbuf = NULL;
   1753 		}
   1754 	}
   1755 
   1756 	/*
   1757 	 * Mark the interface down and cancel the watchdog timer.
   1758 	 */
   1759 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1760 	ifp->if_timer = 0;
   1761 
   1762 	if (disable)
   1763 		stge_rxdrain(sc);
   1764 }
   1765 
   1766 static int
   1767 stge_eeprom_wait(struct stge_softc *sc)
   1768 {
   1769 	int i;
   1770 
   1771 	for (i = 0; i < STGE_TIMEOUT; i++) {
   1772 		delay(1000);
   1773 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
   1774 		     EC_EepromBusy) == 0)
   1775 			return (0);
   1776 	}
   1777 	return (1);
   1778 }
   1779 
   1780 /*
   1781  * stge_read_eeprom:
   1782  *
   1783  *	Read data from the serial EEPROM.
   1784  */
   1785 static void
   1786 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
   1787 {
   1788 
   1789 	if (stge_eeprom_wait(sc))
   1790 		printf("%s: EEPROM failed to come ready\n",
   1791 		    device_xname(sc->sc_dev));
   1792 
   1793 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
   1794 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
   1795 	if (stge_eeprom_wait(sc))
   1796 		printf("%s: EEPROM read timed out\n",
   1797 		    device_xname(sc->sc_dev));
   1798 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
   1799 }
   1800 
   1801 /*
   1802  * stge_add_rxbuf:
   1803  *
   1804  *	Add a receive buffer to the indicated descriptor.
   1805  */
   1806 static int
   1807 stge_add_rxbuf(struct stge_softc *sc, int idx)
   1808 {
   1809 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
   1810 	struct mbuf *m;
   1811 	int error;
   1812 
   1813 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1814 	if (m == NULL)
   1815 		return (ENOBUFS);
   1816 
   1817 	MCLGET(m, M_DONTWAIT);
   1818 	if ((m->m_flags & M_EXT) == 0) {
   1819 		m_freem(m);
   1820 		return (ENOBUFS);
   1821 	}
   1822 
   1823 	m->m_data = m->m_ext.ext_buf + 2;
   1824 	m->m_len = MCLBYTES - 2;
   1825 
   1826 	if (ds->ds_mbuf != NULL)
   1827 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1828 
   1829 	ds->ds_mbuf = m;
   1830 
   1831 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
   1832 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1833 	if (error) {
   1834 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1835 		    device_xname(sc->sc_dev), idx, error);
   1836 		panic("stge_add_rxbuf");	/* XXX */
   1837 	}
   1838 
   1839 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1840 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1841 
   1842 	STGE_INIT_RXDESC(sc, idx);
   1843 
   1844 	return (0);
   1845 }
   1846 
   1847 /*
   1848  * stge_set_filter:
   1849  *
   1850  *	Set up the receive filter.
   1851  */
   1852 static void
   1853 stge_set_filter(struct stge_softc *sc)
   1854 {
   1855 	struct ethercom *ec = &sc->sc_ethercom;
   1856 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1857 	struct ether_multi *enm;
   1858 	struct ether_multistep step;
   1859 	uint32_t crc;
   1860 	uint32_t mchash[2];
   1861 
   1862 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
   1863 	if (ifp->if_flags & IFF_BROADCAST)
   1864 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
   1865 
   1866 	/* XXX: ST1023 only works in promiscuous mode */
   1867 	if (sc->sc_stge1023)
   1868 		ifp->if_flags |= IFF_PROMISC;
   1869 
   1870 	if (ifp->if_flags & IFF_PROMISC) {
   1871 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
   1872 		goto allmulti;
   1873 	}
   1874 
   1875 	/*
   1876 	 * Set up the multicast address filter by passing all multicast
   1877 	 * addresses through a CRC generator, and then using the low-order
   1878 	 * 6 bits as an index into the 64 bit multicast hash table.  The
   1879 	 * high order bits select the register, while the rest of the bits
   1880 	 * select the bit within the register.
   1881 	 */
   1882 
   1883 	memset(mchash, 0, sizeof(mchash));
   1884 
   1885 	ETHER_FIRST_MULTI(step, ec, enm);
   1886 	if (enm == NULL)
   1887 		goto done;
   1888 
   1889 	while (enm != NULL) {
   1890 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1891 			/*
   1892 			 * We must listen to a range of multicast addresses.
   1893 			 * For now, just accept all multicasts, rather than
   1894 			 * trying to set only those filter bits needed to match
   1895 			 * the range.  (At this time, the only use of address
   1896 			 * ranges is for IP multicast routing, for which the
   1897 			 * range is big enough to require all bits set.)
   1898 			 */
   1899 			goto allmulti;
   1900 		}
   1901 
   1902 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1903 
   1904 		/* Just want the 6 least significant bits. */
   1905 		crc &= 0x3f;
   1906 
   1907 		/* Set the corresponding bit in the hash table. */
   1908 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
   1909 
   1910 		ETHER_NEXT_MULTI(step, enm);
   1911 	}
   1912 
   1913 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
   1914 
   1915 	ifp->if_flags &= ~IFF_ALLMULTI;
   1916 	goto done;
   1917 
   1918  allmulti:
   1919 	ifp->if_flags |= IFF_ALLMULTI;
   1920 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
   1921 
   1922  done:
   1923 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1924 		/*
   1925 		 * Program the multicast hash table.
   1926 		 */
   1927 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
   1928 		    mchash[0]);
   1929 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
   1930 		    mchash[1]);
   1931 	}
   1932 
   1933 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
   1934 	    sc->sc_ReceiveMode);
   1935 }
   1936 
   1937 /*
   1938  * stge_mii_readreg:	[mii interface function]
   1939  *
   1940  *	Read a PHY register on the MII of the TC9021.
   1941  */
   1942 static int
   1943 stge_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   1944 {
   1945 
   1946 	return mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg, val);
   1947 }
   1948 
   1949 /*
   1950  * stge_mii_writereg:	[mii interface function]
   1951  *
   1952  *	Write a PHY register on the MII of the TC9021.
   1953  */
   1954 static int
   1955 stge_mii_writereg(device_t self, int phy, int reg, uint16_t val)
   1956 {
   1957 
   1958 	return mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg,
   1959 	    val);
   1960 }
   1961 
   1962 /*
   1963  * stge_mii_statchg:	[mii interface function]
   1964  *
   1965  *	Callback from MII layer when media changes.
   1966  */
   1967 static void
   1968 stge_mii_statchg(struct ifnet *ifp)
   1969 {
   1970 	struct stge_softc *sc = ifp->if_softc;
   1971 
   1972 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   1973 		sc->sc_MACCtrl |= MC_DuplexSelect;
   1974 	else
   1975 		sc->sc_MACCtrl &= ~MC_DuplexSelect;
   1976 
   1977 	/* XXX 802.1x flow-control? */
   1978 
   1979 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
   1980 }
   1981 
   1982 /*
   1983  * sste_mii_bitbang_read: [mii bit-bang interface function]
   1984  *
   1985  *	Read the MII serial port for the MII bit-bang module.
   1986  */
   1987 static uint32_t
   1988 stge_mii_bitbang_read(device_t self)
   1989 {
   1990 	struct stge_softc *sc = device_private(self);
   1991 
   1992 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
   1993 }
   1994 
   1995 /*
   1996  * stge_mii_bitbang_write: [mii big-bang interface function]
   1997  *
   1998  *	Write the MII serial port for the MII bit-bang module.
   1999  */
   2000 static void
   2001 stge_mii_bitbang_write(device_t self, uint32_t val)
   2002 {
   2003 	struct stge_softc *sc = device_private(self);
   2004 
   2005 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
   2006 	    val | sc->sc_PhyCtrl);
   2007 }
   2008