Home | History | Annotate | Line # | Download | only in pci
if_stge.c revision 1.7
      1 /*	$NetBSD: if_stge.c,v 1.7 2001/10/06 00:14:59 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Device driver for the Sundance Tech. TC9021 10/100/1000
     41  * Ethernet controller.
     42  */
     43 
     44 #include "bpfilter.h"
     45 
     46 #include <sys/param.h>
     47 #include <sys/systm.h>
     48 #include <sys/callout.h>
     49 #include <sys/mbuf.h>
     50 #include <sys/malloc.h>
     51 #include <sys/kernel.h>
     52 #include <sys/socket.h>
     53 #include <sys/ioctl.h>
     54 #include <sys/errno.h>
     55 #include <sys/device.h>
     56 #include <sys/queue.h>
     57 
     58 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     59 
     60 #include <net/if.h>
     61 #include <net/if_dl.h>
     62 #include <net/if_media.h>
     63 #include <net/if_ether.h>
     64 
     65 #if NBPFILTER > 0
     66 #include <net/bpf.h>
     67 #endif
     68 
     69 #include <machine/bus.h>
     70 #include <machine/intr.h>
     71 
     72 #include <dev/mii/mii.h>
     73 #include <dev/mii/miivar.h>
     74 #include <dev/mii/mii_bitbang.h>
     75 
     76 #include <dev/pci/pcireg.h>
     77 #include <dev/pci/pcivar.h>
     78 #include <dev/pci/pcidevs.h>
     79 
     80 #include <dev/pci/if_stgereg.h>
     81 
     82 /*
     83  * Transmit descriptor list size.
     84  */
     85 #define	STGE_NTXDESC		256
     86 #define	STGE_NTXDESC_MASK	(STGE_NTXDESC - 1)
     87 #define	STGE_NEXTTX(x)		(((x) + 1) & STGE_NTXDESC_MASK)
     88 
     89 /*
     90  * Receive descriptor list size.
     91  */
     92 #define	STGE_NRXDESC		256
     93 #define	STGE_NRXDESC_MASK	(STGE_NRXDESC - 1)
     94 #define	STGE_NEXTRX(x)		(((x) + 1) & STGE_NRXDESC_MASK)
     95 
     96 /*
     97  * Only interrupt every N frames.  Must be a power-of-two.
     98  */
     99 #define	STGE_TXINTR_SPACING	16
    100 #define	STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
    101 
    102 /*
    103  * Control structures are DMA'd to the TC9021 chip.  We allocate them in
    104  * a single clump that maps to a single DMA segment to make several things
    105  * easier.
    106  */
    107 struct stge_control_data {
    108 	/*
    109 	 * The transmit descriptors.
    110 	 */
    111 	struct stge_tfd scd_txdescs[STGE_NTXDESC];
    112 
    113 	/*
    114 	 * The receive descriptors.
    115 	 */
    116 	struct stge_rfd scd_rxdescs[STGE_NRXDESC];
    117 };
    118 
    119 #define	STGE_CDOFF(x)	offsetof(struct stge_control_data, x)
    120 #define	STGE_CDTXOFF(x)	STGE_CDOFF(scd_txdescs[(x)])
    121 #define	STGE_CDRXOFF(x)	STGE_CDOFF(scd_rxdescs[(x)])
    122 
    123 /*
    124  * Software state for transmit and receive jobs.
    125  */
    126 struct stge_descsoft {
    127 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
    128 	bus_dmamap_t ds_dmamap;		/* our DMA map */
    129 };
    130 
    131 /*
    132  * Software state per device.
    133  */
    134 struct stge_softc {
    135 	struct device sc_dev;		/* generic device information */
    136 	bus_space_tag_t sc_st;		/* bus space tag */
    137 	bus_space_handle_t sc_sh;	/* bus space handle */
    138 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    139 	struct ethercom sc_ethercom;	/* ethernet common data */
    140 	void *sc_sdhook;		/* shutdown hook */
    141 	int sc_rev;			/* silicon revision */
    142 
    143 	void *sc_ih;			/* interrupt cookie */
    144 
    145 	struct mii_data sc_mii;		/* MII/media information */
    146 
    147 	struct callout sc_tick_ch;	/* tick callout */
    148 
    149 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    150 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    151 
    152 	/*
    153 	 * Software state for transmit and receive descriptors.
    154 	 */
    155 	struct stge_descsoft sc_txsoft[STGE_NTXDESC];
    156 	struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
    157 
    158 	/*
    159 	 * Control data structures.
    160 	 */
    161 	struct stge_control_data *sc_control_data;
    162 #define	sc_txdescs	sc_control_data->scd_txdescs
    163 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    164 
    165 #ifdef STGE_EVENT_COUNTERS
    166 	/*
    167 	 * Event counters.
    168 	 */
    169 	struct evcnt sc_ev_txstall;	/* Tx stalled */
    170 	struct evcnt sc_ev_txdmaintr;	/* Tx DMA interrupts */
    171 	struct evcnt sc_ev_txindintr;	/* Tx Indicate interrupts */
    172 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    173 
    174 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
    175 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
    176 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
    177 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
    178 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
    179 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
    180 	struct evcnt sc_ev_txcopy;	/* Tx packets that we had to copy */
    181 
    182 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    183 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    184 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
    185 
    186 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    187 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    188 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    189 #endif /* STGE_EVENT_COUNTERS */
    190 
    191 	int	sc_txpending;		/* number of Tx requests pending */
    192 	int	sc_txdirty;		/* first dirty Tx descriptor */
    193 	int	sc_txlast;		/* last used Tx descriptor */
    194 
    195 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    196 	int	sc_rxdiscard;
    197 	int	sc_rxlen;
    198 	struct mbuf *sc_rxhead;
    199 	struct mbuf *sc_rxtail;
    200 	struct mbuf **sc_rxtailp;
    201 
    202 	int	sc_txthresh;		/* Tx threshold */
    203 	int	sc_usefiber;		/* if we're fiber */
    204 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
    205 	uint32_t sc_MACCtrl;		/* prototype MacCtrl register */
    206 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
    207 	uint16_t sc_ReceiveMode;	/* prototype ReceiveMode register */
    208 	uint8_t sc_PhyCtrl;		/* prototype PhyCtrl register */
    209 };
    210 
    211 #define	STGE_RXCHAIN_RESET(sc)						\
    212 do {									\
    213 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    214 	*(sc)->sc_rxtailp = NULL;					\
    215 	(sc)->sc_rxlen = 0;						\
    216 } while (/*CONSTCOND*/0)
    217 
    218 #define	STGE_RXCHAIN_LINK(sc, m)					\
    219 do {									\
    220 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    221 	(sc)->sc_rxtailp = &(m)->m_next;				\
    222 } while (/*CONSTCOND*/0)
    223 
    224 #ifdef STGE_EVENT_COUNTERS
    225 #define	STGE_EVCNT_INCR(ev)	(ev)->ev_count++
    226 #else
    227 #define	STGE_EVCNT_INCR(ev)	/* nothing */
    228 #endif
    229 
    230 #define	STGE_CDTXADDR(sc, x)	((sc)->sc_cddma + STGE_CDTXOFF((x)))
    231 #define	STGE_CDRXADDR(sc, x)	((sc)->sc_cddma + STGE_CDRXOFF((x)))
    232 
    233 #define	STGE_CDTXSYNC(sc, x, ops)					\
    234 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    235 	    STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
    236 
    237 #define	STGE_CDRXSYNC(sc, x, ops)					\
    238 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    239 	    STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
    240 
    241 #define	STGE_INIT_RXDESC(sc, x)						\
    242 do {									\
    243 	struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
    244 	struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)];		\
    245 									\
    246 	/*								\
    247 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    248 	 * so that the payload after the Ethernet header is aligned	\
    249 	 * to a 4-byte boundary.					\
    250 	 */								\
    251 	__rfd->rfd_frag.frag_word0 =					\
    252 	    htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
    253 	    FRAG_LEN(MCLBYTES - 2));					\
    254 	__rfd->rfd_next =						\
    255 	    htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x))));	\
    256 	__rfd->rfd_status = 0;						\
    257 	STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    258 } while (/*CONSTCOND*/0)
    259 
    260 #define STGE_TIMEOUT 1000
    261 
    262 void	stge_start(struct ifnet *);
    263 void	stge_watchdog(struct ifnet *);
    264 int	stge_ioctl(struct ifnet *, u_long, caddr_t);
    265 int	stge_init(struct ifnet *);
    266 void	stge_stop(struct ifnet *, int);
    267 
    268 void	stge_shutdown(void *);
    269 
    270 void	stge_reset(struct stge_softc *);
    271 void	stge_rxdrain(struct stge_softc *);
    272 int	stge_add_rxbuf(struct stge_softc *, int);
    273 #if 0
    274 void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
    275 #endif
    276 void	stge_tick(void *);
    277 
    278 void	stge_stats_update(struct stge_softc *);
    279 
    280 void	stge_set_filter(struct stge_softc *);
    281 
    282 int	stge_intr(void *);
    283 void	stge_txintr(struct stge_softc *);
    284 void	stge_rxintr(struct stge_softc *);
    285 
    286 int	stge_mii_readreg(struct device *, int, int);
    287 void	stge_mii_writereg(struct device *, int, int, int);
    288 void	stge_mii_statchg(struct device *);
    289 
    290 int	stge_mediachange(struct ifnet *);
    291 void	stge_mediastatus(struct ifnet *, struct ifmediareq *);
    292 
    293 int	stge_match(struct device *, struct cfdata *, void *);
    294 void	stge_attach(struct device *, struct device *, void *);
    295 
    296 int	stge_copy_small = 0;
    297 
    298 struct cfattach stge_ca = {
    299 	sizeof(struct stge_softc), stge_match, stge_attach,
    300 };
    301 
    302 uint32_t stge_mii_bitbang_read(struct device *);
    303 void	stge_mii_bitbang_write(struct device *, uint32_t);
    304 
    305 const struct mii_bitbang_ops stge_mii_bitbang_ops = {
    306 	stge_mii_bitbang_read,
    307 	stge_mii_bitbang_write,
    308 	{
    309 		PC_MgmtData,		/* MII_BIT_MDO */
    310 		PC_MgmtData,		/* MII_BIT_MDI */
    311 		PC_MgmtClk,		/* MII_BIT_MDC */
    312 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
    313 		0,			/* MII_BIT_DIR_PHY_HOST */
    314 	}
    315 };
    316 
    317 /*
    318  * Devices supported by this driver.
    319  */
    320 const struct stge_product {
    321 	pci_vendor_id_t		stge_vendor;
    322 	pci_product_id_t	stge_product;
    323 	const char		*stge_name;
    324 } stge_products[] = {
    325 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST2021,
    326 	  "Sundance ST-2021 Gigabit Ethernet" },
    327 
    328 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021,
    329 	  "Tamarack TC9021 Gigabit Ethernet" },
    330 
    331 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021_ALT,
    332 	  "Tamarack TC9021 Gigabit Ethernet" },
    333 
    334 	/*
    335 	 * The Sundance sample boards use the Sundance vendor ID,
    336 	 * but the Tamarack product ID.
    337 	 */
    338 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021,
    339 	  "Sundance TC9021 Gigabit Ethernet" },
    340 
    341 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021_ALT,
    342 	  "Sundance TC9021 Gigabit Ethernet" },
    343 
    344 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL4000,
    345 	  "D-Link DL-4000 Gigabit Ethernet" },
    346 
    347 	{ PCI_VENDOR_ANTARES,		PCI_PRODUCT_ANTARES_TC9021,
    348 	  "Antares Gigabit Ethernet" },
    349 
    350 	{ 0,				0,
    351 	  NULL },
    352 };
    353 
    354 static const struct stge_product *
    355 stge_lookup(const struct pci_attach_args *pa)
    356 {
    357 	const struct stge_product *sp;
    358 
    359 	for (sp = stge_products; sp->stge_name != NULL; sp++) {
    360 		if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
    361 		    PCI_PRODUCT(pa->pa_id) == sp->stge_product)
    362 			return (sp);
    363 	}
    364 	return (NULL);
    365 }
    366 
    367 int
    368 stge_match(struct device *parent, struct cfdata *cf, void *aux)
    369 {
    370 	struct pci_attach_args *pa = aux;
    371 
    372 	if (stge_lookup(pa) != NULL)
    373 		return (1);
    374 
    375 	return (0);
    376 }
    377 
    378 void
    379 stge_attach(struct device *parent, struct device *self, void *aux)
    380 {
    381 	struct stge_softc *sc = (struct stge_softc *) self;
    382 	struct pci_attach_args *pa = aux;
    383 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    384 	pci_chipset_tag_t pc = pa->pa_pc;
    385 	pci_intr_handle_t ih;
    386 	const char *intrstr = NULL;
    387 	bus_space_tag_t iot, memt;
    388 	bus_space_handle_t ioh, memh;
    389 	bus_dma_segment_t seg;
    390 	int ioh_valid, memh_valid;
    391 	int i, rseg, error;
    392 	const struct stge_product *sp;
    393 	pcireg_t pmode;
    394 	uint8_t enaddr[ETHER_ADDR_LEN];
    395 	int pmreg;
    396 
    397 	callout_init(&sc->sc_tick_ch);
    398 
    399 	sp = stge_lookup(pa);
    400 	if (sp == NULL) {
    401 		printf("\n");
    402 		panic("ste_attach: impossible");
    403 	}
    404 
    405 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    406 
    407 	printf(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
    408 
    409 	/*
    410 	 * Map the device.
    411 	 */
    412 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
    413 	    PCI_MAPREG_TYPE_IO, 0,
    414 	    &iot, &ioh, NULL, NULL) == 0);
    415 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
    416 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    417 	    &memt, &memh, NULL, NULL) == 0);
    418 
    419 	if (memh_valid) {
    420 		sc->sc_st = memt;
    421 		sc->sc_sh = memh;
    422 	} else if (ioh_valid) {
    423 		sc->sc_st = iot;
    424 		sc->sc_sh = ioh;
    425 	} else {
    426 		printf("%s: unable to map device registers\n",
    427 		    sc->sc_dev.dv_xname);
    428 		return;
    429 	}
    430 
    431 	sc->sc_dmat = pa->pa_dmat;
    432 
    433 	/* Enable bus mastering. */
    434 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    435 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    436 	    PCI_COMMAND_MASTER_ENABLE);
    437 
    438 	/* Get it out of power save mode if needed. */
    439 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    440 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
    441 		if (pmode == 3) {
    442 			/*
    443 			 * The card has lost all configuration data in
    444 			 * this state, so punt.
    445 			 */
    446 			printf("%s: unable to wake up from power state D3\n",
    447 			    sc->sc_dev.dv_xname);
    448 			return;
    449 		}
    450 		if (pmode != 0) {
    451 			printf("%s: waking up from power state D%d\n",
    452 			    sc->sc_dev.dv_xname, pmode);
    453 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
    454 		}
    455 	}
    456 
    457 	/*
    458 	 * Map and establish our interrupt.
    459 	 */
    460 	if (pci_intr_map(pa, &ih)) {
    461 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    462 		return;
    463 	}
    464 	intrstr = pci_intr_string(pc, ih);
    465 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
    466 	if (sc->sc_ih == NULL) {
    467 		printf("%s: unable to establish interrupt",
    468 		    sc->sc_dev.dv_xname);
    469 		if (intrstr != NULL)
    470 			printf(" at %s", intrstr);
    471 		printf("\n");
    472 		return;
    473 	}
    474 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    475 
    476 	/*
    477 	 * Allocate the control data structures, and create and load the
    478 	 * DMA map for it.
    479 	 */
    480 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    481 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    482 	    0)) != 0) {
    483 		printf("%s: unable to allocate control data, error = %d\n",
    484 		    sc->sc_dev.dv_xname, error);
    485 		goto fail_0;
    486 	}
    487 
    488 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    489 	    sizeof(struct stge_control_data), (caddr_t *)&sc->sc_control_data,
    490 	    BUS_DMA_COHERENT)) != 0) {
    491 		printf("%s: unable to map control data, error = %d\n",
    492 		    sc->sc_dev.dv_xname, error);
    493 		goto fail_1;
    494 	}
    495 
    496 	if ((error = bus_dmamap_create(sc->sc_dmat,
    497 	    sizeof(struct stge_control_data), 1,
    498 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    499 		printf("%s: unable to create control data DMA map, "
    500 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    501 		goto fail_2;
    502 	}
    503 
    504 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    505 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
    506 	    0)) != 0) {
    507 		printf("%s: unable to load control data DMA map, error = %d\n",
    508 		    sc->sc_dev.dv_xname, error);
    509 		goto fail_3;
    510 	}
    511 
    512 	/*
    513 	 * Create the transmit buffer DMA maps.  Note that rev B.3
    514 	 * and earlier seem to have a bug regarding multi-fragment
    515 	 * packets.  We need to limit the number of Tx segments on
    516 	 * such chips to 1.
    517 	 */
    518 	for (i = 0; i < STGE_NTXDESC; i++) {
    519 		if ((error = bus_dmamap_create(sc->sc_dmat,
    520 		    ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
    521 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
    522 			printf("%s: unable to create tx DMA map %d, "
    523 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    524 			goto fail_4;
    525 		}
    526 	}
    527 
    528 	/*
    529 	 * Create the receive buffer DMA maps.
    530 	 */
    531 	for (i = 0; i < STGE_NRXDESC; i++) {
    532 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    533 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
    534 			printf("%s: unable to create rx DMA map %d, "
    535 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    536 			goto fail_5;
    537 		}
    538 		sc->sc_rxsoft[i].ds_mbuf = NULL;
    539 	}
    540 
    541 	/*
    542 	 * Determine if we're copper or fiber.  It affects how we
    543 	 * reset the card.
    544 	 */
    545 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
    546 	    AC_PhyMedia)
    547 		sc->sc_usefiber = 1;
    548 	else
    549 		sc->sc_usefiber = 0;
    550 
    551 	/*
    552 	 * Reset the chip to a known state.
    553 	 */
    554 	stge_reset(sc);
    555 
    556 	/*
    557 	 * Reading the station address from the EEPROM doesn't seem
    558 	 * to work, at least on my sample boards.  Instread, since
    559 	 * the reset sequence does AutoInit, read it from the station
    560 	 * address registers.
    561 	 */
    562 	enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    563 	    STGE_StationAddress0) & 0xff;
    564 	enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    565 	    STGE_StationAddress0) >> 8;
    566 	enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    567 	    STGE_StationAddress1) & 0xff;
    568 	enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    569 	    STGE_StationAddress1) >> 8;
    570 	enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    571 	    STGE_StationAddress2) & 0xff;
    572 	enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
    573 	    STGE_StationAddress2) >> 8;
    574 
    575 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    576 	    ether_sprintf(enaddr));
    577 
    578 	/*
    579 	 * Read some important bits from the PhyCtrl register.
    580 	 */
    581 	sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
    582 	    STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
    583 
    584 	/*
    585 	 * Initialize our media structures and probe the MII.
    586 	 */
    587 	sc->sc_mii.mii_ifp = ifp;
    588 	sc->sc_mii.mii_readreg = stge_mii_readreg;
    589 	sc->sc_mii.mii_writereg = stge_mii_writereg;
    590 	sc->sc_mii.mii_statchg = stge_mii_statchg;
    591 	ifmedia_init(&sc->sc_mii.mii_media, 0, stge_mediachange,
    592 	    stge_mediastatus);
    593 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    594 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
    595 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    596 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    597 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    598 	} else
    599 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    600 
    601 	ifp = &sc->sc_ethercom.ec_if;
    602 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    603 	ifp->if_softc = sc;
    604 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    605 	ifp->if_ioctl = stge_ioctl;
    606 	ifp->if_start = stge_start;
    607 	ifp->if_watchdog = stge_watchdog;
    608 	ifp->if_init = stge_init;
    609 	ifp->if_stop = stge_stop;
    610 	IFQ_SET_READY(&ifp->if_snd);
    611 
    612 	/*
    613 	 * The manual recommends disabling early transmit, so we
    614 	 * do.  It's disabled anyway, if using IP checksumming,
    615 	 * since the entire packet must be in the FIFO in order
    616 	 * for the chip to perform the checksum.
    617 	 */
    618 	sc->sc_txthresh = 0x0fff;
    619 
    620 	/*
    621 	 * Disable MWI if the PCI layer tells us to.
    622 	 */
    623 	sc->sc_DMACtrl = 0;
    624 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
    625 		sc->sc_DMACtrl |= DMAC_MWIDisable;
    626 
    627 	/*
    628 	 * We can support 802.1Q VLAN-sized frames and jumbo
    629 	 * Ethernet frames.
    630 	 *
    631 	 * XXX Figure out how to do hw-assisted VLAN tagging in
    632 	 * XXX a reasonable way on this chip.
    633 	 */
    634 	sc->sc_ethercom.ec_capabilities |=
    635 	    ETHERCAP_VLAN_MTU /* XXX | ETHERCAP_JUMBO_MTU */;
    636 
    637 	/*
    638 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
    639 	 */
    640 	sc->sc_ethercom.ec_if.if_capabilities |= IFCAP_CSUM_IPv4 |
    641 	    IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
    642 
    643 	/*
    644 	 * Attach the interface.
    645 	 */
    646 	if_attach(ifp);
    647 	ether_ifattach(ifp, enaddr);
    648 
    649 #ifdef STGE_EVENT_COUNTERS
    650 	/*
    651 	 * Attach event counters.
    652 	 */
    653 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
    654 	    NULL, sc->sc_dev.dv_xname, "txstall");
    655 	evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
    656 	    NULL, sc->sc_dev.dv_xname, "txdmaintr");
    657 	evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
    658 	    NULL, sc->sc_dev.dv_xname, "txindintr");
    659 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    660 	    NULL, sc->sc_dev.dv_xname, "rxintr");
    661 
    662 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
    663 	    NULL, sc->sc_dev.dv_xname, "txseg1");
    664 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
    665 	    NULL, sc->sc_dev.dv_xname, "txseg2");
    666 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
    667 	    NULL, sc->sc_dev.dv_xname, "txseg3");
    668 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
    669 	    NULL, sc->sc_dev.dv_xname, "txseg4");
    670 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
    671 	    NULL, sc->sc_dev.dv_xname, "txseg5");
    672 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
    673 	    NULL, sc->sc_dev.dv_xname, "txsegmore");
    674 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
    675 	    NULL, sc->sc_dev.dv_xname, "txcopy");
    676 
    677 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    678 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
    679 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
    680 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
    681 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
    682 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
    683 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    684 	    NULL, sc->sc_dev.dv_xname, "txipsum");
    685 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
    686 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
    687 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
    688 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
    689 #endif /* STGE_EVENT_COUNTERS */
    690 
    691 	/*
    692 	 * Make sure the interface is shutdown during reboot.
    693 	 */
    694 	sc->sc_sdhook = shutdownhook_establish(stge_shutdown, sc);
    695 	if (sc->sc_sdhook == NULL)
    696 		printf("%s: WARNING: unable to establish shutdown hook\n",
    697 		    sc->sc_dev.dv_xname);
    698 	return;
    699 
    700 	/*
    701 	 * Free any resources we've allocated during the failed attach
    702 	 * attempt.  Do this in reverse order and fall through.
    703 	 */
    704  fail_5:
    705 	for (i = 0; i < STGE_NRXDESC; i++) {
    706 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
    707 			bus_dmamap_destroy(sc->sc_dmat,
    708 			    sc->sc_rxsoft[i].ds_dmamap);
    709 	}
    710  fail_4:
    711 	for (i = 0; i < STGE_NTXDESC; i++) {
    712 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
    713 			bus_dmamap_destroy(sc->sc_dmat,
    714 			    sc->sc_txsoft[i].ds_dmamap);
    715 	}
    716 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    717  fail_3:
    718 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    719  fail_2:
    720 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    721 	    sizeof(struct stge_control_data));
    722  fail_1:
    723 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    724  fail_0:
    725 	return;
    726 }
    727 
    728 /*
    729  * stge_shutdown:
    730  *
    731  *	Make sure the interface is stopped at reboot time.
    732  */
    733 void
    734 stge_shutdown(void *arg)
    735 {
    736 	struct stge_softc *sc = arg;
    737 
    738 	stge_stop(&sc->sc_ethercom.ec_if, 1);
    739 }
    740 
    741 static void
    742 stge_dma_wait(struct stge_softc *sc)
    743 {
    744 	int i;
    745 
    746 	for (i = 0; i < STGE_TIMEOUT; i++) {
    747 		delay(2);
    748 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
    749 		     DMAC_TxDMAInProg) == 0)
    750 			break;
    751 	}
    752 
    753 	if (i == STGE_TIMEOUT)
    754 		printf("%s: DMA wait timed out\n", sc->sc_dev.dv_xname);
    755 }
    756 
    757 /*
    758  * stge_start:		[ifnet interface function]
    759  *
    760  *	Start packet transmission on the interface.
    761  */
    762 void
    763 stge_start(struct ifnet *ifp)
    764 {
    765 	struct stge_softc *sc = ifp->if_softc;
    766 	struct mbuf *m0;
    767 	struct stge_descsoft *ds;
    768 	struct stge_tfd *tfd;
    769 	bus_dmamap_t dmamap;
    770 	int error, firsttx, nexttx, opending, seg, totlen;
    771 	uint64_t csum_flags;
    772 
    773 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    774 		return;
    775 
    776 	/*
    777 	 * Remember the previous number of pending transmissions
    778 	 * and the first descriptor we will use.
    779 	 */
    780 	opending = sc->sc_txpending;
    781 	firsttx = STGE_NEXTTX(sc->sc_txlast);
    782 
    783 	/*
    784 	 * Loop through the send queue, setting up transmit descriptors
    785 	 * until we drain the queue, or use up all available transmit
    786 	 * descriptors.
    787 	 */
    788 	for (;;) {
    789 		/*
    790 		 * Grab a packet off the queue.
    791 		 */
    792 		IFQ_POLL(&ifp->if_snd, m0);
    793 		if (m0 == NULL)
    794 			break;
    795 
    796 		/*
    797 		 * Leave one unused descriptor at the end of the
    798 		 * list to prevent wrapping completely around.
    799 		 */
    800 		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
    801 			STGE_EVCNT_INCR(&sc->sc_ev_txstall);
    802 			break;
    803 		}
    804 
    805 		/*
    806 		 * Get the last and next available transmit descriptor.
    807 		 */
    808 		nexttx = STGE_NEXTTX(sc->sc_txlast);
    809 		tfd = &sc->sc_txdescs[nexttx];
    810 		ds = &sc->sc_txsoft[nexttx];
    811 
    812 		dmamap = ds->ds_dmamap;
    813 
    814 		/*
    815 		 * Load the DMA map.  If this fails, the packet either
    816 		 * didn't fit in the alloted number of segments, or we
    817 		 * were short on resources.  For the too-may-segments
    818 		 * case, we simply report an error and drop the packet,
    819 		 * since we can't sanely copy a jumbo packet to a single
    820 		 * buffer.
    821 		 */
    822 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    823 		    BUS_DMA_NOWAIT);
    824 		if (error) {
    825 			if (error == EFBIG) {
    826 				printf("%s: Tx packet consumes too many "
    827 				    "DMA segments, dropping...\n",
    828 				    sc->sc_dev.dv_xname);
    829 				IFQ_DEQUEUE(&ifp->if_snd, m0);
    830 				m_freem(m0);
    831 				continue;
    832 			}
    833 			/*
    834 			 * Short on resources, just stop for now.
    835 			 */
    836 			break;
    837 		}
    838 
    839 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    840 
    841 		/*
    842 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    843 		 */
    844 
    845 		/* Sync the DMA map. */
    846 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    847 		    BUS_DMASYNC_PREWRITE);
    848 
    849 		/* Initialize the fragment list. */
    850 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
    851 			tfd->tfd_frags[seg].frag_word0 =
    852 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
    853 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
    854 			totlen += dmamap->dm_segs[seg].ds_len;
    855 		}
    856 
    857 #ifdef STGE_EVENT_COUNTERS
    858 		switch (dmamap->dm_nsegs) {
    859 		case 1:
    860 			STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
    861 			break;
    862 		case 2:
    863 			STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
    864 			break;
    865 		case 3:
    866 			STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
    867 			break;
    868 		case 4:
    869 			STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
    870 			break;
    871 		case 5:
    872 			STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
    873 			break;
    874 		default:
    875 			STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
    876 			break;
    877 		}
    878 #endif /* STGE_EVENT_COUNTERS */
    879 
    880 		/*
    881 		 * Initialize checksumming flags in the descriptor.
    882 		 * Byte-swap constants so the compiler can optimize.
    883 		 */
    884 		csum_flags = 0;
    885 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
    886 			STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
    887 			csum_flags |= htole64(TFD_IPChecksumEnable);
    888 		}
    889 
    890 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
    891 			STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
    892 			csum_flags |= htole64(TFD_TCPChecksumEnable);
    893 		}
    894 		else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
    895 			STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
    896 			csum_flags |= htole64(TFD_UDPChecksumEnable);
    897 		}
    898 
    899 		/*
    900 		 * Initialize the descriptor and give it to the chip.
    901 		 */
    902 		tfd->tfd_control = htole64(TFD_FrameId(nexttx) |
    903 		    TFD_WordAlign(/*totlen & */3) |
    904 		    TFD_FragCount(seg) | csum_flags |
    905 		    (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
    906 		     TFD_TxDMAIndicate : 0));
    907 
    908 		/* Sync the descriptor. */
    909 		STGE_CDTXSYNC(sc, nexttx,
    910 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    911 
    912 		/*
    913 		 * Kick the transmit DMA logic.
    914 		 */
    915 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
    916 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
    917 
    918 		/*
    919 		 * Store a pointer to the packet so we can free it later.
    920 		 */
    921 		ds->ds_mbuf = m0;
    922 
    923 		/* Advance the tx pointer. */
    924 		sc->sc_txpending++;
    925 		sc->sc_txlast = nexttx;
    926 
    927 #if NBPFILTER > 0
    928 		/*
    929 		 * Pass the packet to any BPF listeners.
    930 		 */
    931 		if (ifp->if_bpf)
    932 			bpf_mtap(ifp->if_bpf, m0);
    933 #endif /* NBPFILTER > 0 */
    934 	}
    935 
    936 	if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
    937 		/* No more slots left; notify upper layer. */
    938 		ifp->if_flags |= IFF_OACTIVE;
    939 	}
    940 
    941 	if (sc->sc_txpending != opending) {
    942 		/*
    943 		 * We enqueued packets.  If the transmitter was idle,
    944 		 * reset the txdirty pointer.
    945 		 */
    946 		if (opending == 0)
    947 			sc->sc_txdirty = firsttx;
    948 
    949 		/* Set a watchdog timer in case the chip flakes out. */
    950 		ifp->if_timer = 5;
    951 	}
    952 }
    953 
    954 /*
    955  * stge_watchdog:	[ifnet interface function]
    956  *
    957  *	Watchdog timer handler.
    958  */
    959 void
    960 stge_watchdog(struct ifnet *ifp)
    961 {
    962 	struct stge_softc *sc = ifp->if_softc;
    963 
    964 	/*
    965 	 * Sweep up first, since we don't interrupt every frame.
    966 	 */
    967 	stge_txintr(sc);
    968 	if (sc->sc_txpending != 0) {
    969 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
    970 		ifp->if_oerrors++;
    971 
    972 		(void) stge_init(ifp);
    973 
    974 		/* Try to get more packets going. */
    975 		stge_start(ifp);
    976 	}
    977 }
    978 
    979 /*
    980  * stge_ioctl:		[ifnet interface function]
    981  *
    982  *	Handle control requests from the operator.
    983  */
    984 int
    985 stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
    986 {
    987 	struct stge_softc *sc = ifp->if_softc;
    988 	struct ifreq *ifr = (struct ifreq *)data;
    989 	int s, error;
    990 
    991 	s = splnet();
    992 
    993 	switch (cmd) {
    994 	case SIOCSIFMEDIA:
    995 	case SIOCGIFMEDIA:
    996 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
    997 		break;
    998 
    999 	default:
   1000 		error = ether_ioctl(ifp, cmd, data);
   1001 		if (error == ENETRESET) {
   1002 			/*
   1003 			 * Multicast list has changed; set the hardware filter
   1004 			 * accordingly.
   1005 			 */
   1006 			stge_set_filter(sc);
   1007 			error = 0;
   1008 		}
   1009 		break;
   1010 	}
   1011 
   1012 	/* Try to get more packets going. */
   1013 	stge_start(ifp);
   1014 
   1015 	splx(s);
   1016 	return (error);
   1017 }
   1018 
   1019 /*
   1020  * stge_intr:
   1021  *
   1022  *	Interrupt service routine.
   1023  */
   1024 int
   1025 stge_intr(void *arg)
   1026 {
   1027 	struct stge_softc *sc = arg;
   1028 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1029 	uint32_t txstat;
   1030 	int wantinit;
   1031 	uint16_t isr;
   1032 
   1033 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
   1034 	     IS_InterruptStatus) == 0)
   1035 		return (0);
   1036 
   1037 	for (wantinit = 0; wantinit == 0;) {
   1038 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
   1039 		if ((isr & sc->sc_IntEnable) == 0)
   1040 			break;
   1041 
   1042 		/* Receive interrupts. */
   1043 		if (isr & (IE_RxDMAComplete|IE_RFDListEnd)) {
   1044 			STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
   1045 			stge_rxintr(sc);
   1046 			if (isr & IE_RFDListEnd) {
   1047 				printf("%s: receive ring overflow\n",
   1048 				    sc->sc_dev.dv_xname);
   1049 				/*
   1050 				 * XXX Should try to recover from this
   1051 				 * XXX more gracefully.
   1052 				 */
   1053 				wantinit = 1;
   1054 			}
   1055 		}
   1056 
   1057 		/* Transmit interrupts. */
   1058 		if (isr & (IE_TxDMAComplete|IE_TxComplete)) {
   1059 #ifdef STGE_EVENT_COUNTERS
   1060 			if (isr & IE_TxDMAComplete)
   1061 				STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
   1062 #endif
   1063 			stge_txintr(sc);
   1064 		}
   1065 
   1066 		/* Statistics overflow. */
   1067 		if (isr & IE_UpdateStats)
   1068 			stge_stats_update(sc);
   1069 
   1070 		/* Transmission errors. */
   1071 		if (isr & IE_TxComplete) {
   1072 			STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
   1073 			for (;;) {
   1074 				txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
   1075 				    STGE_TxStatus);
   1076 				if ((txstat & TS_TxComplete) == 0)
   1077 					break;
   1078 				if (txstat & TS_TxUnderrun) {
   1079 					sc->sc_txthresh++;
   1080 					if (sc->sc_txthresh > 0x0fff)
   1081 						sc->sc_txthresh = 0x0fff;
   1082 					printf("%s: transmit underrun, new "
   1083 					    "threshold: %d bytes\n",
   1084 					    sc->sc_dev.dv_xname,
   1085 					    sc->sc_txthresh << 5);
   1086 				}
   1087 				if (txstat & TS_MaxCollisions)
   1088 					printf("%s: excessive collisions\n",
   1089 					    sc->sc_dev.dv_xname);
   1090 			}
   1091 			wantinit = 1;
   1092 		}
   1093 
   1094 		/* Host interface errors. */
   1095 		if (isr & IE_HostError) {
   1096 			printf("%s: Host interface error\n",
   1097 			    sc->sc_dev.dv_xname);
   1098 			wantinit = 1;
   1099 		}
   1100 	}
   1101 
   1102 	if (wantinit)
   1103 		stge_init(ifp);
   1104 
   1105 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
   1106 	    sc->sc_IntEnable);
   1107 
   1108 	/* Try to get more packets going. */
   1109 	stge_start(ifp);
   1110 
   1111 	return (1);
   1112 }
   1113 
   1114 /*
   1115  * stge_txintr:
   1116  *
   1117  *	Helper; handle transmit interrupts.
   1118  */
   1119 void
   1120 stge_txintr(struct stge_softc *sc)
   1121 {
   1122 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1123 	struct stge_descsoft *ds;
   1124 	uint64_t control;
   1125 	int i;
   1126 
   1127 	ifp->if_flags &= ~IFF_OACTIVE;
   1128 
   1129 	/*
   1130 	 * Go through our Tx list and free mbufs for those
   1131 	 * frames which have been transmitted.
   1132 	 */
   1133 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
   1134 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
   1135 		ds = &sc->sc_txsoft[i];
   1136 
   1137 		STGE_CDTXSYNC(sc, i,
   1138 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1139 
   1140 		control = le64toh(sc->sc_txdescs[i].tfd_control);
   1141 		if ((control & TFD_TFDDone) == 0)
   1142 			break;
   1143 
   1144 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
   1145 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1146 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1147 		m_freem(ds->ds_mbuf);
   1148 		ds->ds_mbuf = NULL;
   1149 	}
   1150 
   1151 	/* Update the dirty transmit buffer pointer. */
   1152 	sc->sc_txdirty = i;
   1153 
   1154 	/*
   1155 	 * If there are no more pending transmissions, cancel the watchdog
   1156 	 * timer.
   1157 	 */
   1158 	if (sc->sc_txpending == 0)
   1159 		ifp->if_timer = 0;
   1160 }
   1161 
   1162 /*
   1163  * stge_rxintr:
   1164  *
   1165  *	Helper; handle receive interrupts.
   1166  */
   1167 void
   1168 stge_rxintr(struct stge_softc *sc)
   1169 {
   1170 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1171 	struct stge_descsoft *ds;
   1172 	struct mbuf *m, *tailm;
   1173 	uint64_t status;
   1174 	int i, len;
   1175 
   1176 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
   1177 		ds = &sc->sc_rxsoft[i];
   1178 
   1179 		STGE_CDRXSYNC(sc, i,
   1180 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1181 
   1182 		status = le64toh(sc->sc_rxdescs[i].rfd_status);
   1183 
   1184 		if ((status & RFD_RFDDone) == 0)
   1185 			break;
   1186 
   1187 		if (__predict_false(sc->sc_rxdiscard)) {
   1188 			STGE_INIT_RXDESC(sc, i);
   1189 			if (status & RFD_FrameEnd) {
   1190 				/* Reset our state. */
   1191 				sc->sc_rxdiscard = 0;
   1192 			}
   1193 			continue;
   1194 		}
   1195 
   1196 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1197 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1198 
   1199 		m = ds->ds_mbuf;
   1200 
   1201 		/*
   1202 		 * Add a new receive buffer to the ring.
   1203 		 */
   1204 		if (stge_add_rxbuf(sc, i) != 0) {
   1205 			/*
   1206 			 * Failed, throw away what we've done so
   1207 			 * far, and discard the rest of the packet.
   1208 			 */
   1209 			ifp->if_ierrors++;
   1210 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1211 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1212 			STGE_INIT_RXDESC(sc, i);
   1213 			if ((status & RFD_FrameEnd) == 0)
   1214 				sc->sc_rxdiscard = 1;
   1215 			if (sc->sc_rxhead != NULL)
   1216 				m_freem(sc->sc_rxhead);
   1217 			STGE_RXCHAIN_RESET(sc);
   1218 			continue;
   1219 		}
   1220 
   1221 #ifdef DIAGNOSTIC
   1222 		if (status & RFD_FrameStart) {
   1223 			KASSERT(sc->sc_rxhead == NULL);
   1224 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
   1225 		}
   1226 #endif
   1227 
   1228 		STGE_RXCHAIN_LINK(sc, m);
   1229 
   1230 		/*
   1231 		 * If this is not the end of the packet, keep
   1232 		 * looking.
   1233 		 */
   1234 		if ((status & RFD_FrameEnd) == 0) {
   1235 			sc->sc_rxlen += m->m_len;
   1236 			continue;
   1237 		}
   1238 
   1239 		/*
   1240 		 * Okay, we have the entire packet now...
   1241 		 */
   1242 		*sc->sc_rxtailp = NULL;
   1243 		m = sc->sc_rxhead;
   1244 		tailm = sc->sc_rxtail;
   1245 
   1246 		STGE_RXCHAIN_RESET(sc);
   1247 
   1248 		/*
   1249 		 * If the packet had an error, drop it.  Note we
   1250 		 * count the error later in the periodic stats update.
   1251 		 */
   1252 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
   1253 			      RFD_RxAlignmentError | RFD_RxFCSError |
   1254 			      RFD_RxLengthError)) {
   1255 			m_freem(m);
   1256 			continue;
   1257 		}
   1258 
   1259 		/*
   1260 		 * No errors.
   1261 		 *
   1262 		 * Note we have configured the chip to not include
   1263 		 * the CRC at the end of the packet.
   1264 		 */
   1265 		len = RFD_RxDMAFrameLen(status);
   1266 		tailm->m_len = len - sc->sc_rxlen;
   1267 
   1268 		/*
   1269 		 * If the packet is small enough to fit in a
   1270 		 * single header mbuf, allocate one and copy
   1271 		 * the data into it.  This greatly reduces
   1272 		 * memory consumption when we receive lots
   1273 		 * of small packets.
   1274 		 */
   1275 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
   1276 			struct mbuf *nm;
   1277 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1278 			if (nm == NULL) {
   1279 				ifp->if_ierrors++;
   1280 				m_freem(m);
   1281 				continue;
   1282 			}
   1283 			nm->m_data += 2;
   1284 			nm->m_pkthdr.len = nm->m_len = len;
   1285 			m_copydata(m, 0, len, mtod(nm, caddr_t));
   1286 			m_freem(m);
   1287 			m = nm;
   1288 		}
   1289 
   1290 		/*
   1291 		 * Set the incoming checksum information for the packet.
   1292 		 */
   1293 		if (status & RFD_IPDetected) {
   1294 			STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1295 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1296 			if (status & RFD_IPError)
   1297 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1298 			if (status & RFD_TCPDetected) {
   1299 				STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   1300 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1301 				if (status & RFD_TCPError)
   1302 					m->m_pkthdr.csum_flags |=
   1303 					    M_CSUM_TCP_UDP_BAD;
   1304 			} else if (status & RFD_UDPDetected) {
   1305 				STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   1306 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1307 				if (status & RFD_UDPError)
   1308 					m->m_pkthdr.csum_flags |=
   1309 					    M_CSUM_TCP_UDP_BAD;
   1310 			}
   1311 		}
   1312 
   1313 		m->m_pkthdr.rcvif = ifp;
   1314 		m->m_pkthdr.len = len;
   1315 
   1316 #if NBPFILTER > 0
   1317 		/*
   1318 		 * Pass this up to any BPF listeners, but only
   1319 		 * pass if up the stack if it's for us.
   1320 		 */
   1321 		if (ifp->if_bpf)
   1322 			bpf_mtap(ifp->if_bpf, m);
   1323 #endif /* NBPFILTER > 0 */
   1324 
   1325 		/* Pass it on. */
   1326 		(*ifp->if_input)(ifp, m);
   1327 	}
   1328 
   1329 	/* Update the receive pointer. */
   1330 	sc->sc_rxptr = i;
   1331 }
   1332 
   1333 /*
   1334  * stge_tick:
   1335  *
   1336  *	One second timer, used to tick the MII.
   1337  */
   1338 void
   1339 stge_tick(void *arg)
   1340 {
   1341 	struct stge_softc *sc = arg;
   1342 	int s;
   1343 
   1344 	s = splnet();
   1345 	mii_tick(&sc->sc_mii);
   1346 	stge_stats_update(sc);
   1347 	splx(s);
   1348 
   1349 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
   1350 }
   1351 
   1352 /*
   1353  * stge_stats_update:
   1354  *
   1355  *	Read the TC9021 statistics counters.
   1356  */
   1357 void
   1358 stge_stats_update(struct stge_softc *sc)
   1359 {
   1360 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1361 	bus_space_tag_t st = sc->sc_st;
   1362 	bus_space_handle_t sh = sc->sc_sh;
   1363 
   1364 	(void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
   1365 
   1366 	ifp->if_ipackets +=
   1367 	    bus_space_read_4(st, sh, STGE_FramesRcvdOk);
   1368 
   1369 	ifp->if_ierrors +=
   1370 	    (u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
   1371 
   1372 	(void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
   1373 
   1374 	ifp->if_opackets +=
   1375 	    bus_space_read_4(st, sh, STGE_FramesXmtdOk);
   1376 
   1377 	ifp->if_collisions +=
   1378 	    bus_space_read_4(st, sh, STGE_LateCollisions) +
   1379 	    bus_space_read_4(st, sh, STGE_MultiColFrames) +
   1380 	    bus_space_read_4(st, sh, STGE_SingleColFrames);
   1381 
   1382 	ifp->if_oerrors +=
   1383 	    (u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
   1384 	    (u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
   1385 }
   1386 
   1387 /*
   1388  * stge_reset:
   1389  *
   1390  *	Perform a soft reset on the TC9021.
   1391  */
   1392 void
   1393 stge_reset(struct stge_softc *sc)
   1394 {
   1395 	uint32_t ac;
   1396 	int i;
   1397 
   1398 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
   1399 
   1400 	/*
   1401 	 * Only assert RstOut if we're fiber.  We need GMII clocks
   1402 	 * to be present in order for the reset to complete on fiber
   1403 	 * cards.
   1404 	 */
   1405 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
   1406 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
   1407 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
   1408 	    (sc->sc_usefiber ? AC_RstOut : 0));
   1409 
   1410 	delay(50000);
   1411 
   1412 	for (i = 0; i < STGE_TIMEOUT; i++) {
   1413 		delay(5000);
   1414 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
   1415 		     AC_ResetBusy) == 0)
   1416 			break;
   1417 	}
   1418 
   1419 	if (i == STGE_TIMEOUT)
   1420 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   1421 
   1422 	delay(1000);
   1423 }
   1424 
   1425 /*
   1426  * stge_init:		[ ifnet interface function ]
   1427  *
   1428  *	Initialize the interface.  Must be called at splnet().
   1429  */
   1430 int
   1431 stge_init(struct ifnet *ifp)
   1432 {
   1433 	struct stge_softc *sc = ifp->if_softc;
   1434 	bus_space_tag_t st = sc->sc_st;
   1435 	bus_space_handle_t sh = sc->sc_sh;
   1436 	struct stge_descsoft *ds;
   1437 	int i, error = 0;
   1438 
   1439 	/*
   1440 	 * Cancel any pending I/O.
   1441 	 */
   1442 	stge_stop(ifp, 0);
   1443 
   1444 	/*
   1445 	 * Reset the chip to a known state.
   1446 	 */
   1447 	stge_reset(sc);
   1448 
   1449 	/*
   1450 	 * Initialize the transmit descriptor ring.
   1451 	 */
   1452 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1453 	for (i = 0; i < STGE_NTXDESC; i++) {
   1454 		sc->sc_txdescs[i].tfd_next =
   1455 		    (uint64_t) STGE_CDTXADDR(sc, STGE_NEXTTX(i));
   1456 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
   1457 	}
   1458 	sc->sc_txpending = 0;
   1459 	sc->sc_txdirty = 0;
   1460 	sc->sc_txlast = STGE_NTXDESC - 1;
   1461 
   1462 	/*
   1463 	 * Initialize the receive descriptor and receive job
   1464 	 * descriptor rings.
   1465 	 */
   1466 	for (i = 0; i < STGE_NRXDESC; i++) {
   1467 		ds = &sc->sc_rxsoft[i];
   1468 		if (ds->ds_mbuf == NULL) {
   1469 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
   1470 				printf("%s: unable to allocate or map rx "
   1471 				    "buffer %d, error = %d\n",
   1472 				    sc->sc_dev.dv_xname, i, error);
   1473 				/*
   1474 				 * XXX Should attempt to run with fewer receive
   1475 				 * XXX buffers instead of just failing.
   1476 				 */
   1477 				stge_rxdrain(sc);
   1478 				goto out;
   1479 			}
   1480 		} else
   1481 			STGE_INIT_RXDESC(sc, i);
   1482 	}
   1483 	sc->sc_rxptr = 0;
   1484 	sc->sc_rxdiscard = 0;
   1485 	STGE_RXCHAIN_RESET(sc);
   1486 
   1487 	/* Set the station address. */
   1488 	bus_space_write_2(st, sh, STGE_StationAddress0,
   1489 	    LLADDR(ifp->if_sadl)[0] | (LLADDR(ifp->if_sadl)[1] << 8));
   1490 	bus_space_write_2(st, sh, STGE_StationAddress1,
   1491 	    LLADDR(ifp->if_sadl)[2] | (LLADDR(ifp->if_sadl)[3] << 8));
   1492 	bus_space_write_2(st, sh, STGE_StationAddress2,
   1493 	    LLADDR(ifp->if_sadl)[4] | (LLADDR(ifp->if_sadl)[5] << 8));
   1494 
   1495 	/*
   1496 	 * Set the statistics masks.  Disable all the RMON stats,
   1497 	 * and disable selected stats in the non-RMON stats registers.
   1498 	 */
   1499 	bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
   1500 	bus_space_write_4(st, sh, STGE_StatisticsMask,
   1501 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
   1502 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
   1503 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
   1504 	    (1U << 21));
   1505 
   1506 	/* Set up the receive filter. */
   1507 	stge_set_filter(sc);
   1508 
   1509 	/*
   1510 	 * Give the transmit and receive ring to the chip.
   1511 	 */
   1512 	bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
   1513 	bus_space_write_4(st, sh, STGE_TFDListPtrLo,
   1514 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
   1515 
   1516 	bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
   1517 	bus_space_write_4(st, sh, STGE_RFDListPtrLo,
   1518 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
   1519 
   1520 	/*
   1521 	 * Initialize the Tx auto-poll period.  It's OK to make this number
   1522 	 * large (255 is the max, but we use 127) -- we explicitly kick the
   1523 	 * transmit engine when there's actually a packet.
   1524 	 */
   1525 	bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
   1526 
   1527 	/* ..and the Rx auto-poll period. */
   1528 	bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
   1529 
   1530 	/* Initialize the Tx start threshold. */
   1531 	bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
   1532 
   1533 	/*
   1534 	 * Initialize the Rx DMA interrupt control register.  We
   1535 	 * request an interrupt after every incoming packet, but
   1536 	 * defer it for 32us (64 * 512 ns).  When the number of
   1537 	 * interrupts pending reaches 8, we stop deferring the
   1538 	 * interrupt, and signal it immediately.
   1539 	 */
   1540 	bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
   1541 	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
   1542 
   1543 	/*
   1544 	 * Initialize the interrupt mask.
   1545 	 */
   1546 	sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
   1547 	    IE_TxDMAComplete | IE_RxDMAComplete | IE_RFDListEnd;
   1548 	bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
   1549 	bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
   1550 
   1551 	/*
   1552 	 * Configure the DMA engine.
   1553 	 * XXX Should auto-tune TxBurstLimit.
   1554 	 */
   1555 	bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
   1556 	    DMAC_TxBurstLimit(3));
   1557 
   1558 	/*
   1559 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
   1560 	 * FIFO, and send an un-PAUSE frame when the FIFO is totally
   1561 	 * empty again.
   1562 	 */
   1563 	bus_space_write_4(st, sh, STGE_FlowOnTresh, 29696 / 16);
   1564 	bus_space_write_4(st, sh, STGE_FlowOffThresh, 0);
   1565 
   1566 	/*
   1567 	 * Set the maximum frame size.
   1568 	 */
   1569 	bus_space_write_2(st, sh, STGE_MaxFrameSize,
   1570 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
   1571 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
   1572 	     ETHER_VLAN_ENCAP_LEN : 0));
   1573 
   1574 	/*
   1575 	 * Initialize MacCtrl -- do it before setting the media,
   1576 	 * as setting the media will actually program the register.
   1577 	 *
   1578 	 * Note: We have to poke the IFS value before poking
   1579 	 * anything else.
   1580 	 */
   1581 	sc->sc_MACCtrl = MC_IFSSelect(0);
   1582 	bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
   1583 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
   1584 
   1585 	if (sc->sc_rev >= 6) {		/* >= B.2 */
   1586 		/* Multi-frag frame bug work-around. */
   1587 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1588 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
   1589 
   1590 		/* Tx Poll Now bug work-around. */
   1591 		bus_space_write_2(st, sh, STGE_DebugCtrl,
   1592 		    bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
   1593 	}
   1594 
   1595 	/*
   1596 	 * Set the current media.
   1597 	 */
   1598 	mii_mediachg(&sc->sc_mii);
   1599 
   1600 	/*
   1601 	 * Start the one second MII clock.
   1602 	 */
   1603 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
   1604 
   1605 	/*
   1606 	 * ...all done!
   1607 	 */
   1608 	ifp->if_flags |= IFF_RUNNING;
   1609 	ifp->if_flags &= ~IFF_OACTIVE;
   1610 
   1611  out:
   1612 	if (error)
   1613 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1614 	return (error);
   1615 }
   1616 
   1617 /*
   1618  * stge_drain:
   1619  *
   1620  *	Drain the receive queue.
   1621  */
   1622 void
   1623 stge_rxdrain(struct stge_softc *sc)
   1624 {
   1625 	struct stge_descsoft *ds;
   1626 	int i;
   1627 
   1628 	for (i = 0; i < STGE_NRXDESC; i++) {
   1629 		ds = &sc->sc_rxsoft[i];
   1630 		if (ds->ds_mbuf != NULL) {
   1631 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1632 			ds->ds_mbuf->m_next = NULL;
   1633 			m_freem(ds->ds_mbuf);
   1634 			ds->ds_mbuf = NULL;
   1635 		}
   1636 	}
   1637 }
   1638 
   1639 /*
   1640  * stge_stop:		[ ifnet interface function ]
   1641  *
   1642  *	Stop transmission on the interface.
   1643  */
   1644 void
   1645 stge_stop(struct ifnet *ifp, int disable)
   1646 {
   1647 	struct stge_softc *sc = ifp->if_softc;
   1648 	struct stge_descsoft *ds;
   1649 	int i;
   1650 
   1651 	/*
   1652 	 * Stop the one second clock.
   1653 	 */
   1654 	callout_stop(&sc->sc_tick_ch);
   1655 
   1656 	/* Down the MII. */
   1657 	mii_down(&sc->sc_mii);
   1658 
   1659 	/*
   1660 	 * Disable interrupts.
   1661 	 */
   1662 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
   1663 
   1664 	/*
   1665 	 * Stop receiver, transmitter, and stats update.
   1666 	 */
   1667 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
   1668 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
   1669 
   1670 	/*
   1671 	 * Stop the transmit and receive DMA.
   1672 	 */
   1673 	stge_dma_wait(sc);
   1674 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
   1675 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
   1676 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
   1677 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
   1678 
   1679 	/*
   1680 	 * Release any queued transmit buffers.
   1681 	 */
   1682 	for (i = 0; i < STGE_NTXDESC; i++) {
   1683 		ds = &sc->sc_txsoft[i];
   1684 		if (ds->ds_mbuf != NULL) {
   1685 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1686 			m_freem(ds->ds_mbuf);
   1687 			ds->ds_mbuf = NULL;
   1688 		}
   1689 	}
   1690 
   1691 	if (disable)
   1692 		stge_rxdrain(sc);
   1693 
   1694 	/*
   1695 	 * Mark the interface down and cancel the watchdog timer.
   1696 	 */
   1697 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1698 	ifp->if_timer = 0;
   1699 }
   1700 
   1701 #if 0
   1702 static int
   1703 stge_eeprom_wait(struct stge_softc *sc)
   1704 {
   1705 	int i;
   1706 
   1707 	for (i = 0; i < STGE_TIMEOUT; i++) {
   1708 		delay(1000);
   1709 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
   1710 		     EC_EepromBusy) == 0)
   1711 			return (0);
   1712 	}
   1713 	return (1);
   1714 }
   1715 
   1716 /*
   1717  * stge_read_eeprom:
   1718  *
   1719  *	Read data from the serial EEPROM.
   1720  */
   1721 void
   1722 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
   1723 {
   1724 
   1725 	if (stge_eeprom_wait(sc))
   1726 		printf("%s: EEPROM failed to come ready\n",
   1727 		    sc->sc_dev.dv_xname);
   1728 
   1729 	bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
   1730 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
   1731 	if (stge_eeprom_wait(sc))
   1732 		printf("%s: EEPROM read timed out\n",
   1733 		    sc->sc_dev.dv_xname);
   1734 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
   1735 }
   1736 #endif /* 0 */
   1737 
   1738 /*
   1739  * stge_add_rxbuf:
   1740  *
   1741  *	Add a receive buffer to the indicated descriptor.
   1742  */
   1743 int
   1744 stge_add_rxbuf(struct stge_softc *sc, int idx)
   1745 {
   1746 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
   1747 	struct mbuf *m;
   1748 	int error;
   1749 
   1750 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1751 	if (m == NULL)
   1752 		return (ENOBUFS);
   1753 
   1754 	MCLGET(m, M_DONTWAIT);
   1755 	if ((m->m_flags & M_EXT) == 0) {
   1756 		m_freem(m);
   1757 		return (ENOBUFS);
   1758 	}
   1759 
   1760 	m->m_data = m->m_ext.ext_buf + 2;
   1761 	m->m_len = MCLBYTES - 2;
   1762 
   1763 	if (ds->ds_mbuf != NULL)
   1764 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1765 
   1766 	ds->ds_mbuf = m;
   1767 
   1768 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
   1769 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1770 	if (error) {
   1771 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1772 		    sc->sc_dev.dv_xname, idx, error);
   1773 		panic("stge_add_rxbuf");	/* XXX */
   1774 	}
   1775 
   1776 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1777 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1778 
   1779 	STGE_INIT_RXDESC(sc, idx);
   1780 
   1781 	return (0);
   1782 }
   1783 
   1784 /*
   1785  * stge_set_filter:
   1786  *
   1787  *	Set up the receive filter.
   1788  */
   1789 void
   1790 stge_set_filter(struct stge_softc *sc)
   1791 {
   1792 	struct ethercom *ec = &sc->sc_ethercom;
   1793 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1794 	struct ether_multi *enm;
   1795 	struct ether_multistep step;
   1796 	uint32_t crc;
   1797 	uint32_t mchash[2];
   1798 
   1799 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
   1800 	if (ifp->if_flags & IFF_BROADCAST)
   1801 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
   1802 
   1803 	if (ifp->if_flags & IFF_PROMISC) {
   1804 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
   1805 		goto allmulti;
   1806 	}
   1807 
   1808 	/*
   1809 	 * Set up the multicast address filter by passing all multicast
   1810 	 * addresses through a CRC generator, and then using the low-order
   1811 	 * 6 bits as an index into the 64 bit multicast hash table.  The
   1812 	 * high order bits select the register, while the rest of the bits
   1813 	 * select the bit within the register.
   1814 	 */
   1815 
   1816 	memset(mchash, 0, sizeof(mchash));
   1817 
   1818 	ETHER_FIRST_MULTI(step, ec, enm);
   1819 	if (enm == NULL)
   1820 		goto done;
   1821 
   1822 	while (enm != NULL) {
   1823 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1824 			/*
   1825 			 * We must listen to a range of multicast addresses.
   1826 			 * For now, just accept all multicasts, rather than
   1827 			 * trying to set only those filter bits needed to match
   1828 			 * the range.  (At this time, the only use of address
   1829 			 * ranges is for IP multicast routing, for which the
   1830 			 * range is big enough to require all bits set.)
   1831 			 */
   1832 			goto allmulti;
   1833 		}
   1834 
   1835 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1836 
   1837 		/* Just want the 6 least significant bits. */
   1838 		crc &= 0x3f;
   1839 
   1840 		/* Set the corresponding bit in the hash table. */
   1841 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
   1842 
   1843 		ETHER_NEXT_MULTI(step, enm);
   1844 	}
   1845 
   1846 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
   1847 
   1848 	ifp->if_flags &= ~IFF_ALLMULTI;
   1849 	goto done;
   1850 
   1851  allmulti:
   1852 	ifp->if_flags |= IFF_ALLMULTI;
   1853 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
   1854 
   1855  done:
   1856 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1857 		/*
   1858 		 * Program the multicast hash table.
   1859 		 */
   1860 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
   1861 		    mchash[0]);
   1862 		bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
   1863 		    mchash[1]);
   1864 	}
   1865 
   1866 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
   1867 	    sc->sc_ReceiveMode);
   1868 }
   1869 
   1870 /*
   1871  * stge_mii_readreg:	[mii interface function]
   1872  *
   1873  *	Read a PHY register on the MII of the TC9021.
   1874  */
   1875 int
   1876 stge_mii_readreg(struct device *self, int phy, int reg)
   1877 {
   1878 
   1879 	return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
   1880 }
   1881 
   1882 /*
   1883  * stge_mii_writereg:	[mii interface function]
   1884  *
   1885  *	Write a PHY register on the MII of the TC9021.
   1886  */
   1887 void
   1888 stge_mii_writereg(struct device *self, int phy, int reg, int val)
   1889 {
   1890 
   1891 	mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
   1892 }
   1893 
   1894 /*
   1895  * stge_mii_statchg:	[mii interface function]
   1896  *
   1897  *	Callback from MII layer when media changes.
   1898  */
   1899 void
   1900 stge_mii_statchg(struct device *self)
   1901 {
   1902 	struct stge_softc *sc = (struct stge_softc *) self;
   1903 
   1904 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   1905 		sc->sc_MACCtrl |= MC_DuplexSelect;
   1906 	else
   1907 		sc->sc_MACCtrl &= ~MC_DuplexSelect;
   1908 
   1909 	/* XXX 802.1x flow-control? */
   1910 
   1911 	bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
   1912 }
   1913 
   1914 /*
   1915  * sste_mii_bitbang_read: [mii bit-bang interface function]
   1916  *
   1917  *	Read the MII serial port for the MII bit-bang module.
   1918  */
   1919 uint32_t
   1920 stge_mii_bitbang_read(struct device *self)
   1921 {
   1922 	struct stge_softc *sc = (void *) self;
   1923 
   1924 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
   1925 }
   1926 
   1927 /*
   1928  * stge_mii_bitbang_write: [mii big-bang interface function]
   1929  *
   1930  *	Write the MII serial port for the MII bit-bang module.
   1931  */
   1932 void
   1933 stge_mii_bitbang_write(struct device *self, uint32_t val)
   1934 {
   1935 	struct stge_softc *sc = (void *) self;
   1936 
   1937 	bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
   1938 	    val | sc->sc_PhyCtrl);
   1939 }
   1940 
   1941 /*
   1942  * stge_mediastatus:	[ifmedia interface function]
   1943  *
   1944  *	Get the current interface media status.
   1945  */
   1946 void
   1947 stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   1948 {
   1949 	struct stge_softc *sc = ifp->if_softc;
   1950 
   1951 	mii_pollstat(&sc->sc_mii);
   1952 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   1953 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   1954 }
   1955 
   1956 /*
   1957  * stge_mediachange:	[ifmedia interface function]
   1958  *
   1959  *	Set hardware to newly-selected media.
   1960  */
   1961 int
   1962 stge_mediachange(struct ifnet *ifp)
   1963 {
   1964 	struct stge_softc *sc = ifp->if_softc;
   1965 
   1966 	if (ifp->if_flags & IFF_UP)
   1967 		mii_mediachg(&sc->sc_mii);
   1968 	return (0);
   1969 }
   1970