if_stge.c revision 1.77 1 /* $NetBSD: if_stge.c,v 1.77 2020/01/14 09:49:26 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the Sundance Tech. TC9021 10/100/1000
34 * Ethernet controller.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.77 2020/01/14 09:49:26 msaitoh Exp $");
39
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 #include <sys/queue.h>
52
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57
58 #include <net/bpf.h>
59
60 #include <sys/bus.h>
61 #include <sys/intr.h>
62
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 #include <dev/mii/mii_bitbang.h>
66
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70
71 #include <dev/pci/if_stgereg.h>
72
73 #include <prop/proplib.h>
74
75 /* #define STGE_CU_BUG 1 */
76 #define STGE_VLAN_UNTAG 1
77 /* #define STGE_VLAN_CFI 1 */
78
79 /*
80 * Transmit descriptor list size.
81 */
82 #define STGE_NTXDESC 256
83 #define STGE_NTXDESC_MASK (STGE_NTXDESC - 1)
84 #define STGE_NEXTTX(x) (((x) + 1) & STGE_NTXDESC_MASK)
85
86 /*
87 * Receive descriptor list size.
88 */
89 #define STGE_NRXDESC 256
90 #define STGE_NRXDESC_MASK (STGE_NRXDESC - 1)
91 #define STGE_NEXTRX(x) (((x) + 1) & STGE_NRXDESC_MASK)
92
93 /*
94 * Only interrupt every N frames. Must be a power-of-two.
95 */
96 #define STGE_TXINTR_SPACING 16
97 #define STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
98
99 /*
100 * Control structures are DMA'd to the TC9021 chip. We allocate them in
101 * a single clump that maps to a single DMA segment to make several things
102 * easier.
103 */
104 struct stge_control_data {
105 /*
106 * The transmit descriptors.
107 */
108 struct stge_tfd scd_txdescs[STGE_NTXDESC];
109
110 /*
111 * The receive descriptors.
112 */
113 struct stge_rfd scd_rxdescs[STGE_NRXDESC];
114 };
115
116 #define STGE_CDOFF(x) offsetof(struct stge_control_data, x)
117 #define STGE_CDTXOFF(x) STGE_CDOFF(scd_txdescs[(x)])
118 #define STGE_CDRXOFF(x) STGE_CDOFF(scd_rxdescs[(x)])
119
120 /*
121 * Software state for transmit and receive jobs.
122 */
123 struct stge_descsoft {
124 struct mbuf *ds_mbuf; /* head of our mbuf chain */
125 bus_dmamap_t ds_dmamap; /* our DMA map */
126 };
127
128 /*
129 * Software state per device.
130 */
131 struct stge_softc {
132 device_t sc_dev; /* generic device information */
133 bus_space_tag_t sc_st; /* bus space tag */
134 bus_space_handle_t sc_sh; /* bus space handle */
135 bus_dma_tag_t sc_dmat; /* bus DMA tag */
136 struct ethercom sc_ethercom; /* ethernet common data */
137 int sc_rev; /* silicon revision */
138
139 void *sc_ih; /* interrupt cookie */
140
141 struct mii_data sc_mii; /* MII/media information */
142
143 callout_t sc_tick_ch; /* tick callout */
144
145 bus_dmamap_t sc_cddmamap; /* control data DMA map */
146 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
147
148 /*
149 * Software state for transmit and receive descriptors.
150 */
151 struct stge_descsoft sc_txsoft[STGE_NTXDESC];
152 struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
153
154 /*
155 * Control data structures.
156 */
157 struct stge_control_data *sc_control_data;
158 #define sc_txdescs sc_control_data->scd_txdescs
159 #define sc_rxdescs sc_control_data->scd_rxdescs
160
161 #ifdef STGE_EVENT_COUNTERS
162 /*
163 * Event counters.
164 */
165 struct evcnt sc_ev_txstall; /* Tx stalled */
166 struct evcnt sc_ev_txdmaintr; /* Tx DMA interrupts */
167 struct evcnt sc_ev_txindintr; /* Tx Indicate interrupts */
168 struct evcnt sc_ev_rxintr; /* Rx interrupts */
169
170 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
171 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
172 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
173 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
174 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
175 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
176 struct evcnt sc_ev_txcopy; /* Tx packets that we had to copy */
177
178 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
179 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
180 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-bound */
181
182 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
183 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
184 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
185 #endif /* STGE_EVENT_COUNTERS */
186
187 int sc_txpending; /* number of Tx requests pending */
188 int sc_txdirty; /* first dirty Tx descriptor */
189 int sc_txlast; /* last used Tx descriptor */
190
191 int sc_rxptr; /* next ready Rx descriptor/descsoft */
192 int sc_rxdiscard;
193 int sc_rxlen;
194 struct mbuf *sc_rxhead;
195 struct mbuf *sc_rxtail;
196 struct mbuf **sc_rxtailp;
197
198 int sc_txthresh; /* Tx threshold */
199 uint32_t sc_usefiber:1; /* if we're fiber */
200 uint32_t sc_stge1023:1; /* are we a 1023 */
201 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
202 uint32_t sc_MACCtrl; /* prototype MacCtrl register */
203 uint16_t sc_IntEnable; /* prototype IntEnable register */
204 uint16_t sc_ReceiveMode; /* prototype ReceiveMode register */
205 uint8_t sc_PhyCtrl; /* prototype PhyCtrl register */
206 };
207
208 #define STGE_RXCHAIN_RESET(sc) \
209 do { \
210 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
211 *(sc)->sc_rxtailp = NULL; \
212 (sc)->sc_rxlen = 0; \
213 } while (/*CONSTCOND*/0)
214
215 #define STGE_RXCHAIN_LINK(sc, m) \
216 do { \
217 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
218 (sc)->sc_rxtailp = &(m)->m_next; \
219 } while (/*CONSTCOND*/0)
220
221 /*
222 * Register access macros
223 */
224 #define CSR_WRITE_4(_sc, reg, val) \
225 bus_space_write_4((_sc)->sc_st, (_sc)->sc_sh, (reg), (val))
226 #define CSR_WRITE_2(_sc, reg, val) \
227 bus_space_write_2((_sc)->sc_st, (_sc)->sc_sh, (reg), (val))
228 #define CSR_WRITE_1(_sc, reg, val) \
229 bus_space_write_1((_sc)->sc_st, (_sc)->sc_sh, (reg), (val))
230
231 #define CSR_READ_4(_sc, reg) \
232 bus_space_read_4((_sc)->sc_st, (_sc)->sc_sh, (reg))
233 #define CSR_READ_2(_sc, reg) \
234 bus_space_read_2((_sc)->sc_st, (_sc)->sc_sh, (reg))
235 #define CSR_READ_1(_sc, reg) \
236 bus_space_read_1((_sc)->sc_st, (_sc)->sc_sh, (reg))
237
238 #define STGE_TIMEOUT 1000
239
240 #ifdef STGE_EVENT_COUNTERS
241 #define STGE_EVCNT_INCR(ev) (ev)->ev_count++
242 #else
243 #define STGE_EVCNT_INCR(ev) /* nothing */
244 #endif
245
246 #define STGE_CDTXADDR(sc, x) ((sc)->sc_cddma + STGE_CDTXOFF((x)))
247 #define STGE_CDRXADDR(sc, x) ((sc)->sc_cddma + STGE_CDRXOFF((x)))
248
249 #define STGE_CDTXSYNC(sc, x, ops) \
250 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
251 STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
252
253 #define STGE_CDRXSYNC(sc, x, ops) \
254 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
255 STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
256
257 #define STGE_INIT_RXDESC(sc, x) \
258 do { \
259 struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
260 struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
261 \
262 /* \
263 * Note: We scoot the packet forward 2 bytes in the buffer \
264 * so that the payload after the Ethernet header is aligned \
265 * to a 4-byte boundary. \
266 */ \
267 __rfd->rfd_frag.frag_word0 = \
268 htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
269 FRAG_LEN(MCLBYTES - 2)); \
270 __rfd->rfd_next = \
271 htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x)))); \
272 __rfd->rfd_status = 0; \
273 STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
274 } while (/*CONSTCOND*/0)
275
276 static void stge_start(struct ifnet *);
277 static void stge_watchdog(struct ifnet *);
278 static int stge_ioctl(struct ifnet *, u_long, void *);
279 static int stge_init(struct ifnet *);
280 static void stge_stop(struct ifnet *, int);
281
282 static bool stge_shutdown(device_t, int);
283
284 static void stge_reset(struct stge_softc *);
285 static void stge_rxdrain(struct stge_softc *);
286 static int stge_add_rxbuf(struct stge_softc *, int);
287 static void stge_read_eeprom(struct stge_softc *, int, uint16_t *);
288 static void stge_tick(void *);
289
290 static void stge_stats_update(struct stge_softc *);
291
292 static void stge_set_filter(struct stge_softc *);
293
294 static int stge_intr(void *);
295 static void stge_txintr(struct stge_softc *);
296 static void stge_rxintr(struct stge_softc *);
297
298 static int stge_mii_readreg(device_t, int, int, uint16_t *);
299 static int stge_mii_writereg(device_t, int, int, uint16_t);
300 static void stge_mii_statchg(struct ifnet *);
301
302 static int stge_match(device_t, cfdata_t, void *);
303 static void stge_attach(device_t, device_t, void *);
304
305 int stge_copy_small = 0;
306
307 CFATTACH_DECL_NEW(stge, sizeof(struct stge_softc),
308 stge_match, stge_attach, NULL, NULL);
309
310 static uint32_t stge_mii_bitbang_read(device_t);
311 static void stge_mii_bitbang_write(device_t, uint32_t);
312
313 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
314 stge_mii_bitbang_read,
315 stge_mii_bitbang_write,
316 {
317 PC_MgmtData, /* MII_BIT_MDO */
318 PC_MgmtData, /* MII_BIT_MDI */
319 PC_MgmtClk, /* MII_BIT_MDC */
320 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
321 0, /* MII_BIT_DIR_PHY_HOST */
322 }
323 };
324
325 /*
326 * Devices supported by this driver.
327 */
328 static const struct stge_product {
329 pci_vendor_id_t stge_vendor;
330 pci_product_id_t stge_product;
331 const char *stge_name;
332 } stge_products[] = {
333 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST1023,
334 "Sundance ST-1023 Gigabit Ethernet" },
335
336 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST2021,
337 "Sundance ST-2021 Gigabit Ethernet" },
338
339 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021,
340 "Tamarack TC9021 Gigabit Ethernet" },
341
342 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021_ALT,
343 "Tamarack TC9021 Gigabit Ethernet" },
344
345 /*
346 * The Sundance sample boards use the Sundance vendor ID,
347 * but the Tamarack product ID.
348 */
349 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021,
350 "Sundance TC9021 Gigabit Ethernet" },
351
352 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021_ALT,
353 "Sundance TC9021 Gigabit Ethernet" },
354
355 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL4000,
356 "D-Link DL-4000 Gigabit Ethernet" },
357
358 { PCI_VENDOR_ANTARES, PCI_PRODUCT_ANTARES_TC9021,
359 "Antares Gigabit Ethernet" },
360
361 { 0, 0,
362 NULL },
363 };
364
365 static const struct stge_product *
366 stge_lookup(const struct pci_attach_args *pa)
367 {
368 const struct stge_product *sp;
369
370 for (sp = stge_products; sp->stge_name != NULL; sp++) {
371 if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
372 PCI_PRODUCT(pa->pa_id) == sp->stge_product)
373 return (sp);
374 }
375 return (NULL);
376 }
377
378 static int
379 stge_match(device_t parent, cfdata_t cf, void *aux)
380 {
381 struct pci_attach_args *pa = aux;
382
383 if (stge_lookup(pa) != NULL)
384 return (1);
385
386 return (0);
387 }
388
389 static void
390 stge_attach(device_t parent, device_t self, void *aux)
391 {
392 struct stge_softc *sc = device_private(self);
393 struct pci_attach_args *pa = aux;
394 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
395 struct mii_data * const mii = &sc->sc_mii;
396 pci_chipset_tag_t pc = pa->pa_pc;
397 pci_intr_handle_t ih;
398 const char *intrstr = NULL;
399 bus_space_tag_t iot, memt;
400 bus_space_handle_t ioh, memh;
401 bus_dma_segment_t seg;
402 prop_dictionary_t dict;
403 prop_data_t data;
404 int ioh_valid, memh_valid;
405 int i, rseg, error;
406 const struct stge_product *sp;
407 uint8_t enaddr[ETHER_ADDR_LEN];
408 char intrbuf[PCI_INTRSTR_LEN];
409
410 sc->sc_dev = self;
411 callout_init(&sc->sc_tick_ch, 0);
412
413 sp = stge_lookup(pa);
414 if (sp == NULL) {
415 printf("\n");
416 panic("ste_attach: impossible");
417 }
418
419 sc->sc_rev = PCI_REVISION(pa->pa_class);
420
421 pci_aprint_devinfo_fancy(pa, NULL, sp->stge_name, 1);
422
423 /*
424 * Map the device.
425 */
426 ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
427 PCI_MAPREG_TYPE_IO, 0,
428 &iot, &ioh, NULL, NULL) == 0);
429 memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
430 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
431 &memt, &memh, NULL, NULL) == 0);
432
433 if (memh_valid) {
434 sc->sc_st = memt;
435 sc->sc_sh = memh;
436 } else if (ioh_valid) {
437 sc->sc_st = iot;
438 sc->sc_sh = ioh;
439 } else {
440 aprint_error_dev(self, "unable to map device registers\n");
441 return;
442 }
443
444 sc->sc_dmat = pa->pa_dmat;
445
446 /* Enable bus mastering. */
447 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
448 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
449 PCI_COMMAND_MASTER_ENABLE);
450
451 /* power up chip */
452 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
453 error != EOPNOTSUPP) {
454 aprint_error_dev(self, "cannot activate %d\n", error);
455 return;
456 }
457 /*
458 * Map and establish our interrupt.
459 */
460 if (pci_intr_map(pa, &ih)) {
461 aprint_error_dev(self, "unable to map interrupt\n");
462 return;
463 }
464 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
465 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, stge_intr, sc,
466 device_xname(self));
467 if (sc->sc_ih == NULL) {
468 aprint_error_dev(self, "unable to establish interrupt");
469 if (intrstr != NULL)
470 aprint_error(" at %s", intrstr);
471 aprint_error("\n");
472 return;
473 }
474 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
475
476 /*
477 * Allocate the control data structures, and create and load the
478 * DMA map for it.
479 */
480 if ((error = bus_dmamem_alloc(sc->sc_dmat,
481 sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
482 0)) != 0) {
483 aprint_error_dev(self,
484 "unable to allocate control data, error = %d\n", error);
485 goto fail_0;
486 }
487
488 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
489 sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
490 BUS_DMA_COHERENT)) != 0) {
491 aprint_error_dev(self,
492 "unable to map control data, error = %d\n", error);
493 goto fail_1;
494 }
495
496 if ((error = bus_dmamap_create(sc->sc_dmat,
497 sizeof(struct stge_control_data), 1,
498 sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
499 aprint_error_dev(self,
500 "unable to create control data DMA map, error = %d\n",
501 error);
502 goto fail_2;
503 }
504
505 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
506 sc->sc_control_data, sizeof(struct stge_control_data), NULL,
507 0)) != 0) {
508 aprint_error_dev(self,
509 "unable to load control data DMA map, error = %d\n",
510 error);
511 goto fail_3;
512 }
513
514 /*
515 * Create the transmit buffer DMA maps. Note that rev B.3
516 * and earlier seem to have a bug regarding multi-fragment
517 * packets. We need to limit the number of Tx segments on
518 * such chips to 1.
519 */
520 for (i = 0; i < STGE_NTXDESC; i++) {
521 if ((error = bus_dmamap_create(sc->sc_dmat,
522 ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
523 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
524 aprint_error_dev(self,
525 "unable to create tx DMA map %d, error = %d\n",
526 i, error);
527 goto fail_4;
528 }
529 }
530
531 /*
532 * Create the receive buffer DMA maps.
533 */
534 for (i = 0; i < STGE_NRXDESC; i++) {
535 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
536 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
537 aprint_error_dev(self,
538 "unable to create rx DMA map %d, error = %d\n",
539 i, error);
540 goto fail_5;
541 }
542 sc->sc_rxsoft[i].ds_mbuf = NULL;
543 }
544
545 /*
546 * Determine if we're copper or fiber. It affects how we
547 * reset the card.
548 */
549 if (CSR_READ_4(sc, STGE_AsicCtrl) & AC_PhyMedia)
550 sc->sc_usefiber = 1;
551 else
552 sc->sc_usefiber = 0;
553
554 /*
555 * Reset the chip to a known state.
556 */
557 stge_reset(sc);
558
559 /*
560 * Reading the station address from the EEPROM doesn't seem
561 * to work, at least on my sample boards. Instead, since
562 * the reset sequence does AutoInit, read it from the station
563 * address registers. For Sundance 1023 you can only read it
564 * from EEPROM.
565 */
566 if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
567 enaddr[0] = CSR_READ_2(sc, STGE_StationAddress0) & 0xff;
568 enaddr[1] = CSR_READ_2(sc, STGE_StationAddress0) >> 8;
569 enaddr[2] = CSR_READ_2(sc, STGE_StationAddress1) & 0xff;
570 enaddr[3] = CSR_READ_2(sc, STGE_StationAddress1) >> 8;
571 enaddr[4] = CSR_READ_2(sc, STGE_StationAddress2) & 0xff;
572 enaddr[5] = CSR_READ_2(sc, STGE_StationAddress2) >> 8;
573 sc->sc_stge1023 = 0;
574 } else {
575 data = prop_dictionary_get(device_properties(self),
576 "mac-address");
577 if (data != NULL) {
578 /*
579 * Try to get the station address from device
580 * properties first, in case the EEPROM is missing.
581 */
582 KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
583 KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
584 (void)memcpy(enaddr, prop_data_data_nocopy(data),
585 ETHER_ADDR_LEN);
586 } else {
587 uint16_t myaddr[ETHER_ADDR_LEN / 2];
588 for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
589 stge_read_eeprom(sc,
590 STGE_EEPROM_StationAddress0 + i,
591 &myaddr[i]);
592 myaddr[i] = le16toh(myaddr[i]);
593 }
594 (void)memcpy(enaddr, myaddr, sizeof(enaddr));
595 }
596 sc->sc_stge1023 = 1;
597 }
598
599 /* Set need_loaddspcode before mii_attach() */
600 dict = device_properties(self);
601 prop_dictionary_set_bool(dict, "need_loaddspcode",
602 ((sc->sc_rev >= 0x40) && (sc->sc_rev <= 0x4e)) ? true : false);
603
604 aprint_normal_dev(self, "Ethernet address %s\n",
605 ether_sprintf(enaddr));
606
607 /*
608 * Read some important bits from the PhyCtrl register.
609 */
610 sc->sc_PhyCtrl = CSR_READ_1(sc, STGE_PhyCtrl) &
611 (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
612
613 /*
614 * Initialize our media structures and probe the MII.
615 */
616 mii->mii_ifp = ifp;
617 mii->mii_readreg = stge_mii_readreg;
618 mii->mii_writereg = stge_mii_writereg;
619 mii->mii_statchg = stge_mii_statchg;
620 sc->sc_ethercom.ec_mii = mii;
621 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
622 ether_mediastatus);
623 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
624 MII_OFFSET_ANY, MIIF_DOPAUSE);
625 if (LIST_FIRST(&mii->mii_phys) == NULL) {
626 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
627 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
628 } else
629 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
630
631 ifp = &sc->sc_ethercom.ec_if;
632 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
633 ifp->if_softc = sc;
634 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
635 ifp->if_ioctl = stge_ioctl;
636 ifp->if_start = stge_start;
637 ifp->if_watchdog = stge_watchdog;
638 ifp->if_init = stge_init;
639 ifp->if_stop = stge_stop;
640 IFQ_SET_READY(&ifp->if_snd);
641
642 /*
643 * The manual recommends disabling early transmit, so we
644 * do. It's disabled anyway, if using IP checksumming,
645 * since the entire packet must be in the FIFO in order
646 * for the chip to perform the checksum.
647 */
648 sc->sc_txthresh = 0x0fff;
649
650 /*
651 * Disable MWI if the PCI layer tells us to.
652 */
653 sc->sc_DMACtrl = 0;
654 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
655 sc->sc_DMACtrl |= DMAC_MWIDisable;
656
657 /*
658 * We can support 802.1Q VLAN-sized frames and jumbo
659 * Ethernet frames.
660 *
661 * XXX Figure out how to do hw-assisted VLAN tagging in
662 * XXX a reasonable way on this chip.
663 */
664 sc->sc_ethercom.ec_capabilities |=
665 ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
666 ETHERCAP_VLAN_HWTAGGING;
667 sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
668
669 /*
670 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
671 */
672 sc->sc_ethercom.ec_if.if_capabilities |=
673 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
674 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
675 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
676
677 /*
678 * Attach the interface.
679 */
680 if_attach(ifp);
681 if_deferred_start_init(ifp, NULL);
682 ether_ifattach(ifp, enaddr);
683
684 #ifdef STGE_EVENT_COUNTERS
685 /*
686 * Attach event counters.
687 */
688 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
689 NULL, device_xname(self), "txstall");
690 evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
691 NULL, device_xname(self), "txdmaintr");
692 evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
693 NULL, device_xname(self), "txindintr");
694 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
695 NULL, device_xname(self), "rxintr");
696
697 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
698 NULL, device_xname(self), "txseg1");
699 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
700 NULL, device_xname(self), "txseg2");
701 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
702 NULL, device_xname(self), "txseg3");
703 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
704 NULL, device_xname(self), "txseg4");
705 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
706 NULL, device_xname(self), "txseg5");
707 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
708 NULL, device_xname(self), "txsegmore");
709 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
710 NULL, device_xname(self), "txcopy");
711
712 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
713 NULL, device_xname(self), "rxipsum");
714 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
715 NULL, device_xname(self), "rxtcpsum");
716 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
717 NULL, device_xname(self), "rxudpsum");
718 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
719 NULL, device_xname(self), "txipsum");
720 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
721 NULL, device_xname(self), "txtcpsum");
722 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
723 NULL, device_xname(self), "txudpsum");
724 #endif /* STGE_EVENT_COUNTERS */
725
726 /*
727 * Make sure the interface is shutdown during reboot.
728 */
729 if (pmf_device_register1(self, NULL, NULL, stge_shutdown))
730 pmf_class_network_register(self, ifp);
731 else
732 aprint_error_dev(self, "couldn't establish power handler\n");
733
734 return;
735
736 /*
737 * Free any resources we've allocated during the failed attach
738 * attempt. Do this in reverse order and fall through.
739 */
740 fail_5:
741 for (i = 0; i < STGE_NRXDESC; i++) {
742 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
743 bus_dmamap_destroy(sc->sc_dmat,
744 sc->sc_rxsoft[i].ds_dmamap);
745 }
746 fail_4:
747 for (i = 0; i < STGE_NTXDESC; i++) {
748 if (sc->sc_txsoft[i].ds_dmamap != NULL)
749 bus_dmamap_destroy(sc->sc_dmat,
750 sc->sc_txsoft[i].ds_dmamap);
751 }
752 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
753 fail_3:
754 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
755 fail_2:
756 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
757 sizeof(struct stge_control_data));
758 fail_1:
759 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
760 fail_0:
761 return;
762 }
763
764 /*
765 * stge_shutdown:
766 *
767 * Make sure the interface is stopped at reboot time.
768 */
769 static bool
770 stge_shutdown(device_t self, int howto)
771 {
772 struct stge_softc *sc = device_private(self);
773 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
774
775 stge_stop(ifp, 1);
776 stge_reset(sc);
777 return true;
778 }
779
780 static void
781 stge_dma_wait(struct stge_softc *sc)
782 {
783 int i;
784
785 for (i = 0; i < STGE_TIMEOUT; i++) {
786 delay(2);
787 if ((CSR_READ_4(sc, STGE_DMACtrl) & DMAC_TxDMAInProg) == 0)
788 break;
789 }
790
791 if (i == STGE_TIMEOUT)
792 printf("%s: DMA wait timed out\n", device_xname(sc->sc_dev));
793 }
794
795 /*
796 * stge_start: [ifnet interface function]
797 *
798 * Start packet transmission on the interface.
799 */
800 static void
801 stge_start(struct ifnet *ifp)
802 {
803 struct stge_softc *sc = ifp->if_softc;
804 struct mbuf *m0;
805 struct stge_descsoft *ds;
806 struct stge_tfd *tfd;
807 bus_dmamap_t dmamap;
808 int error, firsttx, nexttx, opending, seg, totlen;
809 uint64_t csum_flags;
810
811 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
812 return;
813
814 /*
815 * Remember the previous number of pending transmissions
816 * and the first descriptor we will use.
817 */
818 opending = sc->sc_txpending;
819 firsttx = STGE_NEXTTX(sc->sc_txlast);
820
821 /*
822 * Loop through the send queue, setting up transmit descriptors
823 * until we drain the queue, or use up all available transmit
824 * descriptors.
825 */
826 for (;;) {
827 uint64_t tfc;
828 bool have_vtag;
829 uint16_t vtag;
830
831 /*
832 * Grab a packet off the queue.
833 */
834 IFQ_POLL(&ifp->if_snd, m0);
835 if (m0 == NULL)
836 break;
837
838 /*
839 * Leave one unused descriptor at the end of the
840 * list to prevent wrapping completely around.
841 */
842 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
843 STGE_EVCNT_INCR(&sc->sc_ev_txstall);
844 break;
845 }
846
847 /*
848 * See if we have any VLAN stuff.
849 */
850 have_vtag = vlan_has_tag(m0);
851 if (have_vtag)
852 vtag = vlan_get_tag(m0);
853
854 /*
855 * Get the last and next available transmit descriptor.
856 */
857 nexttx = STGE_NEXTTX(sc->sc_txlast);
858 tfd = &sc->sc_txdescs[nexttx];
859 ds = &sc->sc_txsoft[nexttx];
860
861 dmamap = ds->ds_dmamap;
862
863 /*
864 * Load the DMA map. If this fails, the packet either
865 * didn't fit in the alloted number of segments, or we
866 * were short on resources. For the too-many-segments
867 * case, we simply report an error and drop the packet,
868 * since we can't sanely copy a jumbo packet to a single
869 * buffer.
870 */
871 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
872 BUS_DMA_NOWAIT);
873 if (error) {
874 if (error == EFBIG) {
875 printf("%s: Tx packet consumes too many "
876 "DMA segments, dropping...\n",
877 device_xname(sc->sc_dev));
878 IFQ_DEQUEUE(&ifp->if_snd, m0);
879 m_freem(m0);
880 continue;
881 }
882 /*
883 * Short on resources, just stop for now.
884 */
885 break;
886 }
887
888 IFQ_DEQUEUE(&ifp->if_snd, m0);
889
890 /*
891 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
892 */
893
894 /* Sync the DMA map. */
895 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
896 BUS_DMASYNC_PREWRITE);
897
898 /* Initialize the fragment list. */
899 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
900 tfd->tfd_frags[seg].frag_word0 =
901 htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
902 FRAG_LEN(dmamap->dm_segs[seg].ds_len));
903 totlen += dmamap->dm_segs[seg].ds_len;
904 }
905
906 #ifdef STGE_EVENT_COUNTERS
907 switch (dmamap->dm_nsegs) {
908 case 1:
909 STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
910 break;
911 case 2:
912 STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
913 break;
914 case 3:
915 STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
916 break;
917 case 4:
918 STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
919 break;
920 case 5:
921 STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
922 break;
923 default:
924 STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
925 break;
926 }
927 #endif /* STGE_EVENT_COUNTERS */
928
929 /*
930 * Initialize checksumming flags in the descriptor.
931 * Byte-swap constants so the compiler can optimize.
932 */
933 csum_flags = 0;
934 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
935 STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
936 csum_flags |= TFD_IPChecksumEnable;
937 }
938
939 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
940 STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
941 csum_flags |= TFD_TCPChecksumEnable;
942 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
943 STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
944 csum_flags |= TFD_UDPChecksumEnable;
945 }
946
947 /*
948 * Initialize the descriptor and give it to the chip.
949 * Check to see if we have a VLAN tag to insert.
950 */
951
952 tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
953 TFD_FragCount(seg) | csum_flags |
954 (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
955 TFD_TxDMAIndicate : 0);
956 if (have_vtag) {
957 #if 0
958 struct ether_header *eh =
959 mtod(m0, struct ether_header *);
960 uint16_t etype = ntohs(eh->ether_type);
961 printf("%s: xmit (tag %d) etype %x\n",
962 ifp->if_xname, *mtod(n, int *), etype);
963 #endif
964 tfc |= TFD_VLANTagInsert |
965 #ifdef STGE_VLAN_CFI
966 TFD_CFI |
967 #endif
968 TFD_VID(vtag);
969 }
970 tfd->tfd_control = htole64(tfc);
971
972 /* Sync the descriptor. */
973 STGE_CDTXSYNC(sc, nexttx,
974 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
975
976 /*
977 * Kick the transmit DMA logic.
978 */
979 CSR_WRITE_4(sc, STGE_DMACtrl,
980 sc->sc_DMACtrl | DMAC_TxDMAPollNow);
981
982 /*
983 * Store a pointer to the packet so we can free it later.
984 */
985 ds->ds_mbuf = m0;
986
987 /* Advance the tx pointer. */
988 sc->sc_txpending++;
989 sc->sc_txlast = nexttx;
990
991 /*
992 * Pass the packet to any BPF listeners.
993 */
994 bpf_mtap(ifp, m0, BPF_D_OUT);
995 }
996
997 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
998 /* No more slots left; notify upper layer. */
999 ifp->if_flags |= IFF_OACTIVE;
1000 }
1001
1002 if (sc->sc_txpending != opending) {
1003 /*
1004 * We enqueued packets. If the transmitter was idle,
1005 * reset the txdirty pointer.
1006 */
1007 if (opending == 0)
1008 sc->sc_txdirty = firsttx;
1009
1010 /* Set a watchdog timer in case the chip flakes out. */
1011 ifp->if_timer = 5;
1012 }
1013 }
1014
1015 /*
1016 * stge_watchdog: [ifnet interface function]
1017 *
1018 * Watchdog timer handler.
1019 */
1020 static void
1021 stge_watchdog(struct ifnet *ifp)
1022 {
1023 struct stge_softc *sc = ifp->if_softc;
1024
1025 /*
1026 * Sweep up first, since we don't interrupt every frame.
1027 */
1028 stge_txintr(sc);
1029 if (sc->sc_txpending != 0) {
1030 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1031 ifp->if_oerrors++;
1032
1033 (void) stge_init(ifp);
1034
1035 /* Try to get more packets going. */
1036 stge_start(ifp);
1037 }
1038 }
1039
1040 /*
1041 * stge_ioctl: [ifnet interface function]
1042 *
1043 * Handle control requests from the operator.
1044 */
1045 static int
1046 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1047 {
1048 struct stge_softc *sc = ifp->if_softc;
1049 int s, error;
1050
1051 s = splnet();
1052
1053 error = ether_ioctl(ifp, cmd, data);
1054 if (error == ENETRESET) {
1055 error = 0;
1056
1057 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1058 ;
1059 else if (ifp->if_flags & IFF_RUNNING) {
1060 /*
1061 * Multicast list has changed; set the hardware filter
1062 * accordingly.
1063 */
1064 stge_set_filter(sc);
1065 }
1066 }
1067
1068 /* Try to get more packets going. */
1069 stge_start(ifp);
1070
1071 splx(s);
1072 return (error);
1073 }
1074
1075 /*
1076 * stge_intr:
1077 *
1078 * Interrupt service routine.
1079 */
1080 static int
1081 stge_intr(void *arg)
1082 {
1083 struct stge_softc *sc = arg;
1084 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1085 uint32_t txstat;
1086 int wantinit;
1087 uint16_t isr;
1088
1089 if ((CSR_READ_2(sc, STGE_IntStatus) & IS_InterruptStatus) == 0)
1090 return (0);
1091
1092 for (wantinit = 0; wantinit == 0;) {
1093 isr = CSR_READ_2(sc, STGE_IntStatusAck);
1094 if ((isr & sc->sc_IntEnable) == 0)
1095 break;
1096
1097 /* Host interface errors. */
1098 if (isr & IS_HostError) {
1099 printf("%s: Host interface error\n",
1100 device_xname(sc->sc_dev));
1101 wantinit = 1;
1102 continue;
1103 }
1104
1105 /* Receive interrupts. */
1106 if (isr & (IS_RxDMAComplete | IS_RFDListEnd)) {
1107 STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1108 stge_rxintr(sc);
1109 if (isr & IS_RFDListEnd) {
1110 printf("%s: receive ring overflow\n",
1111 device_xname(sc->sc_dev));
1112 /*
1113 * XXX Should try to recover from this
1114 * XXX more gracefully.
1115 */
1116 wantinit = 1;
1117 }
1118 }
1119
1120 /* Transmit interrupts. */
1121 if (isr & (IS_TxDMAComplete | IS_TxComplete)) {
1122 #ifdef STGE_EVENT_COUNTERS
1123 if (isr & IS_TxDMAComplete)
1124 STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1125 #endif
1126 stge_txintr(sc);
1127 }
1128
1129 /* Statistics overflow. */
1130 if (isr & IS_UpdateStats)
1131 stge_stats_update(sc);
1132
1133 /* Transmission errors. */
1134 if (isr & IS_TxComplete) {
1135 STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1136 for (;;) {
1137 txstat = CSR_READ_4(sc, STGE_TxStatus);
1138 if ((txstat & TS_TxComplete) == 0)
1139 break;
1140 if (txstat & TS_TxUnderrun) {
1141 sc->sc_txthresh++;
1142 if (sc->sc_txthresh > 0x0fff)
1143 sc->sc_txthresh = 0x0fff;
1144 printf("%s: transmit underrun, new "
1145 "threshold: %d bytes\n",
1146 device_xname(sc->sc_dev),
1147 sc->sc_txthresh << 5);
1148 }
1149 if (txstat & TS_MaxCollisions)
1150 printf("%s: excessive collisions\n",
1151 device_xname(sc->sc_dev));
1152 }
1153 wantinit = 1;
1154 }
1155
1156 }
1157
1158 if (wantinit)
1159 stge_init(ifp);
1160
1161 CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
1162
1163 /* Try to get more packets going. */
1164 if_schedule_deferred_start(ifp);
1165
1166 return (1);
1167 }
1168
1169 /*
1170 * stge_txintr:
1171 *
1172 * Helper; handle transmit interrupts.
1173 */
1174 static void
1175 stge_txintr(struct stge_softc *sc)
1176 {
1177 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1178 struct stge_descsoft *ds;
1179 uint64_t control;
1180 int i;
1181
1182 ifp->if_flags &= ~IFF_OACTIVE;
1183
1184 /*
1185 * Go through our Tx list and free mbufs for those
1186 * frames which have been transmitted.
1187 */
1188 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1189 i = STGE_NEXTTX(i), sc->sc_txpending--) {
1190 ds = &sc->sc_txsoft[i];
1191
1192 STGE_CDTXSYNC(sc, i,
1193 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1194
1195 control = le64toh(sc->sc_txdescs[i].tfd_control);
1196 if ((control & TFD_TFDDone) == 0)
1197 break;
1198
1199 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1200 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1201 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1202 m_freem(ds->ds_mbuf);
1203 ds->ds_mbuf = NULL;
1204 }
1205
1206 /* Update the dirty transmit buffer pointer. */
1207 sc->sc_txdirty = i;
1208
1209 /*
1210 * If there are no more pending transmissions, cancel the watchdog
1211 * timer.
1212 */
1213 if (sc->sc_txpending == 0)
1214 ifp->if_timer = 0;
1215 }
1216
1217 /*
1218 * stge_rxintr:
1219 *
1220 * Helper; handle receive interrupts.
1221 */
1222 static void
1223 stge_rxintr(struct stge_softc *sc)
1224 {
1225 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1226 struct stge_descsoft *ds;
1227 struct mbuf *m, *tailm;
1228 uint64_t status;
1229 int i, len;
1230
1231 for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1232 ds = &sc->sc_rxsoft[i];
1233
1234 STGE_CDRXSYNC(sc, i,
1235 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1236
1237 status = le64toh(sc->sc_rxdescs[i].rfd_status);
1238
1239 if ((status & RFD_RFDDone) == 0)
1240 break;
1241
1242 if (__predict_false(sc->sc_rxdiscard)) {
1243 STGE_INIT_RXDESC(sc, i);
1244 if (status & RFD_FrameEnd) {
1245 /* Reset our state. */
1246 sc->sc_rxdiscard = 0;
1247 }
1248 continue;
1249 }
1250
1251 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1252 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1253
1254 m = ds->ds_mbuf;
1255
1256 /*
1257 * Add a new receive buffer to the ring.
1258 */
1259 if (stge_add_rxbuf(sc, i) != 0) {
1260 /*
1261 * Failed, throw away what we've done so
1262 * far, and discard the rest of the packet.
1263 */
1264 ifp->if_ierrors++;
1265 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1266 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1267 STGE_INIT_RXDESC(sc, i);
1268 if ((status & RFD_FrameEnd) == 0)
1269 sc->sc_rxdiscard = 1;
1270 if (sc->sc_rxhead != NULL)
1271 m_freem(sc->sc_rxhead);
1272 STGE_RXCHAIN_RESET(sc);
1273 continue;
1274 }
1275
1276 #ifdef DIAGNOSTIC
1277 if (status & RFD_FrameStart) {
1278 KASSERT(sc->sc_rxhead == NULL);
1279 KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1280 }
1281 #endif
1282
1283 STGE_RXCHAIN_LINK(sc, m);
1284
1285 /*
1286 * If this is not the end of the packet, keep
1287 * looking.
1288 */
1289 if ((status & RFD_FrameEnd) == 0) {
1290 sc->sc_rxlen += m->m_len;
1291 continue;
1292 }
1293
1294 /*
1295 * Okay, we have the entire packet now...
1296 */
1297 *sc->sc_rxtailp = NULL;
1298 m = sc->sc_rxhead;
1299 tailm = sc->sc_rxtail;
1300
1301 STGE_RXCHAIN_RESET(sc);
1302
1303 /*
1304 * If the packet had an error, drop it. Note we
1305 * count the error later in the periodic stats update.
1306 */
1307 if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1308 RFD_RxAlignmentError | RFD_RxFCSError |
1309 RFD_RxLengthError)) {
1310 m_freem(m);
1311 continue;
1312 }
1313
1314 /*
1315 * No errors.
1316 *
1317 * Note we have configured the chip to not include
1318 * the CRC at the end of the packet.
1319 */
1320 len = RFD_RxDMAFrameLen(status);
1321 tailm->m_len = len - sc->sc_rxlen;
1322
1323 /*
1324 * If the packet is small enough to fit in a
1325 * single header mbuf, allocate one and copy
1326 * the data into it. This greatly reduces
1327 * memory consumption when we receive lots
1328 * of small packets.
1329 */
1330 if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1331 struct mbuf *nm;
1332 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1333 if (nm == NULL) {
1334 ifp->if_ierrors++;
1335 m_freem(m);
1336 continue;
1337 }
1338 nm->m_data += 2;
1339 nm->m_pkthdr.len = nm->m_len = len;
1340 m_copydata(m, 0, len, mtod(nm, void *));
1341 m_freem(m);
1342 m = nm;
1343 }
1344
1345 /*
1346 * Set the incoming checksum information for the packet.
1347 */
1348 if (status & RFD_IPDetected) {
1349 STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1350 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1351 if (status & RFD_IPError)
1352 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1353 if (status & RFD_TCPDetected) {
1354 STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1355 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1356 if (status & RFD_TCPError)
1357 m->m_pkthdr.csum_flags |=
1358 M_CSUM_TCP_UDP_BAD;
1359 } else if (status & RFD_UDPDetected) {
1360 STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1361 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1362 if (status & RFD_UDPError)
1363 m->m_pkthdr.csum_flags |=
1364 M_CSUM_TCP_UDP_BAD;
1365 }
1366 }
1367
1368 m_set_rcvif(m, ifp);
1369 m->m_pkthdr.len = len;
1370
1371 /*
1372 * Pass this up to any BPF listeners, but only
1373 * pass if up the stack if it's for us.
1374 */
1375 #ifdef STGE_VLAN_UNTAG
1376 /*
1377 * Check for VLAN tagged packets
1378 */
1379 if (status & RFD_VLANDetected)
1380 vlan_set_tag(m, RFD_TCI(status));
1381
1382 #endif
1383 #if 0
1384 if (status & RFD_VLANDetected) {
1385 struct ether_header *eh;
1386 uint16_t etype;
1387
1388 eh = mtod(m, struct ether_header *);
1389 etype = ntohs(eh->ether_type);
1390 printf("%s: VLANtag detected (TCI %d) etype %x\n",
1391 ifp->if_xname, (uint16_t) RFD_TCI(status),
1392 etype);
1393 }
1394 #endif
1395 /* Pass it on. */
1396 if_percpuq_enqueue(ifp->if_percpuq, m);
1397 }
1398
1399 /* Update the receive pointer. */
1400 sc->sc_rxptr = i;
1401 }
1402
1403 /*
1404 * stge_tick:
1405 *
1406 * One second timer, used to tick the MII.
1407 */
1408 static void
1409 stge_tick(void *arg)
1410 {
1411 struct stge_softc *sc = arg;
1412 int s;
1413
1414 s = splnet();
1415 mii_tick(&sc->sc_mii);
1416 stge_stats_update(sc);
1417 splx(s);
1418
1419 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1420 }
1421
1422 /*
1423 * stge_stats_update:
1424 *
1425 * Read the TC9021 statistics counters.
1426 */
1427 static void
1428 stge_stats_update(struct stge_softc *sc)
1429 {
1430 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1431
1432 (void) CSR_READ_4(sc, STGE_OctetRcvOk);
1433
1434 (void) CSR_READ_4(sc, STGE_FramesRcvdOk);
1435
1436 ifp->if_ierrors +=
1437 (u_int) CSR_READ_2(sc, STGE_FramesLostRxErrors);
1438
1439 (void) CSR_READ_4(sc, STGE_OctetXmtdOk);
1440
1441 ifp->if_opackets +=
1442 CSR_READ_4(sc, STGE_FramesXmtdOk);
1443
1444 ifp->if_collisions +=
1445 CSR_READ_4(sc, STGE_LateCollisions) +
1446 CSR_READ_4(sc, STGE_MultiColFrames) +
1447 CSR_READ_4(sc, STGE_SingleColFrames);
1448
1449 ifp->if_oerrors +=
1450 (u_int) CSR_READ_2(sc, STGE_FramesAbortXSColls) +
1451 (u_int) CSR_READ_2(sc, STGE_FramesWEXDeferal);
1452 }
1453
1454 /*
1455 * stge_reset:
1456 *
1457 * Perform a soft reset on the TC9021.
1458 */
1459 static void
1460 stge_reset(struct stge_softc *sc)
1461 {
1462 uint32_t ac;
1463 int i;
1464
1465 ac = CSR_READ_4(sc, STGE_AsicCtrl);
1466
1467 /*
1468 * Only assert RstOut if we're fiber. We need GMII clocks
1469 * to be present in order for the reset to complete on fiber
1470 * cards.
1471 */
1472 CSR_WRITE_4(sc, STGE_AsicCtrl,
1473 ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1474 AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1475 (sc->sc_usefiber ? AC_RstOut : 0));
1476
1477 delay(50000);
1478
1479 for (i = 0; i < STGE_TIMEOUT; i++) {
1480 delay(5000);
1481 if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1482 break;
1483 }
1484
1485 if (i == STGE_TIMEOUT)
1486 printf("%s: reset failed to complete\n",
1487 device_xname(sc->sc_dev));
1488
1489 delay(1000);
1490 }
1491
1492 /*
1493 * stge_init: [ ifnet interface function ]
1494 *
1495 * Initialize the interface. Must be called at splnet().
1496 */
1497 static int
1498 stge_init(struct ifnet *ifp)
1499 {
1500 struct stge_softc *sc = ifp->if_softc;
1501 struct stge_descsoft *ds;
1502 int i, error = 0;
1503
1504 /*
1505 * Cancel any pending I/O.
1506 */
1507 stge_stop(ifp, 0);
1508
1509 /*
1510 * Reset the chip to a known state.
1511 */
1512 stge_reset(sc);
1513
1514 /*
1515 * Initialize the transmit descriptor ring.
1516 */
1517 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1518 for (i = 0; i < STGE_NTXDESC; i++) {
1519 sc->sc_txdescs[i].tfd_next = htole64(
1520 STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1521 sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1522 }
1523 sc->sc_txpending = 0;
1524 sc->sc_txdirty = 0;
1525 sc->sc_txlast = STGE_NTXDESC - 1;
1526
1527 /*
1528 * Initialize the receive descriptor and receive job
1529 * descriptor rings.
1530 */
1531 for (i = 0; i < STGE_NRXDESC; i++) {
1532 ds = &sc->sc_rxsoft[i];
1533 if (ds->ds_mbuf == NULL) {
1534 if ((error = stge_add_rxbuf(sc, i)) != 0) {
1535 printf("%s: unable to allocate or map rx "
1536 "buffer %d, error = %d\n",
1537 device_xname(sc->sc_dev), i, error);
1538 /*
1539 * XXX Should attempt to run with fewer receive
1540 * XXX buffers instead of just failing.
1541 */
1542 stge_rxdrain(sc);
1543 goto out;
1544 }
1545 } else
1546 STGE_INIT_RXDESC(sc, i);
1547 }
1548 sc->sc_rxptr = 0;
1549 sc->sc_rxdiscard = 0;
1550 STGE_RXCHAIN_RESET(sc);
1551
1552 /* Set the station address. */
1553 for (i = 0; i < 6; i++)
1554 CSR_WRITE_1(sc, STGE_StationAddress0 + i,
1555 CLLADDR(ifp->if_sadl)[i]);
1556
1557 /*
1558 * Set the statistics masks. Disable all the RMON stats,
1559 * and disable selected stats in the non-RMON stats registers.
1560 */
1561 CSR_WRITE_4(sc, STGE_RMONStatisticsMask, 0xffffffff);
1562 CSR_WRITE_4(sc, STGE_StatisticsMask,
1563 (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1564 (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1565 (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1566 (1U << 21));
1567
1568 /* Set up the receive filter. */
1569 stge_set_filter(sc);
1570
1571 /*
1572 * Give the transmit and receive ring to the chip.
1573 */
1574 CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1575 CSR_WRITE_4(sc, STGE_TFDListPtrLo,
1576 STGE_CDTXADDR(sc, sc->sc_txdirty));
1577
1578 CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1579 CSR_WRITE_4(sc, STGE_RFDListPtrLo,
1580 STGE_CDRXADDR(sc, sc->sc_rxptr));
1581
1582 /*
1583 * Initialize the Tx auto-poll period. It's OK to make this number
1584 * large (255 is the max, but we use 127) -- we explicitly kick the
1585 * transmit engine when there's actually a packet.
1586 */
1587 CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
1588
1589 /* ..and the Rx auto-poll period. */
1590 CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 64);
1591
1592 /* Initialize the Tx start threshold. */
1593 CSR_WRITE_2(sc, STGE_TxStartThresh, sc->sc_txthresh);
1594
1595 /* RX DMA thresholds, from linux */
1596 CSR_WRITE_1(sc, STGE_RxDMABurstThresh, 0x30);
1597 CSR_WRITE_1(sc, STGE_RxDMAUrgentThresh, 0x30);
1598
1599 /* Rx early threhold, from Linux */
1600 CSR_WRITE_2(sc, STGE_RxEarlyThresh, 0x7ff);
1601
1602 /* Tx DMA thresholds, from Linux */
1603 CSR_WRITE_1(sc, STGE_TxDMABurstThresh, 0x30);
1604 CSR_WRITE_1(sc, STGE_TxDMAUrgentThresh, 0x04);
1605
1606 /*
1607 * Initialize the Rx DMA interrupt control register. We
1608 * request an interrupt after every incoming packet, but
1609 * defer it for 32us (64 * 512 ns). When the number of
1610 * interrupts pending reaches 8, we stop deferring the
1611 * interrupt, and signal it immediately.
1612 */
1613 CSR_WRITE_4(sc, STGE_RxDMAIntCtrl,
1614 RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1615
1616 /*
1617 * Initialize the interrupt mask.
1618 */
1619 sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1620 IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1621 CSR_WRITE_2(sc, STGE_IntStatus, 0xffff);
1622 CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
1623
1624 /*
1625 * Configure the DMA engine.
1626 * XXX Should auto-tune TxBurstLimit.
1627 */
1628 CSR_WRITE_4(sc, STGE_DMACtrl, sc->sc_DMACtrl |
1629 DMAC_TxBurstLimit(3));
1630
1631 /*
1632 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1633 * FIFO, and send an un-PAUSE frame when we reach 3056 bytes
1634 * in the Rx FIFO.
1635 */
1636 CSR_WRITE_2(sc, STGE_FlowOnTresh, 29696 / 16);
1637 CSR_WRITE_2(sc, STGE_FlowOffThresh, 3056 / 16);
1638
1639 /*
1640 * Set the maximum frame size.
1641 */
1642 CSR_WRITE_2(sc, STGE_MaxFrameSize,
1643 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1644 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1645 ETHER_VLAN_ENCAP_LEN : 0));
1646
1647 /*
1648 * Initialize MacCtrl -- do it before setting the media,
1649 * as setting the media will actually program the register.
1650 *
1651 * Note: We have to poke the IFS value before poking
1652 * anything else.
1653 */
1654 sc->sc_MACCtrl = MC_IFSSelect(0);
1655 CSR_WRITE_4(sc, STGE_MACCtrl, sc->sc_MACCtrl);
1656 sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1657 #ifdef STGE_VLAN_UNTAG
1658 sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1659 #endif
1660
1661 if (sc->sc_rev >= 6) { /* >= B.2 */
1662 /* Multi-frag frame bug work-around. */
1663 CSR_WRITE_2(sc, STGE_DebugCtrl,
1664 CSR_READ_2(sc, STGE_DebugCtrl) | 0x0200);
1665
1666 /* Tx Poll Now bug work-around. */
1667 CSR_WRITE_2(sc, STGE_DebugCtrl,
1668 CSR_READ_2(sc, STGE_DebugCtrl) | 0x0010);
1669 /* XXX ? from linux */
1670 CSR_WRITE_2(sc, STGE_DebugCtrl,
1671 CSR_READ_2(sc, STGE_DebugCtrl) | 0x0020);
1672 }
1673
1674 /*
1675 * Set the current media.
1676 */
1677 if ((error = ether_mediachange(ifp)) != 0)
1678 goto out;
1679
1680 /*
1681 * Start the one second MII clock.
1682 */
1683 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1684
1685 /*
1686 * ...all done!
1687 */
1688 ifp->if_flags |= IFF_RUNNING;
1689 ifp->if_flags &= ~IFF_OACTIVE;
1690
1691 out:
1692 if (error)
1693 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1694 return (error);
1695 }
1696
1697 /*
1698 * stge_drain:
1699 *
1700 * Drain the receive queue.
1701 */
1702 static void
1703 stge_rxdrain(struct stge_softc *sc)
1704 {
1705 struct stge_descsoft *ds;
1706 int i;
1707
1708 for (i = 0; i < STGE_NRXDESC; i++) {
1709 ds = &sc->sc_rxsoft[i];
1710 if (ds->ds_mbuf != NULL) {
1711 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1712 ds->ds_mbuf->m_next = NULL;
1713 m_freem(ds->ds_mbuf);
1714 ds->ds_mbuf = NULL;
1715 }
1716 }
1717 }
1718
1719 /*
1720 * stge_stop: [ ifnet interface function ]
1721 *
1722 * Stop transmission on the interface.
1723 */
1724 static void
1725 stge_stop(struct ifnet *ifp, int disable)
1726 {
1727 struct stge_softc *sc = ifp->if_softc;
1728 struct stge_descsoft *ds;
1729 int i;
1730
1731 /*
1732 * Stop the one second clock.
1733 */
1734 callout_stop(&sc->sc_tick_ch);
1735
1736 /* Down the MII. */
1737 mii_down(&sc->sc_mii);
1738
1739 /*
1740 * Disable interrupts.
1741 */
1742 CSR_WRITE_2(sc, STGE_IntEnable, 0);
1743
1744 /*
1745 * Stop receiver, transmitter, and stats update.
1746 */
1747 CSR_WRITE_4(sc, STGE_MACCtrl,
1748 MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1749
1750 /*
1751 * Stop the transmit and receive DMA.
1752 */
1753 stge_dma_wait(sc);
1754 CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0);
1755 CSR_WRITE_4(sc, STGE_TFDListPtrLo, 0);
1756 CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0);
1757 CSR_WRITE_4(sc, STGE_RFDListPtrLo, 0);
1758
1759 /*
1760 * Release any queued transmit buffers.
1761 */
1762 for (i = 0; i < STGE_NTXDESC; i++) {
1763 ds = &sc->sc_txsoft[i];
1764 if (ds->ds_mbuf != NULL) {
1765 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1766 m_freem(ds->ds_mbuf);
1767 ds->ds_mbuf = NULL;
1768 }
1769 }
1770
1771 /*
1772 * Mark the interface down and cancel the watchdog timer.
1773 */
1774 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1775 ifp->if_timer = 0;
1776
1777 if (disable)
1778 stge_rxdrain(sc);
1779 }
1780
1781 static int
1782 stge_eeprom_wait(struct stge_softc *sc)
1783 {
1784 int i;
1785
1786 for (i = 0; i < STGE_TIMEOUT; i++) {
1787 delay(1000);
1788 if ((CSR_READ_2(sc, STGE_EepromCtrl) & EC_EepromBusy) == 0)
1789 return (0);
1790 }
1791 return (1);
1792 }
1793
1794 /*
1795 * stge_read_eeprom:
1796 *
1797 * Read data from the serial EEPROM.
1798 */
1799 static void
1800 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1801 {
1802
1803 if (stge_eeprom_wait(sc))
1804 printf("%s: EEPROM failed to come ready\n",
1805 device_xname(sc->sc_dev));
1806
1807 CSR_WRITE_2(sc, STGE_EepromCtrl,
1808 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1809 if (stge_eeprom_wait(sc))
1810 printf("%s: EEPROM read timed out\n",
1811 device_xname(sc->sc_dev));
1812 *data = CSR_READ_2(sc, STGE_EepromData);
1813 }
1814
1815 /*
1816 * stge_add_rxbuf:
1817 *
1818 * Add a receive buffer to the indicated descriptor.
1819 */
1820 static int
1821 stge_add_rxbuf(struct stge_softc *sc, int idx)
1822 {
1823 struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1824 struct mbuf *m;
1825 int error;
1826
1827 MGETHDR(m, M_DONTWAIT, MT_DATA);
1828 if (m == NULL)
1829 return (ENOBUFS);
1830
1831 MCLGET(m, M_DONTWAIT);
1832 if ((m->m_flags & M_EXT) == 0) {
1833 m_freem(m);
1834 return (ENOBUFS);
1835 }
1836
1837 m->m_data = m->m_ext.ext_buf + 2;
1838 m->m_len = MCLBYTES - 2;
1839
1840 if (ds->ds_mbuf != NULL)
1841 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1842
1843 ds->ds_mbuf = m;
1844
1845 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1846 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1847 if (error) {
1848 printf("%s: can't load rx DMA map %d, error = %d\n",
1849 device_xname(sc->sc_dev), idx, error);
1850 panic("stge_add_rxbuf"); /* XXX */
1851 }
1852
1853 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1854 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1855
1856 STGE_INIT_RXDESC(sc, idx);
1857
1858 return (0);
1859 }
1860
1861 /*
1862 * stge_set_filter:
1863 *
1864 * Set up the receive filter.
1865 */
1866 static void
1867 stge_set_filter(struct stge_softc *sc)
1868 {
1869 struct ethercom *ec = &sc->sc_ethercom;
1870 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1871 struct ether_multi *enm;
1872 struct ether_multistep step;
1873 uint32_t crc;
1874 uint32_t mchash[2];
1875
1876 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1877 if (ifp->if_flags & IFF_BROADCAST)
1878 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1879
1880 /* XXX: ST1023 only works in promiscuous mode */
1881 if (sc->sc_stge1023)
1882 ifp->if_flags |= IFF_PROMISC;
1883
1884 if (ifp->if_flags & IFF_PROMISC) {
1885 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1886 goto allmulti;
1887 }
1888
1889 /*
1890 * Set up the multicast address filter by passing all multicast
1891 * addresses through a CRC generator, and then using the low-order
1892 * 6 bits as an index into the 64 bit multicast hash table. The
1893 * high order bits select the register, while the rest of the bits
1894 * select the bit within the register.
1895 */
1896
1897 memset(mchash, 0, sizeof(mchash));
1898
1899 ETHER_LOCK(ec);
1900 ETHER_FIRST_MULTI(step, ec, enm);
1901 if (enm == NULL) {
1902 ETHER_UNLOCK(ec);
1903 goto done;
1904 }
1905
1906 while (enm != NULL) {
1907 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1908 /*
1909 * We must listen to a range of multicast addresses.
1910 * For now, just accept all multicasts, rather than
1911 * trying to set only those filter bits needed to match
1912 * the range. (At this time, the only use of address
1913 * ranges is for IP multicast routing, for which the
1914 * range is big enough to require all bits set.)
1915 */
1916 ETHER_UNLOCK(ec);
1917 goto allmulti;
1918 }
1919
1920 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1921
1922 /* Just want the 6 least significant bits. */
1923 crc &= 0x3f;
1924
1925 /* Set the corresponding bit in the hash table. */
1926 mchash[crc >> 5] |= 1 << (crc & 0x1f);
1927
1928 ETHER_NEXT_MULTI(step, enm);
1929 }
1930 ETHER_UNLOCK(ec);
1931
1932 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1933
1934 ifp->if_flags &= ~IFF_ALLMULTI;
1935 goto done;
1936
1937 allmulti:
1938 ifp->if_flags |= IFF_ALLMULTI;
1939 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1940
1941 done:
1942 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1943 /*
1944 * Program the multicast hash table.
1945 */
1946 CSR_WRITE_4(sc, STGE_HashTable0, mchash[0]);
1947 CSR_WRITE_4(sc, STGE_HashTable1, mchash[1]);
1948 }
1949
1950 CSR_WRITE_2(sc, STGE_ReceiveMode, sc->sc_ReceiveMode);
1951 }
1952
1953 /*
1954 * stge_mii_readreg: [mii interface function]
1955 *
1956 * Read a PHY register on the MII of the TC9021.
1957 */
1958 static int
1959 stge_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1960 {
1961
1962 return mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg, val);
1963 }
1964
1965 /*
1966 * stge_mii_writereg: [mii interface function]
1967 *
1968 * Write a PHY register on the MII of the TC9021.
1969 */
1970 static int
1971 stge_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1972 {
1973
1974 return mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg,
1975 val);
1976 }
1977
1978 /*
1979 * stge_mii_statchg: [mii interface function]
1980 *
1981 * Callback from MII layer when media changes.
1982 */
1983 static void
1984 stge_mii_statchg(struct ifnet *ifp)
1985 {
1986 struct stge_softc *sc = ifp->if_softc;
1987
1988 sc->sc_MACCtrl &= ~(MC_DuplexSelect | MC_RxFlowControlEnable |
1989 MC_TxFlowControlEnable);
1990
1991 if (sc->sc_mii.mii_media_active & IFM_FDX)
1992 sc->sc_MACCtrl |= MC_DuplexSelect;
1993 if ((sc->sc_mii.mii_media_active & IFM_ETH_RXPAUSE) != 0)
1994 sc->sc_MACCtrl |= MC_RxFlowControlEnable;
1995 if ((sc->sc_mii.mii_media_active & IFM_ETH_TXPAUSE) != 0)
1996 sc->sc_MACCtrl |= MC_TxFlowControlEnable;
1997
1998 CSR_WRITE_4(sc, STGE_MACCtrl, sc->sc_MACCtrl);
1999 }
2000
2001 /*
2002 * sste_mii_bitbang_read: [mii bit-bang interface function]
2003 *
2004 * Read the MII serial port for the MII bit-bang module.
2005 */
2006 static uint32_t
2007 stge_mii_bitbang_read(device_t self)
2008 {
2009 struct stge_softc *sc = device_private(self);
2010
2011 return (CSR_READ_1(sc, STGE_PhyCtrl));
2012 }
2013
2014 /*
2015 * stge_mii_bitbang_write: [mii big-bang interface function]
2016 *
2017 * Write the MII serial port for the MII bit-bang module.
2018 */
2019 static void
2020 stge_mii_bitbang_write(device_t self, uint32_t val)
2021 {
2022 struct stge_softc *sc = device_private(self);
2023
2024 CSR_WRITE_1(sc, STGE_PhyCtrl, val | sc->sc_PhyCtrl);
2025 }
2026