if_stge.c revision 1.79 1 /* $NetBSD: if_stge.c,v 1.79 2020/02/07 00:04:28 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the Sundance Tech. TC9021 10/100/1000
34 * Ethernet controller.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.79 2020/02/07 00:04:28 thorpej Exp $");
39
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 #include <sys/queue.h>
52
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57
58 #include <net/bpf.h>
59
60 #include <sys/bus.h>
61 #include <sys/intr.h>
62
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 #include <dev/mii/mii_bitbang.h>
66
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70
71 #include <dev/pci/if_stgereg.h>
72
73 #include <prop/proplib.h>
74
75 /* #define STGE_CU_BUG 1 */
76 #define STGE_VLAN_UNTAG 1
77 /* #define STGE_VLAN_CFI 1 */
78
79 /*
80 * Transmit descriptor list size.
81 */
82 #define STGE_NTXDESC 256
83 #define STGE_NTXDESC_MASK (STGE_NTXDESC - 1)
84 #define STGE_NEXTTX(x) (((x) + 1) & STGE_NTXDESC_MASK)
85
86 /*
87 * Receive descriptor list size.
88 */
89 #define STGE_NRXDESC 256
90 #define STGE_NRXDESC_MASK (STGE_NRXDESC - 1)
91 #define STGE_NEXTRX(x) (((x) + 1) & STGE_NRXDESC_MASK)
92
93 /*
94 * Only interrupt every N frames. Must be a power-of-two.
95 */
96 #define STGE_TXINTR_SPACING 16
97 #define STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
98
99 /*
100 * Control structures are DMA'd to the TC9021 chip. We allocate them in
101 * a single clump that maps to a single DMA segment to make several things
102 * easier.
103 */
104 struct stge_control_data {
105 /*
106 * The transmit descriptors.
107 */
108 struct stge_tfd scd_txdescs[STGE_NTXDESC];
109
110 /*
111 * The receive descriptors.
112 */
113 struct stge_rfd scd_rxdescs[STGE_NRXDESC];
114 };
115
116 #define STGE_CDOFF(x) offsetof(struct stge_control_data, x)
117 #define STGE_CDTXOFF(x) STGE_CDOFF(scd_txdescs[(x)])
118 #define STGE_CDRXOFF(x) STGE_CDOFF(scd_rxdescs[(x)])
119
120 /*
121 * Software state for transmit and receive jobs.
122 */
123 struct stge_descsoft {
124 struct mbuf *ds_mbuf; /* head of our mbuf chain */
125 bus_dmamap_t ds_dmamap; /* our DMA map */
126 };
127
128 /*
129 * Software state per device.
130 */
131 struct stge_softc {
132 device_t sc_dev; /* generic device information */
133 bus_space_tag_t sc_st; /* bus space tag */
134 bus_space_handle_t sc_sh; /* bus space handle */
135 bus_dma_tag_t sc_dmat; /* bus DMA tag */
136 struct ethercom sc_ethercom; /* ethernet common data */
137 int sc_rev; /* silicon revision */
138
139 void *sc_ih; /* interrupt cookie */
140
141 struct mii_data sc_mii; /* MII/media information */
142
143 callout_t sc_tick_ch; /* tick callout */
144
145 bus_dmamap_t sc_cddmamap; /* control data DMA map */
146 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
147
148 /*
149 * Software state for transmit and receive descriptors.
150 */
151 struct stge_descsoft sc_txsoft[STGE_NTXDESC];
152 struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
153
154 /*
155 * Control data structures.
156 */
157 struct stge_control_data *sc_control_data;
158 #define sc_txdescs sc_control_data->scd_txdescs
159 #define sc_rxdescs sc_control_data->scd_rxdescs
160
161 #ifdef STGE_EVENT_COUNTERS
162 /*
163 * Event counters.
164 */
165 struct evcnt sc_ev_txstall; /* Tx stalled */
166 struct evcnt sc_ev_txdmaintr; /* Tx DMA interrupts */
167 struct evcnt sc_ev_txindintr; /* Tx Indicate interrupts */
168 struct evcnt sc_ev_rxintr; /* Rx interrupts */
169
170 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
171 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
172 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
173 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
174 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
175 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
176 struct evcnt sc_ev_txcopy; /* Tx packets that we had to copy */
177
178 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
179 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
180 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-bound */
181
182 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
183 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
184 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
185 #endif /* STGE_EVENT_COUNTERS */
186
187 int sc_txpending; /* number of Tx requests pending */
188 int sc_txdirty; /* first dirty Tx descriptor */
189 int sc_txlast; /* last used Tx descriptor */
190
191 int sc_rxptr; /* next ready Rx descriptor/descsoft */
192 int sc_rxdiscard;
193 int sc_rxlen;
194 struct mbuf *sc_rxhead;
195 struct mbuf *sc_rxtail;
196 struct mbuf **sc_rxtailp;
197
198 int sc_txthresh; /* Tx threshold */
199 uint32_t sc_usefiber:1; /* if we're fiber */
200 uint32_t sc_stge1023:1; /* are we a 1023 */
201 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
202 uint32_t sc_MACCtrl; /* prototype MacCtrl register */
203 uint16_t sc_IntEnable; /* prototype IntEnable register */
204 uint16_t sc_ReceiveMode; /* prototype ReceiveMode register */
205 uint8_t sc_PhyCtrl; /* prototype PhyCtrl register */
206 };
207
208 #define STGE_RXCHAIN_RESET(sc) \
209 do { \
210 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
211 *(sc)->sc_rxtailp = NULL; \
212 (sc)->sc_rxlen = 0; \
213 } while (/*CONSTCOND*/0)
214
215 #define STGE_RXCHAIN_LINK(sc, m) \
216 do { \
217 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
218 (sc)->sc_rxtailp = &(m)->m_next; \
219 } while (/*CONSTCOND*/0)
220
221 /*
222 * Register access macros
223 */
224 #define CSR_WRITE_4(_sc, reg, val) \
225 bus_space_write_4((_sc)->sc_st, (_sc)->sc_sh, (reg), (val))
226 #define CSR_WRITE_2(_sc, reg, val) \
227 bus_space_write_2((_sc)->sc_st, (_sc)->sc_sh, (reg), (val))
228 #define CSR_WRITE_1(_sc, reg, val) \
229 bus_space_write_1((_sc)->sc_st, (_sc)->sc_sh, (reg), (val))
230
231 #define CSR_READ_4(_sc, reg) \
232 bus_space_read_4((_sc)->sc_st, (_sc)->sc_sh, (reg))
233 #define CSR_READ_2(_sc, reg) \
234 bus_space_read_2((_sc)->sc_st, (_sc)->sc_sh, (reg))
235 #define CSR_READ_1(_sc, reg) \
236 bus_space_read_1((_sc)->sc_st, (_sc)->sc_sh, (reg))
237
238 #define STGE_TIMEOUT 1000
239
240 #ifdef STGE_EVENT_COUNTERS
241 #define STGE_EVCNT_INCR(ev) (ev)->ev_count++
242 #else
243 #define STGE_EVCNT_INCR(ev) /* nothing */
244 #endif
245
246 #define STGE_CDTXADDR(sc, x) ((sc)->sc_cddma + STGE_CDTXOFF((x)))
247 #define STGE_CDRXADDR(sc, x) ((sc)->sc_cddma + STGE_CDRXOFF((x)))
248
249 #define STGE_CDTXSYNC(sc, x, ops) \
250 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
251 STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
252
253 #define STGE_CDRXSYNC(sc, x, ops) \
254 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
255 STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
256
257 #define STGE_INIT_RXDESC(sc, x) \
258 do { \
259 struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
260 struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
261 \
262 /* \
263 * Note: We scoot the packet forward 2 bytes in the buffer \
264 * so that the payload after the Ethernet header is aligned \
265 * to a 4-byte boundary. \
266 */ \
267 __rfd->rfd_frag.frag_word0 = \
268 htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
269 FRAG_LEN(MCLBYTES - 2)); \
270 __rfd->rfd_next = \
271 htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x)))); \
272 __rfd->rfd_status = 0; \
273 STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
274 } while (/*CONSTCOND*/0)
275
276 static void stge_start(struct ifnet *);
277 static void stge_watchdog(struct ifnet *);
278 static int stge_ioctl(struct ifnet *, u_long, void *);
279 static int stge_init(struct ifnet *);
280 static void stge_stop(struct ifnet *, int);
281
282 static bool stge_shutdown(device_t, int);
283
284 static void stge_reset(struct stge_softc *);
285 static void stge_rxdrain(struct stge_softc *);
286 static int stge_add_rxbuf(struct stge_softc *, int);
287 static void stge_read_eeprom(struct stge_softc *, int, uint16_t *);
288 static void stge_tick(void *);
289
290 static void stge_stats_update(struct stge_softc *);
291
292 static void stge_set_filter(struct stge_softc *);
293
294 static int stge_intr(void *);
295 static void stge_txintr(struct stge_softc *);
296 static void stge_rxintr(struct stge_softc *);
297
298 static int stge_mii_readreg(device_t, int, int, uint16_t *);
299 static int stge_mii_writereg(device_t, int, int, uint16_t);
300 static void stge_mii_statchg(struct ifnet *);
301
302 static int stge_match(device_t, cfdata_t, void *);
303 static void stge_attach(device_t, device_t, void *);
304
305 int stge_copy_small = 0;
306
307 CFATTACH_DECL_NEW(stge, sizeof(struct stge_softc),
308 stge_match, stge_attach, NULL, NULL);
309
310 static uint32_t stge_mii_bitbang_read(device_t);
311 static void stge_mii_bitbang_write(device_t, uint32_t);
312
313 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
314 stge_mii_bitbang_read,
315 stge_mii_bitbang_write,
316 {
317 PC_MgmtData, /* MII_BIT_MDO */
318 PC_MgmtData, /* MII_BIT_MDI */
319 PC_MgmtClk, /* MII_BIT_MDC */
320 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
321 0, /* MII_BIT_DIR_PHY_HOST */
322 }
323 };
324
325 /*
326 * Devices supported by this driver.
327 */
328 static const struct stge_product {
329 pci_vendor_id_t stge_vendor;
330 pci_product_id_t stge_product;
331 const char *stge_name;
332 } stge_products[] = {
333 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST1023,
334 "Sundance ST-1023 Gigabit Ethernet" },
335
336 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST2021,
337 "Sundance ST-2021 Gigabit Ethernet" },
338
339 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021,
340 "Tamarack TC9021 Gigabit Ethernet" },
341
342 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021_ALT,
343 "Tamarack TC9021 Gigabit Ethernet" },
344
345 /*
346 * The Sundance sample boards use the Sundance vendor ID,
347 * but the Tamarack product ID.
348 */
349 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021,
350 "Sundance TC9021 Gigabit Ethernet" },
351
352 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021_ALT,
353 "Sundance TC9021 Gigabit Ethernet" },
354
355 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL4000,
356 "D-Link DL-4000 Gigabit Ethernet" },
357
358 { PCI_VENDOR_ANTARES, PCI_PRODUCT_ANTARES_TC9021,
359 "Antares Gigabit Ethernet" },
360
361 { 0, 0,
362 NULL },
363 };
364
365 static const struct stge_product *
366 stge_lookup(const struct pci_attach_args *pa)
367 {
368 const struct stge_product *sp;
369
370 for (sp = stge_products; sp->stge_name != NULL; sp++) {
371 if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
372 PCI_PRODUCT(pa->pa_id) == sp->stge_product)
373 return (sp);
374 }
375 return (NULL);
376 }
377
378 static int
379 stge_match(device_t parent, cfdata_t cf, void *aux)
380 {
381 struct pci_attach_args *pa = aux;
382
383 if (stge_lookup(pa) != NULL)
384 return (1);
385
386 return (0);
387 }
388
389 static void
390 stge_attach(device_t parent, device_t self, void *aux)
391 {
392 struct stge_softc *sc = device_private(self);
393 struct pci_attach_args *pa = aux;
394 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
395 struct mii_data * const mii = &sc->sc_mii;
396 pci_chipset_tag_t pc = pa->pa_pc;
397 pci_intr_handle_t ih;
398 const char *intrstr = NULL;
399 bus_space_tag_t iot, memt;
400 bus_space_handle_t ioh, memh;
401 bus_dma_segment_t seg;
402 prop_dictionary_t dict;
403 prop_data_t data;
404 int ioh_valid, memh_valid;
405 int i, rseg, error;
406 const struct stge_product *sp;
407 uint8_t enaddr[ETHER_ADDR_LEN];
408 char intrbuf[PCI_INTRSTR_LEN];
409
410 sc->sc_dev = self;
411 callout_init(&sc->sc_tick_ch, 0);
412 callout_setfunc(&sc->sc_tick_ch, stge_tick, sc);
413
414 sp = stge_lookup(pa);
415 if (sp == NULL) {
416 printf("\n");
417 panic("ste_attach: impossible");
418 }
419
420 sc->sc_rev = PCI_REVISION(pa->pa_class);
421
422 pci_aprint_devinfo_fancy(pa, NULL, sp->stge_name, 1);
423
424 /*
425 * Map the device.
426 */
427 ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
428 PCI_MAPREG_TYPE_IO, 0,
429 &iot, &ioh, NULL, NULL) == 0);
430 memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
431 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
432 &memt, &memh, NULL, NULL) == 0);
433
434 if (memh_valid) {
435 sc->sc_st = memt;
436 sc->sc_sh = memh;
437 } else if (ioh_valid) {
438 sc->sc_st = iot;
439 sc->sc_sh = ioh;
440 } else {
441 aprint_error_dev(self, "unable to map device registers\n");
442 return;
443 }
444
445 sc->sc_dmat = pa->pa_dmat;
446
447 /* Enable bus mastering. */
448 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
449 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
450 PCI_COMMAND_MASTER_ENABLE);
451
452 /* power up chip */
453 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
454 error != EOPNOTSUPP) {
455 aprint_error_dev(self, "cannot activate %d\n", error);
456 return;
457 }
458 /*
459 * Map and establish our interrupt.
460 */
461 if (pci_intr_map(pa, &ih)) {
462 aprint_error_dev(self, "unable to map interrupt\n");
463 return;
464 }
465 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
466 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, stge_intr, sc,
467 device_xname(self));
468 if (sc->sc_ih == NULL) {
469 aprint_error_dev(self, "unable to establish interrupt");
470 if (intrstr != NULL)
471 aprint_error(" at %s", intrstr);
472 aprint_error("\n");
473 return;
474 }
475 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
476
477 /*
478 * Allocate the control data structures, and create and load the
479 * DMA map for it.
480 */
481 if ((error = bus_dmamem_alloc(sc->sc_dmat,
482 sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
483 0)) != 0) {
484 aprint_error_dev(self,
485 "unable to allocate control data, error = %d\n", error);
486 goto fail_0;
487 }
488
489 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
490 sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
491 BUS_DMA_COHERENT)) != 0) {
492 aprint_error_dev(self,
493 "unable to map control data, error = %d\n", error);
494 goto fail_1;
495 }
496
497 if ((error = bus_dmamap_create(sc->sc_dmat,
498 sizeof(struct stge_control_data), 1,
499 sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
500 aprint_error_dev(self,
501 "unable to create control data DMA map, error = %d\n",
502 error);
503 goto fail_2;
504 }
505
506 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
507 sc->sc_control_data, sizeof(struct stge_control_data), NULL,
508 0)) != 0) {
509 aprint_error_dev(self,
510 "unable to load control data DMA map, error = %d\n",
511 error);
512 goto fail_3;
513 }
514
515 /*
516 * Create the transmit buffer DMA maps. Note that rev B.3
517 * and earlier seem to have a bug regarding multi-fragment
518 * packets. We need to limit the number of Tx segments on
519 * such chips to 1.
520 */
521 for (i = 0; i < STGE_NTXDESC; i++) {
522 if ((error = bus_dmamap_create(sc->sc_dmat,
523 ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
524 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
525 aprint_error_dev(self,
526 "unable to create tx DMA map %d, error = %d\n",
527 i, error);
528 goto fail_4;
529 }
530 }
531
532 /*
533 * Create the receive buffer DMA maps.
534 */
535 for (i = 0; i < STGE_NRXDESC; i++) {
536 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
537 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
538 aprint_error_dev(self,
539 "unable to create rx DMA map %d, error = %d\n",
540 i, error);
541 goto fail_5;
542 }
543 sc->sc_rxsoft[i].ds_mbuf = NULL;
544 }
545
546 /*
547 * Determine if we're copper or fiber. It affects how we
548 * reset the card.
549 */
550 if (CSR_READ_4(sc, STGE_AsicCtrl) & AC_PhyMedia)
551 sc->sc_usefiber = 1;
552 else
553 sc->sc_usefiber = 0;
554
555 /*
556 * Reset the chip to a known state.
557 */
558 stge_reset(sc);
559
560 /*
561 * Reading the station address from the EEPROM doesn't seem
562 * to work, at least on my sample boards. Instead, since
563 * the reset sequence does AutoInit, read it from the station
564 * address registers. For Sundance 1023 you can only read it
565 * from EEPROM.
566 */
567 if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
568 enaddr[0] = CSR_READ_2(sc, STGE_StationAddress0) & 0xff;
569 enaddr[1] = CSR_READ_2(sc, STGE_StationAddress0) >> 8;
570 enaddr[2] = CSR_READ_2(sc, STGE_StationAddress1) & 0xff;
571 enaddr[3] = CSR_READ_2(sc, STGE_StationAddress1) >> 8;
572 enaddr[4] = CSR_READ_2(sc, STGE_StationAddress2) & 0xff;
573 enaddr[5] = CSR_READ_2(sc, STGE_StationAddress2) >> 8;
574 sc->sc_stge1023 = 0;
575 } else {
576 data = prop_dictionary_get(device_properties(self),
577 "mac-address");
578 if (data != NULL) {
579 /*
580 * Try to get the station address from device
581 * properties first, in case the EEPROM is missing.
582 */
583 KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
584 KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
585 (void)memcpy(enaddr, prop_data_data_nocopy(data),
586 ETHER_ADDR_LEN);
587 } else {
588 uint16_t myaddr[ETHER_ADDR_LEN / 2];
589 for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
590 stge_read_eeprom(sc,
591 STGE_EEPROM_StationAddress0 + i,
592 &myaddr[i]);
593 myaddr[i] = le16toh(myaddr[i]);
594 }
595 (void)memcpy(enaddr, myaddr, sizeof(enaddr));
596 }
597 sc->sc_stge1023 = 1;
598 }
599
600 /* Set need_loaddspcode before mii_attach() */
601 dict = device_properties(self);
602 prop_dictionary_set_bool(dict, "need_loaddspcode",
603 ((sc->sc_rev >= 0x40) && (sc->sc_rev <= 0x4e)) ? true : false);
604
605 aprint_normal_dev(self, "Ethernet address %s\n",
606 ether_sprintf(enaddr));
607
608 /*
609 * Read some important bits from the PhyCtrl register.
610 */
611 sc->sc_PhyCtrl = CSR_READ_1(sc, STGE_PhyCtrl) &
612 (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
613
614 /*
615 * Initialize our media structures and probe the MII.
616 */
617 mii->mii_ifp = ifp;
618 mii->mii_readreg = stge_mii_readreg;
619 mii->mii_writereg = stge_mii_writereg;
620 mii->mii_statchg = stge_mii_statchg;
621 sc->sc_ethercom.ec_mii = mii;
622 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
623 ether_mediastatus);
624 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
625 MII_OFFSET_ANY, MIIF_DOPAUSE);
626 if (LIST_FIRST(&mii->mii_phys) == NULL) {
627 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
628 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
629 } else
630 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
631
632 ifp = &sc->sc_ethercom.ec_if;
633 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
634 ifp->if_softc = sc;
635 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
636 ifp->if_ioctl = stge_ioctl;
637 ifp->if_start = stge_start;
638 ifp->if_watchdog = stge_watchdog;
639 ifp->if_init = stge_init;
640 ifp->if_stop = stge_stop;
641 IFQ_SET_READY(&ifp->if_snd);
642
643 /*
644 * The manual recommends disabling early transmit, so we
645 * do. It's disabled anyway, if using IP checksumming,
646 * since the entire packet must be in the FIFO in order
647 * for the chip to perform the checksum.
648 */
649 sc->sc_txthresh = 0x0fff;
650
651 /*
652 * Disable MWI if the PCI layer tells us to.
653 */
654 sc->sc_DMACtrl = 0;
655 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
656 sc->sc_DMACtrl |= DMAC_MWIDisable;
657
658 /*
659 * We can support 802.1Q VLAN-sized frames and jumbo
660 * Ethernet frames.
661 *
662 * XXX Figure out how to do hw-assisted VLAN tagging in
663 * XXX a reasonable way on this chip.
664 */
665 sc->sc_ethercom.ec_capabilities |=
666 ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
667 ETHERCAP_VLAN_HWTAGGING;
668 sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
669
670 /*
671 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
672 */
673 sc->sc_ethercom.ec_if.if_capabilities |=
674 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
675 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
676 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
677
678 /*
679 * Attach the interface.
680 */
681 if_attach(ifp);
682 if_deferred_start_init(ifp, NULL);
683 ether_ifattach(ifp, enaddr);
684
685 #ifdef STGE_EVENT_COUNTERS
686 /*
687 * Attach event counters.
688 */
689 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
690 NULL, device_xname(self), "txstall");
691 evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
692 NULL, device_xname(self), "txdmaintr");
693 evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
694 NULL, device_xname(self), "txindintr");
695 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
696 NULL, device_xname(self), "rxintr");
697
698 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
699 NULL, device_xname(self), "txseg1");
700 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
701 NULL, device_xname(self), "txseg2");
702 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
703 NULL, device_xname(self), "txseg3");
704 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
705 NULL, device_xname(self), "txseg4");
706 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
707 NULL, device_xname(self), "txseg5");
708 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
709 NULL, device_xname(self), "txsegmore");
710 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
711 NULL, device_xname(self), "txcopy");
712
713 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
714 NULL, device_xname(self), "rxipsum");
715 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
716 NULL, device_xname(self), "rxtcpsum");
717 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
718 NULL, device_xname(self), "rxudpsum");
719 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
720 NULL, device_xname(self), "txipsum");
721 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
722 NULL, device_xname(self), "txtcpsum");
723 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
724 NULL, device_xname(self), "txudpsum");
725 #endif /* STGE_EVENT_COUNTERS */
726
727 /*
728 * Make sure the interface is shutdown during reboot.
729 */
730 if (pmf_device_register1(self, NULL, NULL, stge_shutdown))
731 pmf_class_network_register(self, ifp);
732 else
733 aprint_error_dev(self, "couldn't establish power handler\n");
734
735 return;
736
737 /*
738 * Free any resources we've allocated during the failed attach
739 * attempt. Do this in reverse order and fall through.
740 */
741 fail_5:
742 for (i = 0; i < STGE_NRXDESC; i++) {
743 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
744 bus_dmamap_destroy(sc->sc_dmat,
745 sc->sc_rxsoft[i].ds_dmamap);
746 }
747 fail_4:
748 for (i = 0; i < STGE_NTXDESC; i++) {
749 if (sc->sc_txsoft[i].ds_dmamap != NULL)
750 bus_dmamap_destroy(sc->sc_dmat,
751 sc->sc_txsoft[i].ds_dmamap);
752 }
753 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
754 fail_3:
755 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
756 fail_2:
757 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
758 sizeof(struct stge_control_data));
759 fail_1:
760 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
761 fail_0:
762 return;
763 }
764
765 /*
766 * stge_shutdown:
767 *
768 * Make sure the interface is stopped at reboot time.
769 */
770 static bool
771 stge_shutdown(device_t self, int howto)
772 {
773 struct stge_softc *sc = device_private(self);
774 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
775
776 stge_stop(ifp, 1);
777 stge_reset(sc);
778 return true;
779 }
780
781 static void
782 stge_dma_wait(struct stge_softc *sc)
783 {
784 int i;
785
786 for (i = 0; i < STGE_TIMEOUT; i++) {
787 delay(2);
788 if ((CSR_READ_4(sc, STGE_DMACtrl) & DMAC_TxDMAInProg) == 0)
789 break;
790 }
791
792 if (i == STGE_TIMEOUT)
793 printf("%s: DMA wait timed out\n", device_xname(sc->sc_dev));
794 }
795
796 /*
797 * stge_start: [ifnet interface function]
798 *
799 * Start packet transmission on the interface.
800 */
801 static void
802 stge_start(struct ifnet *ifp)
803 {
804 struct stge_softc *sc = ifp->if_softc;
805 struct mbuf *m0;
806 struct stge_descsoft *ds;
807 struct stge_tfd *tfd;
808 bus_dmamap_t dmamap;
809 int error, firsttx, nexttx, opending, seg, totlen;
810 uint64_t csum_flags;
811
812 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
813 return;
814
815 /*
816 * Remember the previous number of pending transmissions
817 * and the first descriptor we will use.
818 */
819 opending = sc->sc_txpending;
820 firsttx = STGE_NEXTTX(sc->sc_txlast);
821
822 /*
823 * Loop through the send queue, setting up transmit descriptors
824 * until we drain the queue, or use up all available transmit
825 * descriptors.
826 */
827 for (;;) {
828 uint64_t tfc;
829 bool have_vtag;
830 uint16_t vtag;
831
832 /*
833 * Grab a packet off the queue.
834 */
835 IFQ_POLL(&ifp->if_snd, m0);
836 if (m0 == NULL)
837 break;
838
839 /*
840 * Leave one unused descriptor at the end of the
841 * list to prevent wrapping completely around.
842 */
843 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
844 STGE_EVCNT_INCR(&sc->sc_ev_txstall);
845 break;
846 }
847
848 /*
849 * See if we have any VLAN stuff.
850 */
851 have_vtag = vlan_has_tag(m0);
852 if (have_vtag)
853 vtag = vlan_get_tag(m0);
854
855 /*
856 * Get the last and next available transmit descriptor.
857 */
858 nexttx = STGE_NEXTTX(sc->sc_txlast);
859 tfd = &sc->sc_txdescs[nexttx];
860 ds = &sc->sc_txsoft[nexttx];
861
862 dmamap = ds->ds_dmamap;
863
864 /*
865 * Load the DMA map. If this fails, the packet either
866 * didn't fit in the alloted number of segments, or we
867 * were short on resources. For the too-many-segments
868 * case, we simply report an error and drop the packet,
869 * since we can't sanely copy a jumbo packet to a single
870 * buffer.
871 */
872 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
873 BUS_DMA_NOWAIT);
874 if (error) {
875 if (error == EFBIG) {
876 printf("%s: Tx packet consumes too many "
877 "DMA segments, dropping...\n",
878 device_xname(sc->sc_dev));
879 IFQ_DEQUEUE(&ifp->if_snd, m0);
880 m_freem(m0);
881 continue;
882 }
883 /*
884 * Short on resources, just stop for now.
885 */
886 break;
887 }
888
889 IFQ_DEQUEUE(&ifp->if_snd, m0);
890
891 /*
892 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
893 */
894
895 /* Sync the DMA map. */
896 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
897 BUS_DMASYNC_PREWRITE);
898
899 /* Initialize the fragment list. */
900 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
901 tfd->tfd_frags[seg].frag_word0 =
902 htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
903 FRAG_LEN(dmamap->dm_segs[seg].ds_len));
904 totlen += dmamap->dm_segs[seg].ds_len;
905 }
906
907 #ifdef STGE_EVENT_COUNTERS
908 switch (dmamap->dm_nsegs) {
909 case 1:
910 STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
911 break;
912 case 2:
913 STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
914 break;
915 case 3:
916 STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
917 break;
918 case 4:
919 STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
920 break;
921 case 5:
922 STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
923 break;
924 default:
925 STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
926 break;
927 }
928 #endif /* STGE_EVENT_COUNTERS */
929
930 /*
931 * Initialize checksumming flags in the descriptor.
932 * Byte-swap constants so the compiler can optimize.
933 */
934 csum_flags = 0;
935 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
936 STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
937 csum_flags |= TFD_IPChecksumEnable;
938 }
939
940 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
941 STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
942 csum_flags |= TFD_TCPChecksumEnable;
943 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
944 STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
945 csum_flags |= TFD_UDPChecksumEnable;
946 }
947
948 /*
949 * Initialize the descriptor and give it to the chip.
950 * Check to see if we have a VLAN tag to insert.
951 */
952
953 tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
954 TFD_FragCount(seg) | csum_flags |
955 (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
956 TFD_TxDMAIndicate : 0);
957 if (have_vtag) {
958 #if 0
959 struct ether_header *eh =
960 mtod(m0, struct ether_header *);
961 uint16_t etype = ntohs(eh->ether_type);
962 printf("%s: xmit (tag %d) etype %x\n",
963 ifp->if_xname, *mtod(n, int *), etype);
964 #endif
965 tfc |= TFD_VLANTagInsert |
966 #ifdef STGE_VLAN_CFI
967 TFD_CFI |
968 #endif
969 TFD_VID(vtag);
970 }
971 tfd->tfd_control = htole64(tfc);
972
973 /* Sync the descriptor. */
974 STGE_CDTXSYNC(sc, nexttx,
975 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
976
977 /*
978 * Kick the transmit DMA logic.
979 */
980 CSR_WRITE_4(sc, STGE_DMACtrl,
981 sc->sc_DMACtrl | DMAC_TxDMAPollNow);
982
983 /*
984 * Store a pointer to the packet so we can free it later.
985 */
986 ds->ds_mbuf = m0;
987
988 /* Advance the tx pointer. */
989 sc->sc_txpending++;
990 sc->sc_txlast = nexttx;
991
992 /*
993 * Pass the packet to any BPF listeners.
994 */
995 bpf_mtap(ifp, m0, BPF_D_OUT);
996 }
997
998 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
999 /* No more slots left; notify upper layer. */
1000 ifp->if_flags |= IFF_OACTIVE;
1001 }
1002
1003 if (sc->sc_txpending != opending) {
1004 /*
1005 * We enqueued packets. If the transmitter was idle,
1006 * reset the txdirty pointer.
1007 */
1008 if (opending == 0)
1009 sc->sc_txdirty = firsttx;
1010
1011 /* Set a watchdog timer in case the chip flakes out. */
1012 ifp->if_timer = 5;
1013 }
1014 }
1015
1016 /*
1017 * stge_watchdog: [ifnet interface function]
1018 *
1019 * Watchdog timer handler.
1020 */
1021 static void
1022 stge_watchdog(struct ifnet *ifp)
1023 {
1024 struct stge_softc *sc = ifp->if_softc;
1025
1026 /*
1027 * Sweep up first, since we don't interrupt every frame.
1028 */
1029 stge_txintr(sc);
1030 if (sc->sc_txpending != 0) {
1031 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1032 if_statinc(ifp, if_oerrors);
1033
1034 (void) stge_init(ifp);
1035
1036 /* Try to get more packets going. */
1037 stge_start(ifp);
1038 }
1039 }
1040
1041 /*
1042 * stge_ioctl: [ifnet interface function]
1043 *
1044 * Handle control requests from the operator.
1045 */
1046 static int
1047 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1048 {
1049 struct stge_softc *sc = ifp->if_softc;
1050 int s, error;
1051
1052 s = splnet();
1053
1054 error = ether_ioctl(ifp, cmd, data);
1055 if (error == ENETRESET) {
1056 error = 0;
1057
1058 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1059 ;
1060 else if (ifp->if_flags & IFF_RUNNING) {
1061 /*
1062 * Multicast list has changed; set the hardware filter
1063 * accordingly.
1064 */
1065 stge_set_filter(sc);
1066 }
1067 }
1068
1069 /* Try to get more packets going. */
1070 stge_start(ifp);
1071
1072 splx(s);
1073 return (error);
1074 }
1075
1076 /*
1077 * stge_intr:
1078 *
1079 * Interrupt service routine.
1080 */
1081 static int
1082 stge_intr(void *arg)
1083 {
1084 struct stge_softc *sc = arg;
1085 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1086 uint32_t txstat;
1087 int wantinit;
1088 uint16_t isr;
1089
1090 if ((CSR_READ_2(sc, STGE_IntStatus) & IS_InterruptStatus) == 0)
1091 return (0);
1092
1093 for (wantinit = 0; wantinit == 0;) {
1094 isr = CSR_READ_2(sc, STGE_IntStatusAck);
1095 if ((isr & sc->sc_IntEnable) == 0)
1096 break;
1097
1098 /* Host interface errors. */
1099 if (isr & IS_HostError) {
1100 printf("%s: Host interface error\n",
1101 device_xname(sc->sc_dev));
1102 wantinit = 1;
1103 continue;
1104 }
1105
1106 /* Receive interrupts. */
1107 if (isr & (IS_RxDMAComplete | IS_RFDListEnd)) {
1108 STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1109 stge_rxintr(sc);
1110 if (isr & IS_RFDListEnd) {
1111 printf("%s: receive ring overflow\n",
1112 device_xname(sc->sc_dev));
1113 /*
1114 * XXX Should try to recover from this
1115 * XXX more gracefully.
1116 */
1117 wantinit = 1;
1118 }
1119 }
1120
1121 /* Transmit interrupts. */
1122 if (isr & (IS_TxDMAComplete | IS_TxComplete)) {
1123 #ifdef STGE_EVENT_COUNTERS
1124 if (isr & IS_TxDMAComplete)
1125 STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1126 #endif
1127 stge_txintr(sc);
1128 }
1129
1130 /* Statistics overflow. */
1131 if (isr & IS_UpdateStats)
1132 stge_stats_update(sc);
1133
1134 /* Transmission errors. */
1135 if (isr & IS_TxComplete) {
1136 STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1137 for (;;) {
1138 txstat = CSR_READ_4(sc, STGE_TxStatus);
1139 if ((txstat & TS_TxComplete) == 0)
1140 break;
1141 if (txstat & TS_TxUnderrun) {
1142 sc->sc_txthresh++;
1143 if (sc->sc_txthresh > 0x0fff)
1144 sc->sc_txthresh = 0x0fff;
1145 printf("%s: transmit underrun, new "
1146 "threshold: %d bytes\n",
1147 device_xname(sc->sc_dev),
1148 sc->sc_txthresh << 5);
1149 }
1150 if (txstat & TS_MaxCollisions)
1151 printf("%s: excessive collisions\n",
1152 device_xname(sc->sc_dev));
1153 }
1154 wantinit = 1;
1155 }
1156
1157 }
1158
1159 if (wantinit)
1160 stge_init(ifp);
1161
1162 CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
1163
1164 /* Try to get more packets going. */
1165 if_schedule_deferred_start(ifp);
1166
1167 return (1);
1168 }
1169
1170 /*
1171 * stge_txintr:
1172 *
1173 * Helper; handle transmit interrupts.
1174 */
1175 static void
1176 stge_txintr(struct stge_softc *sc)
1177 {
1178 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1179 struct stge_descsoft *ds;
1180 uint64_t control;
1181 int i;
1182
1183 ifp->if_flags &= ~IFF_OACTIVE;
1184
1185 /*
1186 * Go through our Tx list and free mbufs for those
1187 * frames which have been transmitted.
1188 */
1189 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1190 i = STGE_NEXTTX(i), sc->sc_txpending--) {
1191 ds = &sc->sc_txsoft[i];
1192
1193 STGE_CDTXSYNC(sc, i,
1194 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1195
1196 control = le64toh(sc->sc_txdescs[i].tfd_control);
1197 if ((control & TFD_TFDDone) == 0)
1198 break;
1199
1200 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1201 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1202 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1203 m_freem(ds->ds_mbuf);
1204 ds->ds_mbuf = NULL;
1205 }
1206
1207 /* Update the dirty transmit buffer pointer. */
1208 sc->sc_txdirty = i;
1209
1210 /*
1211 * If there are no more pending transmissions, cancel the watchdog
1212 * timer.
1213 */
1214 if (sc->sc_txpending == 0)
1215 ifp->if_timer = 0;
1216 }
1217
1218 /*
1219 * stge_rxintr:
1220 *
1221 * Helper; handle receive interrupts.
1222 */
1223 static void
1224 stge_rxintr(struct stge_softc *sc)
1225 {
1226 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1227 struct stge_descsoft *ds;
1228 struct mbuf *m, *tailm;
1229 uint64_t status;
1230 int i, len;
1231
1232 for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1233 ds = &sc->sc_rxsoft[i];
1234
1235 STGE_CDRXSYNC(sc, i,
1236 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1237
1238 status = le64toh(sc->sc_rxdescs[i].rfd_status);
1239
1240 if ((status & RFD_RFDDone) == 0)
1241 break;
1242
1243 if (__predict_false(sc->sc_rxdiscard)) {
1244 STGE_INIT_RXDESC(sc, i);
1245 if (status & RFD_FrameEnd) {
1246 /* Reset our state. */
1247 sc->sc_rxdiscard = 0;
1248 }
1249 continue;
1250 }
1251
1252 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1253 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1254
1255 m = ds->ds_mbuf;
1256
1257 /*
1258 * Add a new receive buffer to the ring.
1259 */
1260 if (stge_add_rxbuf(sc, i) != 0) {
1261 /*
1262 * Failed, throw away what we've done so
1263 * far, and discard the rest of the packet.
1264 */
1265 if_statinc(ifp, if_ierrors);
1266 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1267 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1268 STGE_INIT_RXDESC(sc, i);
1269 if ((status & RFD_FrameEnd) == 0)
1270 sc->sc_rxdiscard = 1;
1271 if (sc->sc_rxhead != NULL)
1272 m_freem(sc->sc_rxhead);
1273 STGE_RXCHAIN_RESET(sc);
1274 continue;
1275 }
1276
1277 #ifdef DIAGNOSTIC
1278 if (status & RFD_FrameStart) {
1279 KASSERT(sc->sc_rxhead == NULL);
1280 KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1281 }
1282 #endif
1283
1284 STGE_RXCHAIN_LINK(sc, m);
1285
1286 /*
1287 * If this is not the end of the packet, keep
1288 * looking.
1289 */
1290 if ((status & RFD_FrameEnd) == 0) {
1291 sc->sc_rxlen += m->m_len;
1292 continue;
1293 }
1294
1295 /*
1296 * Okay, we have the entire packet now...
1297 */
1298 *sc->sc_rxtailp = NULL;
1299 m = sc->sc_rxhead;
1300 tailm = sc->sc_rxtail;
1301
1302 STGE_RXCHAIN_RESET(sc);
1303
1304 /*
1305 * If the packet had an error, drop it. Note we
1306 * count the error later in the periodic stats update.
1307 */
1308 if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1309 RFD_RxAlignmentError | RFD_RxFCSError |
1310 RFD_RxLengthError)) {
1311 m_freem(m);
1312 continue;
1313 }
1314
1315 /*
1316 * No errors.
1317 *
1318 * Note we have configured the chip to not include
1319 * the CRC at the end of the packet.
1320 */
1321 len = RFD_RxDMAFrameLen(status);
1322 tailm->m_len = len - sc->sc_rxlen;
1323
1324 /*
1325 * If the packet is small enough to fit in a
1326 * single header mbuf, allocate one and copy
1327 * the data into it. This greatly reduces
1328 * memory consumption when we receive lots
1329 * of small packets.
1330 */
1331 if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1332 struct mbuf *nm;
1333 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1334 if (nm == NULL) {
1335 if_statinc(ifp, if_ierrors);
1336 m_freem(m);
1337 continue;
1338 }
1339 nm->m_data += 2;
1340 nm->m_pkthdr.len = nm->m_len = len;
1341 m_copydata(m, 0, len, mtod(nm, void *));
1342 m_freem(m);
1343 m = nm;
1344 }
1345
1346 /*
1347 * Set the incoming checksum information for the packet.
1348 */
1349 if (status & RFD_IPDetected) {
1350 STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1351 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1352 if (status & RFD_IPError)
1353 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1354 if (status & RFD_TCPDetected) {
1355 STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1356 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1357 if (status & RFD_TCPError)
1358 m->m_pkthdr.csum_flags |=
1359 M_CSUM_TCP_UDP_BAD;
1360 } else if (status & RFD_UDPDetected) {
1361 STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1362 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1363 if (status & RFD_UDPError)
1364 m->m_pkthdr.csum_flags |=
1365 M_CSUM_TCP_UDP_BAD;
1366 }
1367 }
1368
1369 m_set_rcvif(m, ifp);
1370 m->m_pkthdr.len = len;
1371
1372 /*
1373 * Pass this up to any BPF listeners, but only
1374 * pass if up the stack if it's for us.
1375 */
1376 #ifdef STGE_VLAN_UNTAG
1377 /*
1378 * Check for VLAN tagged packets
1379 */
1380 if (status & RFD_VLANDetected)
1381 vlan_set_tag(m, RFD_TCI(status));
1382
1383 #endif
1384 #if 0
1385 if (status & RFD_VLANDetected) {
1386 struct ether_header *eh;
1387 uint16_t etype;
1388
1389 eh = mtod(m, struct ether_header *);
1390 etype = ntohs(eh->ether_type);
1391 printf("%s: VLANtag detected (TCI %d) etype %x\n",
1392 ifp->if_xname, (uint16_t) RFD_TCI(status),
1393 etype);
1394 }
1395 #endif
1396 /* Pass it on. */
1397 if_percpuq_enqueue(ifp->if_percpuq, m);
1398 }
1399
1400 /* Update the receive pointer. */
1401 sc->sc_rxptr = i;
1402 }
1403
1404 /*
1405 * stge_tick:
1406 *
1407 * One second timer, used to tick the MII.
1408 */
1409 static void
1410 stge_tick(void *arg)
1411 {
1412 struct stge_softc *sc = arg;
1413 int s;
1414
1415 s = splnet();
1416 mii_tick(&sc->sc_mii);
1417 stge_stats_update(sc);
1418 splx(s);
1419
1420 callout_schedule(&sc->sc_tick_ch, hz);
1421 }
1422
1423 /*
1424 * stge_stats_update:
1425 *
1426 * Read the TC9021 statistics counters.
1427 */
1428 static void
1429 stge_stats_update(struct stge_softc *sc)
1430 {
1431 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1432
1433 (void) CSR_READ_4(sc, STGE_OctetRcvOk);
1434
1435 (void) CSR_READ_4(sc, STGE_FramesRcvdOk);
1436
1437 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1438
1439 if_statadd_ref(nsr, if_ierrors,
1440 (u_int) CSR_READ_2(sc, STGE_FramesLostRxErrors));
1441
1442 (void) CSR_READ_4(sc, STGE_OctetXmtdOk);
1443
1444 if_statadd_ref(nsr, if_opackets,
1445 CSR_READ_4(sc, STGE_FramesXmtdOk));
1446
1447 if_statadd_ref(nsr, if_collisions,
1448 CSR_READ_4(sc, STGE_LateCollisions) +
1449 CSR_READ_4(sc, STGE_MultiColFrames) +
1450 CSR_READ_4(sc, STGE_SingleColFrames));
1451
1452 if_statadd_ref(nsr, if_oerrors,
1453 (u_int) CSR_READ_2(sc, STGE_FramesAbortXSColls) +
1454 (u_int) CSR_READ_2(sc, STGE_FramesWEXDeferal));
1455
1456 IF_STAT_PUTREF(ifp);
1457 }
1458
1459 /*
1460 * stge_reset:
1461 *
1462 * Perform a soft reset on the TC9021.
1463 */
1464 static void
1465 stge_reset(struct stge_softc *sc)
1466 {
1467 uint32_t ac;
1468 int i;
1469
1470 ac = CSR_READ_4(sc, STGE_AsicCtrl);
1471
1472 /*
1473 * Only assert RstOut if we're fiber. We need GMII clocks
1474 * to be present in order for the reset to complete on fiber
1475 * cards.
1476 */
1477 CSR_WRITE_4(sc, STGE_AsicCtrl,
1478 ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1479 AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1480 (sc->sc_usefiber ? AC_RstOut : 0));
1481
1482 delay(50000);
1483
1484 for (i = 0; i < STGE_TIMEOUT; i++) {
1485 delay(5000);
1486 if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1487 break;
1488 }
1489
1490 if (i == STGE_TIMEOUT)
1491 printf("%s: reset failed to complete\n",
1492 device_xname(sc->sc_dev));
1493
1494 delay(1000);
1495 }
1496
1497 /*
1498 * stge_init: [ ifnet interface function ]
1499 *
1500 * Initialize the interface. Must be called at splnet().
1501 */
1502 static int
1503 stge_init(struct ifnet *ifp)
1504 {
1505 struct stge_softc *sc = ifp->if_softc;
1506 struct stge_descsoft *ds;
1507 int i, error = 0;
1508
1509 /*
1510 * Cancel any pending I/O.
1511 */
1512 stge_stop(ifp, 0);
1513
1514 /*
1515 * Reset the chip to a known state.
1516 */
1517 stge_reset(sc);
1518
1519 /*
1520 * Initialize the transmit descriptor ring.
1521 */
1522 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1523 for (i = 0; i < STGE_NTXDESC; i++) {
1524 sc->sc_txdescs[i].tfd_next = htole64(
1525 STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1526 sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1527 }
1528 sc->sc_txpending = 0;
1529 sc->sc_txdirty = 0;
1530 sc->sc_txlast = STGE_NTXDESC - 1;
1531
1532 /*
1533 * Initialize the receive descriptor and receive job
1534 * descriptor rings.
1535 */
1536 for (i = 0; i < STGE_NRXDESC; i++) {
1537 ds = &sc->sc_rxsoft[i];
1538 if (ds->ds_mbuf == NULL) {
1539 if ((error = stge_add_rxbuf(sc, i)) != 0) {
1540 printf("%s: unable to allocate or map rx "
1541 "buffer %d, error = %d\n",
1542 device_xname(sc->sc_dev), i, error);
1543 /*
1544 * XXX Should attempt to run with fewer receive
1545 * XXX buffers instead of just failing.
1546 */
1547 stge_rxdrain(sc);
1548 goto out;
1549 }
1550 } else
1551 STGE_INIT_RXDESC(sc, i);
1552 }
1553 sc->sc_rxptr = 0;
1554 sc->sc_rxdiscard = 0;
1555 STGE_RXCHAIN_RESET(sc);
1556
1557 /* Set the station address. */
1558 for (i = 0; i < 6; i++)
1559 CSR_WRITE_1(sc, STGE_StationAddress0 + i,
1560 CLLADDR(ifp->if_sadl)[i]);
1561
1562 /*
1563 * Set the statistics masks. Disable all the RMON stats,
1564 * and disable selected stats in the non-RMON stats registers.
1565 */
1566 CSR_WRITE_4(sc, STGE_RMONStatisticsMask, 0xffffffff);
1567 CSR_WRITE_4(sc, STGE_StatisticsMask,
1568 (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1569 (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1570 (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1571 (1U << 21));
1572
1573 /* Set up the receive filter. */
1574 stge_set_filter(sc);
1575
1576 /*
1577 * Give the transmit and receive ring to the chip.
1578 */
1579 CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1580 CSR_WRITE_4(sc, STGE_TFDListPtrLo,
1581 STGE_CDTXADDR(sc, sc->sc_txdirty));
1582
1583 CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1584 CSR_WRITE_4(sc, STGE_RFDListPtrLo,
1585 STGE_CDRXADDR(sc, sc->sc_rxptr));
1586
1587 /*
1588 * Initialize the Tx auto-poll period. It's OK to make this number
1589 * large (255 is the max, but we use 127) -- we explicitly kick the
1590 * transmit engine when there's actually a packet.
1591 */
1592 CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
1593
1594 /* ..and the Rx auto-poll period. */
1595 CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 64);
1596
1597 /* Initialize the Tx start threshold. */
1598 CSR_WRITE_2(sc, STGE_TxStartThresh, sc->sc_txthresh);
1599
1600 /* RX DMA thresholds, from linux */
1601 CSR_WRITE_1(sc, STGE_RxDMABurstThresh, 0x30);
1602 CSR_WRITE_1(sc, STGE_RxDMAUrgentThresh, 0x30);
1603
1604 /* Rx early threhold, from Linux */
1605 CSR_WRITE_2(sc, STGE_RxEarlyThresh, 0x7ff);
1606
1607 /* Tx DMA thresholds, from Linux */
1608 CSR_WRITE_1(sc, STGE_TxDMABurstThresh, 0x30);
1609 CSR_WRITE_1(sc, STGE_TxDMAUrgentThresh, 0x04);
1610
1611 /*
1612 * Initialize the Rx DMA interrupt control register. We
1613 * request an interrupt after every incoming packet, but
1614 * defer it for 32us (64 * 512 ns). When the number of
1615 * interrupts pending reaches 8, we stop deferring the
1616 * interrupt, and signal it immediately.
1617 */
1618 CSR_WRITE_4(sc, STGE_RxDMAIntCtrl,
1619 RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1620
1621 /*
1622 * Initialize the interrupt mask.
1623 */
1624 sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1625 IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1626 CSR_WRITE_2(sc, STGE_IntStatus, 0xffff);
1627 CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
1628
1629 /*
1630 * Configure the DMA engine.
1631 * XXX Should auto-tune TxBurstLimit.
1632 */
1633 CSR_WRITE_4(sc, STGE_DMACtrl, sc->sc_DMACtrl |
1634 DMAC_TxBurstLimit(3));
1635
1636 /*
1637 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1638 * FIFO, and send an un-PAUSE frame when we reach 3056 bytes
1639 * in the Rx FIFO.
1640 */
1641 CSR_WRITE_2(sc, STGE_FlowOnTresh, 29696 / 16);
1642 CSR_WRITE_2(sc, STGE_FlowOffThresh, 3056 / 16);
1643
1644 /*
1645 * Set the maximum frame size.
1646 */
1647 CSR_WRITE_2(sc, STGE_MaxFrameSize,
1648 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1649 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1650 ETHER_VLAN_ENCAP_LEN : 0));
1651
1652 /*
1653 * Initialize MacCtrl -- do it before setting the media,
1654 * as setting the media will actually program the register.
1655 *
1656 * Note: We have to poke the IFS value before poking
1657 * anything else.
1658 */
1659 sc->sc_MACCtrl = MC_IFSSelect(0);
1660 CSR_WRITE_4(sc, STGE_MACCtrl, sc->sc_MACCtrl);
1661 sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1662 #ifdef STGE_VLAN_UNTAG
1663 sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1664 #endif
1665
1666 if (sc->sc_rev >= 6) { /* >= B.2 */
1667 /* Multi-frag frame bug work-around. */
1668 CSR_WRITE_2(sc, STGE_DebugCtrl,
1669 CSR_READ_2(sc, STGE_DebugCtrl) | 0x0200);
1670
1671 /* Tx Poll Now bug work-around. */
1672 CSR_WRITE_2(sc, STGE_DebugCtrl,
1673 CSR_READ_2(sc, STGE_DebugCtrl) | 0x0010);
1674 /* XXX ? from linux */
1675 CSR_WRITE_2(sc, STGE_DebugCtrl,
1676 CSR_READ_2(sc, STGE_DebugCtrl) | 0x0020);
1677 }
1678
1679 /*
1680 * Set the current media.
1681 */
1682 if ((error = ether_mediachange(ifp)) != 0)
1683 goto out;
1684
1685 /*
1686 * Start the one second MII clock.
1687 */
1688 callout_schedule(&sc->sc_tick_ch, hz);
1689
1690 /*
1691 * ...all done!
1692 */
1693 ifp->if_flags |= IFF_RUNNING;
1694 ifp->if_flags &= ~IFF_OACTIVE;
1695
1696 out:
1697 if (error)
1698 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1699 return (error);
1700 }
1701
1702 /*
1703 * stge_drain:
1704 *
1705 * Drain the receive queue.
1706 */
1707 static void
1708 stge_rxdrain(struct stge_softc *sc)
1709 {
1710 struct stge_descsoft *ds;
1711 int i;
1712
1713 for (i = 0; i < STGE_NRXDESC; i++) {
1714 ds = &sc->sc_rxsoft[i];
1715 if (ds->ds_mbuf != NULL) {
1716 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1717 ds->ds_mbuf->m_next = NULL;
1718 m_freem(ds->ds_mbuf);
1719 ds->ds_mbuf = NULL;
1720 }
1721 }
1722 }
1723
1724 /*
1725 * stge_stop: [ ifnet interface function ]
1726 *
1727 * Stop transmission on the interface.
1728 */
1729 static void
1730 stge_stop(struct ifnet *ifp, int disable)
1731 {
1732 struct stge_softc *sc = ifp->if_softc;
1733 struct stge_descsoft *ds;
1734 int i;
1735
1736 /*
1737 * Stop the one second clock.
1738 */
1739 callout_stop(&sc->sc_tick_ch);
1740
1741 /* Down the MII. */
1742 mii_down(&sc->sc_mii);
1743
1744 /*
1745 * Disable interrupts.
1746 */
1747 CSR_WRITE_2(sc, STGE_IntEnable, 0);
1748
1749 /*
1750 * Stop receiver, transmitter, and stats update.
1751 */
1752 CSR_WRITE_4(sc, STGE_MACCtrl,
1753 MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1754
1755 /*
1756 * Stop the transmit and receive DMA.
1757 */
1758 stge_dma_wait(sc);
1759 CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0);
1760 CSR_WRITE_4(sc, STGE_TFDListPtrLo, 0);
1761 CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0);
1762 CSR_WRITE_4(sc, STGE_RFDListPtrLo, 0);
1763
1764 /*
1765 * Release any queued transmit buffers.
1766 */
1767 for (i = 0; i < STGE_NTXDESC; i++) {
1768 ds = &sc->sc_txsoft[i];
1769 if (ds->ds_mbuf != NULL) {
1770 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1771 m_freem(ds->ds_mbuf);
1772 ds->ds_mbuf = NULL;
1773 }
1774 }
1775
1776 /*
1777 * Mark the interface down and cancel the watchdog timer.
1778 */
1779 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1780 ifp->if_timer = 0;
1781
1782 if (disable)
1783 stge_rxdrain(sc);
1784 }
1785
1786 static int
1787 stge_eeprom_wait(struct stge_softc *sc)
1788 {
1789 int i;
1790
1791 for (i = 0; i < STGE_TIMEOUT; i++) {
1792 delay(1000);
1793 if ((CSR_READ_2(sc, STGE_EepromCtrl) & EC_EepromBusy) == 0)
1794 return (0);
1795 }
1796 return (1);
1797 }
1798
1799 /*
1800 * stge_read_eeprom:
1801 *
1802 * Read data from the serial EEPROM.
1803 */
1804 static void
1805 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1806 {
1807
1808 if (stge_eeprom_wait(sc))
1809 printf("%s: EEPROM failed to come ready\n",
1810 device_xname(sc->sc_dev));
1811
1812 CSR_WRITE_2(sc, STGE_EepromCtrl,
1813 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1814 if (stge_eeprom_wait(sc))
1815 printf("%s: EEPROM read timed out\n",
1816 device_xname(sc->sc_dev));
1817 *data = CSR_READ_2(sc, STGE_EepromData);
1818 }
1819
1820 /*
1821 * stge_add_rxbuf:
1822 *
1823 * Add a receive buffer to the indicated descriptor.
1824 */
1825 static int
1826 stge_add_rxbuf(struct stge_softc *sc, int idx)
1827 {
1828 struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1829 struct mbuf *m;
1830 int error;
1831
1832 MGETHDR(m, M_DONTWAIT, MT_DATA);
1833 if (m == NULL)
1834 return (ENOBUFS);
1835
1836 MCLGET(m, M_DONTWAIT);
1837 if ((m->m_flags & M_EXT) == 0) {
1838 m_freem(m);
1839 return (ENOBUFS);
1840 }
1841
1842 m->m_data = m->m_ext.ext_buf + 2;
1843 m->m_len = MCLBYTES - 2;
1844
1845 if (ds->ds_mbuf != NULL)
1846 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1847
1848 ds->ds_mbuf = m;
1849
1850 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1851 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1852 if (error) {
1853 printf("%s: can't load rx DMA map %d, error = %d\n",
1854 device_xname(sc->sc_dev), idx, error);
1855 panic("stge_add_rxbuf"); /* XXX */
1856 }
1857
1858 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1859 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1860
1861 STGE_INIT_RXDESC(sc, idx);
1862
1863 return (0);
1864 }
1865
1866 /*
1867 * stge_set_filter:
1868 *
1869 * Set up the receive filter.
1870 */
1871 static void
1872 stge_set_filter(struct stge_softc *sc)
1873 {
1874 struct ethercom *ec = &sc->sc_ethercom;
1875 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1876 struct ether_multi *enm;
1877 struct ether_multistep step;
1878 uint32_t crc;
1879 uint32_t mchash[2];
1880
1881 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1882 if (ifp->if_flags & IFF_BROADCAST)
1883 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1884
1885 /* XXX: ST1023 only works in promiscuous mode */
1886 if (sc->sc_stge1023)
1887 ifp->if_flags |= IFF_PROMISC;
1888
1889 if (ifp->if_flags & IFF_PROMISC) {
1890 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1891 goto allmulti;
1892 }
1893
1894 /*
1895 * Set up the multicast address filter by passing all multicast
1896 * addresses through a CRC generator, and then using the low-order
1897 * 6 bits as an index into the 64 bit multicast hash table. The
1898 * high order bits select the register, while the rest of the bits
1899 * select the bit within the register.
1900 */
1901
1902 memset(mchash, 0, sizeof(mchash));
1903
1904 ETHER_LOCK(ec);
1905 ETHER_FIRST_MULTI(step, ec, enm);
1906 if (enm == NULL) {
1907 ETHER_UNLOCK(ec);
1908 goto done;
1909 }
1910
1911 while (enm != NULL) {
1912 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1913 /*
1914 * We must listen to a range of multicast addresses.
1915 * For now, just accept all multicasts, rather than
1916 * trying to set only those filter bits needed to match
1917 * the range. (At this time, the only use of address
1918 * ranges is for IP multicast routing, for which the
1919 * range is big enough to require all bits set.)
1920 */
1921 ETHER_UNLOCK(ec);
1922 goto allmulti;
1923 }
1924
1925 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1926
1927 /* Just want the 6 least significant bits. */
1928 crc &= 0x3f;
1929
1930 /* Set the corresponding bit in the hash table. */
1931 mchash[crc >> 5] |= 1 << (crc & 0x1f);
1932
1933 ETHER_NEXT_MULTI(step, enm);
1934 }
1935 ETHER_UNLOCK(ec);
1936
1937 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1938
1939 ifp->if_flags &= ~IFF_ALLMULTI;
1940 goto done;
1941
1942 allmulti:
1943 ifp->if_flags |= IFF_ALLMULTI;
1944 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1945
1946 done:
1947 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1948 /*
1949 * Program the multicast hash table.
1950 */
1951 CSR_WRITE_4(sc, STGE_HashTable0, mchash[0]);
1952 CSR_WRITE_4(sc, STGE_HashTable1, mchash[1]);
1953 }
1954
1955 CSR_WRITE_2(sc, STGE_ReceiveMode, sc->sc_ReceiveMode);
1956 }
1957
1958 /*
1959 * stge_mii_readreg: [mii interface function]
1960 *
1961 * Read a PHY register on the MII of the TC9021.
1962 */
1963 static int
1964 stge_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1965 {
1966
1967 return mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg, val);
1968 }
1969
1970 /*
1971 * stge_mii_writereg: [mii interface function]
1972 *
1973 * Write a PHY register on the MII of the TC9021.
1974 */
1975 static int
1976 stge_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1977 {
1978
1979 return mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg,
1980 val);
1981 }
1982
1983 /*
1984 * stge_mii_statchg: [mii interface function]
1985 *
1986 * Callback from MII layer when media changes.
1987 */
1988 static void
1989 stge_mii_statchg(struct ifnet *ifp)
1990 {
1991 struct stge_softc *sc = ifp->if_softc;
1992
1993 sc->sc_MACCtrl &= ~(MC_DuplexSelect | MC_RxFlowControlEnable |
1994 MC_TxFlowControlEnable);
1995
1996 if (sc->sc_mii.mii_media_active & IFM_FDX)
1997 sc->sc_MACCtrl |= MC_DuplexSelect;
1998 if ((sc->sc_mii.mii_media_active & IFM_ETH_RXPAUSE) != 0)
1999 sc->sc_MACCtrl |= MC_RxFlowControlEnable;
2000 if ((sc->sc_mii.mii_media_active & IFM_ETH_TXPAUSE) != 0)
2001 sc->sc_MACCtrl |= MC_TxFlowControlEnable;
2002
2003 CSR_WRITE_4(sc, STGE_MACCtrl, sc->sc_MACCtrl);
2004 }
2005
2006 /*
2007 * sste_mii_bitbang_read: [mii bit-bang interface function]
2008 *
2009 * Read the MII serial port for the MII bit-bang module.
2010 */
2011 static uint32_t
2012 stge_mii_bitbang_read(device_t self)
2013 {
2014 struct stge_softc *sc = device_private(self);
2015
2016 return (CSR_READ_1(sc, STGE_PhyCtrl));
2017 }
2018
2019 /*
2020 * stge_mii_bitbang_write: [mii big-bang interface function]
2021 *
2022 * Write the MII serial port for the MII bit-bang module.
2023 */
2024 static void
2025 stge_mii_bitbang_write(device_t self, uint32_t val)
2026 {
2027 struct stge_softc *sc = device_private(self);
2028
2029 CSR_WRITE_1(sc, STGE_PhyCtrl, val | sc->sc_PhyCtrl);
2030 }
2031